

Studying multiple parameter models of technology diffusion on complex networks

Nick McCullen*

Alastair Rucklidge*, Tim Foxon[†], Frin Bale^o *Mathematics, [†]Earth and Environment, ^oEnergy Research Institute University of Leeds

> British Applied Mathematics Colloquium University College London 28 March 2012

Motivation: Energy and Complexity

- Model of uptake of energy technology,
- policy-makers interested in best strategy to roll-out etc.

Modelling diffusion of technology

- Behaviour of individuals is combination of factors:
 - personal + social benefit.
- Perceived personal benefits to individual.
- Social benefit: combination of both:
 - social norm (society in general),
 - personal social network friends & neighbours.

Modelling technology adoption

- Different people have different relative priorities:
 - α_i : weighting given to personal value to individual p_i ,
 - β_i : weighting of average of personal social contacts s_i ,
 - γ_i : weighting to adherence to mainstream social norm *m*.
 - $\alpha_i + \beta_i + \gamma_i = 1$: based on personality.
- Total *utility* to individual:

$$u_i = \alpha_i \mathbf{p}_i + \beta_i \mathbf{s}_i + \gamma_i \mathbf{m} \tag{1}$$

- Define adoption state $x_i = 0, 1$.
- Decision made when perceived benefits > costs:
 - purchase state flips to $x_i = 1$ when $u_i > \theta_i$ (one-way):

$$x'_i = x_i + (1 - x_i)\sigma(u_i - \theta_i), \qquad (2)$$

 $\sigma(\cdot)$ is step function.

• Threshold model of adoption.

Summary of the model

• Assuming all *i* take same α , β , γ , *p*, θ :

$$\mathbf{u} = \alpha \mathbf{p} + \beta A \mathbf{x} / \mathbf{k} + \gamma \bar{\mathbf{x}}, \qquad (3)$$

$$\mathbf{x}' = \mathbf{x} + (1 - \mathbf{x}) \ \sigma(\mathbf{u} - \theta). \tag{4}$$

$$s_i = \frac{1}{k_i} \sum_{\text{nei}(i)} x_j = \frac{\sum_j A_{ij} x_j}{\sum_j A_{ij}}, \quad k_i = \text{degree of } i; \quad m = \frac{1}{N} \sum_i^N x_i$$

Real-world social networks

- Real networks have many features, including:
 - local connections, distant ties, wide spread in degrees, community structure...

Figure: Inter-friend contacts on the Facebook website.

Network models

• Regular lattice:

- + e.g. city-like geography,
- + can have high *clustering*,
 - long path-lengths $I \propto d^{1/D}.$

Random (Erdős Renyí):

- + short path lengths $I \propto \frac{\log N}{\log \bar{k}}$,
 - no clustering ($N
 ightarrow \infty$).

 $\mathbf{6}$

"Complex" networks

• Different models reproduce different features.

Figure: (a): A *small world* network with random *rewiring* of a regular lattice. (b): A preferential attachment graph which has a *scale-free* degree distribution. (c): A simple model of weakly-connected communities.

Numerical simulations

For a particular network and choice of model parameters:

Figure: $t_{1,2,3,4} = 0, 4, 9, 27$

Sensitivity to model parameters

For each choice of parameters: e.g. here: $\theta = 0.25$, p = 0.5:

At each $\beta, \gamma, (\alpha = 1 - \beta - \gamma)$: e.g. $\alpha = 0.05, \beta = 0.8, \gamma = 0.15$:

Repeat for all values:

• Can determine successful regions.

Random networks

Figure: $\bar{k} = 6$. (a) N = 200, (b) N = 500, (c) N = 1000 (d) N = 2000.

Watts-Strogatz

Figure: $\bar{k} = 6$, rewiring probability $p_r = (a) 0$, (b) 0.05, (c) 0.2, (d) 0.5.

Analysis

Simple cases:

 $\alpha p > \theta$: Immediate uptake below $\beta = 1 - \gamma - \frac{\theta}{p}$, $\alpha p + \gamma m_0 > \theta$: values below $\beta = 1 - \frac{\theta}{p} - \gamma \left(1 - \frac{m_0}{p}\right)$ successful.

• Simple *mean field*: assume average $\bar{s}_i = m$:

$$egin{aligned} u &= lpha p + (eta + \gamma) m_0 &\geq heta, & ext{i.e.,} \ p &+ (m_0 - p) (eta + \gamma) &\geq heta; & ext{hence:} \ eta + \gamma &\leq heta rac{ heta - p}{m_0 - p}, \end{aligned}$$

5)

Local neighbourhood sensitivity

• Given individuals have a certain θ , p, α , β , γ and m, require critical fraction of active neighbours:

$$s^* = \frac{\theta - \alpha p - \gamma m}{\beta},\tag{6}$$

- $s^* > 1$: impossible.
- *s*^{*} < 0: immediate,
- $0 < s^* < 1$: required number of active contacts:

$$X_i \equiv \sum_j A_{ij} x_j \ge \lceil k_i s^* \rceil \equiv X_i^*, \tag{7}$$

• combining (6) and (7) gives X^* regions of β, γ plots...

Comparison with Watts-Strogatz

Figure: (a) 1D $\bar{k} = 6$, $p_r = 0$, (b) 1D $\bar{k} = 6$, $p_r = 0.2$; (c) truss k = 8, $p_r = 0.05$, (d) truss k = 8, $p_r = 0.2$.

Chance and rate of uptake

• Number of active neighbours can be sufficient by chance with probability¹:

$$P(X \ge X^*) = \sum_{n=X^*}^k \binom{k}{n} m^n (1-m)^{(k-n)}, \qquad (8)$$

•
$$X^* = \lceil k(\theta - \alpha p - \gamma m)/\beta \rceil$$
.

 This is fraction of remaining (1 – m) of individuals to adopt, increasing overall average:

$$\Delta m = (1 - m)P(X \ge X^*). \tag{9}$$

¹assume $k_i = k$ and random network.

Growth of initiated cluster

 $m'=m+(1-m)P(X\geq X^*)\equiv f(m).$

Effect of initial seed size

$$\Delta m = (1-m) \sum_{n=X_i^*}^{k_i} {k_i \choose n} m^n (1-m)^{(k_i-n)},$$

• for small *m*:

$$\Delta m \sim \binom{k_i}{X_i^*} m^{X^*}.$$
 (10)

- For X* > 1 disproportionate effect of low initial seed sizes ("funding").
 - E.g. k = 15, $X^* = 4$, $\Delta m \sim 1365 m^4$. Half initial m_0 takes 8 times as long to reach target.

UNIVERSITY OF LEEDS

Other Networks

Figure: (a) Random N = 2000, $\bar{k} = 6$, (b) random N = 500, $\bar{k} = 15$, (c) geographic, connected communities, $\bar{k} = 7.5$, (d) disconnected communities, $\bar{k} = 5$.

Summary

- 1. A multi-parameter model of energy technology diffusion has been developed,
 - studied numerically at various parameters,
 - analytical treatment gives insight into numerical results,
 - implications for funding in initial stages.
- 2. Can use to compare possible interventions:
 - increase/focus initial funding,
 - reduce θ by providing incentives,
 - targeting communities (critical mass),
 - enhance social links using voucher schemes.

