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Can Complexity Science Rise to the Challenge?

With: Catherine Bale, Timothy Foxon, William Gale, Alastair Rucklidge. (Leeds)

I Cities are expanding:
I Over 50% people living in cities,
I by 2050: 60%–80%

I Buildings consume 20%–40% of total energy.
I Local authorities can influence residents/businesses to reduce

energy demand.
I Decision-making tools are needed to support their potential

contribution to energy and climate change targets‡.

‡: Bale, et al. “Strategic energy planning within local authorities in the UK:

A study of the city of Leeds.” Energy Policy (2012)
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Introduction

I Considering domestic energy use:

I Energy use depends on both
technology and behaviour:

I use of installed tech &
decisions to install.

I Roll-out of energy efficiency
technologies is a problem.

c©BRE

I can we create models of energy innovation uptake?
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Diffusion Models

I Individuals are considered as nodes on a network.
I Properties of nodes are associated with variables.

I Links: interactions where people communicate information
with each other about energy.

I Behaviour rules determine dynamics.
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Threshold Models

I Current adoption state, xi = 0, 1.

I Uptake based on perceived “usefulness” crossing a threshold:

future state: x ′i =


1 if xi = 1,
1 if xi = 0 and ui > θi ,
0 otherwise.

(1)

I θi : threshold (barriers, costs etc.)
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Modelling innovation diffusion

Decisions to adopt can be based on various factors:

a) rational decision-making with regards to the intrinsic value of
a product;

b) social spreading of technology or ideas induced by
peer-to-peer communication of information;

c) interaction with the “mainstream” via a global feedback:
I e.g. via media, markets etc.
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Why is Energy Different?

I Model of uptake of technology.
I E.g. Smart-phones:

I visible and socially desirable,
I mediated by social contacts between individuals.

I Energy technologies:
I sometimes visible (solar panels).

I can be hidden (e.g. loft insulation),
I decisions based on individual benefit.

http://www.greendayrenewables.com http://www.homeinsulationgrants.com
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Intrinsic benefit
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Social aspects of decision-making

I Decision of to adopt based on combination of factors:
I personal + social benefit1.

I Intrinsic benefits to individual.
I Social benefit combination of both2:

I personal social network – friends & neighbours,
I mainstream social norm (society as a whole).

1: Delre et al., “Will it spread or not? the effects of social influences and network topology on innovation
diffusion.” Journal of Product Innovation Management (2010).

2: Valente, “Social network thresholds in the diffusion of innovations.” Social networks (1996).
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Mathematical Model

I Total utility to individual♠:

ui = αipi + βi si + γim (2)

I pi , si ,m: personal, peer-group and societal influence.

I αi , βi , γi : relative weightings given to each factor,

♠ McCullen et al., “Multi-parameter models of innovation diffusion on complex networks”, SIADS (2013).
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Real-world social networks

I Real networks have many features, including:
I local connections, distant ties, wide spread in degrees,

community structure. . .

Figure: Inter-friend contacts on the Facebook website.
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Network models

I Regular lattice:

⊕ e.g. city-like geography,

⊕ can have high clustering,

	 long path-lengths l ∝ d1/D .

I Random (Erdős Renýı):

⊕ short path lengths l ∝ log N
log k̄

,

	 no clustering (N →∞).
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“Complex” networks

I Different models reproduce different features.

(a) (b) (c)

Figure: (a): A small world network with random rewiring of a regular lattice.
(b): A preferential attachment graph which has a scale-free degree distribution.
(c): A simple model of weakly-connected communities.
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Model for Network Modularity

I Selection based on performance and connection costs:

Clune, Mouret and Lipson “The evolutionary origins of modularity” Proc. R. Soc. B (2013)
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Random Clustered Model?

I Each node associated with G groups.

I Linked to L others in each group.

I Can also be linked to individuals in wider network.

I Can also impose geography.

