

# Modelling the Dynamics of Decision-Making on Networks

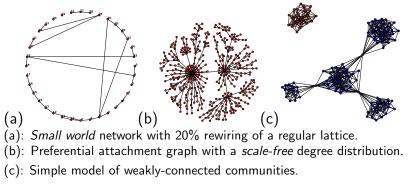
#### Nick McCullen,

Alastair Rucklidge, Tim Foxon, William Gale,<sup>1</sup> Mikhail Ivanchenko, Vladimir Shalfeev,<sup>2</sup> <sup>1</sup>University of Leeds, United Kingdom.

<sup>2</sup>Nizhny Novgorod State Technical University, Russia

SIAM Conference on Dynamical Systems May 22–26, 2011

# Energy and Complexity


Aim of research:

- · Aid city government decision-making on energy policy,
  - e.g. strategy for reducing consumption and fuel poverty.
- Model households as dynamical systems, connected via social network.
- Dissemination of technology or ideas can be studied using models of diffusion on networks.
- Simulate interventions related to adoption of new technology or energy use strategies.
  - e.g. incentives for home insulation.



## Types of Model Network

• Model networks constructed to a give different qualitative features of real world interactions:





## Real-World Social Networks

- Different types of social connection exist; these include:
  - geographical neighbours, distant friendships, family trees, *communities*.

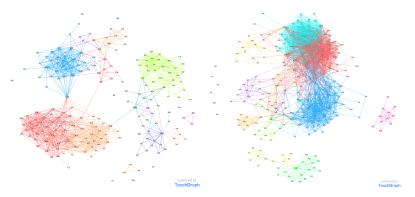
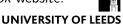
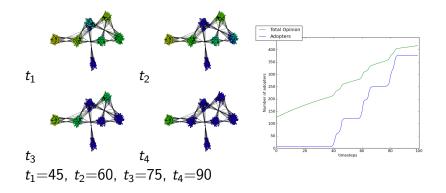





Figure: Inter-friend contacts on the Facebook website.



Numerical Results

#### Example Uptake Results



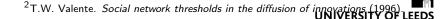


## Model of Social Influences

Individual's preference weighted relative to social influence<sup>1</sup>:

• *Utility* (benefit) of product to individual:

$$U = \alpha p + (1 - \alpha)s$$


- *p:* personal utility: intrinsic value of product to individual, Intrinsic to product and individual, could depend on:
  - potential savings,
  - relative or absolute,
  - pay-back time;
  - environmental credentials (may change),
  - negative effects of barriers to adoption.

<sup>&</sup>lt;sup>1</sup>S.A. Delre, W. Jager, T.H.A. Bijmolt, and M.A. Janssen. *Will it spread or not?* The effects of social influences and network topology on innovation diffusion (2010) **UNIVERSITY OF LEEDS** 

## Model of Social Influences

$$U = \alpha p + (1 - \alpha)s$$

- s: social utility: fraction of other individuals with technology,
  - Data suggests individuals assign different relative value to personal contacts and society<sup>2</sup>.
    - someone buys when adoption within society and contact network are above respective thresholds,
    - individuals classed as early, majority or late adopters.
- $\alpha$ : relative weighting of personal to social value.



## Model Specifications

• Purchase state variable  $x_i = 0, 1$ :

0: not purchased, 1: purchased,

• At each time-step evaluate *utility* of product:

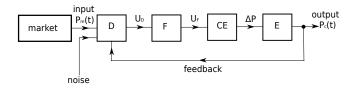
$$U_i = \alpha p_i + \beta s_i + \gamma m$$

$$s_i = \sum_{j}^{\kappa_i} \rho_{ij} x_j / \sum_{j}^{\kappa_i} \rho_{ij}, \ m = \sum_{k=1}^{N} \sigma_k x_k / \sum_{k}^{N} \sigma_k.$$

• If  $U_i$  crosses a threshold  $\theta_i$  then  $x_i \rightarrow 1$ .



