The Origin of Emergent Scaling Laws in Complex Dielectric Materials.

Nick McCullen

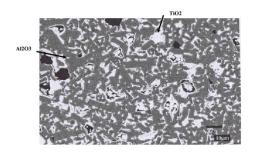
Darryl Almond, Chris Budd Melina Freitag, Giles Hunt, Nathan Smith

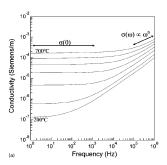
Bath Institute for Complex Systems
University of Bath

Dielectrics 2013, Reading 10th April

Microstructure of a Ceramic

- ightharpoonup Al₂O₃ TiO₂
- \blacktriangleright Variable conductivity ratio (with AC driving frequency ω).

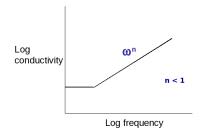




R. Uppal & R. Stevens

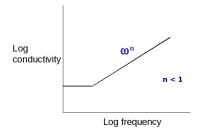
Bulk Response of Composites

- Conductor-dielectric composites display anomalous power-law scaling in bulk AC conductivity – "Universal Dielectric Response."
- 'Jonscher power-law'



Bulk Response of Composites

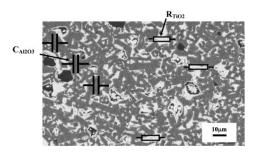
- Conductor-dielectric composites display anomalous power-law scaling in bulk AC conductivity – "Universal Dielectric Response."
- ► 'Jonscher power-law'



Emergent property of a complex system resulting from component interaction.

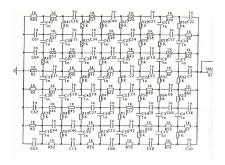
Modelling of Complex Composites

- ightharpoonup Al₂O₃ TiO₂
- Associate conducting phase with R and dielectric with C.



Modelling of Complex Composites

- Model using resistor-capacitor network:
 - ► Randomly assign bonds on square lattice as either \mathbb{R} ($y_R = R^{-1}$) or $\mathbb{C}(y_C = i\omega C)$.



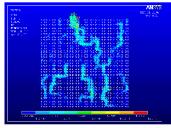
N: Total number of components

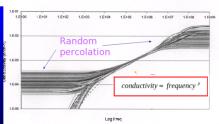
p: proportion of C

 $h: i\omega CR$ conductivity ratio

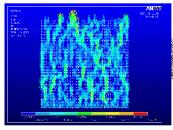
Vainas and Almond, 1999

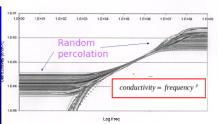
Frequency



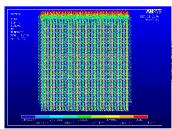


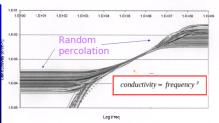
Frequency

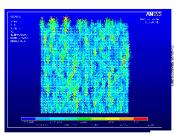




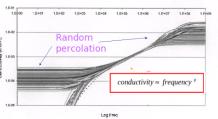
Frequency



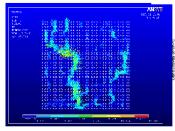


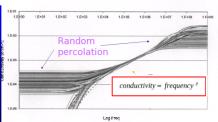


Frequency

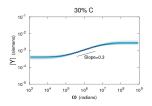


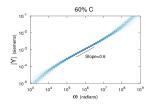
Frequency

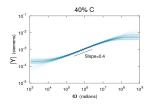


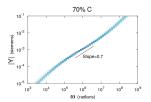


Power $n \approx p$, proportion of variable components (capacitors).





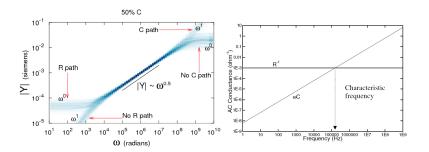




Experimentally verified.

Power-Law Emergent Response

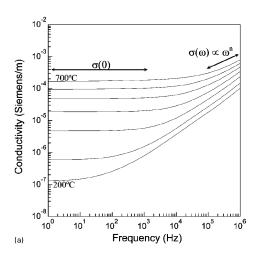
Emergent power-law response over wide range of ω .



