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We present the results of an experimental investigation of a network of nonlinear coupled oscilla-
tors which are coupled in feed forward mode. By exploiting the nonlinear response of each oscillator
near its intrinsic Hopf bifurcation point we have found remarkable amplification of small signals over
a narrow bandwidth with a large dynamic range. The effect is exploited to extract a small amplitude
periodic signal from an input time series which is dominated by noise. Specifically, we have used
this relatively simple experimental system to measure responses with a bandwidth of ∼ 1% of the
central frequency, amplifications of ∼ 60dB, a dynamic range of ∼ 80dB and can extract signals
from a time series with a signal to noise ratio of ∼ −50dB.

PACS numbers: 05.45.Gg,05.45.Xt,07.50.Qx’

Systems that can detect and amplify signals at spe-
cific frequencies are commonplace in the natural world
and most notably in the visual and auditory systems of
animals [1]. These have excellent filtering characteristics
and they operate over a remarkably wide range of levels.
Scientists and engineers frequently take inspiration from
Nature and signal detection is one area where biology has
excelled in producing systems with superior characteris-
tics over man-made devices [2]. A measure which can be
used to characterize the quality of a system is the ratio of
the minimum to the maximum amplitude of signal that
can be usefully detected and this is termed the dynamic

range of the system. For example, the human auditory
system has a quasi-logarithmic amplitude response and
a dynamic range covering several orders of magnitude in
sensitivity (> 120dB) [3]. It has been suggested that
obtaining larger amplifications for lower forcing and sat-
uration at large input amplitudes, which is termed dy-

namic compression, could be produced by making use of
the nonlinear growth characteristic of Hopf bifurcations
[4–6]. Several models exist which employ active elements
which mimic the auditory network, where cells are tuned
close to a Hopf bifurcation. Cells with properties which
are qualitatively similar to van der Pol oscillators are be-
lieved to be responsible for amplification in some of these
cases [7]. Physiological evidence exists for this active au-

dition due to Hopf bifurcations for a range of animals
and insect auditory systems [8–11]. Models have also
been proposed which make use of coupling between limit
cycles, which result from Hopf bifurcations, to produce
significant amplification in insect hearing [12, 13].

Current signal detectors used in lock-in amplifiers usu-
ally have a small dynamic range compared to those found
in the natural world. This is because of their linear am-
plitude response, necessitating advanced electronic cir-
cuitry to extend their range. Previous work on nonlin-
ear amplifiers include using the sensitivity close to pe-

FIG. 1: A schematic of the 3-cell feed-forward network with
periodic forcing. Three identical oscillators (or “cells”) are
coupled unidirectionally as indicated by the arrows. A small
forcing signal with amplitude ε and frequency ωF is put into
cell-1, triggering oscillation in the system.

riod doubling and Hopf bifurcations [14–16] to provide
nonlinear amplification. They found that a period dou-
bling instability was a good candidate for amplification
of small signals and tuning closer to the bifurcation point
produces greater amplification.

In this Letter we present results of an investigation of
a system for small signal detection using a feed-forward
network. Specifically, experimental observations are re-
ported for a system of three coupled electronic oscillators,
which demonstrate nonlinear amplification over a narrow
bandwidth and wide dynamic range. This is achieved us-
ing nonlinear processes motivated by those reported for
natural systems. Thus advantages are provided over de-
vices currently used in signal processing.

Recently, an interesting set of predictions arose out
of a theoretical and numerical investigation of a set of
identical coupled ODEs which we will call a coupled cell

system. In this the elements were coupled identically
in a specific way to form a network [17]. The system
comprised a 3-cell feed-forward linear array of identical
oscillators as shown schematically in Figure 1 which also
includes external forcing. In order to maintain symmetry
of the equations additional external self coupling of the
first cell is added. This system can be expressed in the
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form:

ẋ1 = f(x1, x1, λ),

ẋ2 = f(x2, x1, λ), (1)

ẋ3 = f(x3, x2, λ),

where λ is a bifurcation parameter which is identical in
all three cells. A Hopf bifurcation exists in the system
at a particular value of λ = λc such that stable periodic
solutions existed in cells 2 and 3 above λc while cell 1
remained at a stationary fixed point. One surprising re-
sult was that the growth in amplitude of the limit cycle
in cell 3 was found to scale as λ

1

6 rather than the usual
λ

1

2 dependence for the growth after a standard Hopf bi-
furcation [18, 19]. This suggests that resonant forcing of
the third cell is more important than for a simple Hopf
bifurcation.

