

Complex interactions and applications to sustainable design

Nick McCullen

School of Mathematics

University of Leeds

Department of Architecture and Civil Engineering University of Bath 25th May 2012

Teaching interests

Research interests

Career history

1. Ph.D.: Chaos in coupled systems.2003–20072. PDRA: Emergence in complex systems.2007–20093. Research Fellow: Energy and complexity.2010–2012

Research vision

- Use complex systems thinking,
- link people, technology and environment,
- strong interdisciplinary background.

Coupled nonlinear systems

- Synchronisation of chaotic oscillations¹,
- sensitive signal detection using feed-forward coupling²,
- experimental, numerical & data analysis³,

• Application to distributed generation.

³McCullen and Moresco, Phys. Rev. E, (2006)

The University of Manchester

¹McCullen and Moresco, Phys. Rev. E, (2011)

²McCullen, Mullin & Golubitsky, Phys. Rev. Lett., (2007)

Teaching interests

Complex network models

Explained power-law dependence of conduction on component ratio⁵.

⁴McCullen, Almond, Budd and Hunt, J. Phys. D, (2009)

⁵Almond, Budd, Freitag, Hunt, **McCullen** and Smith, *Sub. to Physica A*, (2012)

Energy and complexity

- Interdisciplinary collaboration between Mathematics, Engineering, Earth & Environment and city stakeholders.
- applying complexity science tools to city-level energy decision-making,
- dynamical systems modelling of consumer behaviour⁶,
- study energy technology diffusion via social networks,
- aim to recommend targeting strategies for optimising chance of roll-out success.

⁶McCullen, Ivanchenko, Shalfeev and Gale, Int. J. Bif. Chaos, (2011)

Network models

• Various complex network models exist to reproduce empirical observations.

Figure: (a): *Small world* network. (b): Preferential attachment model. (c): Community structured model.

• We use these to model technology diffusion mediated via social network interactions.

Dynamical models on networks

- Individuals are considered as *nodes* on a network.
 - Properties of nodes are associated with variables.
- Links ('edges') transmit information between individuals.

• Dynamical equations determine system evolution.

Modelling uptake of energy technology

- Decision of individuals to adopt a particular technology based on combination of factors:
 - personal + social benefit.
- Intrinsic benefits to individual.
- Social benefit combination of both:
 - personal social network friends & neighbours,
 - mainstream social norm (society as a whole).

Mathematical model

• Total *utility* to individual:

$$u_i = \alpha_i p_i + \beta_i s_i + \gamma_i m \tag{1}$$

- *p_i*, *s_i*, *m*: personal, peer-group and societal influence.
- $\alpha_i, \beta_i, \gamma_i$: relative weightings given to each factor,

Households are nodes on a complex network, each with variable for current state, $x_i = 0, 1$.

future state:
$$x'_i = \begin{cases} 1 & \text{if } x_i = 1, \\ 1 & \text{if } x_i = 0 \text{ and } u_i > \theta_i, \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

• θ_i : threshold (barriers, costs etc.)

Implementing the model

Programmed in Python:

Teaching interests

Computational results

Chance of success depends on model parameters:

11

Future research direction

Bring complex systems thinking into energy management and low-carbon design:

- whole system thinking applied to real-world problems,
- understand interaction of people and technology,
- interdisciplinary collaboration, using real data.

Role of the occupant in low-carbon design

Models based on energy-budget management.

- Conceptual models: Decision chart Influence map building. Heat aen. EE tech oss Heat tech. Lose Too Cold? Yes Enough Yes (internal) heat Credit? Free heat Occupants No holder appliance Credit Fixed Can | costs top-up? Ban Top-up account
- Integrate building physics with user behaviour.

Model formulation

Algorithm for computations:

- 1. temperature T is compared to ideal,
- 2. credit c determines level of action,
- 3. temperature is raised by ΔT , at cost Δc ,...

Example responses (different colours):

Toy example: rebound effect

Assuming fixed cost of $\pounds 0.133/kWh$:

- Actual cut $= rac{kWh_{pre}-kWh_{post,actual}}{kWh_{pre}} pprox 0.175.$
- Rebound of $\approx 12.5\%$ not going into CO₂ reduction.

Teaching interests

Including building physics

• Energy balance: $Q_{loss} = Q_{gain}$.

BREDEM-12, Anderson, B. R. et al., BRE (2001)

Towards a whole-systems approach

- 1. Include weather data,
 - \Rightarrow extreme temperatures.
- 2. Smart-meter network interaction.
- 3. Demand management & smart grids:
 - interaction of user \Leftrightarrow technology,
 - complex system approach.

Teaching a whole systems approach to design

1. Mathematical sciences (UG):

- building physics,
- experimental techniques,
- mathematical methods.
- 2. Complex systems (PG):
 - theory & modelling.
- 3. Computing:
 - designing models,
 - programming,
 - Python, LATEX...

BREDEM-12, Anderson, B. R. et al., BRE (2001)