?: Newman “Properties of highly clustered networks.” Physical Review E (2003).
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Simulation Demonstration
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Outcomes — homogeneous case

Expected chance of success depends on details:
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Analysis of Results

I Given individuals have a certain θ, p, α, β, γ and m,
require critical fraction of active neighbours:

s∗ =
θ − αp − γm

β
, (3)

I s∗ > 1: impossible,

I s∗ ≤ 0: immediate,

I 0 < s∗ ≤ 1: required number of active contacts:

Xi ≥ dki s
∗e ≡ X ∗i , (4)

I combining (3) and (4) gives X ∗ regions of β, γ plots. . .
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Comparison with Watts-Strogatz
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Figure: (a) 1D k̄ = 6, pr = 0, (b) 1D k̄ = 6, pr = 0.2;
(c) truss k = 8, pr = 0.05, (d) truss k = 8, pr = 0.2.
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Chance and rate of uptake

I Number of active neighbours can be sufficient
by chance with probability†:

P(X ≥ X ∗) =
k∑

n=X∗

(
k

n

)
mn(1−m)(k−n), (5)

I X ∗ = dk(θ − αp − γm)/βe.

I This is fraction of remaining (1−m) of individuals to adopt,
increasing overall average:

∆m = (1−m)P(X ≥ X ∗). (6)

† assume ki = k and random network.
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Effect of initial seed size

∆m = (1−m)

ki∑
n=X∗i

(
ki

n

)
mn(1−m)(ki−n),

I for small m:

∆m ∼
(
ki

X ∗i

)
mX∗ . (7)

I For X ∗ > 1 disproportionate effect of low initial seed sizes
(“funding”).

I E.g. k = 15, X ∗ = 4, ∆m ∼ 1365m4.
Half initial m0 takes 8 times as long to reach target.
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The Effect of Clustering

Clustering creates non-independent neighbourhoods:

(a) (b)

(c) (d)
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Clustering and Communities

Enhances expected uptake:

 0
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 20 40  100  160

c
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 0.4  0.6  0.8  1_
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Figure: Expected uptake for clustered random network, with number of
groups W determining level of clustering c .

I Only one “success” required in network for spreading to occur.
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Modelling Inhomogeneity

I Thresholds distributed over three values:

(a)

Average Uptake
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Figure: (a) 28% of θ = 0.25, 17% of θ2 = 0.45, 5% of θ3 = 0.75, 50% of θ4 = 1;
(b) 28% of θ1 = 0.25, 67% of θ2 = 0.45, 5% of θ3 = 0.75.
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Modelling Inhomogeneous ‘Archetypes’

(a) (b)

(c) (d)

Figure: Other than homogeneous case (a), the population is divided into three archetypes and individual
nodes are each assigned to an archetype Aj = (αj , βj , γj ). (b) A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1).
(c) A1 = (0.25, 0.7, 0.05), A2 = (0.1, 0.8, 0.1), A3 = (0.05, 0.6, 35).
(d) Thresholds are also distributed, with: A2 = (0.25, 0.65, 0.1), A3 = (0.1, 0.7, 0.2)
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Inputting real data

I Survey data including info on behaviours.

I Over 1050 valid responses received from residents of Leeds.

I Data used as a guide rather than definitive source,

I used to narrow choice of structure and parameter values,
I also to illustrate potential applications.

Model element Parameter Question / Data

Network number of active individual Q. on who talks to
/ group connections. whom about energy.

Threshold θ Q. on house type,
tenancy and income.

Node archetypes α, β, γ Defra types of pro-
enviro. behaviour
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Parameterising the Models

Model Feature Parameters Data (if used)

Network structure N, G , M | W , L Survey | Assumption

Individual connections I | L Survey | Assumption

Group connections G | L Survey | Assumption

Archetypes Ai = (αi , βi , γi ), P(Ai ) Simulation

Threshold θ | Pθ Survey | Assumption
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Modelling Scenarios

I Different scenarios studied by varying dynamical model
and network parameters.

Baseline Seeded Community Incentives Snowball

Give efficiency Give efficiency Advertise a Recommend-a-
Model Do Nothing measure to some measure to whole money off friend discount
Param. (random) individuals communities. scheme. voucher scheme.

Links Data based – – – Increase

Threshold Data based – – Lower Lower

Initial Seed Unforced Random Target – –
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Comparison of Model Scenarios

Baseline Seeded Communities

Incentives Snowball
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Other Strategies?
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