A Dynamical Model of Decision-Making Behavior in a Network of
Consumers with Applications to Energy Choices.

N. J. McCullen”
School of Mathematics, University of Leeds
Leeds, LS2 9JT, United Kingdom
n.j.mccullen@leeds. ac.uk

M. V. Ivanchenko!
School of Mathematics, University of Leeds
Leeds, LS2 9JT, United Kingdom
wanchen@maths.leeds. ac.uk

V. D. Shalfeev
Department of Radiophysics, Nizhny Novgorod University
28 Gagarin Avenue, 603600 Nizhny Novgorod, Russia
shalfeev@rf.unn.ru

W. F. Gale
School of Process, Environmental and Materials Engineering, University of Leeds
Leeds, LS2 9JT, United Kingdom.

A consumer behavior model is considered in the context of a network of interacting individuals
in an energy market. We propose and analyze a simple dynamical model of an ensemble of
coupled active elements mimicking consumers’ behavior, where “word-of-mouth” interactions
between individuals is important. A single element is modeled using the automatic control
system framework. Assuming local (nearest neighbor) coupling we study the evolution of chains
and lattices of the model consumers on variation of the coupling strength and initial conditions.
The results are interpreted as the dynamics of the decision-making process by the energy-
market consumers. We demonstrate that a pitchfork bifurcation to the homogeneous solution
leads to bistability of stationary regimes, while the autonomous system is always monostable.
In presence of inhomogeneities this results in the formation of clusters of sharply positive and
negative opinions. We also find that, depending on the coupling strength, the perturbations
caused by inhomogeneities can be exponentially localized in space or de-localized. In the latter
case the coarse-graining of opinion clusters occurs.

Keywords: Dynamical model; decision-making behaviour; coupled cell system; oscillator network;
energy market; consumer behaviour; clustering; coarsening; emergent behaviour; localisation;
delocalisation

*permanent email: n.mccullen@physics.org
TCurrently at University of Nizhny Novgorod, Russia



1. Introduction

The behavior of ensembles and networks of coupled active elements, or oscillators, has long been the
focus of attention of research into the dynamics of complex systems [Haken, 1978; Golubitsky et al.,
2004]. Examples include communication networks of coupled oscillators, electrical generation networks,
biological and artificial neural networks [Abarbanel et al., 1996; Watts & Strogatz, 1998; Strogatz, 2001].
Not unexpectedly, there has also been interest in modeling socio-economic systems [Gaertner, 1974; Bass,
2004; Weidlich, 2003]. The nature of such systems, however, dictates that the models’ parameters are hard
to measure or estimate, if indeed it is possible at all. Nevertheless, the analysis of these models uncovers
qualitative characteristics and dynamical trends in behavior, such as potential scenarios for the evolution
of socio-economic systems [Bak & Bak, 1996]. Analyzing opinion-formation in social systems belongs to
this class of problems [Stauffer, 2005].

In this paper we study a dynamical model that can be used to describe the behavior of an ensemble of
consumers, in particular in the energy market. Specific interest lies in understanding the potential regimes
of collective behavior and responses of the end-users or mediators, making decisions that are influenced by
the ideas and actions of peers. The underlying intent of the model is to inform the thinking of policy makers
who are seeking to evaluate the potential effectiveness of interventions to promote energy sustainability. To
model the consumers we use the framework of automatic control systems [Kuo, 1981], where individuals
attempt to regulate some variable to match a reference value. This was chosen as a way to formulate the
model system as the primary motivations in the decision-making process can be clearly related to response
functions. It also has the advantage of making few and simple assumptions about the behavior of the
individuals, whilst retaining the essential features of the behavioral responses to the external stimuli.

We start with a simple model characterized by a single variable, namely the price of a commodity
which is specific for each consumer and the market in general. The commodity in question could be from
a range of things, such as energy purchased from a specific supplier, or a technology for generating or
saving energy in the home such as the installation of photovoltaic panels or replacing an appliance with
a more energy efficient model. Making the decision whether to buy (or continue buying), the consumers
compare the market price with what they consider some “reasonable” price in their own mind. This so
called “fair” price is formed with reference to the consumers’ own previous estimate as compared to the
current market price, as well as the information coming from the opinions of the other consumers. This
leads to the formulation of a dynamical network model of the consumers’ decision-making on the market.
The automatic control system with a feedback that we use to model the decision-maker conveniently
embodies the above properties. For the sake of simplicity we restrict our analysis to one-dimensional chain
and two-dimensional lattice topologies with only nearest-neighbor coupling.