The idea here is to use such a network to selectively
amplify an input signal at a specific frequency, the one
which arises at the Hopf bifurcation of the system ωH .
The investigation was focused on the configuration shown
in Figure 1, with small harmonic forcing with an ampli-
tude ε and variable frequency ωF . The system can then
be modeled by:

ẋ1 = f(x1, x1 + ε cos (ωF t), λ),

ẋ2 = f(x2, x1, λ), (2)

ẋ3 = f(x3, x2, λ).

Experimental investigations were carried out using a
set of coupled electronic circuits. The individual “cells”
of the array were modified van der Pol autonomous oscil-
lators. Each element consisted of an LCR loop in parallel
with a chain of diodes which provided a nonlinear element
[20]. Details of the circuit and the report of an extensive
investigation of its dynamics can be found in [21, 22].
A modification to the original design was used in the
present circuit in that a solid-state gyrator replaced the
LCR loop element of the circuit. This had the effect of
reducing the effects of external noise since this is known
to produce additional dynamical effects near Hopf bifur-
cation points [23]. Coupling was achieved using high gain
operational amplifiers to unidirectionally connect the cir-
cuits without feedback [24, 25]. Although our experimen-
tal system was manufactured from individual elements,
the design is such that it should be possible to construct
it entirely on a single chip in the future. The coupling
strength between the cells was kept fixed at ∼ 10% i.e.
the connecting circuits between the oscillators had a set
reduction of ∼ 90% in amplitude. A water cooled copper
heat-sink and a thermally insulating enclosure was used
to stabilize the temperature environment of the devices to
within 0.02oC. This was required since it is known that
nonlinear oscillators are both sensitive to noise close to
bifurcation points and thermal fluctuations can influence
the nonlinear elements which causes the Hopf bifurcation
point to “drift” in λ [23].
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FIG. 2: Responses of the 3-cell feed-forward network, on vari-
ation of the drive frequency ω. The responses of cells 2 and
3 are plotted separately to show the enhancement in ampli-
tude obtained by adding a third cell. A sharp peak can be
seen when the forcing frequency ωF is around ωF = ωH , the
natural frequency of the system at the Hopf bifurcation.

The initial investigation was focused on the response of
cell 3 as a function of ω when forcing near ωH . The am-
plitude responses of cells 2 and 3, A2 and A3, are shown
in Figure 2 for a forcing amplitude of ε ∼ 5 × 10−4V . A
sharp response can be seen around ωF = ωH in cell-3,
decaying quickly as |ωF − ωH | increases. The amplifi-
cation enhancement from cell-2 to cell-3 can clearly be
seen. The bandwidth of the frequency–amplitude curve,
measured as the full width at half maximum (FWHM)
frequency spread, is δω ≈ 1% of the central frequency.
This corresponds to a quality factor Q ≈ 100, demon-
strating that the system has a narrow passband.

The system was found to exhibit much greater am-
plification for lower forcing amplitudes which highlights
the nonlinear nature of the response. An amplitude re-
sponse curve which was measured over a range of ε at
fixed ωF ≈ ωH is shown in Figure 3. Values of the am-
plitude of the third cell A3 for a range of forcing am-
plitudes ε are given in dB, relative to the noise level ν.
The system can be seen to have a wide dynamic range,
measured to be >

∼ 80dB, which compares well to the fig-
ure of 120dB given for biological systems [3]. It can be
proved that for sufficiently small epsilon the response of
the system varies linearly with ε [5] and the data in Fig-
ure 3 are in accord with this as indicated by the line of
slope 1. Montgomery, Silber, and Solla [26] find a “phase
transition” in a related system, where for larger ε a high
power response is seen, which is qualitatively similar to
the results reported here. This is an indication of the dy-
namic compression arising out of the nonlinear response
of the system.

