

Active Audition Using Coupled Oscillators

Nick McCullen* $^{\star,\infty}$

with Marty Golubitsky[†] and Tom Mullin[#].

*University of Leeds, [†]Ohio State University, [#]University of Manchester. $^{\infty}$ Experiments carried out at Manchester Centre for Nonlinear Dynamics.

PANDA Meeting on "Patterns and Nonlinear Dynamics in Neuroscience" University of Nottingham

19th September 2011

Active Audition Using Coupled Oscillators

Nonlinearity in Biological Systems

The Feed-Forward Network

Experimental System

Other Filter Networks

Nonlinearity in Nature

Nature economises by using nonlinear phenomena:

- Turing patterns in morphogenesis;
- synchronisation of oscillations:
 - heart muscle,
 - fireflies;
- Central Pattern Generators (CPG) for locomotion¹:

Fig. 1. (a) Schematic 4n-cell network for gaits in 2n-legged animals. Only cells 1, ..., 2n are connected to legs. (b) Folding up the network to eliminate long-range connections creates a structure with repeated modules, differing slightly at the two ends.

¹ "A modular network for legged locomotion", Golubitsky, Stewart, Buono, & Collins, Physica D (1998)

3

Nature Does It Better!

Animal visual and auditory systems have very good filtering characteristics:

- Can isolate signal from "noisy" background
- Able to discriminate specific frequencies
- Very good dynamic range (several orders of magnitude)
 - Difficult to achieve in devices \Rightarrow Current amplifiers have linear response

Animal Auditory Systems

Active detection involved in mammalian hearing:

Nonlinear growth
⇒ large dynamic range

Involvement of Hopf bifurcation in insect hearing

- Active audition
- Coupling of limit cycles for small signal amplification

©janco tanis

"Limit Cycles, Noise, and Chaos in Hearing." R. Stoop, J.-J. V.D. Vyver, and A. Kern. *Microsc. Res. and Techn.*, 63:400–412, 2004.

• Coupled systems have the form:

$$\dot{x}_1 = f(x_1, x_1, \lambda)$$

 $\dot{x}_2 = f(x_2, x_1, \lambda)$
 $\dot{x}_3 = f(x_3, x_2, \lambda)$

• λ is Hopf bifurcation parameter

"Some curious phenomena in coupled cell networks." M. Golubitsky, M. Nicol, and I. Stewart. J. Nonlin. Sci., 14(2):207–236, 2004.

Experimental System

The Feed-Forward Network

• Amplitude growth of unforced system:

$$egin{array}{rcl} A_1&=&0\ A_2&\sim&\lambda^{rac{1}{2}}\ A_3&\sim&\lambda^{rac{1}{6}} \end{array}$$

"Some curious phenomena in coupled cell networks." M. Golubitsky, M. Nicol, and I. Stewart. J. Nonlin. Sci., 14(2):207–236, 2004.

Experimental System

With Periodic Input

• Forced network represented by:

$$\begin{aligned} \dot{x}_1 &= f(x_1, x_1 + \varepsilon \cos(\omega_F t), \lambda) \\ \dot{x}_2 &= f(x_2, x_1, \lambda) \\ \dot{x}_3 &= f(x_3, x_2, \lambda) \end{aligned}$$

• λ held constant at Hopf Bifurcation

Experimental Electronic Oscillators

Modified van der Pol oscillators:

• LCR loop with nonlinearity from chain of diodes.

- Fixed-point response undergoes Hopf bifurcation before period-doubling cascade to chaos.
- Can connect units to make network of coupled oscillators.

Model of Oscillators

• 3 Degree-of-freedom system:

$$\begin{aligned} \dot{x}_n &= \gamma [g(y_n - x_n) - \alpha_0 + \alpha_1 (x_n - \sigma x_m)] \\ \dot{y}_n &= -z_n - g(y_n - x_n) \\ \dot{z}_n &= y_n - \rho z_n \end{aligned}$$

• Has cubic nonlinearity:

 $g(V) = \beta_1 V + \beta_3 V^3$

"The origins of chaos in a modified Van der Pol oscillator." J.J. Healey, D.S. Broomhead, K.A. Cliffe, R. Jones, T. Mullin. *Physica D*, 1991.

Experimental System

With (noisy) Periodic Input

• Forced network represented by:

$$\begin{aligned} \dot{x}_1 &= f(x_1, x_1 + \varepsilon \cos(\omega_F t) + \nu(t), \lambda_1) \\ \dot{x}_2 &= f(x_2, x_1, \lambda_2) \\ \dot{x}_3 &= f(x_3, x_2, \lambda_3) \end{aligned}$$

• λ held constant *near* Hopf Bifurcation ($\omega_1 \approx \omega_2 \approx \omega_3$)

Experimental Response

"Sensitive Signal Detection Using a Feed-Forward Oscillator Network" N.J. McCullen, T. Mullin and M. Golubitsky, *Phys. Rev. Lett.*, **98, 254101** (2007)

Frequency Response

- Band-width: $\delta\omega\sim 1\%\;\omega_H$
 - $Q \sim 100$
- Narrow passband

"Sensitive Signal Detection Using a Feed-Forward Oscillator Network" N.J. McCullen, T. Mullin and M. Golubitsky, *Phys. Rev. Lett.*, **98, 254101** (2007)

Signal Amplification & Noise Filtering

Amplification $(dB) = 20 \log_{10}(\frac{\text{Out}}{\text{In}})$

• Input: $\varepsilon \sim 5 \times 10^{-4} V$ Output: $A_3 \sim 1V$

 $\approx 66 dB$

• Signal recovery (*dynamic reserve*): Noise: $\nu \sim 5 \times 10^{-3} V$ Signal: $\varepsilon \sim 5 \times 10^{-4} V$

Noise-Signal Ratio $\approx 20 dB$

Noise Filtering & Signal Recovery

Noise Filtering & Signal Recovery

16

Experimental System

Small Signal Response

- $\varepsilon \sim 5 imes 10^{-4} V$
 - $u \sim 5 \times 10^{-3} V$

 $SNR \approx 20 dB$

- $\varepsilon \sim 5 \times 10^{-6} V$
 - $\nu\sim5 imes10^{-3}V$

 $SNR \approx 60 dB$

- Good signal recovery
- Nonlinear response good dynamic compression

Non-Linear Amplification

• Large dynamic range.

Experimental System

Dynamic Compression

Experimental System

Amplitude Growth (1) Amplification against Driving **Frequency**:

Experimental System

Amplitude Growth (2) Amplification against Driving **Amplitude**:

Amplification in Cells 2 and 3

More Complex Filter Networks

Multi-filter array:

More Complex Filter Networks

Complex RC Networks:

"Emergent Behaviour in Large Electrical Networks" Darryl P. Almond, Chris J. Budd and and Nick J. McCullen,

Approximation Algorithms for Complex Systems: Proceedings of the 6th International Conference on Algorithms for Approximation,

Ambleside, Uk, 31st August-4th September 2009. (Springer 2011)

Summary

- Nonlinear effects are found frequently in natural systems,
- synchronisation and resonance are particularly useful,
- application in neuroscience and signal detection.
- Well controlled experiments invaluable to:
 - study effect real world imperfections & noise,
 - both guide and confirm theoretical work.
- Many potential avenues to investigate with coupled oscillator systems.