


  

School of Mathematics
FACULTY OF MATHEMATICS AND PHYSICAL SCIENCES

Modelling of Consumer Decision-Making
Behaviour Using Dynamical Networks

M. V. Ivanchenko, N. J. McCullen1, V. D. Shalfeev2

1University of Leeds; 2University of Nizhny Novgorod, Russia

Models Meeting
7th June 2010

University of Leeds



Outline

Dymanical-Network Models
Network Models
Dynamical Systems

Control Systems Approach
General Scheme
Basic Model
Coupled Consumers
Networks of Consumers
Results of Computer Simulation
Interpretation and Conclusions

Where From Here?



Network Models

I Nodes and links represent individuals and interactions.

Graph Representation:
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I Can measure properties such as relative importance of
nodes/edges to whole system.
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Braess’ Paradox

I Finite capacity networks:

In-flow Out-flow

Cost=N/T Cost=1.1

Cost=1.1 Cost=N/T

I Given free choice, agents use each
route, giving average cost of 1.6.

I Low-cost short-cut added:

In-flow Out-flow

Cost=N/T Cost=1.1

Cost=1.1

Cost=0

Cost=N/T

I All agents end up using short-cut
and average cost goes up to 2!

I Reveals counter-intuitive phenomenon.

I Many real-life examples exist.
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Dynamical Systems
“System Dynamics” representation:

Struben and Sterman. Environment and Planning B (2008).



Dynamical System:

dx1

dt
= a(x1 − x2) + b(x1 − x4)

dx2

dt
= c(x2 − x4)

dx3

dt
= d(x3 − x4)

dx4

dt
= b(x4 − x1) + c(x4 − x2) + d(x4 − x3)

Coupling Matrix:

M =

0BB@
(a + b) −a 0 −b

0 c 0 −c
0 0 d −d
−b −c −d (b + c + d)

1CCA .



Introduction to Control Systems

I Start with a simple model characterized by a single
variable, namely, the energy price, specific for each
consumer and the market in general.

I Making the decision whether to buy some goods (or
whether to continue buying) the consumers compare the
market price with some “reasonable price” in their own
mind.

I This “fair” price is formed with reference to the consumers’
own estimate and the information coming from the other
consumers.

I This leads to the dynamical network model of the
consumers’ decision-making.
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Control Systems Approach

Automatic control systems with feedback conveniently embody
the above properties.

market D F CE E

feedback
noise

Pm(t) UD UF ΔP
Pc(t)

input
output

I The estimator (E) is the controlled object.
I Pc(t) is current reasonable estimation of price of goods

from the consumer (output signal).
I Pm(t) is market price of the goods (input reference signal).
I Pc(t) and Pm(t) are compared by the discriminator

(D)according to some function UD.



Formulating the Model

market D F CE E

feedback
noise

Pm(t) UD UF ΔP
Pc(t)

input
output

I The customer would average the short time-scale price
fluctuations on the market.

I Model this by passing the signal from the D output through
the filter (F).

I Then the signal from the F output UF is supplied to the
control element (CE), directly changing the operated
consumer estimation price in a manner such as to
approach the reference market price.
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Mathematical Representation of Consumer

Equation for the estimator E:

Pc = (Pc)i + ∆P,

I (Pc)i is the consumer price estimation in the initial moment
I ∆P is the change in the consumer estimation price

controlled by CE.



market D F CE E

feedback
noise

Pm(t) UD UF ΔP
Pc(t)

input
output

Equation for CE:
∆P = −SUF ,

where S is the slope of the CE characteristics.
Equation for F:

UF = K (p)UD, p ≡ d
dt
,

where K (p) is the filter transmission factor.



Form of the Function for the Discriminator

UD = EΦ(Pc − Pm),

where E is the maximum at the D output, Φ(Pc − Pm) is the
discriminator nonlinear characteristics.

1 --

-- -1

P
c
 - P

m

Φ(P
c
 - P

m
)

0

Figure: Discriminator nonlinear characteristics.



Analysis

I Current price deviation P(t) = Pc(t)− Pm(t),
I σ = SE is the greatest error to be corrected,

I X =
P
σ

is dimensionless price-deviation,

I γ =
Pi

σ
is initial dimensionless price-deviation.

Obtain the following equation for the consumer (MC):

X + K (p)Φ(X ) = γ, p ≡ d
dt
.



Analysis

Assuming the market price remains constant, and using the
simplest filter (K (p) = 1

1+ap ):

dX
dτ

+ X + Φ(X ) = γ.

I This is a first order ordinary differential equation.
I Dynamics can be simulated on a computer to find steady

states etc.



Analysis of Single Consumer

I Equilibrium states for single consumer can be found from:

γ − X = Φ(X ).

