

The Emergence of Patterns on Complex Networks: Turing Instability, Snakes and Other Animals

Nick McCullen[@] Thomas Wagenknecht

> School of Mathematics University of Leeds

[®]Research Unit for Energy and the Design of Environments (EDEn) Department of Architecture and Civil Engineering University of Bath, UK

CNM Seminar, 13th November 2012

(CNM Seminar)

Patterns on networks

Thomas Wagenknecht (1974–2012)

(CNM Seminar)

Patterns on Regular Networks

Complex Networks

Patterns of Spreading

Turing Patterns on Networks

Patterns on Regular Networks

Static Patterns:

Coarsening Patterns:

Time-Delay and Dynamic Patterns

Gray-Scott model:

Localised patterns

Richter

Umbanhowar

Hunt et al.

(CNM Seminar)

Patterns on networks

13/11/12 6 / 33

Snaking Bifurcations

Quadratic-cubic Swift-Hohenberg equation (SH23):

$$u_t = ru - (1 + \partial_x^2)^2 u + b_2 u^2 - u^3, \qquad b_2 > 0$$

(numerical results by Burke, Knobloch for $b_2 = 1.8$)

(CNM Seminar)

"Snakes and ladders"

13/11/12

8 / 33

Symmetry Breaking

Isolas and criss-cross snaking

13/11/12 9

Complex Networks and Patterns

- What does it mean to have pattern on such networks?
- ▶ How can we understand the origin and spread of patterns?

Eigenvectors

smallest two and largest two eigenvectors 1 with increasing rewiring probability p

p = 0

p = 0.01

p=0.025

p = 0.05

13/11/12 11 / 33

Re-wired patterns

(CNM Seminar)

Patterns on networks

13/11/12 12 / 33

Current state, $x_i = 0, 1$

► Total *utility* to individual:

$$u_i = \alpha_i p_i + \beta_i s_i + \gamma_i m \tag{1}$$

• $s_i = \frac{1}{k_i} \sum_{nei(i)} A_{i,j} \mathbf{x}_j$

- ▶ p_i, s_i, m : personal, peer-group and societal influence.
- $\alpha_i, \beta_i, \gamma_i$: relative weightings given to each factor,

Current state, $x_i = 0, 1$

► Total *utility* to individual:

$$u_i = \alpha_i \mathbf{p}_i + \beta_i \mathbf{s}_i + \gamma_i \mathbf{m} \tag{1}$$

• $s_i = \frac{1}{k_i} \sum_{nei(i)} A_{i,j} \mathbf{x}_j$

- ▶ p_i, s_i, m : personal, peer-group and societal influence.
- $\alpha_i, \beta_i, \gamma_i$: relative weightings given to each factor,

future state:
$$x'_i = \begin{cases} 1 & \text{if } x_i = 1, \\ 1 & \text{if } x_i = 0 \text{ and } u_i > \theta_i, \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

13/11/12 13 / 33

 t_1

t₂

(CNM Seminar)

13/11/12 14 / 33

13/11/12 14 / 33

13/11/12 14 / 33

0.8

0.6

► Require critical fraction of *active* neighbours:

$$s^* = \frac{\theta - \alpha p - \gamma m}{\beta},\tag{3}$$

▶ $0 < s^* \leq 1$: required *number* of active contacts:

$$X_i \equiv \sum_j A_{ij} x_j \ge \lceil k_i s^* \rceil \equiv X_i^*, \tag{4}$$

13/11/12 15 / 33

On Small-World Networks

probability of occurence then gives expectation of success

13/11/12 16 / 33

Reaction-diffusion system:

$$\dot{u}_{i} = f(u_{i}, v_{i}) - D \sum_{j=1}^{N} L_{(i,j)} u_{j}$$

$$\dot{v}_{i} = g(u_{i}, v_{i}) - \sigma D \sum_{j=1}^{N} L_{(i,j)} v_{j}$$

- *u* activator, *v* inhibitor, $L = (L_{(i,j)})$ network Laplacian.
- Turing instability: stable equilibrium of the reaction kinetics u_t = f(u, v), v_t = g(u, v) is destabilized by increase of bif. parameter σ
- ► ⇒ emergence of alternating activator-rich and activator-low domains (periodic Turing pattern)

Reaction-diffusion system:

$$\dot{u} = f(u, v) - DLu$$

 $\dot{v} = g(u, v) - \sigma DLv$

with

$$f(u,v) = \frac{au+bu^2-u^3}{c} - uv, \quad g(u,v) = uv - v - dv^2$$

at the parameter values a = 35, b = 16, c = 9, d = 2/5.

