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a b s t r a c t

We study the macroscopic conduction properties of large but finite binary networks with
conducting bonds. By taking a combination of a spectral and an averaging based approach
we derive asymptotic formulae for the conduction in terms of the component proportions
p and the total number of components N . These formulae correctly identify both the
percolation limits and also the emergent power-law behaviour between the percolation
limits and show the interplay between the size of the network and the deviation of the
proportion from the critical value of p = 1/2. The results compare excellently with a large
number of numerical simulations.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and summary

Large but finite binary networks comprising disordered mixtures of two interacting components can arise both directly,
in electrical circuits [1–4] or mechanical structures [5], and as models of other systems such as disordered materials with
varying electrical [6], thermal, mechanical or even geophysical properties in the micro-scale, coupled at a meso-scale [7].
They are prototypes of many forms of complex systems which are often observed to have macroscopic emergent properties
which can have emergent power-law behaviour over a wide range of parameter values which is different from any power-
law behaviour of the individual elements of the network, and is a consequence of the way in which the responses of the
components combine. For certain ranges of parameters we see the extensively studied percolation type of behaviour [8],
in which the overall conductance is directly proportional to the individual component conductances with a constant of
proportionality dependent both on the component proportion and on the network size. In this paper, we will combine a
spectral analysis, motivated by Jonckheere and Luck [9], of the (partly random) linear operators (Kirchhoff-type matrices)
associated with the network, with the averaging methods described in Ref. [4], to derive a universal asymptotic formula for
the emergent network admittance, that includes both the effects of the component proportion p and the network size N .

We consider (a set of random realisations of) a binary square network comprising a randommixture ofN conducting bonds
which are either chosen to have a constant admittance y1 or a variable admittance y2. If p is the occupation probability for
choosing a y2 component, and (1 − p) the occupation probability for y1, in the limit of large N or for averages over large
numbers of systems, it directly determines the proportion of y2 to be approximately p and y1 to be (1 − p). We set the
admittance ratio to be

µ = y2/y1
and will assume that µ is an experimentally variable parameter. In particular we will assume that y1 = 1/R is resistive
(real) and that y2 is either resistive, in which case µ is real and positive, or y2 is reactive (for example y2 = iωC where C
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is a capacitance and ω is a variable applied angular frequency), so that µ is pure imaginary. If µ is varied then the system
has a total admittance Y (µ) which emerges from the combination of the admittance pathways through the various bonds
in the network. Over a wide range of values 0 < µ1 < |µ| < µ2, both types of bond can be considered to conduct and the
admittance displays a combined power-law emergent characteristic so that Y (µ) is proportional to y1−α

1 yα
2 with an exponent

α(p) ≈ p. The effects of network size, and component proportion, are important in that µ1 and µ2 depend upon both p and
N , and it is well known [8] that the case p = 1/2 is a critical value (pc) for two-dimensional square networks. If p ≠ 1/2
and N is sufficiently large then this problem can be studied by the averaging and the effective medium approximation, EMA
described in Ref. [4], with µ1 → 0 and µ2 → ∞ as p → 1/2. This approximation breaks down if p ≈ 1/2 and N is not very
large. When p = 1/2, then in the power-law range µ1 < |µ| < µ2 we have the well known duality result Y =

√
y1y2 [10]

andwewill show in this paper thatµ1 is inversely proportional toN andµ2 directly proportional toN , for largeN . In contrast
to the power-law behaviour, when either 0 < |µ| < µ1 or |µ| > µ2 percolation type behaviour is observed, in which the
conducting bonds are either those with conductance y1 or y2 respectively. In this case, if p < 1/2 then in all realisations of
the network, Y is proportional to y1, and if p > 1/2, Y is proportional to y2, with constants of proportionality dependent on
|p − 1/2|. If p = 1/2, half of the realisations have Y proportional to y1 and the other half to y2. Hence we see in this system
(i) an emergent region with a power-law response depending on the proportion but not the arrangement or number of the
components, (ii) a more random region and (iii) a transition between these two regions at frequency values which depends
on the number and proportion of components in the system. Illustrations of the different types of observed response will
be shown in Section 2.

The purpose of this paper is to give insight into both the emergent power law and percolation behaviour by obtaining
asymptotic formulae for the expected response curves. To do this we extend and combine results obtained by two
complementary methods, one based upon averaging [4] and the other based on properties of the spectrum of certain
operators [9]. The averagingmethodworkswellwhen p ≠ 1/2 andN → ∞, and the spectralmethod, in contrast,workswell
for the case of p = 1/2 and large, finite N . The spectral method is based both on rigorous results concerning the poles and
zero distribution of the function Y (ω) and on certain semi-empirical results on the regularity of their statistical distribution.

To describe these results we set ϵ = p−1/2 tomeasure the deviation from criticality, and set θ = Y/
√
y1y2. In Section 6

we will then combine the spectral and averaging methods to derive asymptotic formulae valid over a range of values for
which ϵ is small and N is large. In particular, if ϵ > 0

θ −
1
θ

+ ϵ


√

µ −
1

√
µ


=

1
N


1

µθ
− µθ


(1)

and if ϵ < 0 then

θ −
1
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+ ϵ


√

µ −
1

√
µ


=

1
N


µ

θ
−

θ

µ


, (2)

with two further formulae (35) and (36) corresponding to the two other different percolation behaviours which arise when
ϵ = 0. We can see a variety of different behaviours summarised in these expressions (and derived in Section 6). If N = ∞

(so that 1/N = 0), then these expressions reduce to the EMA results [4] and they predict that there is power-law behaviour
if µ1 < |µ| < µ2. If ϵ > 0 we have µ1 = 1/µ2 = ϵ1/p and for large |µ|, Y = y1/ϵ. If ϵ < 0 then µ1 = 1/µ2 = (−ϵ)1/(1−p)

and for large |µ|, Y = −ϵy2. (We note that the EMA prediction is not particularly good in the limit of p → 1/2. In particular,
it has been observed empirically [9] that rather than having percolation limits proportional to |1/2 − p| or |1/2 − p|−1, in
the limit of |1/2 − p| ≪ 1 they are more closely approximated by expressions of the form |Y | ∼ |1/2 − p|±β , β ≈ 1.3.)

