

Modelling the spread of energy technology via social networks

Nick McCullen

School of Mathematics
University of Leeds

& members of the Energy-Complexity project.

School of Civil Engineering 13th March 2012 University of Leeds

Motivation: Energy and Complexity

- Model of uptake of technology.
- E.g. Smart-phones:
 - visible and socially desirable,
 - mediated by social contacts between individuals.
- Energy technologies:
 - usually hidden (e.g. loft insulation),
 - decisions based on individual benefit.
- Policy-makers interested in uptake of energy efficiency measures,
 - success of various measures to encourage uptake.

troduction Dynamical model Network Models Numerical Results Analysis Comparison Analysis (2,

Modelling diffusion of technology

- Behaviour of individuals is combination of factors:
 - personal + social benefit.
- Intrinsic benefits and costs to individual.
- Social benefit:
 - information/influence exchanged between individuals,
 - follow social trend;
- combination of both:
 - social norm (society in general),
 - personal social network friends & neighbours.
- This is diffusion on a social network,
 - used to model various phenomena:
 - Spread of diseases, ideas, beliefs...

- Initially purchase state $x_i = 0$ (except for initial *seed*).
- Decision made when perceived benefits > costs:
 - purchase state flips to $x_i = 1$ when $u_i > \theta_i$ (one-way):

$$x_i' = x_i + (1 - x_i)\sigma(u_i - \theta_i), \tag{1}$$

 $\sigma(\cdot)$ is step function.

Threshold model of adoption.

Model parameters

Different people have different relative priorities:

```
\alpha_i: weighting given to personal value to individual p_i,
```

 β_i : weighting of average of personal social contacts s_i ,

 γ_i : weighting to adherence to mainstream social norm m.

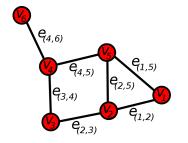
• $\alpha_i + \beta_i + \gamma_i = 1$: based on personality.

Total utility to individual:

$$u_i = \alpha_i p_i + \beta_i s_i + \gamma_i m \tag{2}$$

Modelling Social Interactions

- Individuals are considered as nodes on a network.
 - Properties of nodes are associated with variables:
 - adoption state $x_i \in [0, 1]$
 - ability to buy (low θ : able; high θ : unable),
 - motivation to buy (u_i) .
- Links ('edges') are drawn between connected individuals.
 - Information/influence passed via edges.



Adjacency matrix:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$$

• Assuming all i take same α , β , γ , ρ , θ :

$$\mathbf{u} = \alpha \mathbf{p} + \beta A \mathbf{x} / \mathbf{k} + \gamma \overline{\mathbf{x}}, \tag{3}$$

$$\mathbf{x}' = \mathbf{x} + (1 - \mathbf{x}) \ \sigma(\mathbf{u} - \theta).$$
 (4)

$$s_i = \frac{1}{k_i} \sum_{\text{nei}(i)} x_j = \frac{\sum_j A_{ij} x_j}{\sum_j A_{ij}}, \quad k_i = \text{degree of } i; \quad m = \frac{1}{N} \sum_i^N x_i$$

ntroduction Dynamical model Network Models Numerical Results Analysis Comparison Analysis (2)

Real-World Social Networks

- Real networks have many features, including:
 - local connections, distant ties, wide spread in degrees, community structure...

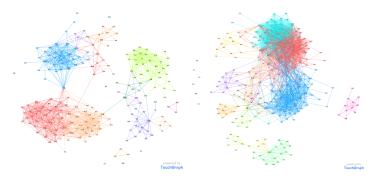
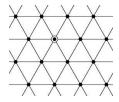


Figure: Inter-friend contacts on the Facebook website.

Network Models

Regular lattice:



- + e.g. city-like geography,
- + can have high *clustering*,
- long path-lengths $I \propto d^{1/D}$.

Random (Erdős Renyí):

- + short path lengths $I \propto \frac{\log N}{\log k}$,
- no clustering $(N \to \infty)$.

"Complex" Networks

• Different models reproduce different features.

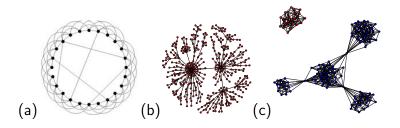


Figure: (a): A small world network with random rewiring of a regular lattice. (b): A preferential attachment graph which has a scale-free degree distribution. (c): A simple model of weakly-connected communities.

Numerical Simulations

For a particular network and choice of model parameters:

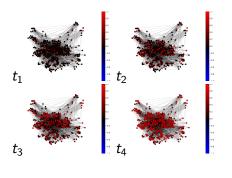
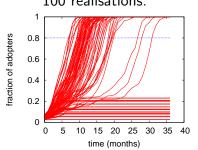


Figure: $t_{1,2,3,4} = 0, 4, 9, 27$

Sensitivity to Initial Conditions

For a particular network and choice of model parameters: 100 realisations:

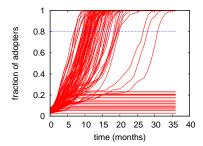
- Same network can give different results,
- sensitive to details of network and initial seed,
- need to study ensemble averages.



