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Who am I and Why am I here?

Two questions:

1. What have I got to do with networks?

2. What have networks got to do with energy and buildings?

Career history

1. Ph.D.: Chaos in coupled systems (Manchester). 2003–2007

2. PDRA: Emergence in complex systems (BICS). 2007–2009

3. Research Fellow: Energy and complexity (Leeds). 2010–2012
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1. Coupled nonlinear systems 1

I Simple systems of oscillators: rings & feed-forward networks. . .

I More complicated arrays.

I Application to distributed generation.

1University of Manchester
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2. Complex network models 2

Models of composite materials
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I Explained emergent power-law dependence of conduction on component ratio.

I Applications in materials science. . .

2BICS
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Diffusion of Innovation on Networks 3

Self Introduction
Who am I and Why am I here?

Diffusion of Energy Efficiency Innovation via Social Networks
Social Network Models
Models of Innovation Diffusion
Methods of Analysis
Modelling Inhomogeneity
Real World Scenarios

Future Energy Networks
Domestic Energy Networks
Distributed Generation
Smart Metering

3With: C.S.E. Bale, A.M. Rucklidge, T.J. Foxon, W.F. Gale, University of Leeds.
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Background

I Energy use is both behaviour and use of technology. . .

I Roll-out of energy efficiency technologies is a problem.

I Local authorities can influence residents/businesses to reduce energy
demand.

I Decision-making tools are needed to support their potential
contribution to energy and climate change targets [1].

I Quantifying and integrating real-world data into models needs to be
addressed.

I We consider diffusion of EE innovations spread by “word of
mouth”. . . i.e. via interpersonal social network.
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Diffusion Models

I Individuals are considered as nodes on a network.
I Properties of nodes are associated with variables.

I Links (‘edges’) transmit information between individuals.

I Contact models (SI &c.): Single contact required for “infection”.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 8 / 42



  

  

Diffusion Models

I Individuals are considered as nodes on a network.
I Properties of nodes are associated with variables.

I Links (‘edges’) transmit information between individuals.

I Contact models (SI &c.): Single contact required for “infection”.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 8 / 42



  

  

Diffusion Models

I Individuals are considered as nodes on a network.
I Properties of nodes are associated with variables.

I Links (‘edges’) transmit information between individuals.

I Contact models (SI &c.): Single contact required for “infection”.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 8 / 42



  

  

Threshold Models

I For ideas/technologies &c., may take more persuasion (> 1 contact).

I Nodes on a network each have a variable for current state, xi = 0, 1.

I Uptake based on “Utility” crossing a threshold:

future state: x ′i =

 1 if xi = 1,
1 if xi = 0 and ui > θi ,
0 otherwise.

(1)

I θi : threshold (barriers, costs etc.)

I Network diffusion: proportion of neighbours.
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Why is Energy Different?

I Model of uptake of technology.

I E.g. Smart-phones:
I visible and socially desirable,
I mediated by social contacts between individuals.

I Energy technologies:
I sometimes visible (solar panels).

I can be hidden (e.g. loft insulation),
I decisions based on individual benefit.

http://www.greendayrenewables.com
http://www.homeinsulationgrants.com

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 10 / 42



  

  

Why is Energy Different?

I Model of uptake of technology.

I E.g. Smart-phones:
I visible and socially desirable,
I mediated by social contacts between individuals.

I Energy technologies:
I sometimes visible (solar panels).

I can be hidden (e.g. loft insulation),
I decisions based on individual benefit.

http://www.greendayrenewables.com

http://www.homeinsulationgrants.com

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 10 / 42



  

  

Why is Energy Different?

I Model of uptake of technology.

I E.g. Smart-phones:
I visible and socially desirable,
I mediated by social contacts between individuals.

I Energy technologies:
I sometimes visible (solar panels).
I can be hidden (e.g. loft insulation),
I decisions based on individual benefit.

http://www.greendayrenewables.com
http://www.homeinsulationgrants.com

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 10 / 42



  

  

Modelling Uptake of Innovations

I Decision of to adopt based on combination of factors:
I personal + social benefit [2].