1 --

-- -1

X

Φ(X)γ - X

0
*
X
*

*X* X
0 phase line(a)

γ

X
*= γ

0

X
*

Opinion is "to buy"

Opinion is "not to buy"

(b)

I Initial estimation (γ) is positive then the decision is “to buy”.
I Initial estimation is negative then the consumer decides “not to buy”.
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Model of two coupled consumers

D2 F2 CE2 E2

Pm

Pc2

D1 F1 CE1 E1 Pc1

dX1

dτ
+ X1 + Φ(X1) = γ1 + κΦ(X2),

dX2

dτ
+ X2 + Φ(X2) = γ2 + δΦ(X1).
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Real-Life Interpretation of Coefficients

dX1

dτ
+ X1 + Φ(X1) = γ1 + κΦ(X2),

dX2

dτ
+ X2 + Φ(X2) = γ2 + δΦ(X1).

I If δ is positive (also κ), this can be interpreted as a
cooperative type of coupling where the consumers are
likely to do the same as their neighbours.

I Negative coupling coefficients represent an “antagonistic”
type of interaction, where the neighbours disagree.
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Networks of Consumers

For simplicity consider only the lattice topology with
nearest-neighbour coupling.
Chain of coupled MCs.

dXn

dτ
+ Xn + Φ(Xn) = γn + δΦ(Xn−1) + κΦ(Xn+1),

Two Dimensional Lattice.

dXn,m

dτ
+ Xn,m + Φ(Xn,m) = γn,m + δΦ(Xn−1,m) + κΦ(Xn+1,m)

+ δΦ(Xn,m−1) + κΦ(Xn,m+1),



Simple Initial Condition

M1 m
-0.3

0.3

X
*

(a)

n

m

-0.3

0.3

X
*

(b)
M1

N

1



M1 m
-0.1

0.1

X
*

(c1)

-0.4

0.4

X
*

(c2)

-0.4

0.4

X
*

(c3)

-0.4

0.4

X
*

(c4)

-0.4

0.4

X
*

(c5)

M1 m
-3.1

3.1

X
*

(d1)

-4.4

4.4

X
*

(d2)

-6.1

6.1

X
*

(d3)

-7.1

7.1

X
*

(d4)

-7.1

7.1

X
*

(d5)

M1 m
-0.7

0.7

X
*

(e1)

-1.2

1.2

X
*

(e2)

-1.8

1.8

X
*

(e3)

-2.3

2.3

X
*

(e4)

-2.3

2.3

X
*

(e5)

M1 m
-3.1

3.1

X
*

(f1)

-4.1

4.1

X
*

(f2)

-6.0

6.0

X
*

(f3)

-7.0

7.0

X
*

(f4)

-7.1

7.1

X
*

(f5)



More Complicated IC
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Randomised Initial Configuration

M1 m
-0.3

0.3

X
*

(a)

n

m

-0.3

0.3

X
*

(b)
M1

N

1



M1 m
-0.1

0.1

X
*

(c1)

-0.3

0.3

X
*

(c2)

-0.3

0.3

X
*

(c3)

-0.3

0.3

X
*

(c4)

-0.3

0.3

X
*

(c5)

M1 m
-3.1

3.1

X
*

(d1)

-1.7

1.7

X
*

(d2)

-3.5

3.5

X
*

(d3)

-6.8

6.8

X
*

(d4)

-7.1

7.1

X
*

(d5)

M1 m
-0.6

0.6

X
*

(e1)

-1.2

1.2

X
*

(e2)

-1.9

1.9

X
*

(e3)

-2.3

2.3

X
*

(e4)

-2.3

2.3

X
*

(e5)

M1 m
-3.1

3.1

X
*

(f1)

-1.7

1.7

X
*

(f2)

-3.7

3.7

X
*

(f3)

-6.9

6.9

X
*

(f4)

-7.1

7.1

X
*

(f5)



Interpretation and Conclusions

I Cooperative coupling (positive coupling constants)
I Weak coupling slightly smooths the variation across

neighbours.

I Does not significantly change the size and shape of the
initial positive and negative opinion.

I Strong coupling makes the distribution more homogeneous
and sharp cluster boundaries can be formed.

I This is especially true in case of random initial states.
I Antagonistic coupling (negative coupling constants)

I For different coupling strength the development of spatial
instabilities prevails.

I Initial spatial cluster structure gets destroyed and the
quasi-homogeneous regime sets in (checkerboard).

I Antagonistic information exchange leads to the loss of the
reasonable decision-making among consumers.
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Where From Here?

Pilot Study: Sub area of whole city system:

I Study specific interventions, e.g.:
1. Insulation?
2. Smart Metering?
3. Introduction of ESCOs?
4. . . . ?

I From type of system and required output of models choose
appropriate modelling technique, e.g.:

1. Existing building-stock (technological) models? ABS?
2. Dynamical network, control-systems approach and ABS?
3. Networks? Dynamical systems? Policy models?

I Evaluate type of data required quantity to formulate (and
verify) models. Build models while gathering data.
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