In contrast, if ϵ = 0 and 1 ≪ N < ∞ then we show in Section 5 that

µ1 = 1/N, µ2 = N (3)

and for large |µ| we may observe limits of either

Y = y2/
√
N, or Y =

√
Ny1 (4)

depending upon the percolation path taken.
Perhaps the most interesting behaviour is found when neither ϵ nor 1/N equal zero (but are both close to zero). In

this case the expressions (1) and (2) predict that when N ≫ 1/ϵ2 we see behaviour of the form described by the EMA
approximation, whereas if ϵ is small and 1 ≪ N ≪ 1/ϵ2 the behaviour is closer given when ϵ = 0, summarised in (3) and
(4). This transition is illustrated in Fig. 6 in Section 2.

The layout of the remainder of this paper is as follows. In Section 2 we will give a series of numerical results for a general
binary network with admittances y1 and y2, looking at both power-law emergent behaviour and at percolation responses.
These will illustrate the various points made above on the nature of the network response and give numerical evidence for
the asymptotic formulae (1) and (2). In Section 3 we will formulate the matrix equations describing the network and derive
the admittance function. In Section 4 we will discuss, and derive, a series of statistical results concerning the distribution of
the poles and zeros of this function. In Section 5 we will use these statistical results to derive a precise asymptotic form of
the admittance Y of a general binary network, when p = 1/2 and N is large. In Section 6 we review the (classical) averaging
method for N = ∞ which gives an excellent estimate when p is not too close to 1/2, and will also consider a combination
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Fig. 1. Illustration of an example resistor capacitor circuit.

of this method with the spectral method for finite N , leading to the formulae (59) and (60) for the response for all p and
sufficiently large N . In Section 7 we compare the predictions of the asymptotic formulae with numerical computations of
the network responses. Finally in Section 8 we will draw some conclusions from this work.

2. Network models and their responses

This section will detail the various basic models for composite materials and associated random binary electrical
networks described in the introduction.Wewill present the graphs of their responses, comparing power law and percolation
type responses, and will provide evidence for the asymptotic behaviours for these described in the formulae (1) and (2).

2.1. Composite materials and their properties

A motivation for studying binary networks comes from models of disordered two-phase composite materials which are
found to exhibit power-law scaling in their bulk responses over several orders of magnitude in the contrast ratio of the
components [11,2,1,12]. In the electrical experiments this was previously referred to as ‘‘Universal Dielectric Response’’
(UDR), and it has been observed [13,14] that this is an emergent property arising out of the random nature of the mixture.
For a binary disordered mixture, the different components can then be assigned randomly to the bonds on the lattice [15]
and inmost previous studies a 2D square lattice has been used,with the admittance of the bonds assigned randomly as either
y2 = iωC or y1 = 1/R, with probability p, 1−p respectively and for whichµ = iωCR. For convenience we consider this case
in this section, and the more general case later in the paper. The components are distributed in a two-dimensional lattice
between two bus-bars, one of which is grounded and the other is raised to a potential V (t). Such a network is illustrated in
1. The network will have a current I(t) between the bus-bars, and the macroscopic (complex) admittance is given by

Y = I/V .

There are many advantages to using network representations of these types of systems. In particular, widely available
circuit simulation software can be used, which makes use of the available efficient sparse-matrix techniques in solving
the equations of the system, allowing many different simulations to be made of different realisations of the circuit with
randomly assigned resistors and capacitors. These techniques were used in various studies to show that the power-law
behaviour exists in any binary random network over a range of values of the contrast ratio µ [15,16,3,5,17]. Furthermore,
finite element calculations reported in Ref. [17] indicate that the response of the full material is very close to that of the
network model of that material. These studies complement those of percolation in such binary disordered networks over
limiting values of µ described, for example, in Refs. [9,2,8].

2.2. Percolation and power-law emergent behaviour

We describe the qualitative form of the conducting behaviour of these networks as ω varies. When |µ| = ωCR ≪ 1,
the capacitors act as open circuits and conduction occurs predominantly through the resistors. The circuit then becomes a
percolation network in which the bonds are either conducting with probability (1 − p) or non-conducting with probability
p. The network then only conducts macroscopically if there is a percolation path from one electrode to the other. It is well
known [18] that, for 2D square lattices, there is a critical percolation probability,

pc = 1/2,
and if p < pc then such a path exists with probability approaching one as the network size increases, and is resistive, so that
the overall admittance is independent of ω. If p > pc then there is a very low probability of a resistive conduction path, and
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Fig. 2. (Color online) Typical responses of network simulations for values of p ≠ 1/2which give qualitatively different behaviour so that in the percolation
region with ω ≪ (CR)−1

= 106s−1 or ω ≫ (CR)−1 , we see resistive behaviour in case (a) and capacitative behaviour in case (b). The figures presented are
density plots of 100 random realisations for a 20 × 20 network. Note that all of the realisations give very similar results.

all paths between the electrodes will contain reactive elements, with the resulting overall admittance being proportional to
ω. The case of p = pc = 1/2 is critical, with a 50% probability that a resistive conducting path exists. Half of the realisations
of the network will give an admittance response independent of ω and half an admittance response proportional to ω.
When |µ| = ωCR ≫ 1, we see an opposite response. In this case the capacitors act as almost short circuits with far higher
admittance than the resistors which act as open circuits. Thus, if p > pc we see a response proportional to ω and if p < pc a
response independent of ω. The case of p = pc again leads to both types of response having equal likelihood of occurrence,
depending upon the network configuration. Note that this implies that if p = 1/2 then there are four possible qualitatively
different types of percolation response for any random realisation of the system. For intermediate values of ω the values of
the admittance of the resistors and the capacitors are much closer to each other and it is here that we see emergent power-
law emergent behaviour. This is characterised by an admittance response |Y | that is proportional to ωα, α ≈ p over a range
ω ∈ (ω1, ω2) andwhich is not randomly dependent upon the network configuration. In Fig. 2(a) and (b) we plot the admittance
response for many different realisations of a network in which C = 1 nF, and R = 1 k�, as a function ofω in the cases of p =

0.4 < pc , p = 0.6 > pc and in Fig. 3 for p = pc = 1/2. These figures clearly demonstrate the forms of behaviour described
above and in the Introduction. Observe that in all cases we see quite a sharp transition between the percolation type
behaviour and the power-law emergent behaviour as ω varies, that in all cases the exponent of the power law is close to p.