2. Basic model

The basic model of a consumer (MC) as an automatic control system is shown in Figure 1. The object under
control is known as the estimator (E), which gives the consumer’s current estimate of the reasonable price
of the goods as the output signal P.(¢). The market price of the goods (taken as constant in the decision
time-scale) is the input reference signal P, (t), which is compared to the consumer’s own fair-price, P.(t).
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Fig. 1. Model of the consumer (MC) as an automatic control system.

The current output signal P.(t) and the input reference signal P,,(t) are compared using the discrim-
inator function (D). The output signal of D (Up) is passed through a filter (F), which eliminates noise
parasitical components of upper frequencies from the spectrum (as the customer would average the short



time-scale price fluctuations on the market). Then the signal from the F output (Up) is supplied to the con-
trol element (CE), which directly changes the consumer’s estimated price in a manner such as to approach
the reference market price. This is interpreted as the consumer changing their opinion of the fair-price over
time in response to the current market price.

In order to obtain the equations describing the dynamics of such an automatic control system, take
the equations for each element of the system in turn. The equation for the output of the estimator E can
be written as:

Pe = (Pe)i + AP, (1)

where (P,); is the consumer’s initial estimate of the fair price before the feedback comparison to the market
price is considered, AP is the change in the estimated price as controlled by CE.
The equation for the control element CE can be written as:

AP = —SUp, (2)

where S is the slope of the CE characteristics and the minus sign means that the action of control is to
bring P, towards P,,. The equation for F' can be written as:

) d
Ur = K(p)Up, WlthpEa, (3)

where K (p) is the filter transmission factor. The equation for the discriminator D can be written as:
UD:Eq)(Pc_Pm)a (4)

where E is the maximum output of D and ®(P. — P,,) is the discriminator’s nonlinear characteristics,
normalized to unity (Fig. 2).
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Fig. 2. The nonlinear characteristics of the discriminator function. In this example the impact of extremely high and low
deviations does not increase proportionally, perhaps due to being seen as unrealistic by the consumer.

Introducing the current price deviation P(t) = P.(t) — Py, (t), the parameter 0 = SE as the greatest

error to be corrected by the control circuit, dimensionless price-deviation X = — and dimensionless initial
o

P,
price-deviation v = ~, we obtain from (1)-(4) the following equation, describing the dynamics of the
o

model of the consumer (MC) as an automatic control system:

d
X+E@peX)=7p=_1. (5)
The initial condition is also specified here, defined in (5) as X(0) = .
The model (5) addressed here looks like the standard continuous model of automatic synchronization
systems widely applied in synchronization theory [Afraimovich et al., 1994] and oscillation theory [Andronov
et al., 1966].



3. Single Consumer

1 t
, introducing dimensionless time 7 = — and
1+ap a

assuming - remains constant (meaning the market price P, = const); instead of (5) we have a differential
equation of first order:

In the simplest case of an integrating filter K(p) =

%+X+¢>(X):»y. (6)

In equation (6), for a symmetric nonlinearity ®(X) (as in Fig. 2) it suffices to treat the parameter y
as non-negative, because for v < 0 we can change the sign of X to —X and get the same equation (6). The
coordinate of the equilibrium states of equation (6) can be found from the equation:

Y- X = B(X). (7)

According to equation(7) there is only one stable equilibrium state with coordinate X* on the phase
line X (Fig. 3(a)). Figure 3(b) illustrates the dependence X*(7), the final opinion state arising from the
initial estimates (i.e. the resulting decision). In all cases |X*| < |y|. Thus in the case of a single consumer
the model (6) demonstrates very simple dynamics and such behavior looks reasonable. If the consumer’s
initial estimate of the price deviation v > 0 then, after comparing the initial and market prices, the
resulting estimate of the difference between the market price and the fair price by the consumer becomes
0 < X* < ~y. This means that the consumer’s final opinion is positive (being proportional to X*) and the
consumer makes the decision “to buy” (Fig. 3(b)). In contrast, if the initial estimate is that the market price
is higher than what they consider “fair” (v < 0), the resulting estimate becomes X* < 0, and |X*| < |/
This means that the consumer’s final opinion is negative and the decision is “not to buy” (Fig. 3(b)).
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Fig. 3. Phase portrait of (7), showing how the initial estimate v and nonlinear function ®(X) determine the final opinion
X, and the relationship X * (), with the corresponding decision by the consumer.