 $p = p_c = \frac{1}{2}$: critical percolation threshold for 2D square lattices.

Physical Interpretation

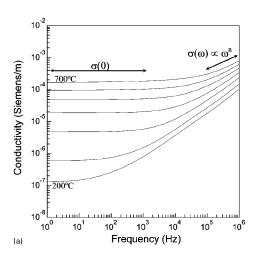
► Typical frequency response of a real material:



conductivity increasing with frequency:

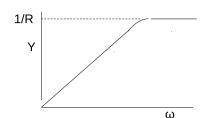
Physical Interpretation

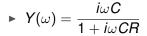
► Typical frequency response of a real material:

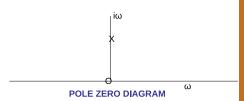


- conductivity increasing with frequency:
- material behaving as a "high-pass filter".

Simple High-Pass Filter

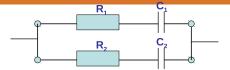






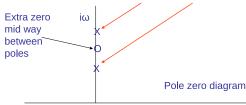
- ▶ Pole at $\omega = i/CR$
- ▶ Zero at $i\omega = 0$

Parallel Filters



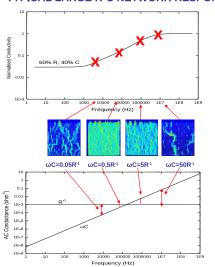
► Admittance:

$$Y(\omega) = Y_1 + Y_2 = i\omega C_1/(1 + i\omega C_1 R_1) + i\omega C_2/(1 + i\omega C_2 R_2)$$
$$= \frac{i\omega C_1(1 + i\omega C_2 R_2) + i\omega C_2(1 + i\omega C_1 R_1)}{(1 + i\omega C_1 R_1)(1 + i\omega C_2 R_2)}$$



Large RC Network Response

TYPICAL LARGE R-C NETWORK RESPONSE

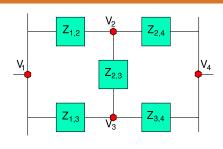


- Net response from:
 - many conduction paths in parallel,
 - Equivalent to a large number of high pass filters with a random distribution of Rs and Cs in parallel.

Power-Law Emergent Response

- ► Features of PLER:
 - 1. Admittance $|Y| \propto \omega^n$, $n \approx p$ over several orders of magnitude.
 - **2.** $|Y(\omega)|$ independent of details (statistical properties).
 - 3. Percolation limits & width of region can depend strongly on network size N if $p = p_C = 1/2$.
 - **4.** If $p \neq 1/2$ percolation limits depend only on p if N is sufficiently large.

Matrices of Electrical Networks



Using Kirchhoff's laws:

$$\begin{pmatrix} \Sigma_2 & -y_{2,3} \\ -y_{2,3} & \Sigma_3 \end{pmatrix} \begin{pmatrix} v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} y_{1,2} \\ y_{1,3} \end{pmatrix} V$$

$$\Sigma_2 = y_{1,2} + y_{2,3} + y_{2,4}$$

$$\Sigma_3 = y_{1,3} + y_{2,3} + y_{3,4}$$

$$v_1 = V, v_4 = 0, y_{m,n} = 1/z_{m,n}$$

Problem reduces to solving:

$$Kv = bV$$

- K sparse banded (Kirchhoff) matrix of admittances,
- v vector of node voltages,
- b vector of boundary elements.
- v applied boundary potential.