We have seen above how the response of the network depends strongly upon p. It also depends upon the network size N ,
and this effect is especially significant if p = pc = 1/2. In Fig. 4 we fix p = pc and show how the form of |Y | depends on N .
Observe that in this case the width of the power-law emergent region increases apparently without bound, as N increases,
as do the magnitude of the responses for small and large frequencies. From these graphs, it is apparent that in this critical
case the upper limit of the power-law emergent region is proportional to N and the lower limit proportional to 1/N . This is
consistent with the formulae (3) and (4), presented in the Introduction. We can roughly motivate the result for p = 1/2 as
follows. Suppose that ω is small so that the capacitors essentially act as open circuits. Imagine for a single percolation path
through all of these capacitors comprising a chain of resistors, then this will have an approximate length of

√
N resistors and

hence a conductance of 1/(
√
NR). In contrast, if there is a dual path of capacitors going from top to bottom of the network,

interrupting the resistors, then each resistive path has conductance iωC and there are
√
N of these in parallel, so that the
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Fig. 3. (Color online) Responses for 100 realisations at p = 1/2 showing four different qualitative types of response for different realisations. Here, about
half of the responses have a resistive percolation path and half have a capacitive one at low frequencies, with a similar behaviour at high frequencies. The
responses at high and low ω indicate which of these cases exist for a particular realisation. The power-law emergent region can also be seen in which the
admittance scales as

√
ω and all of the responses of the different network realisations coincide.

overall conductance is
√
N iωC . In Fig. 5 we plot the response for p = 0.4 and again increase N . In contrast to the former

case, away from p = 1/2, the size of the power-law emergent region appears to scale with N for small N before becoming
asymptotic to a finite value for larger values of N .

2.3. The effects of network size and bond proportions

To compare these results and to investigate the interplay between network size and the proportion p, we consider for
p ≤ pc the response for those realisations which have a resistive percolation path for both low and high frequencies. We
define the dynamic range Ŷ (N, p) by

Ŷ =
|Y |max

|Y |min
=

|Y |(ω → ∞)

|Y |(ω → 0)
.

In Fig. 6(a) we plot Ŷ as a function of N for a variety of values of p ≤ 1/2. We see from this figure that if p = 1/2 then Ŷ is
directly proportional to N for all values of N . In contrast, if p < 1/2 then Ŷ is directly proportional to N for smaller values
of N and then becomes asymptotic to a finite value Ŷ (p) as N → ∞. The transition between these two forms of behaviour
occurs when N > (1/2 − p)−2. This behaviour can be understood in terms of the asymptotic formulae (1) and (2) given in
the Introduction. We will show in Section 5 that these imply that Ŷ is approximated by β2 where β satisfies the quadratic
equation

β2

N
+ (1 − 2p)β − 1 = 0. (5)

The expression (5) gives reasonable qualitative agreement with the calculations presented in Fig. 6 with Ŷ ∼ N for
smaller values of N and Ŷ → Ŷ (p) ≈ 1/(1 − 2p) as N → ∞. However, we do have to exercise a certain degree of caution
in applying this formula. In Fig. 6(b) we present Ŷ (N, p) as a function of p as p → 1/2, showing the limiting value Ŷ (p) of
Ŷ (N, p) as N is increased to infinity. We see in this figure that whilst the estimate Ŷ (p) ∼ (1 − 2p)−2 is fairly accurate, a
much better estimate in the limit of p → 1/2 is given by Ŷ (p) ∼ (1 − 2p)−2.6 which is consistent with known empirical
results on percolation [9].

3. Linear circuit analysis

We now analyse the general electrical network model with two types of bond of admittance y1 and y2 in respective
proportions 1 − p and p, and admittance ratio µ = y2/y1 with µ either positive or pure imaginary. Our interest will be in
finding how the overall admittance of the system varies as µ itself varies, and seeing how this can be determined in terms
of the poles and zeros of the admittance function Y (µ).

3.1. Linear circuit formulation

Consider the 2D N node square lattice network shown in Fig. 1, with all of the nodes on the left-hand side connected via
a bus-bar to a time varying voltage V (t) = Veiωt and on the right-hand side via a bus-bar to earth (V = 0). We assign a
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Fig. 4. (Color online) The effect of network size N on the width of the power-law emergent region in the critical case of p = 1/2. In this figure we see this
region increasing without bound as N increases.

voltage vi with i = 1 · · ·N to each (interior) node, and set v = (v1, v2, v3 · · · vN)T . We also assume that adjacent nodes are
connected by a bond of admittance yi,j ∈ {y1, y2}. The current from the node i to an adjoining node at j is then given by Ii,j
where Ii,j = (vi − vj)yi,j. From Kirchhoff’s current law, at any interior node all currents must sum to zero, so that

j

yi,j(vi − vj) = 0. (6)

If i is a node adjacent to the left boundary then certain of the terms vj in (6) will take the value of the (known) applied voltage
V (t). Similarly, if a node is adjacent to the right-hand boundary then certain of the terms vj in (6) will take the value of the
ground voltage 0. Combining all of these equations together leads to a system of the form

Kv = V (t)b = Veiωtb, (7)
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Fig. 5. (Color online) The effect of the network size N on the power-law emergent region for p = 0.4 < pc , in which we see this region becoming
asymptotic to a finite set as N → ∞.

where K ≡ K(ω) is the (constant in time) N × N sparse symmetric Kirchhoff matrix for the system and the adjacency vector
b ≡ b(ω) is the vector of the admittances of the bonds between the left-hand boundary and those nodes which connected
to this boundary, with zero entries for all other nodes. As this is a linear system, we can take v = Veiωt so that the (constant
in time) vector V satisfies the linear algebraic equation

KV = Vb. (8)

If we consider the total current flow I from the LHS boundary to the RHS boundary then we have