Sensitivity to Model Parameters

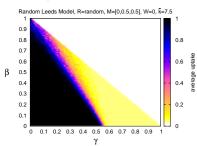
For each choice of parameters: e.g. here: $\theta = 0.25, p = 0.5$:

At each β , γ , ($\alpha = 1 - \beta - \gamma$): e.g. $\alpha = 0.05$, $\beta = 0.8$, $\gamma = 0.15$:



Take average of 100 realisations.

Repeat for all values:



Can determine successful regions.

Random Networks

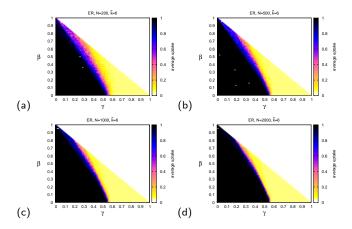


Figure: $\bar{k} = 6$. (a) N = 200, (b) N = 500, (c) N = 1000 (d) N = 2000.

Watts-Strogatz

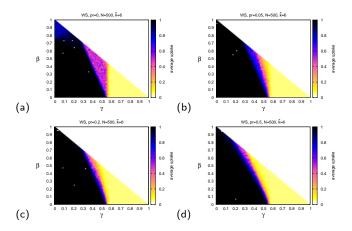


Figure: $\bar{k} = 6$, rewiring probability $p_r = (a) \ 0$, (b) 0.05, (c) 0.2, (d) 0.5.

Simple cases:

$$lpha p> heta$$
: Immediate uptake below $eta=1-\gamma-rac{ heta}{p}$, $lpha p+\gamma m_0> heta$: values below $eta=1-rac{ heta}{p}-\gamma\left(1-rac{m_0}{p}
ight)$ successful.

• Simple *mean field*: assume average $\bar{s}_i = m$:

$$u = \alpha p + (\beta + \gamma) m_0 \ge \theta$$
, i.e.,
 $p + (m_0 - p)(\beta + \gamma) \ge 0$; hence:
 $\beta + \gamma \le \frac{\theta - p}{m_0 - p}$, (5)

Local neighbourhood sensitivity

Since αp and γm are the same for all $i, x_i \rightarrow 1$ when:

$$\frac{1}{k_i} \sum_{i} A_{ij} x_j > \frac{\theta - \alpha p - \gamma m}{\beta}, \tag{6}$$

For each α, β, γ , require X^* neighbours with $x_i = 1$ to cross θ :

$$\beta = \frac{\gamma(m-p) + p - \theta}{p - X^*/k_i}.$$
 (7)

Can plot lines for each X^* , showing required social push.

Watts-Strogatz

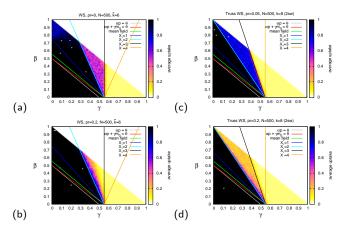


Figure: (a) 1D $\bar{k} = 6$, $p_r = 0$, (b) 1D $\bar{k} = 6$, $p_r = 0.2$; (c) truss k = 8, $p_r = 0.05$, (d) truss k = 8, $p_r = 0.2$.

Other Networks

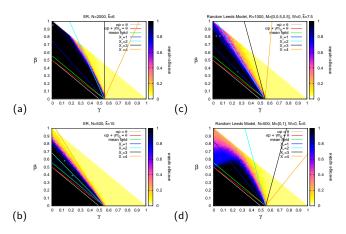


Figure: (a) Random N=2000, $\bar{k}=6$, (b) random N=500, $\bar{k}=15$, (c) geographic, connected communities, $\bar{k}=7.5$, (d) disconnected communities, $\bar{k}=5$.

Further Analysis

The condition in (6) is the probability that:

$$X_i \ge \left\lceil k_i \left(\frac{\theta - \alpha p - \gamma m}{\beta} \right) \right\rceil \equiv X_i^*,$$
 (8)

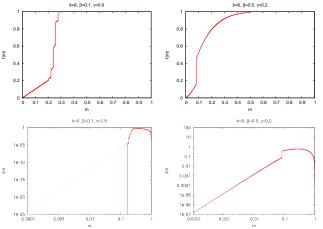
i.e.:

$$P(X_i \ge X_i^*) = \sum_{n=X_i^*}^{k_i} {k_i \choose n} m^n (1-m)^{(k_i-n)}.$$
 (9)

Assuming independence of neighbours.

Growth of initiated cluster

$$m_{t+1} = m_t + (1 - m_t)P(X \ge X^*) \equiv f(m_t).$$
 (10)



Effect of initial seed size

$$\Delta m = (1 - m) \sum_{n = X^*}^{k_i} {k_i \choose X^*} m^n (1 - m)^{(k_i - n)}, \qquad (11)$$

for small *m*:

$$\Delta m \sim \binom{k_i}{n} m^{X^*} \tag{12}$$

E.g.
$$k = 15$$
, $\beta = 1$: $X^* = \lceil k\theta \rceil = 4$, $\Delta m \sim 1365 m^4$.

• Half initial m_0 takes 8 times as long to reach desired level.

Summary

- 1. A multi-parameter model of technology diffusion has been developed,
 - studied numerically at various parameters,
 - analytical treatment gives insight into numerical results,
 - implications for funding in initial stages.
- 2. Can use to compare possible interventions:
 - reduce θ by providing incentives,
 - targeting communities (critical mass),
 - enhance social links using voucher schemes.