Poles and Zeroes

- ▶ Admittance $Y(\omega) = \underline{\mathbf{b}}^T \mathbf{K}^{-1} \underline{\mathbf{b}}$
 - $\mathbf{K} = \mathbf{K}_R + i\omega \mathbf{K}_C$

Poles and Zeroes

- ▶ Admittance $Y(\omega) = \underline{\mathbf{b}}^T \mathbf{K}^{-1} \underline{\mathbf{b}}$
 - $\mathbf{K} = \mathbf{K}_{R} + i\omega \mathbf{K}_{C}$
- ► Rational function: $Y(\omega) = \frac{N(\omega)}{D(\omega)} = F\frac{(\omega \omega_{z,1})(\omega \omega_{z,2})(\omega \omega_{z,3})...}{(\omega \omega_{p,1})(\omega \omega_{p,2})(\omega \omega_{p,3})...}$.
 - ▶ Poles $\omega_{p,k}$ are the finite generalised eigenvalues of **K**.
 - Zeroes ω_{z,k} are the finite generalised eigenvalues of a symmetric block-bordered extension of K.

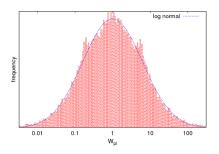
Poles and Zeroes

- ▶ Admittance $Y(\omega) = \underline{\mathbf{b}}^T \mathbf{K}^{-1} \underline{\mathbf{b}}$
 - $\mathbf{K} = \mathbf{K}_{R} + i\omega \mathbf{K}_{C}$
- ► Rational function: $Y(\omega) = \frac{N(\omega)}{D(\omega)} = F\frac{(\omega \omega_{z,1})(\omega \omega_{z,2})(\omega \omega_{z,3})...}{(\omega \omega_{p,1})(\omega \omega_{p,2})(\omega \omega_{p,3})...}$
 - ▶ Poles $\omega_{p,k}$ are the finite generalised eigenvalues of **K**.
 - ► Zeroes $\omega_{z,k}$ are the finite generalised eigenvalues of a symmetric block-bordered extension of **K**.
- Study distributions of Zeroes, Poles and statistics of spacing between them.

Observations on P, Z Distributions

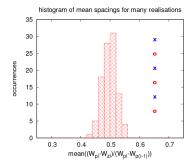
From analysis of large number of networks:

- Poles and Zeroes interlace, as predicted.
- Find a symmetric log-Normal distribution of Zeroes & Poles.



Observations on P–Z Spacings

- Spacings are statistically regular
 - For p = 0.5:

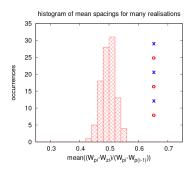


 \rightarrow Mean (over k) spacing equal

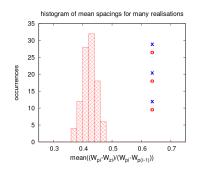
$$\overline{W_{p,k}-W_{z,k}}=\overline{W_{z,k}-W_{p,(k-1)}}$$

Observations on P–Z Spacings

- Spacings are statistically regular
 - For p = 0.5:

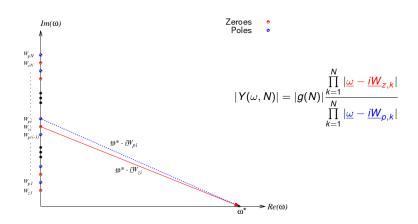


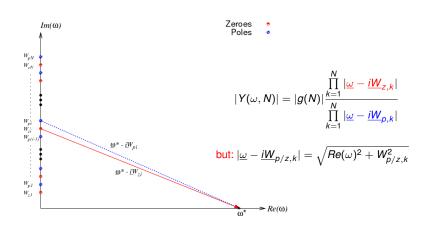
► For $p \neq 0.5$ (p = 0.4):



 \rightarrow Mean (over k) spacing equal

$$\overline{W_{p,k}-W_{z,k}}=\overline{W_{z,k}-W_{p,(k-1)}}$$





Assuming equal numbers of finite P, Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}}$$

Assuming equal numbers of finite P, Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{\rho,k}^2}}$$

using previous observations of distribution of P, Z:

$$W_{p,k} \sim f(k), W_{z,k} \sim f(k) - \bar{\delta}_k f'(k)$$

► Assuming equal numbers of finite P, Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{p,k}^2}}$$