I Intrinsic benefits to individual.

I Social benefit combination of both [5]:
I personal social network – friends & neighbours,
I mainstream social norm (society as a whole).
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Mathematical Model

I Total utility to individual:

ui = αipi + βi si + γim (2)

I pi , si ,m: personal, peer-group and societal influence.

I αi , βi , γi : relative weightings given to each factor,

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 12 / 42



  

  

Real-world social networks

I Real networks have many features, including:
I local connections, distant ties, wide spread in degrees, community

structure. . .

Figure: Inter-friend contacts on the Facebook website.
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Network models

I Regular lattice:

+ e.g. city-like geography,

+ can have high clustering,

- long path-lengths l ∝ d1/D .

I Random (Erdős Renýı):

+ short path lengths l ∝ log N
log k̄

,

- no clustering (N →∞).
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“Complex” networks

I Different models reproduce different features.

(a) (b) (c)

Figure: (a): A small world network with random rewiring of a regular lattice.
(b): A preferential attachment graph which has a scale-free degree distribution.
(c): A simple model of weakly-connected communities.
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Random Clustered Model [4]

I Each node associated with G groups.

I Linked to L others in each group.

I Can also be linked to individuals in wider network.

I Can also impose geography.
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Demonstrating the Model
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Individual Sensitivity Vs Ensembles

Chance of success depends on model parameters:
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Analysis [3]

I Simple cases:

I αp > θ: Immediate uptake below β = 1− γ − θ
p

,

I αp + γm0 > θ: values below β = 1− θ
p
− γ

(
1− m0

p

)
successful.

I Simple mean field: assume average s̄i = m:

u = αp + (β + γ)m0 ≥ θ, i.e.,

p + (m0 − p)(β + γ) ≥ 0; hence:

β + γ ≤ θ − p

m0 − p
, (3)

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 20 / 42



  

  

Local neighbourhood sensitivity

I Given individuals have a certain θ, p, α, β, γ and m,
require critical fraction of active neighbours:

s∗ =
θ − αp − γm

β
, (4)

I s∗ > 1: impossible,

I s∗ ≤ 0: immediate,

I 0 < s∗ ≤ 1: required number of active contacts:

Xi ≡
∑
j

Aijxj ≥ dki s∗e ≡ X ∗i , (5)

I combining (4) and (5) gives X ∗ regions of β, γ plots. . .
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Comparison with Watts-Strogatz

(a)
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Figure: (a) 1D k̄ = 6, pr = 0, (b) 1D k̄ = 6, pr = 0.2;
(c) truss k = 8, pr = 0.05, (d) truss k = 8, pr = 0.2.
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Chance and rate of uptake

I Number of active neighbours can be sufficient
by chance with probability4:

P(X ≥ X ∗) =
k∑

n=X∗

(
k

n

)
mn(1−m)(k−n), (6)

I X ∗ = dk(θ − αp − γm)/βe.

I This is fraction of remaining (1−m) of individuals to adopt,
increasing overall average:

∆m = (1−m)P(X ≥ X ∗). (7)

4assume ki = k and random network.
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Growth of initiated cluster

m′ = m + (1−m)P(X ≥ X ∗) ≡ f (m).
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Effect of initial seed size

∆m = (1−m)

ki∑
n=X∗

i

(
ki
n

)
mn(1−m)(ki−n),

I for small m:

∆m ∼
(

ki
X ∗i

)
mX∗

. (8)

I For X ∗ > 1 disproportionate effect of low initial seed sizes
(“funding”).

I E.g. k = 15, X ∗ = 4, ∆m ∼ 1365m4.
Half initial m0 takes 8 times as long to reach target.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 25 / 42



  

  

Effect of initial seed size

∆m = (1−m)

ki∑
n=X∗

i

(
ki
n

)
mn(1−m)(ki−n),

I for small m:

∆m ∼
(

ki
X ∗i

)
mX∗

. (8)

I For X ∗ > 1 disproportionate effect of low initial seed sizes
(“funding”).