## Dynamics of Opinion Formation


- Time-scales for updating opinion  $(\tau_1)$  and making purchases  $(\tau_2)$  may be different:
  - $\tau_{1}\,$  opinion updated after interacting with friends and taking in media (e.g. daily, weekly),
  - $\tau_2$  purchase decisions made less frequently (motivated by monthly pay-day, weather, prices, breakages etc.).
- Need to model intermediate dynamics of opinion in between decisions.



UNIVERSITY OF LEEDS

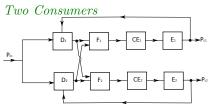
# Modelling Consumer Opinion Formation

• Processes modelled as elements in a control system:



With constant market price and simplest filter, can obtain following<sup>3</sup>:

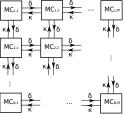
$$\dot{X} = \gamma - X - \Phi(X).$$


X current dimensionless price-deviation,

 $\Phi(X)$  nonlinear function of deviation.

 $\gamma$  initial dimensionless price-deviation.

<sup>3</sup>McCullen *et al.*, to appear in IJBC (2011).


### Interacting Consumers



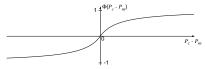
The equations can then be written:

$$\dot{X}_1 + X_1 + \Phi(X_1) = \gamma_1 + \kappa \Phi(X_2),$$
  
 $\dot{X}_2 + X_2 + \Phi(X_2) = \gamma_2 + \delta \Phi(X_1).$ 





With equations:


$$\dot{X}_{n,m} + X_{n,m} + \Phi(X_{n,m}) = \gamma_{n,m}$$
  
+  $\delta \Phi(X_{n-1,m}) + \kappa \Phi(X_{n+1,m})$   
+  $\delta \Phi(X_{n,m-1}) + \kappa \Phi(X_{n,m+1})$ 

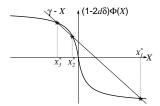


## Analytical Results

#### Form of the Discriminator

Choose  $\Phi(X)$  to limit large deviations:



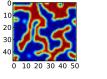

$$e.g.: \ \Phi(X) = \frac{\beta X}{1 + |\beta X|}$$

#### Single Consumer

Equilibrium states found from:

$$\gamma - X = \Phi(X)$$

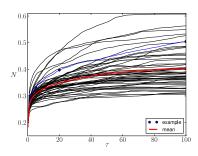
Two Interacting Consumers






Numerical Results

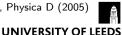
## Clustering of Opinion Over Time





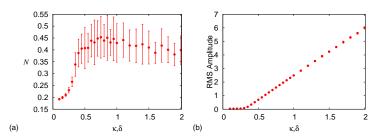




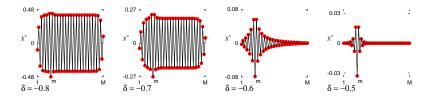


*Figure:*  $\delta = 2; \tau = 2, 5, 20, 100$ 

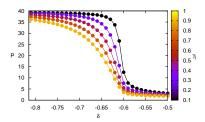


Measure using Mix-Norm<sup>a</sup>:  $N^2 = \sum_{k,l} \frac{|a_{k,l}|^2}{\sqrt{1+k^2+l^2}},$ 


- $a_{k,l}$ : Fourier transform coefficients;
  - N larger for coarser structure.

<sup>a</sup>Mathew et al., Physica D (2005)





## Clustering and Coupling Strength





#### Localized Patterns (1D lattice)





Use participation number.

$$P=\frac{1}{\sum z_n^2},$$

with 
$$z_n = \frac{|X_n|}{\sum_n |X_n|}$$
.



## Summary and Future Work

- Spread of energy technologies can be modelled as diffusion on networks.
  - Need to choose correct network model(s).
  - Also dynamics of individual decisions.
- Model exchange of opinions as a coupled dynamical system:
  - find clustering of opinions over time,
  - depends on the strength of opinion exchanges.

Next step:

• Combine opinion dynamics model with discrete purchase decision.

