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Introduction The Feed-Forward Network Experimental System

Nonlinearity in Nature
Nature economises by using nonlinear phenomena:

• Turing patterns in morphogenesis;

• synchronisation of oscillations:
• heart muscle,
• fireflies;

• Central Pattern Generators (CPG) for locomotion1:

1
“A modular network for legged locomotion”, Golubitsky, Stewart, Buono, & Collins, Physica D (1998)
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Nature Does It Better!

Animal visual and auditory systems have very good filtering
characteristics:

• Can isolate signal from “noisy” background

• Able to discriminate specific frequencies

• Very good dynamic range (several orders of magnitude)

• Difficult to achieve in devices
⇒ Current amplifiers have linear response
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Animal Auditory Systems

Active detection involved in
mammalian hearing:

• Nonlinear growth
⇒ large dynamic range

Involvement of Hopf bifurcation in
insect hearing

• Active audition

• Coupling of limit cycles for
small signal amplification

c©janco tanis

“Limit Cycles, Noise, and Chaos in Hearing.”
R. Stoop, J.-J. V.D. Vyver, and A. Kern. Microsc. Res. and Techn., 63:400–412, 2004.
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The Feed-Forward Network

• Coupled systems have the form:

ẋ1 = f (x1, x1, λ)

ẋ2 = f (x2, x1, λ)

ẋ3 = f (x3, x2, λ)

• λ is Hopf bifurcation parameter

“Some curious phenomena in coupled cell networks.”
M. Golubitsky, M. Nicol, and I. Stewart. J. Nonlin. Sci., 14(2):207–236, 2004.
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The Feed-Forward Network

• Amplitude growth of unforced system:

A1 = 0

A2 ∼ λ
1
2

A3 ∼ λ
1
6

“Some curious phenomena in coupled cell networks.”
M. Golubitsky, M. Nicol, and I. Stewart. J. Nonlin. Sci., 14(2):207–236, 2004.
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With Periodic Input

• Forced network represented by:

ẋ1 = f (x1, x1 + ε cos (ωF t), λ)

ẋ2 = f (x2, x1, λ)

ẋ3 = f (x3, x2, λ)

• λ held constant at Hopf Bifurcation
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Experimental Electronic Oscillators
Modified van der Pol oscillators:

• LCR loop with nonlinearity from chain of diodes.

Circuit Schematic:

LCR

loop

equiv.

R1

-R

V

g

nonlinear element

• Fixed-point response undergoes Hopf bifurcation
before period-doubling cascade to chaos.

• Can connect units to make network of coupled oscillators.
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Model of Oscillators

• 3 Degree-of-freedom system:

ẋn = γ[g(yn − xn)− α0 + α1(xn − σxm)]

ẏn = −zn − g(yn − xn)

żn = yn − ρzn

• Has cubic nonlinearity:

g(V ) = β1V + β3V
3

“The origins of chaos in a modified Van der Pol oscillator.”
J.J. Healey, D.S. Broomhead, K.A. Cliffe, R. Jones, T. Mullin. Physica D, 1991.
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With (noisy) Periodic Input

ν(t)+

• Forced network represented by:

ẋ1 = f (x1, x1 + ε cos (ωF t) + ν(t), λ1)

ẋ2 = f (x2, x1, λ2)

ẋ3 = f (x3, x2, λ3)

• λ held constant near Hopf Bifurcation (ω1 ≈ ω2 ≈ ω3)
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Experimental Response
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“Sensitive Signal Detection Using a Feed-Forward Oscillator Network”
N.J. McCullen, T. Mullin and M. Golubitsky, Phys. Rev. Lett., 98, 254101 (2007)
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Frequency Response

• Band-width:
δω ∼ 1% ωH

• Q ∼ 100

• Narrow passband

“Sensitive Signal Detection Using a Feed-Forward Oscillator Network”
N.J. McCullen, T. Mullin and M. Golubitsky, Phys. Rev. Lett., 98, 254101 (2007)
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Signal Amplification

& Noise Filtering

Amplification (dB) = 20 log10(Out
In

)

• Input: ε ∼ 5× 10−4V
Output: A3 ∼ 1V

≈ 66dB

• Signal recovery (dynamic reserve):
Noise: ν ∼ 5× 10−3V
Signal: ε ∼ 5× 10−4V

Noise-Signal Ratio ≈ 20dB
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Noise Filtering & Signal Recovery
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Noise Filtering & Signal Recovery
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Small Signal Response

• ε ∼ 5× 10−4V

ν ∼ 5× 10−3V

SNR ≈ 20dB

• ε ∼ 5× 10−6V

ν ∼ 5× 10−3V

SNR ≈ 60dB

• Good signal recovery

• Nonlinear response – good
dynamic compression

17



Introduction The Feed-Forward Network Experimental System

Non-Linear Amplification

• Large dynamic range.
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Dynamic Compression
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Amplitude Growth (1)
Amplification against Driving Frequency:
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Amplitude Growth (2)
Amplification against Driving Amplitude:
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Amplification in Cells 2 and 3
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More Complex Filter Networks

Multi-filter array:

...ω
1

ω
2 ω

N
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More Complex Filter Networks

Complex RC Networks:

“Emergent Behaviour in Large Electrical Networks”
Darryl P. Almond, Chris J. Budd and and Nick J.
McCullen,
Approximation Algorithms for Complex Systems:
Proceedings of the 6th International Conference on
Algorithms for Approximation,
Ambleside, Uk, 31st August-4th September 2009.
(Springer 2011)

p=0.5

102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

|Y| ~ ω0.5
No C path

No R path

R path

C path

ω0

ω1

ω1

ω0

p=0.4

(a)
102 104 106 108 1010

ω  (radians)

10-5

10-4

10-3

10-2

10-1

|Y
| (

si
em

en
s)

Slope=0.4

24



Introduction The Feed-Forward Network Experimental System

Summary

• Nonlinear effects are found frequently in natural systems,

• synchronisation and resonance are particularly useful,

• application in neuroscience and signal detection.

• Well controlled experiments invaluable to:
• study effect real world imperfections & noise,
• both guide and confirm theoretical work.

• Many potential avenues to investigate with coupled
oscillator systems.
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