A simple nonlinearity resembling the form shown in Figure 2 is given by:
__BX
14X

and this will be used with 8 = 5 in the numerical simulations.

P(X)

4. Interacting Consumers

As consumers interact by exchanging opinions we can consider coupling them through control signals, the
simplest variant being a direct exchange of neighboring partial MC control signals (Fig. 4).
To simplify the analysis we assume that for MC; and MCsy, ®1(X) = ®2(X) = &(X), Ki(p) = Ka(p) =

and o1 = 09 = 0. The equations for such coupled consumers can then be written as:

1+ap
dX
o X O(X) = 1+ AB(X), (9)
dX
T2 Xo + B(Xs) = 72 + 0D(X)). (10)

dr
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Fig. 4. Model of two coupled consumers.

t
Here 7 = — is dimensionless time and § and k are the coupling coefficients. Firstly to decide whether ¢

and K shoucid be positive or negative take k = 0 for simplicity and consider the influence of MC; on MCs.
When 1 > 0 we can get the equilibrium state X* > 0 from equation (9). This means ®(X7) > 0 and
the activity of the first consumer is positive; i.e.: “to buy”. Where v5 > 0, § = 0, the decision “to buy”
can be obtained from (10), and when ¢ # 0 the opinion of the second consumer needs to be increased.
This means that we need to choose positive signs for the coefficients § and . This can be interpreted as a
cooperative type of coupling where the consumers are likely to do the same as their neighbors. In contrast,
negative values for the coupling coefficients would represent an “antagonistic” type of interaction, where
the neighbors disagree.

As social networks, large networks of consumers may have complex structure and emergent complex
dynamics. To get an insight into the collective behavior on networks we focus our attention on regular
networks, considering chains and lattices of MCs with nearest neighbor coupling. These topologies, in spite
of their simplicity, are reasonable models for city lanes and districts, where people living on a 1D or 2D
grid-layouts communicate predominantly with their next-door neighbors. An illustration of the 2D lattice
structure is shown in Figure 5.
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Fig. 5. A 2D lattice network of model consumers (MCs), such as would be seen where people live in a grid road layout. The
1D chain (considering only a single row of this scheme) could represent a street of consumers.

The other assumption will be that the MCs differ in their initial opinions () only, while the other

characteristics are the same, for example for a 1D chain: ®,(X) = ®(X), K, (p) = T O =0 hn =K
ap
and 0, =6, withn =1,2... N.
The system of equations for a locally coupled chain can be written as:
dXy,
dr

where the boundary conditions are Xog = Xy41 = 0.

+ Xp + (X)) = Y0+ 60(Xp1) + £E(Xpp1), (1)



The dynamical equations for the lattice read:
an,m
dr

+ Xn,m + @(Xn,m) = Yn,m + 6(I)(Xn—1,m) + ’Q(I)(Xn-ﬁ-lﬁn)
+ 5(D(Xn,m—1) + H(I)(Xn,m—‘rl)a (12)

where n =1,2...N, m =1,2... M, and the boundary conditions are given by Xo,, = Xyi1,m = Xpno =
Xn,M—H =0.

5. Homogeneous solutions

Homogeneous solutions arise in (11) and (12) when 7, = 7 or Yy, = 7 along with § = . Indeed, under
these conditions X, () = X (¢) and X,, ,,(t) = X (¢) are invariant manifolds of the corresponding dynamical
systems. Evolution on these manifolds is described by

dX
T X+ (1-209)0(X) =, (13)
-
where d = 1, 2 is the dimensionality of the lattice.
First, assume that 6 > 0. If 2dd < 1 (13) has a single stable equilibrium as in the case of the autonomous
dynamics of a consumer (Fig. 3(a)). Notably, in the opposite case there can exist either one (stable) or
three (one unstable and two stable) equilibrium points. Figures 6 (a) and (b) illustrate these two cases.