I = bT (Ve − V) ≡ Vc − bTV,
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Fig. 6. (Color online) (a) Variation of the dynamic range Ŷ ≡ |Y |max/|Y |min as a function of N and p, and (b) the value of Ŷ (p) as a function of p → 1/2
comparing the estimates (1 − 2p)−2 and (1 − 2p)−2.6 . For each value of p the vertical sequence of dots represents calculations of Ŷ for increasing values
of N .

where e is the vector comprising ones for those nodes adjacent to the left boundary and zeroes otherwise, and c = bTe.
Combining these expressions, the equations describing the system are then given by

KV − bV ≡ 0, cV − bTV = I. (9)
The bulk admittance Y (µ) of the whole system is then given by Y = I/V so that

Y (µ) = c − bTK−1b. (10)
The symmetric Kirchhoff matrix K can be separated into the two sparse symmetric N ×N component matrices K = K1 +K2
corresponding to the conductance paths along the bonds occupied by each of the two types of components. Furthermore,
as µ = y2/y1, we have

K1 = y1L1 and K2 = y2L2 = µy1L2 (11)
and hence K = y1L1 + µy1L2, where the terms of the sparse symmetric connectivity matrices L1 and L2 are constant and
take the values 1, 0, −1. Note that K is a linear affine function ofµ. Furthermore,∆ = L1 +L2 is the discrete, positive definite
symmetric, negative Laplacian for a 2D lattice. Similarly we can decompose the adjacency vector into two components b1
and b2 so that

b = b1 + b2 = y1e1 + y2e2 = y1e1 + µy1e2,
where e1 and e2 are orthogonal vectors comprising ones and zeros only corresponding to the two bond types adjacent to
the LHS boundary. Observe again that b is a linear affine function of µ. A similar decomposition can be applied to the scalar
c = y1c1 + µy1c2.

3.2. Poles and zeros

As thematrix K , the adjacency vector b and the scalar c are all affine functions of the parameterµ it follows immediately
from (10) and Cramer’s rule applied to (9) that the network admittance Y (µ) is a rational function of µ, which is the ratio of
two complex polynomials P(µ) and Q (µ) of respective degrees r ≤ N and s ≤ N , so that

Y (µ) =
Q (µ)

P(µ)
=

q0 + q1µ + q2µ2
+ · · · + qrµr

p0 + p1µ + p2µ2 + · · · + psµs
. (12)
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We require that p0 ≠ 0 so that the response is physically realisable, with Y (µ) bounded as µ → 0. Several properties of the
network can be deduced from this formula. For convenience, we look at a C–R network with µ = iωCR, although similar
results arise for R–R networks. First consider the case of ω small. From the discussions in Section 2, we predict that either
there is (a) a resistive percolation path in which case Y (µ) ∼ µ0 as µ → 0 or (b) such a path does not exist, so that the
conduction is capacitive, with Y (µ) ∼ µ as µ → 0. The case (a) arises when p0 ≠ 0 and the case (b) when q0 = 0. Observe
that this implies that the absence of a resistive percolation path as µ → 0 is equivalent to the polynomial Q (µ) having a
zero when µ = 0. Next consider the case of ω and hence |µ| large. In this case

Y (µ) ∼
qr
ps

µr−s as µ → ∞.

This time we may have (c) no capacitive path at high frequency with response Y (µ) ∼ µ0 as µ → ∞, or the existence of a
capacitive path with Y (µ) ∼ µ. In case (c) we have s = r and pr ≠ 0 and in case (d) we have s = r − 1 so that we can think
of taking pr = 0. Accordingly, we identify four corresponding types of network defined in terms of the percolation paths for
low and high frequencies:

(a) p0 ≠ 0
(b) p0 = 0
(c) pr ≠ 0
(d) pr = 0

Both the polynomials P(µ) and Q (µ) can be factorised by determining their respective roots µp,k, k = 1 · · · s and µz,k,
k = 1 · · · r which are the poles and zeroes of Y (µ). We will collectively call these poles and zeroes the resonances of the
network. Our analysis of the network will rely on determining certain statistical and other properties of these resonances.
Note that in case (b) we have µz,1 = 0. Accordingly the network admittance can be expressed as

Y (µ,N) = D(N)

r
k=1

(µ − µz,k)

s
k=1

(µ − µp,k)

. (13)

Here D(N) is a function which does not depend on µ but does depend on the characteristics of the network.

3.3. Location of the resonances

We firstly note that the number r of poles/zeroes can be substantially less than N due to the formation of clusters of
components in the lattice which are isolated from the boundaries [2]. Such component clusters lead to resonances at infinity
or zero, depending on which component the clusters are made of. Comparing (10) and (13), it follows that the poles are the
roots of the determinant of the matrix K = y1(L1 + µL2). The poles are then −1 times the eigenvalues of the matrix pencil
(L1, L2), so that µp,k, and the corresponding vectors vp,k, satisfy the linear equation

(L1 + µp,kL2)vp,k = 0 with vp,k ≠ 0. (14)
As L1 + L2 = ∆ this then implies that

(L1(1 − µp,k) + µp,k∆)vp,k = 0
so that

(L1 + µp,k∆/(1 − µp,k))vp,k = 0.
It follows immediately from the symmetry of L1 and the fact that ∆ is a symmetric positive definite operator, that
µp,k/(1−µp,k) is real. The negativity ofµp,k follows from the fact that the network has a bounded response. Similar reasoning
shows that the zeroesµz,k are also the eigenvalues of a related matrix pencil (L̂1, L̂2), which is a block bordered extension of
the original matrix pencil. It follows from this reasoning that the values of µz,k are also real and negative and, furthermore,
that the the poles and zeros interlace (see Ref. [9]) so that

0 ≥ µz,1 ≥ µp,1 ≥ µz,2 ≥ µz,2 · · ·

≥ µp,s(≥ µz,s+1). (15)
These results have different interpretations in the cases of anR–R and aC–Rnetwork. In anR–Rnetworkwith conductance

ratio µ > 0 the poles and zeros occur along the negative real axis so that µp,k = −Mp,k < 0, etc. Thus, as µ varies through
positive real values

Y (µ) = D(N)

r
k=1

(µ + Mz,k)

s
k=1

(µ + Mp,k)

, (16)
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with the values Mz
k ≥ 0 and Mp

k > 0. For the C–R network, µ = iωCR, and Y can be considered a function of ω. The poles
ωp,k of Y (ω) then satisfy iCRωp,k = −Mp,k so that they lie along the positive imaginary axis, as do the zeros. As ω varies
through real values then

Y (ω) = D(N)

r
k=1

(ω − iWz,k)

s
k=1

(ω − iWp,k)

, (17)

with W z
k ≥ 0 and W p

k > 0. We note that neither of the expressions (17) and (16) become unbounded as ω varies through
real values or asµ varies through positive real values. This is in contrast to the case of a C–L network inwhich the resonances
can be real and positive and can lead to unbounded responses as ω varies. In contrast, we see in the C–R and R–R networks,
an averaging effect in the product terms in these expressions, which leads to the observed emergent behaviours.

