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Basic Definitions (1)

• Complex System:
• System of many components;
• relationships between components are important;
• evolution of components’ properties governed by rules of
interaction;

• behaviour of system at larger scales emerges naturally
through interactions:
• “emergent properties”:



Examples of Complex Systems

• Condensed Matter

(e.g. Ising model).

• Climate system

• Ecosystems

• Economies

• Cities



Emergent Properties

Segregation in
Granular Materials:

Synchronisation of
Fireflies:

The Trials of Life – A Natural History of Behaviour,
narrated by David Attenborough.
Part 10 of 12 – “Talking to Strangers.” c©BBC Bristol,
MCMXC.



Theory and Modelling of Complex Systems

Simplified Models:
• Dynamical systems

theory,
• networks,
• cellular automata,
• . . .

attempt to represent
important elements and find
“universal” features.

Detailed Simulation:

• agent-based simulation,

• Monte Carlo simulation,

• . . .

large-scale computer models,
including many details.



Agent-Based Simulation

E.g. Modelling Flocking:

Simple computational flocking
rules for “boids”:

1. Collision Avoidance:
short-range repulsion
from local neighbours

2. Velocity Matching: steer
towards average heading
of neighbours

3. Flock Centring: steer
towards center of mass of
local neighbours



Conceptual Models of Complex Systems

• Higher level models abstracting the important features.

• Specify topology:
• who interacts with whom:
• the network.

• Specify dynamics:
• behaviour of individual components,
• interaction of components:
• coupled dynamical systems.

• Try to investigate system and behaviours to gain insight:
• analytical results,
• numerical simulation,
• statistical mechanics.



Basic Definitions (2)

• Networks can be used to represent complex systems:
• Graph, with components as vertices: v1 . . . vN ;

(also “nodes”, “sites”, “agents”)

• relationships shown as edges: e(i ,j), connecting nodes.

(also “links”, “bonds”, “ties”)

• Properties include: node degree, path-length, centrality. . .

• Clustering also important ([V1, V2, V5] above).



Examples of Networks

The Internet:

http://www.eee.bham.ac.uk/com test/dsnl.aspx

• wide degree distribution.

Food webs:

Can also look at
robustness/resilience:

• whether attacking
nodes/edges could lead
to system failure.



More Networks (“Communities”)

Figure: a, A co-authorship network. b, Word Association network.
c, Protein–protein interactions in yeast. (From Palla &c., Nature.)



Human Social Networks

• Individuals can be interviewed about their own personal
social network,

• egocentric networks constructed by asking an individual
(the ego) about their contacts (the alters) and the links
between them.



Dynamical Systems

Networks can then be used as the coupling links in dynamical
systems. E.g. continuous-time dynamical systems:

ẋi = f (xi) +
∑
j∈K

σi ,jg(xj)

• Synchronisation of a chain of coupled nonlinear oscillators:



Spatio-Temporal Patterns

As well as complete synchronisation, can find other patterns:

• Period two travelling waves:

• Can study on complex networks as well as regular lattices.



Discrete Dynamics

E.g. Cellular Automata:
• each “site” has a rule

based on own state and
that of its neighbours,

• update at next time-step
given by this rule.

• For 1D lattice shown,
time is top to bottom.

[Wolfram (1983)]



Analytical Approaches

• How macroscopic laws be obtained from component
interactions?

• use methods from statistical mechanics:

• e.g. thermodynamics: m, p, v ...→ P ,V ,T .

• Mean field arguments applied to networks:

• use “homogeneous mixing” assumption,

• try to obtain macro-variables and understand dynamical
behaviour.



Mean Field Theories

E.g. SIR model of disease propagation:

S(usceptible)
λ−→ I (nfected)

µ−→ R(emoved)

Assuming homogeneous mixing (mean field):

ṅS = −λk̄nI (t)nS(t)

ṅI = −µnI (t) + λk̄nI (t)nS(t)

ṅR = µnI (t)

nS , nI , nR are number density of S , I ,R ;
k̄ is number of contacts per unit time.

• can determine critical ratio of rate constants for
transmission, etc.