Approximate solution for the two stable points can be derived is case |3X| > 1, when ®(X) ~ £1. Then,
Xi =v+£(2dé - 1), (14)
along with the validity condition |3(y £ (2dd — 1))| > 1. The latter can be fulfilled even for small ~ if the

coupling is strong enough.
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Fig. 6. Possible equilibrium points for model (13) when 2dé > 1. For different coupling strengths (§ = k) there can exist
either one (a) or three (b) equilibria.

The linear stability of (13) corresponds to the linear stability of (11) and (12) within the invariant
manifold. This demonstrates that the new points emerge from the existing equilibrium as a result of a
pitchfork bifurcation that occurs as the coupling strengthens at some bifurcation value §*, the former
becoming stable and the latter losing its stability (again, we do not study transversal stability here). A
precise result is possible for the case of v = 0, in which

sod(14h) -

Above this threshold the original equations have three spatially homogeneous solutions, among which one
is unstable and the others are stable within the invariant manifold. Non-zero v changes the basins of
attraction of these equilibria in favor of the one with the same sign as . It is also easy to see that 0* is a
monotonically increasing function of ~.

Second, if § < 0 one gets

dX
E+X+(1+2d|cﬂ)<b(X) =, (16)



which always has a single solution. However, the “checker-board” manifold X, (t) = —X,,—1(t) = X(¢)
and X, m(t) = —Xn—1m(t) = —Xnt1m(t) = —Xpm—1(t) = =Xy m+1(t) = X(t) does undergo a pitchfork
bifurcation as the dynamics on it obeys

dX

E+X+(1—2d|6])(1>(X) = 7. (17)

Correspondingly, the bifurcation value for v = 0 is the same as (15) except that we now use the absolute
value [d].

These results suggest the following conjecture on the pattern formation in this system. According
to (14), strong coupling will result in sharply observed ‘positive’ and ‘negative’ solutions. As the initial
opinions ~y are always taken as the initial conditions, one does not observe the bi-stability in numerical
experiments, but convergence to one of the stable solutions. In the case of the inhomogeneous (random)
distributions of 7, or 7,, one can have local prevalence of positive or negative opinions, increasing the
‘basins of attraction’ of the corresponding locally (almost) homogeneous solutions, to which the local
dynamics will eventually converge. Therefore, one can expect the formation of clusters of positive and
negative opinions, possibly, of a complex form in lattices. In the case of § < 0 such drastic separation
is impossible, as the neighboring sites exhibit alternation of opinions in any case. Still, clusters may be
observable, as opinions can have different averages in their neighborhoods and correspondingly different
locally (almost) homogeneous solutions.

These predictions will be tested in the computational experiments, as shown in section 7.

6. Localized patterns

When small inhomogeneity is added one can expect small perturbations to the homogeneous solution of
(11) and (12). Furthermore, one can expect that local inhomogeneities will have a local effect under certain
conditions. The latter will also be a criterion for the absence of large-scale patterns.

We start by introducing a small perturbation at one site of the chain, while the rest are identical:
o =7 +7 =71 +¢€), vn =7 Yn # np. Assuming also that the coupling is symmetric and weak:
0 = k = e/A. We now develop a perturbation theory in powers of small parameter ¢, taking the homogeneous
stationary solution:

X4+ (1-20)P(X™") =, (18)

as the zero-order approximation: X, = X™* + EX7(11) + €2X,22) + .... We substitute this expansion in the
original equations (11) and find the leading order correction for each site. In the first order one gets:

EX%) + <I>’(X*)5X7%) = ey 4+ O(e?),

19
eXWM 4+ 0(X9eX (D = O(e2), Vn # no, (19)
and
x) — 2
LS TO) (20)
XM =0, Vn # no,
In the second order
X + ¥ (X)L X = A (XX + O, o)
X2 + o' (X2 XV = O(e%), Vn #£ ng,no + 1,
and
X@ — AQ(X™) X = AQ'(X™) L
O 14+ P(XF) T 14 P(XF) 14 (X (22)

XT(LQ) =0, Vn #ng,ng 1,



Finally, one obtains the leading order perturbations:
5 _6w(xY)

(23)

The perturbations are exponentially localized if A < 1 and have the localization length L = —ﬁ, KXo+l —
X =(Xp, — X *)e‘l/ L In this case we predict the stationary pattern of small-scale fluctuations in the
general case of random ~,. In the opposite case even a small local perturbation will cause the same
order perturbations over the whole system and the stationary patterns may get coarse-grained, their size

% < % one can conclude
that the generic route to pattern coarse-graining is through coupling strengthening, the critical value being
5 =1+ 1.