I E.g. k = 15, X ∗ = 4, ∆m ∼ 1365m4.
Half initial m0 takes 8 times as long to reach target.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 25 / 42



  

  

Effect of initial seed size

∆m = (1−m)

ki∑
n=X∗

i

(
ki
n

)
mn(1−m)(ki−n),

I for small m:

∆m ∼
(

ki
X ∗i

)
mX∗

. (8)

I For X ∗ > 1 disproportionate effect of low initial seed sizes
(“funding”).

I E.g. k = 15, X ∗ = 4, ∆m ∼ 1365m4.
Half initial m0 takes 8 times as long to reach target.

Nick McCullen (EDEn, ACE, Bath) Networks and Energy CNCB 25 / 42



  

  

Other Networks
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Figure: (a) Random N = 2000, k̄ = 6, (b) random N = 500, k̄ = 15,
(c) geographic, connected communities, k̄ = 7.5, (d) disconnected communities, k̄ = 5.
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The Problem of Clustering

Clustering creates non-independent neighbourhoods:

(a) (b)

(c) (d)
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The Problem of Clustering

Enhances expected uptake:

 0

 0.04
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 0.16
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 0.32
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W

 0.4  0.6  0.8  1_
m(36)

Figure: Expected uptake for clustered random network, with number of groups
W determining level of clustering c.

I Only one “success” required in network for spreading to occur.
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Modelling Inhomogeneity

(a)
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Figure: Thresholds distributed over three values. (a) 28% of θ = 0.25, 17% of
θ2 = 0.45, 5% of θ3 = 0.75, 50% of θ4 = 1; (b) 28% of θ1 = 0.25, 67% of
θ2 = 0.45, 5% of θ3 = 0.75.
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Modelling Inhomogeneity
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Figure: The population is divided into three archetypes and individual nodes
are each assigned to an archetype Aj = (αj , βj , γj). (a) A1 = (0.25, 0.7, 0.05),
A2 = (0.1, 0.8, 0.1), A3 = (0.05, 0.6, 35). (b) Thresholds are also distributed,
with: A2 = (0.25, 0.65, 0.1), A3 = (0.1, 0.7, 0.2)
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Using survey data

I Survey data including info on behaviours.
I Over 1050 valid responses received from residents of Leeds.

I Data used as a guide rather than definitive source,
I used to narrow choice of structure and parameter values,
I also to illustrate potential applications.

Model element Parameter Question / Data

Network number of active individual Q. on who talks to
/ group connections. whom about energy.

Threshold θ Q. on house type,
tenancy and income.

Node archetypes α, β, γ Defra types of pro-
enviro. behaviour
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Parameterising the Models

Model Feature Parameters Data (if used)

Network structure N, G , M | W , L Survey | Assumption
Individual connections I | L Survey | Assumption
Group connections G | L Survey | Assumption
Archetypes Ai = (αi , βi , γi ), P(Ai ) Simulation
Threshold θ | Pθ Survey | Assumption
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Modelling Scenarios

I Different scenarios studied by varying dynamical model
and network parameters.

Baseline Seeded Community Incentives Snowball

Give efficiency Give efficiency Advertise a Recommend-a-

Model Do Nothing measure to some measure to whole money off friend discount

Param. (random) individuals communities. scheme. voucher scheme.

Links Data based – – – Increase

Threshold Data based – – Lower Lower

Initial Seed Unforced Random Target – –
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Real World Scenarios
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Real World Scenarios
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Domestic Energy Networks

BREDEM-12, B.R. Anderson, et al., BRE (2001)

I Networks models of heat flows
in buildings.

I Interaction network between
occupants, building, technology.

I Smart systems & automated
management of building energy.
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Distributed Generation

I Renewables distributed to households across network are
intermittent.

I Nodes can flip between energy source and sink.

I Problems of synchronisation and erratic inputs/outputs.

I Resonances could cause problems. . .

http://en.wikipedia.org/wiki/Distributed generation
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Smart Metering

I How do users interact to feedback from local network?

I What is ideal level of feedback?

I What is best strategy for role-out of meters?

Energy Retailers Association/PA

http://sierramadretattler.blogspot.com
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