4. The distribution of the resonances

We now look at the distribution of the poles and zeros, and draw certain conclusions about their statistical regularity,
spacing and symmetries which allows us to compute the asymptotic form of the system response. The statistics of the
resonances are most regular in the critical case of p = 1/2, allowing us to make very precise estimates of the overall system
behaviour in this case, precisely complementing the averaging methods which work best when p ≠ 1/2. To perform these
calculations, we note that if we consider the elements of the network to be assigned randomly, with the components taking
each of the two possible valueswith probabilities p and (1−p), thenwe can consider the resonances to be random variables.
The poles and associated eigenvectors are given by the solutions of the matrix pencil equation (14):

L1vp,k = −µp,kL2vp,k. (18)

Each realisation of the network, with bonds chosen from a Binomial [p, (1−p)] distributionwill give a different set of values
for µp,k ≡ −iMp,k ≡ iCRWp,k and we can then consider the statistics of this set. We ask the following questions. (1) What is
the statistical distribution ofµp,k ifN is large? (2)What is the statistical distribution of the location of a zero between its two
adjacent poles? (3) How do µp,1 and µp,N vary with (large) N? In each case we will find good numerical evidence for strong
statistical regularity of the poles (especially in the case of p = 1/2), leading to answers to each of the above questions.

4.1. Preliminary observations on the pole locations

When p = 1/2 the matrices L1 and L2 representing the connectivity of the two components have a statistical duality so
that any realisation which leads to a particular matrix L1 is equally likely to lead to the samematrix L2. Because of this, ifµ is
an observed eigenvalue of the pair (L1, L2) it is equally likely for there to be an observed eigenvalue 1/µ of the pair (L2, L1)
with the same eigenvector. Thus in any set of realisations of the system with p = 1/2 we will see eigenvalues (and hence
poles or zeros) µ and 1/µ occurring with equal likelihood. More generally, if an eigenvalue µ occurs in a realisation with
proportion p of component y2, then wewill see an eigenvalue 1/µ in a realisation with proportion 1−p. It follows from this
simple observation that when p = 1/2 the variable log(µ) should be expected to be a random variable with a symmetric
probability distribution and with mean zero. It is therefore natural to expect that for a large number of realisations, the
variables log(Mk,p) should follow a normal distributionwithmean zero (so thatMp,k has a log-normal distribution centred on
M = 1). Similarly, ifMp,1 is the smallest value ofMp,k andMp,N the largest value thenMp,1 = 1/Mp,N . It follows similarly that
log(Wp,k) is expected to have a mean value of − log(CR). Following this initial discussion, we now consider some numerical
computations of the distribution of the poles in a C–R network for which CR = 10−6. As a first computation we consider
many random realisations of networks generated with a large enough size (typically N = 380) to ensure good statistics per
network. We define S as the number of horizontal components in one row of the network; giving S2 horizontal and (S − 1)2
vertical components. The number of internal nodes (i.e. not including the boundary nodes), which is equal to the dimension
of the matrix K , is therefore N = S(S − 1); giving the maximum possible number of eigenvalues µi. The results of the
computations are presented in Fig. 7 in which we give a histogram of the distribution of the poles Wp,k (on a log-scale in
the frequency domain) over 100 different realisations of each network. These figures clearly indicate that the location of the
poles does indeed possess a strong statistical regularity, conforming approximately to a log-normal distribution with mean
log(1/CR) in all cases. Evidence for this is given by comparing the resulting curvewith the standardNormal distributionwith
an appropriately chosen value for the variance. The fitted curves in Fig. 7 show that the results are close to log-normal for
any choice of p (provided thatN is chosen sufficiently large). When the results of the realisations considered above are fitted
to a log-normal distributionwith probability density function P(W ) = a exp


−(W − E{W })2/2σ 2


we find the remarkable

result that the standard deviation σ appears to be largely independent of the value of N and to display a simple functional
relation on p, with a good fit to the curve σ = αp(1 − p), over many values of N . As a second calculation we take a single
realisation of a network with N ≈ 380 nodes and p = 1/2 and determine the location of Wp,k. A plot of the logarithm of
the poles, ordered in increasing size, as a function of k is given in Fig. 8. Two features of this figure are immediately obvious.
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Fig. 7. (Color online) Distribution of Wp,k values for (a) p = 0.25 and (b) p = 0.5 with N = 380. The curves are fitted to Normal distributions (on a
log-scale). The variance depends on p but is largely independent of the value of N .

Firstly, the terms Wp,k appear to be point values of a regular function f (k). Secondly, log(CRWp,k) shows a strong degree
of symmetry about zero, so that if 1 ≤ k ≤ N then log(CRWp,k) = 0 if k = N/2. Motivated by the discussion above, we
compare the form of this graph with that of the error function, that is we compare erf(log(CRWp,k)) with 2k/N − 1. The
correspondence is very good, strongly indicating that log(f ) takes the form of the inverse error function with an appropriate
constant of proportionality.