Remarkably, the bistability of the homogeneous solution threshold (15) is of the same order. From this
we predict that large scale clusters of sharply positive and negative opinions will form if the coupling is
stronger than 6*, §**.

It is straightforward to show that the same expression for the decay (23) is valid for the horizontal and
vertical directions in lattices. Thus, the same localization criterion applies and different pattern formation
regimes will take place in the similar regions of the parameter space.

The case § < 0 and perturbations to the checker-board solution can be analyzed similarly and the
same criteria can be derived.

potentially becoming of the order of the system size. By the estimate A =

7. Numerical results

Computer simulations were carried out to investigate the behavior of chains and lattices of consumers
by the numerical integration of (11) and (12). The results described here for both cases are presented in
Figures 7-9.

1D Chains

In all cases for the chain the number of consumers in the simulation of the model was chosen to be N = 20
for ease of visualization. Different initial conditions (distributions of ~,) were used for each of the figures
and are shown in sub-figure (a) in each case. Sub-figures (c1)—(fl) show the long-time (post-transient)
results of having different coupling interactions; in each case J, x = 0.3, 2, —0.8, —2, respectively.

For the results in Figure 7 all v,, were chosen to be 0.3 other than a single perturbed site at n = 10,
taken as y19 = —0.3. This can be considered as investigating the effect of having a single consumer with a
deviant opinion in the system. It can be seen that weak cooperative coupling slightly smooths the variation
across neighbors over time. However, they can be seen to retain their basic distribution; a result of holding
on to their original opinion (as 7,(t) = const). Stronger cooperative coupling results in a more uniform
final distribution, with a small effect of the perturbed individual. Unsurprisingly, for antagonistic coupling
a pattern of opposing neighbors is seen to emerge as predicted in Section 6. In the weaker coupling case the
effect of the perturbation can be seen more clearly than in the stronger case; with the latter resulting in a
more uniform pattern. As will be seen in Section 8.1, there is a coupling value, above which the uniform
pattern emerges but below which shows localization of the pattern; again in accordance with the results in
Section 6. This is related to the qualitative change in behavior described next.

The second initial distribution considered for the chain is a linear variation of opinions between —0.3 <
v < 0.3 (Fig. 8 (a)). This is a situation where near-neighbors have similar opinions but individuals at a
distance from one-another originally differ in their estimate of the fair price. For antagonistic coupling
the results are much as in the previous case, with strong coupling showing a more uniform ‘checker-board’
pattern and weak coupling revealing the underlying bias (distribution of -y, ) more clearly. However, here the
difference between the final distributions are more interesting for cooperative coupling at the two different
strengths. Where individuals only weakly interact the form of the distribution remains largely unchanged
from their original estimate, with only a change in the magnitude and slope, with a roughly linear variation
across the range —0.1 < X* < 0.1. In the case of individuals being strongly influenced by their neighbors a



different pattern emerges, with consumers end up divided into two clusters of approximately equal opinion
as conjectured from Equation (14) in Section 5. These clusters are divided sharply at the interface, with
those whose underlying prejudice was negative in one (X* ~ —3) group and those with an originally
positive estimate in the other (X* & 3). This is in accordance with the predictions made at the end of
Section 5. Clearly a qualitative change in the decision-making behavior occurs above a certain coupling
strength, as will be seen more dramatically in the case of 2D lattices and studied in more detail in Sections
8.1 and 8.2.

A more natural starting condition, before the neighbors start to exchange information on their opinions,
would be an initially arbitrary distribution. This is considered for the results shown in Figure 9, where the
distribution of ~,, was obtained using a pseudo-random number generator. Again the antagonistic coupling
shows similar behavior to above, and qualitatively similar behavior to the previous case can be seen for
cooperative coupling. In this case the distribution retains its random nature from the initial distribution,
as shown theoretically in Section 6. However, in the strong coupling case the tendency towards clusters can
be clearly seen; predicted as locally homogeneous solutions in Section 5 and analyzed in Section 6. This
clustering behavior appears in a more spectacularly in the case of two dimensional lattices, shown next.