An indication that the device has good filtering char-
acteristics can be gleaned from Figure 3 where the data
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FIG. 3: The amplitude found in cell-3 relative to the noise
floor is shown on a log scale, plotted as a function of the
signal-noise ratio. The line has a slope of one which indi-
cates that the growth in amplitude is approximately linear
for small ε. The decrease in gradient for large values of ε

demonstrate the dynamic compression which arises from the
nonlinear response of the system.

suggests that periodic signals with a low signal to noise
ratio can be detected. We illustrate this by showing the
results of an investigation of extracting a small ampli-
tude periodic signal from an input which was dominated
by broadband noise. An example of the time sequence
used is shown in the inset of Fig. 4 (a). We also show the
averaged power spectrum of the input and output signals
in Fig. 4 plotted on (a) on a linear and (b) on a log scale.
The response frequency ωR remained locked to the input
(ωF ) because of frequency entrainment.

A striking feature of the original unforced model is the
prediction of λ

1

6 amplitude growth for the third cell, as
compared with the λ

1

2 amplitude growth for the second
cell [17, 19]. This result motivates the investigation of the
signal amplification of the forced system in cells two and
three. The growth rates in the unforced system suggest
that when the periodic forcing is near the Hopf frequency
there should be substantial amplitude growth in the third
cell when compared to that of the second cell. This can
be seen in Figure 2.

In the experiment we measured the ratio of the ampli-
tude responses of cells two and three over a narrow range
of forcing frequencies. The resulting plot of the amplifi-
cation of A2 and A3 (Γ2 and Γ3, in dB) for data across a
range of ωF close to the peak response is shown in Figure
5. Also plotted in Figure 5 is a line with slope m = 1/3.
A linear relationship can be seen, with a least squares
fit estimate of the amplitude ratio of 0.3687 ± 0.001602.
Although theory does not predict a scaling law in the
amplitude response of the second cell as a function of
ωF −ωH , it is curious that the slope that appears in the
amplitude of solutions is the same one in that appears in

FIG. 4: Plots of typical power spectra of the forcing signal and
output of cell-3, respectively. In (a) a linear scale is used and
a log scale is used in (b), demonstrating that the output signal
is almost purely harmonic. The time series were sampled at
1 kHz for ten seconds to enable good averages for the spectra
to be obtained. Insets show example portions of the time
sequences of the respective signals.

solutions emanating from a Hopf bifurcation in the un-
forced system as λ is varied. This perhaps suggests that
that the 1/3 power amplitude growth between neighbor-
ing cells is robust.

In summary, we have demonstrated how a coupled non-
linear oscillator system can be used to detect small pe-
riodic signals embedded in large amplitude broadband
noise. The exact mechanism underlying the resonant in-
teraction in the chain of coupled oscillators is not well
understood at present. Encouraging results have been
obtained using a relatively simple experimental set-up
to produce significant amplification over a very narrow
bandwidth. The system required careful balancing for
optimal results but once this was achieved, the theoreti-
cally predicted amplitude enhancement in the third cell
was found. Crucially, the system has a wide dynamic
range and many features comparable to that in natu-
ral auditory systems, providing a good model for mech-
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FIG. 5: The amplification found in cells 2 and 3 (Γ2 and Γ3,
respectively) in the range of ωF between 129.5 and 130 Hz
are shown, in dB. The line indicates a gradient of 1/3 over
this range of ωF .

anisms involved in hearing. In this we envisage a bank
of such resonant cells arranged in parallel and all tuned
to slightly different frequencies to cover a broad spectral
range.

These desirable features give the system advantages
over existing techniques used in science and industry for
signal detection. This prototype system would bene-
fit from further development using high tolerance, well
balanced and controlled circuits which could be done
using modern chip technology. Indeed, biological sys-
tems are believed to achieve the control required close to
bifurcation points using a feedback mechanism termed
“self-tuned Hopf bifurcation” [27] which has been exten-
sively investigated theoretically [28, 29]. A signal de-
tector based on the principals introduced in this Letter
could provide significant advantages over current devices.
In addition, not only electronic oscillators could be used
as the basic “cells” of the system. The model providing
the motivation for the current study is generic to any
type of oscillator close to a Hopf bifurcation. Therefore,
in principle, other physical systems could be constructed
which operate over a wide range of frequencies. Appli-
cations using the principles outlined here might include
coupled lasers, neural networks or mechanical systems.
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Natl. Acad. Sci. USA 97(7), 3183 (2000).

[28] L. Moreau and E. D. Sontag, Phys. Rev. E. 68(2), 020901
(2003).

[29] L. Moreau, E. D. Sontag, and M. Arcak, Syst. Cont. Lett.
50(3), 229 (2003).