4.2. Pole-zero spacing

As a next calculation we consider the statistical distribution of the location of the interlacing zeros with respect to the
poles. In particular we consider the variable ηk, which depends on the proportion p given by

ηk(p) ≡
logMp,k+1 − logMz,k

logMp,k+1 − logMp,k
≡

logWp,k+1 − logWz,k

logWp,k+1 − logWp,k
. (19)

We now establish three symmetry results for the mean value η̄k(p) of ηk, taken over many realisations.
First symmetry: Assume that when the proportion is p that the zeros are Mz,k, k ∈ [0,N] and the poles are Mp,k, k ∈ [1,N]

and when it is 1 − p they are M̂z,k and M̂p,k, k ∈ [1,N]. Then

ηk(1 − p) ≡
log M̂p,k+1 − log M̂z,k

log M̂p,k+1 − log M̂p,k
. (20)

By the statistical symmetry results described above we have

log M̂z,k = − logMz,N−k, log M̂p,k = − logMp,N−k+1. (21)

So that

ηN−k(1 − p) ≡
logWz,k − logWp,k

logWp,k+1 − logWp,k
. (22)
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Fig. 8. (Color online) The location of the logarithm of the poles as a function of k, for a single realisation of the network, and a comparison with the inverse
error function.

Hence,

ηk(p) + η̄N−k(1 − p) = 1. (23)

Second symmetry: We next invoke duality results due to Keller [10] (see also Ref. [9]), in which the admittance of a network
is compared with that of the dual network, in which every bond of the original network is replaced with an orthogonal bond
for the dual. Significantly, square binary networks are self-dual. A consequence of the duality results is that

Y (y1, y2) Y (y2, y1) = y1 y2. (24)

It follows from (24) that

D(N)

r
k=1

(µ + Mz,k)

s
k=1

(µ + Mp,k)

=
y1y2
D(N)

s
k=1

(1/µ + Mp,k)

r
k=1

(1/µ + Mz,k)

.

This can only be true for all µ if we have the symmetry result (taking the ordering of the poles and zeros into account) given
by Mp,k = 1/Mz,N−k. It immediately follows from (19) that asymptotically we have the second symmetry

η̄k(p) = η̄N−k(p). (25)

Third symmetry: Combining (23) and (25), we have

η̄k(p) + η̄k(1 − p) = 1. (26)

In particular, this gives

η̄k(1/2) = 1/2. (27)
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Fig. 9. (Color online) Figures showing how the mean value η̄k of ηk taken over many realisations of the network, varies with the mean value of Wp,k . The
four examples show results for (a) p = 0.3, (b) p = 0.5, (c) p = 0.7 and (d) η̄(0.3) + η̄(0.7).

The distribution of η̄k(p) over 100 realisations of a C–R network, plotted as a function the location of log(Wp,k) for p =

0.3, 0.5, 0.7, is shown in Fig. 9 together with a graph of η̄k(0.3) + η̄k(0.7). Figures (a)–(c) show clearly the reflectional
symmetry about the mid-point implied by (25). The figure in part (b) (with p = 1/2) is particularly remarkable, showing, as
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Fig. 10. (Color online) Largest Wz,N ′ ,Wp,N ′ and smallest Wz,1,Wp,1 zeros and poles for a C–R network with p = 0.5 showing linear dependence on N
and 1/N .

predicted by (27) that η̄k(1/2) is equal to 1/2 almost independently of the value of log(Wp,k). There is some deviation from
this value at the high and low ends of the range due to slower convergence to the mean. The figure in part (d) for p = 0.3
and p = 0.7 also clearly illustrates the symmetry relation (26). We note, however, that for p ≠ 1/2 the value of η̄k of ηk
varies with log(Wp,k) in a symmetric distribution (as predicted by (25)) which depends approximately quadratically on the
value of log(Wp,k). If p > 1/2, η̄k takes a value a little less than p in the centre of the range when Wp,k = Wmid = 1/CR, and
a bit greater than p towards the ends of the range. The distribution is reversed when p < 1/2, as can be seen by comparing
Fig. 9(a) and (c), and this is a consequence of (26).

4.3. Limits of the resonance distributions

As a final calculation, we consider the number N ′ of the finite non-zero resonances in this case of a C–R network, and the
location of the first non-zero pole and zeroWz,1,Wp,1 and the last finite pole and zeroWp,N ′ ,Wz,N ′ . As discussed, in the case
of p = 1/2 we expect a symmetrical relation so that CRWp,1 and CRWp,N ′ might be expected to take reciprocal values. We
consider two calculations, firstly determiningN ′/N for a range of values ofN and of p and secondly calculating the functional
dependence of Wp,1 and Wp,N ′ upon N and p. The value of N ′ can be considered statistically and represents probability of
a node contributing to the current paths. If we take z = N ′/N as a function of p for a range of values of N the shape of
this curve is parabolic in p with a maximum value for z ≈ 0.8 given when p = 1/2, consistent with statistical arguments
presented in Ref. [9], which imply that the maximum value at p = 1/2 is given by N ′

= 3

2 −

√
3


= 0.804 · · ·. We next
consider the values of Wp,1 and of Wp,N ′ which will mark the transition between emergent type behaviour and percolation
type behaviour. A log–log plot of the values ofWz,1,Wp,1 and ofWz,N ′ ,Wp,N ′ as functions of N for the case of p = 1/2 is given
in Fig. 10. There is very clear evidence from these plots that each of Wz,1, Wp,1 and Wz,N ′ , Wp,N ′ both have a strong linear
dependence upon N and 1/N for all values of N . Indeed we conclude from this figure that the following reciprocal relations
hold

CR Wz,1, CR Wp,1 ∼ N−1

and
CR Wz,N ′ , CR Wp,N ′ ∼ N,

with an identical scaling forMz,1,Mp,1,Mz,N ′ ,Mp,N ′ .