13/11/12 18 / 33

Reaction-diffusion system:

$$\dot{u} = f(u, v) - DLu$$

 $\dot{v} = g(u, v) - \sigma DLv$

with

$$f(u,v)=\frac{au+bu^2-u^3}{c}-uv, \quad g(u,v)=uv-v-dv^2$$

at the parameter values a = 35, b = 16, c = 9, d = 2/5.

► the model has an equilibrium at (ū, v) = (5, 10), which undergoes a supercritical Turing bifurcation at σ = σ_T ≈ 15.5.

(CNM Seminar)

Patterns on networks

Nakao and Mikhailov studied the Turing instability in large scale-free networks and found interesting differences to the continuous case:

- Turing patterns are different from the unstable linear modes
- stable patterns exist before the homogeneous equilibrium becomes unstable (subcritical bifurcation)
- coexistence and multi-stability of a huge variety of patterns

Nakao, H. and Mikhailov, A.S., "Turing patterns in network-organized activator-inhibitor systems", *Nature Physics* (2010).

Mimura-Murray on networks

Nakao, H. and Mikhailov, A.S., "Turing patterns in network-organized activator-inhibitor systems", Nature Physics (2010).

(CNM Seminar)

Patterns on networks

13/11/12 20 / 33

Consider the dynamics of node k under the assumption that all other nodes are fixed at the stable equilibrium (\bar{u}, \bar{v})

$$\begin{split} \dot{u}_k &= f(u_k, v_k) + \beta(\bar{u} - u_k) \\ \dot{v}_k &= g(u_k, v_k) + \sigma\beta(\bar{v} - v_k) \end{split}$$

where $\beta = d_k D$ (d_k is the degree of node k).

• (\bar{u}, \bar{v}) is an equilibrium, which is stable for $\sigma < \sigma_T$ and unstable for $\sigma > \sigma_T$.

Wolfrum, M. "The Turing bifurcation in network systems: Collective patterns and single differentiated nodes", *Physica D: Nonlinear Phenomena*, (2012).

Transcritical bifurcation

13/11/12 22 / 33

Transcritical bifurcation

13/11/12 23 / 33

Bifurcation curves in Mimura-Murray

Wolfrum, M. "The Turing bifurcation in network systems: Collective patterns and single differentiated nodes", *Physica D: Nonlinear Phenomena*, (2012).

(CNM Seminar)

Patterns on networks

13/11/12 24

Existence region for SDNs

Wolfrum, M. "The Turing bifurcation in network systems: Collective patterns and single differentiated nodes", *Physica D: Nonlinear Phenomena*, (2012).

(CNM Seminar)

Patterns on networks

13/11/12 25 / 33

Snakes originating from a SDN?

Nakao, H. and Mikhailov, A.S., "Turing patterns in network-organized activator-inhibitor systems", Nature Physics (2010).

(CNM Seminar)

Patterns on networks

13/11/12 26 / 33

Catching the Snakes in a Net

Scale-free network:

Subcritical emergence of patterns

Stable patterns

(CNM Seminar)

Patterns on networks

13/11/12 29 / 33

Stable SDNs

 \Rightarrow good agreement with analytical region of existence

(CNM Seminar)

Patterns on networks

A Snake!

(CNM Seminar)

Patterns on networks

13/11/12 31 / 33

A zoo of bifurcation curves

an isola

???

13/11/12 32 / 33

- networks very interesting
 - lots of real-world applications
 - reaction-diffusion systems
- two main approaches:
 - 1. global patterns: look at analytical properties of connectivity matrices:
 - linear analysis: eigenvalues, eigenvectors
 - 2. local behaviour and emergence of pattern and spreading