- ▶ using previous observations of distribution of P, Z: $W_{D,k} \sim f(k), W_{Z,k} \sim f(k) \bar{\delta}_k f'(k)$
- ▶ we obtain:

$$\log(|Y(\omega, N)|) = \log(|g(N)|) + \frac{1}{2} \sum_{k=1}^{N} \log\left(\frac{\omega^2 + (f(k) - \bar{\delta}_k f'(k))^2}{\omega^2 + (f(k))^2}\right)$$

Assuming equal numbers of finite P, Z:

$$|Y(\omega, N)| = |g(N)| \prod_{k=1}^{N} \sqrt{\frac{\omega^2 + W_{z,k}^2}{\omega^2 + W_{\rho,k}^2}}$$

- ▶ using previous observations of distribution of P, Z: $W_{D,k} \sim f(k), W_{Z,k} \sim f(k) \bar{\delta}_k f'(k)$
- ▶ we obtain:

$$\log(|Y(\omega, N)|) = \log(|g(N)|) + \frac{1}{2} \sum_{k=1}^{N} \log\left(\frac{\omega^2 + (f(k) - \bar{\delta}_k f'(k))^2}{\omega^2 + (f(k))^2}\right)$$

▶ and a few approximations later...

Results for Random RC Networks.

- ▶ Obtain following expressions with $\bar{d} = \text{mean}_{\{\log(W_i)\}}(\bar{d}_k)$:
- (1) Percolation path in R but not C:

$$|Y(\omega)| = \frac{1}{R} \left(\frac{1 + N^2 C^2 R^2 \omega^2}{N^2 + C^2 R^2 \omega^2} \right)^{\frac{\bar{\delta}}{2}}$$

(2) Percolation path in C but not R:

$$|Y(\omega)| = \omega C \left(\frac{N^2 + C^2 R^2 \omega^2}{1 + N^2 C^2 R^2 \omega^2}\right)^{\frac{1-\tilde{d}}{2}}$$

Results for Random RC Networks.

- ▶ Obtain following expressions with $\bar{d} = \text{mean}_{\{\log(W_i)\}}(\bar{d}_k)$:
- (1) Percolation path in R but not C:

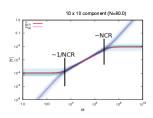
$$|Y(\omega)| = \frac{1}{R} \left(\frac{1 + N^2 C^2 R^2 \omega^2}{N^2 + C^2 R^2 \omega^2} \right)^{\frac{\bar{\delta}}{2}}$$

(2) Percolation path in C but not R:

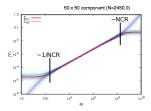
$$|Y(\omega)| = \omega C \left(\frac{N^2 + C^2 R^2 \omega^2}{1 + N^2 C^2 R^2 \omega^2} \right)^{\frac{1 - \bar{\theta}}{2}}$$

Numerical results for p = 0.5 for which $\bar{d} = 0.5$:

► Small Networks:



Large Networks:



- Binary random systems show Power-Law Emergent Response.
 (Models UDR in solids)
 - Power determined by proportion of components.

- Binary random systems show Power-Law Emergent Response.
 (Models UDR in solids)
 - Power determined by proportion of components.
- ▶ Physically equivalent to large complex electronic filter.
 - Origin in microstructural disorder.

- ▶ Binary random systems show Power-Law Emergent Response. (Models UDR in solids)
 - Power determined by proportion of components.
- Physically equivalent to large complex electronic filter.
 - Origin in microstructural disorder.
- Can use analytical approach to obtain formulae for bulk properties.
 - Continuous distribution of Poles-Zeroes results in power-law scaling.
 - Excellent agreement with simulations and experiments, using few assumptions.

- ▶ Binary random systems show Power-Law Emergent Response. (Models UDR in solids)
 - Power determined by proportion of components.
- Physically equivalent to large complex electronic filter.
 - Origin in microstructural disorder.
- Can use analytical approach to obtain formulae for bulk properties.
 - Continuous distribution of Poles-Zeroes results in power-law scaling.
 - Excellent agreement with simulations and experiments, using few assumptions.
- Almond, Budd, Freitag, Hunt, McCullen & Smith, Physica A (2013).