4.4. Summary

The main conclusions of this section are that there is a strong statistical regularity in the location of the poles and the
zeros of the admittance function.
1. Mp,k ∼ f (k) for an appropriate continuous function f (k) where f depends upon p strongly and upon N very weakly.
2. η̄k(1/2) ≈ 1/2 for all values of k.
3. If p = 1/2 andMz,1 ≠ 0, then

Mp,1,Mz,1 ∼ N−1, Mp,N ′ ,Mz,N ′ ∼ N.
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5. Asymptotic analysis of the conductance when p = 1/2 using spectral arguments

5.1. Derivation of the response for general µ

We consider the formulae for the value of the admittance of the binary network

Y (µ) = D(N)

r
k=1

(µ − µz,k)

s
k=1

(µ − µp,k)

, (28)

where the results of Section 3 imply that µz,k = −Mz,k, and 0 ≤ Mz,1 < Mp,1 < Mz,2 < Mp,2 < · · · < Mp,s(< Mz(s+1)).
As µ is either positive or purely imaginary, Y is a bounded function for all µ. Here we assume that we have s = N ′ poles,
but consider situations with different percolation responses for |µ| large or small, depending upon whether the first zero
Mz,1 = 0 and on the existence or not of a final zero Mz,(N ′+1). These four cases lead to four functional forms for the
conductance, all of which are realisable in the case of p = 1/2 and we derive each of these from asymptotic arguments.
At this stage the constant D(N) is undetermined, but we will be able to deduce its value from our subsequent analysis.
Although simple, these arguments lead to remarkably accurate formulae when compared with the numerical calculations,
that predict not only the PLER but also the limits of this region. To obtain an asymptotic formula from (28) we assume that
s = N ′ is large, and that there is a high density of poles and zeros. From the results in the previous section we know that,
asymptotically, the poles at−Mp,k follow a regular distribution and that the zeroes have a regular spacing between the poles.
From the previous section we haveMp,k ∼ f (k) so thatMp,k+1 − Mp,k ∼ f ′(k). Setting

Mp,k+1 − Mz,k+1

Mp,k+1 − Mp,k
= δk

we have

Mz,k+1 ∼ f (k) + (1 − δk)f ′(k). (29)

As we have seen, the function log(f (k)) is given by the inverse of the error function, but its precise form does not matter too
much for the next calculation. To do this we firstly consider the contributions to the product in (28) which arise from the
terms from the first pole to the final zero:

P ≡ D(N)

N ′
k=1

µ + Mz,k

µ + Mp,k
. (30)

Note that this product has implicitly assumed the existence of a final zero Mz,(N ′+1), specific to the case where there is a
percolation path through the y2 bonds but no percolation path through the y1 bonds. This contribution will be corrected
in cases for which such a final zero does not exist. Using the results in (29), in particular on the mean spacing of the zeros
between the poles, we may express P as

P = D(N)

N ′
k=1

µ + (f (k) + (1 − δ̄k)f ′(k))
µ + f (k)

= D(N)

N ′
k=1

1 +
(1 − δ̄k)f ′(k)

µ + f (k)
.

Taking the logarithm of both sides and using the approximation log(1 + x) ≈ x for small x, we have

log(P) ≈ log(D(N)) +

N ′
k=1

(1 − δ̄k)f ′(k)
µ + f (k)

. (31)

We now approximate the sum in (31) by an integral, so that

log(P) ≈ log(D(N)) +

 N ′

k=1
(1 − δ̄k)

f ′(k)
µ + f (k)

dk.

Making a change of variable from k to f , gives

log(P) ≈ log(D(N)) +

 Mp,N′

Mp,1

(1 − δ̄(f ))
df

µ + f
. (32)
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5.2. The asymptotic form of the equations when p = 1/2

To proceed we first determine the relation between ηk and δk. Let

δMp,k = Mp,k+1 − Mp,k

δ logMp,k = logMp,k+1 − logMp,k.

AsMz,k = (1 − δk)δMp,k + Mp,k, we have

logMz,k = log

(1 − δk)δMp,k/Mp,k + 1


+ logMp,k.

Comparing with the exact expression

logMz,k = (1 − ηk)δ logMp,k + logMp,k,

and taking Taylor expansions, we have

(1 − ηk)

∞
j=1

(−1)j+1

m!


δMp,k

Mp,k

j

=

∞
j=1

(1 − δk)
j (−1)j+1

j!


δMp,k

Mp,k

j

. (33)

When (δMp,k/Mp,k)
2

≪ (δMp,k/Mp,k) it follows that

ηk ≈ δk.

Assuming the poles have a log-normal distribution then δ logMp,k ∼ O(1/N). For a sufficiently large network, when p = 0.5,
we expect δk ≈ ηk for most k (the first order Taylor expansion becomes invalid near the tails of the normal distribution, but
this contributes relatively little to the summation in (31)). The results imply that δ̄k is very close to being constant at 1/2,
so that in (32) we have 1 − δ̄ = 1/2. We can then integrate the expression for P exactly. This allows sharp estimates of the
asymptotic behaviour in this critical case. Integrating (32) gives

log(P) ≈ log(D(N)) +
1
2
log


µ + Mp,N ′

µ + Mp,1


,

so that

P ≈ D(N)


µ + Mp,N ′

µ + Mp,1

 1
2

.

In this critical case it is equally likely that we will/will not have percolation paths along y1 or y2 bonds at both small and
large values of |µ|. Accordingly, we must consider four equally likely cases of the distribution of the poles and zeros which
could arise in any random realisation of the network. Thus to obtain the four possible responses of the network we must
now consider the contribution of the first zero and also of the last zero.
Case 1: first zero at the origin, last zero at N ′

+ 1. This corresponds to there being a percolation path through the y2 bonds.
To determine this case we multiply P by µ to give Y1(µ) so that

Y1(µ) ≈ D(N)1 µ


µ + Mp,N ′

µ + Mp,1

 1
2

. (34)

Case 2: first zero not at the origin, last zero atN ′
+1. This corresponds to the existence of percolation paths through y1 bonds

and y2 bonds. In this case we multiply P by µ + Mz,1 to give |Y (µ)|. We also use the result from the previous section that
asymptoticallyMz,1 ∼ Mp,1. This then gives

Y2(µ) ≈ D(N)2

µ + Mp,N ′

 1
2

µ + Mp,1

 1
2 . (35)

Case 3: first zero at the origin, last zero at N ′. Here there are no percolation through either set of bonds. To determine this
case we multiply P by µ and divide by µ + Mz,N ′ to give Y . Exploiting the fact that asymptotically Mp,N ′ ∼ Mz,N ′ we then
have

Y3(µ) ≈ D(N)3
µ

µ + Mp,N ′

 1
2

µ + Mp,1

 1
2
. (36)

Case 4: first zero not at the origin, last zero at N ′. This final case there exists percolation via the y1 bonds but not through
the y2 bonds. To determine this case we multiply P by µ +Mz,1 and divide by µ +Mz,N ′ to give Y . Again, exploiting the fact
that asymptoticallyWp,N ′ ∼ Wz,N ′ we have

Y4(µ) ≈ D(N)4


µ + Mp,1

µ + Mp,N ′

 1
2

. (37)
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We know, further, from the calculations in the previous section that for all sufficiently large values of N

Mp,1 ∼ 1/N and Mp,N ′ ∼ N.