2D Lattices

Numerical results for lattices were carried out using the same discriminator function (8) as before (also
shown in figures 7-9). The initial conditions for the lattice, shown in sub-figure (b) in each case, are: for
Figure 7, a single perturbed site in an otherwise uniform field; Figure 8, a tiling dividing the field into four
alternating regions of negative and positive opinions; and Figure 9, a pseudo-random field of 7, .

In the first case (Fig. 7) the results are completely analogous to the results for a chain seen above and
predicted in Section 6, with smoother final distributions for stronger coupling and antagonistic coupling
leading to a checker-board of opposing neighbors. There is evidence of frustration at the corners in the
latter case, as also seen in Figure 7 (f1) for sites 5-6 in a chain of antagonistic consumers. The larger region
is seen to dominate to push the system towards a single ‘cluster’ at later times (in the top left corner),
similar to the coarsening behavior described below. The second case here (fig. 8) is much less noteworthy;
particularly for the cooperative case, given that the initial condition resembles the final state very closely
in form, varying only in magnitude.

However, for the irregular initial distributions the results shown in Figure 9 are far more interesting.
In this case a larger system of N, M = 50 was used to display the effect more strikingly. Here, clear
domains of clusters are seen to emerge for stronger coupling strengths, as seen in the previous case and
in agreement with the previous results. In the antagonistic case the clusters are the same as each other
(opposing neighbors) but separated by domain boundaries defined by lines of frustration. Coarsening of the
patterns can be seen more strikingly in the case of cooperative coupling, in accordance with the predictions
made in Sections 5 and 6. Weak coupling (d, < = 0.3) results in the formation of small irregular clusters,
resembling the original random distributions, which do not go on to merge together over time. In the case of
stronger coupling (0, k = 2) the clusters are much more well defined, with local groups of individuals taking
strongly negative or positive opinions and having sharp domain-boundaries, as predicted in Section 6. For
these values the system also displays clear coarsening behavior, with groups of similar opinion growing in
size until one dominates. The clustering and coarsening behavior is investigated in more detail along with
quantification of the phenomena in section 8.2.

8. Transition Between Localized and Global Patterns of Behavior
8.1. Localization and De-Localization in the 1D Chains

Here we attempt to quantify the localization of the perturbation as seen in the previous results. This
transition is very important, given the underlying intent of the model to support initiatives on energy
sustainability by local authorities, whose decisions would be based on the response of the group rather
than the individual consumers. This quantification is carried out on the one dimensional chain, looking
at the degree of localization on variation of the coupling strength. Chains containing N = 40 individuals
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were used with a single site perturbed over a range of perturbation size v;, where all other «, = 0. Figure
10 shows the effect for v; = 0.1 at coupling strengths ¢,x = —0.8, —0.7,—0.6, —0.5, on both a linear and
a logarithmic scale. Qualitatively different distributions can be seen either side of a transition, one with
a localized disturbance and the other de-localized. For small coupling parameter the decay is exponential
but otherwise it is more irregular and falls to a steady state. It can be seen that, for very small coupling,
the localization length could be well defined by a localization length L in the expression X,, = exp( %)

As a measure of localization we employ the ‘participation number’ P. This is obtained by calculating
the normalized stationary amplitudes of X:

| X

Zn — =< o

2 | Xnl’

where |z, | sums to unity. The participation number then is given by the formula:
1
pP= .
> %
This is a measure of the effective number of sites that get “substantially” perturbed.

Values for the participation number P versus coupling strength § = x for various 7; are shown in
Figure 11, where v; is the perturbed site value and all other v, = 0. A rapid increase in P on increasing
the coupling strength demonstrates a de-localization transition that is dependent on ~;. As 7; — 0 the
transition becomes sharper around the value §,x ~ —0.6, in agreement with Equation (15). A similar

coupling-dependent transition between local and large-scale patterns is also investigated in the next section
for the domains formed in 2D lattices.

8.2. Clustering and Coarsening in the 2D Lattices

For measuring the level of coarsening we use the Miz-Norm N, introduced in [Mathew et al., 2005] as a
measure of mixing (and therefore conversely segregation). The Mix-Norm is defined by:

2
N2y el 24
; V194 k2 + 12 @9

where ay; are the coefficients of the Fourier transform of the field under investigation. Therefore smaller
numbers for IV indicate a more mixed, fine-scaled structure to the data, and vice-versa.

