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Intro Networks ABS Insights

Future energy decision making for cities:

Can complexity science rise to the challenge?

• Using complex systems methods to understand energy
decision-making at the city level

1. Network modelling

• consumer behaviour models1,

2. Agent-based simulation

• Modelling electricity
consumption in office buildings2

1: McCullen et al., IJBC (2011)

2: Zhang et al., Energy and Buildings (2011)
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Background: local authority energy planning

• Local authorities (LAs) are willing to think strategically about
energy interventions but need the tools to do so.

Bale et al., Energy Policy, (2012)3
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Network models:

Role of social networks in

domestic sector uptake of

energy-efficiency innovations

N. J. McCullen.
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Role of social networks in domestic sector

uptake of energy-efficiency innovations
• influence of social networks not previously considered.

• We use complex networks to model innovation diffusion
mediated via social network interactions.

5



Intro Networks ABS Insights

Modelling adoption of innovations

Households are nodes.

Links represent interactions.

• Households adopt based on various factors:

• personal + social benefita.

• Intrinsic benefits to household.

• Social benefit combination of bothb:

• personal social network,
• mainstream social norm.

£

• Total utility to individual household i :

ui = αipi + βi si + γim (1)
• pi , si ,m: personal, peer-group and societal influence.
• αi , βi , γi : relative weightings given to each factor.
• Adoption occurs if ui exceeds a threshold θi .

aDelre et al. (2010); bValente (1996)

(1) from: McCullen et al., in prep. for SIADS, (2012)6
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Parametrising the models using survey data

• Survey data including info on behaviours.

• Over 1050 valid responses received from residents of Leeds.

• Data used as a guide rather than definitive source,

• used to narrow choice of structure and parameter values,
• also to illustrate potential applications.

Model element Parameter Question / Data

Network number of active individual Q. on who talks to
/ group connections. whom about energy.

Threshold θ Q. on house type,
tenancy and income.

Node archetypes α, β, γ Defra types of pro-
enviro. behaviour
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Modelling Scenarios
• Different scenarios studied by varying dynamical model

and network parameters.
Baseline Seeded Community Incentives Snowball

Give efficiency Give efficiency Advertise a Recommend-a-

Model Do Nothing measure to some measure to whole money off friend discount

Param. (random) individuals communities. scheme. voucher scheme.

Links Data based – – – Increase

Threshold Data based – – Lower Lower

Initial Seed Unforced Random Target – –
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Example model results
Baseline
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Example model results
Baseline
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Agent Based Simulation:

Role of user learning in council-led

smart meter deployment

T. Zhang

University of Nottingham
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Role of user learning in council-led

smart meter deployment

• Smart metering is one of the key interventions that local
authority can take to manage and control the energy
consumption in Leeds.

• Deploying smart meters to council-owned properties is a
type of authoritative technology adoption.

• User learning (i.e. transit from zero knowledge about
smart meters to making the best use of them) is very
important in this process.
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Theoretical Basis1

• Technology adoption decisions:
• Optional Innovation-Decision
• Collective Innovation-Decision
• Authority Innovation-Decision

• User learning

The form of the function is
PA = M(1− e−kt), where:

PA is the probability of purchasing Brand A,
M is the maximum attainable loyalty to Brand A,
k is a constant expressing the learning rate,
t is the number of reinforced trials

1Bennett and Mandell (1969)
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Overview of the ABS model
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Behaviour of Residential Energy Consumer Agents

• Empirical data for the simulation model from Leeds survey.
• Developed archetypes of residential energy consumers2.

2Zhang et al., 201215
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Simulation Experiments

• Simulated Load Curve vs. Real Load Curve:
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Simulation Experiments

• The effect of smart metering
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Simulation Experiments
• Continuers vs. Discontinuers
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Insights and lessons learned

• Developed complexity science models of city level
domestic energy users:
• network and ABS models of different aspects,
• populated with data from real-world.

• Network models comparative rather than predictive.
• social network interactions are important,
• trust in various sources of information matters.

• ABS can produce simulation results to reflect real-world,
• use to predict future effect of smart metering,
• can look at possible effect of discontinuers.

• Complex systems models could be used for aiding policy
decisions.
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