The development of N for different random initial conditions (distributions of —0.3 < +; < 0.3) is
given in Figure 12. These show different coarsening curves, with the final value of N depending strongly
on the precise micro-structure of the distributions. However, all show a distinct coarsening behavior and
investigations (not shown) revealed that the clusters become fixed in finite time, approaching a final value
in 7 of order 100.

The mean development of many distributions looks more regular, as also shown in Figure 12. This
allowed investigation of the dependence of coarsening on the strength of interaction between neighbors
0 = k. A transition between a long-time state with local small clusters and a large-scale coarsened pattern
were seen above 0, k &~ 0.3, agreeing with the analytical estimates given in Section 5. Examples around the
transition values of coupling strength are shown in Figure 13 at 7 = 100. For the detailed study of the
transition 50 such calculations were performed for each 6 = x and the mean of the Mix-Norm N at 7 = 100
is plotted against these coupling values in Figure 14 (a). In Figure 14(b), the RMS amplitude of the field
is shown; further highlighting a critical transition in the behavior. A clear transition can indeed be seen
above a critical coupling strength, with the clustering measure growing by nearly two orders of magnitude.

9. Interpretation and Conclusions

Detailed analytical and numerical studies into the dynamics of networks of interacting individuals have been
described in this paper. These have shown good mutual agreement and and provided a wealth of results
on aspects of cooperative behavior. The results presented herein are interesting in their own right, with
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the results relating to clustering and group behavior, with its dependence on the strength of interactions,
being potentially applicable to a range of similar systems. Importantly here, in the context of the original
problem they provide insight into the possible emergent behavior that could be encountered. The results
can be interpreted in terms of a market of interacting consumers who have to make decisions about whether
or not to buy some product, here in the context of energy markets.

Investigating a range of coupling values and distributions of initial conditions has allowed us to un-
derstand the qualitative dynamics of the system. For simplicity, homogeneous coupling was considered,
along with uniform response behavior of the model consumers; allowing a clear connection to be made
to the mathematical analysis. The choice of coupling was found to lead to various qualitatively different
regimes. In the case of ‘antagonistic’ coupling (4, < < 0) the development of spatial instabilities prevailed
for different coupling strengths. This resulted in the initial spatial structure being destroyed in favor of
a quasi-homogeneous regime; characterized by the alternation of the sign of activity in the neighbors (a
checker-board pattern). The interpretation for the applied problem would be that negative information
exchange, such as mistrust or misinformation between individuals, generally leads to the loss of the reason-
able decision-making among consumers. This would result in destruction of the initial pattern of opinions
and complete destabilization of the network, not leading to any clear consensus. In this case the local-
ization of a perturbation, such as a strong-willed individual, was studied as a function of the strength of
interaction, both analytically and numerically. It was found that a transition between localization of the
disturbance and system-wide instability is critically dependent on the coupling magnitude, with the values
in agreement between theory and simulation.

In cases where the information exchanged was cooperative, in the sense of it encouraging similar behav-
ior amongst peers (with coupling coefficients taking positive values), the qualitative nature of the final state
also depended strongly on the magnitude of coupling. In the real-life situation this would be interpreted as
the relative value placed on peers’ opinions as compared to ones own bias. Weak coupling slightly smoothed
the variation of the initial opinion strengths across neighbors, resulting in weak spatial clusters which did
not group together over time. Strong coupling was found to make the in-cluster distribution considerably
more homogeneous, and the inter-cluster boundaries get sharper. In addition the clusters merge over time,
resulting in a coarsening of the pattern. This can be interpreted as herding of opinions in the network,
finally leading to a one or two groups of consumers coming to a collective decision. Again, the dependence
of the transition from small (local) groups of opinions to de-localized, large-scale patterns of behavior on
the strength of interactions was investigated. The results again revealed that there was a clear transition
point, which can be interpreted as there being a minimum level of information exchange required to effect
a consensus decision in the market of consumers.

Finally, this investigation has used various simplifying assumptions to ease comprehension and make
the connection to analytical results more clear. Future studies can investigate situations where these as-
sumptions are relaxed to represent the real situation more naturally. For example the network topology
in real social groups is not as regular as considered here. While people do interact with their next-door
neighbors, there are also longer-range connections through work, family and other social ties. Therefore
a more realistic model might be a variation of the Watts-Strogatz (semi) random networks, which have
both these features [Watts, 2003]. In addition, the interactions between and opinion-forming responses of
individuals would not be homogeneous in the real world, so making these non-uniform will be a useful next
step in dynamically modeling the decision-making behavior of consumer networks.
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Fig. 7. The initial condition, here a single perturbed site in an otherwise uniform field, is shown for both the chain (a)
and lattice (b). In cases (c), (d), (e), (f) the coupling strength 6 = x = 0.3,2, —0.8, —2, respectively. Column 1 shows the
post-transient state of the chain at 7 = 20. The evolution of the state of the lattice is shown at 7 = 1, 2,5, 20 in columns 2, 3,
4 and 5, respectively. Weak cooperative coupling (6 = k = 0.3) slightly smooths the variation across neighbors but they retain
their basic distribution. Stronger coupling (§ = x = 2) results in a more uniform final distribution, with the original bias of
the perturbed individual only just discernible. For antagonistic coupling a checker-board pattern emerges, with neighboring
individuals in opposition. In the weaker coupling case § = k = —0.8 the effect of the perturbed individual can be seen more
clearly than in the stronger case (0 = k = —2) which results in a more uniform pattern.
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Fig. 8. The initial distribution of a linear variation of opinions between —0.3 < v < 0.3 for a chain (a), and a coarse (10
cell block) checker-board pattern for the lattice (b). In cases (c), (d), (e), (f) the coupling strength § = x = 0.3,2,—0.8, -2,
respectively. Column 1 shows the post-transient state of the chain at 7 = 20. The lattice is shown at 7 = 1,2, 5,20 in columns
2, 3, 4 and 5, respectively. Weak cooperative coupling results in distributions similar to the initial states, but with different
magnitude. For strong cooperative coupling individuals end up in one of two clusters, X* ~ —3 or X* =~ 3, originating from
Yn < 0 or v, > 0, respectively. For negative coupling the results are much as in the previous case, with strong coupling showing
a more uniform pattern than the weak coupling, which shows the original opinion more clearly.
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Fig. 9. The initial condition of a random field for the chain (a) and lattice (b). As before (c), (d), (e), (f) show the coupling
strength 6 = k = 0.3,2, —0.8, —2, respectively. Also column 1 shows the state of the chain at 7 = 20 and the state of the lattice
is shown at 7 = 1,2,5,20 in columns 2, 3, 4 and 5, respectively. In this case a 50 x 50 grid was used for better visualization.
Clear domains of clusters are seen to emerge. For negative coupling the clusters are separated by domain boundaries defined
by lines of frustration. In the case of weak cooperative coupling (§ = k£ = 0.3) the formation of weak clusters resembling the
original, which do not go on to merge together, are formed. For strong coupling (6 = k = 2) the clusters are much more well
defined and display clear coarsening behavior in the lattice.
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Fig. 10. Localization of the perturbation for different coupling values, on a linear scale (a) and a logarithmic scale (b). The

coupling coefficients are 6 = k = —0.8, —0.7,—0.6, —0.5 for columns 14, respectively. A transition between de-localized and
localized behavior occurs.
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Fig. 11. Values for participation number P for various values of coupling strength § = x and initial perturbation -;, clearly
showing the transition between localized and de-localized behavior.
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Fig. 12. The Mix-Norm N, measuring de-mixing of random field of z9 = 7; on a 2D N, M = 50 lattice with §,x = 2. 50
different randomizations are shown by thin (black) lines, demonstrating a wide variation depending on the initial condition.
The specific example from Figure 9 (d) is shown by (blue) circles. The mean over all 50 runs is shown with the thick (red)

line.
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Fig. 13. Examples of long-time (7 = 100) coarsening behavior at coupling strengths «,d = 0.25,0.3,0.35,0.4. The same initial
condition was used in each case and qualitatively different types of behavior can be observed.
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Fig. 14. Average N against k,d on both a linear (a) and semi-logarithmic (b) scale; showing the transition from local
small-scale clustering to coarsened de-localized patterns.