Substituting these values into the expression for Y1 gives

Y1(µ) ≈ D(N)1 µ


µ + N

µ + 1/N

 1
2

. (38)

The value of the constant D(N)1 can be determined by considering the mid-range of each of these expressions. The
results of the classical Keller duality theory [10] predict that each of the expressions Yi takes the same form in the range
1/N ≪ |µ| ≪ N with

Yi(µ) ≈
√
y1y2, i = 1, 2, 3, 4. (39)

In the case of Y1 we see that the mid-range form of the expression (38) is given by Y1 = D1
√
Nµ =

√
N

√
y2/

√
y1. This then

implies that D1 = y1/
√
N so that

Y1(µ) ≈
y1 µ
√
N


µ + N

µ + 1/N

 1
2

. (40)

Very similar arguments lead to the following expressions in the other three cases:

Y2(µ) ≈
y1

√
N

(N + µ)
1
2 (1/N + µ)

1
2 , (41)

Y3(µ) ≈
√
Ny1

µ

(N + µ)
1
2 (1/N + µ)

1
2
, (42)

Y4(µ) ≈
√
Ny1


1/N + µ

N + µ

 1
2

. (43)

The four formulae above give a very complete asymptotic description of the response of the binary network when p = 1/2.
In particular they allow us to see the transition between the power-law emergent region and the percolation regions and
they also describe the form of the expressions in the percolation regions. We see a clear transition between the emergent
and the percolation regions at

µ1 = 1/N and µ2 = N. (44)

Hence, the number of components in the system for p = 1/2 has a strong influence on the boundaries of the emergent
region and also on the percolation response. However the emergent behaviour itself is independent of N . Observe that these
frequencies correspond directly to the limiting pole and zero values. This gives a partial answer to the question of how large
N has to be to see an emergent response from the network. The answer is that N has to be sufficiently large so that 1/N and
N are widely separated frequencies. The behaviour in the percolation regions in then given by the following:

Y1(|µ| ≪ 1) ≈ y2
√
N, Y1(|µ| ≫ 1) ≈

y2
√
N

, (45)

Y2(|µ| ≪ 1) ≈
y1

√
N

, Y2(|µ| ≫ 1) ≈
y2

√
N

, (46)

Y3(|µ| ≪ 1) ≈ y2
√
N, Y3(|µ| ≫ 1) ≈ y1

√
N, (47)

Y4(|µ| ≪ 1) ≈
y1

√
N

, Y4(|µ| ≫ 1) ≈ y1
√
N. (48)

We note that these percolation limits, with the strong dependence upon
√
N are exactly as observed in Section 2.

5.3. The network response when p ≠ 1/2

This case differs from the case of p = 1/2 and the spectral analysis harder and less complete. Rather than getting four
different responses we see only two, and the values for the conductance at high and low frequencies are asymptotically
independent of (sufficiently large) N . When p > 1/2 then there will (with probability one) always be conducting y2
percolation paths for large values of |µ| and for small values of |µ| there is no y1 percolation path. Similarly, if p < 1/2
then we will get (with probability one) a response with no y2 percolation path at high frequencies and y1 percolation paths
at low frequencies. Hence, we need only consider Cases 1 and 4 respectively. Secondly the formula for P in (32) involves a
quadrature involving 1 − δ̄ which cannot be obtained in closed form. As a consequence we shall adopt a different approach
for p ≠ 1/2 by combining the spectral calculation with an averaging method.
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6. Averaging calculations

The Effective Medium Approximation (EMA) formula derived by an averaging method [4], gives an approximation to the
conductance of the network, and is derived by regarding the random distribution of the bonds as a series of perturbations of
a uniform field of identical conductors. The conductance of the effective medium is chosen to minimise the first moment of
the resulting perturbation matrix. It assumes an infinitely large number of conductances and hence corresponds to taking
N → ∞ in the previous analyses. Whilst accurate for p not too close to 1/2 it has limitations for p close to 1/2, in that
whilst it predicts a transition from emergent to percolation type behaviour, the form of this transition is not quite correct as
p → 1/2. Thus the EMA calculations are complementary to those derived using spectral methods in the previous section.
In this section we will review the EMA result, and show that it is consistent with a PLER description of the behaviour with a
power law which we explicitly derive. Motivated by the spectral calculations, we then extend the EMA formula to include
the effects of finite network size N . We see presently that if N > N∗

≡ |p − 1/2|−2 then the EMA formula gives a good
approximation to the resulting conductance and the extended formula is effective for all |p − 1/2| and 1/

√
N sufficiently

small.

6.1. Infinite networks

6.1.1. Overview
If the conductances y1 and y2 are in proportion 1 − p and p, the ‘classical’ EMA result in Ref. [4] states that the effective

medium conductance Y for a very large (N → ∞) square two-dimensional lattice solves the quadratic equation

(1 − p)

Y − y1
Y + y1


+ p


Y − y2
Y + y2


= 0. (49)

Rearranging we have

Y 2
+ (1 − 2p)(y2 − y1)Y − y1y2 = 0,

so that if

ϵ = (1 − 2p), θ = Y/
√
y1y2, µ = y2/y1,

we have

θ − 1/θ + ϵ
√

µ − 1/
√

µ


= 0. (50)

Setting γ = log(θ) and ν = log(µ) we have

sinh(γ ) = −ϵ sinh(ν/2). (51)

6.1.2. Emergent power laws
Suppose firstly that µ is real and close to unity, so that ν, and hence γ are both not large. Then wemay linearise (51) and

to leading order have γ = −ϵν/2. Thus in this case log(Y/
√
y1y2) = ϵ log(y1/y2)/2, and rearranging this gives the elegant

power-law identity

Y = y(1−p)
1 yp2. (52)

This is fully consistent with the duality result (24) that

Y (y1, y2)Y (y2, y2) = y(1−p)
1 yp2y

p
1y

(1−p)
2 = y1y2.

In a C–R network, µ = iωCR is pure imaginary. We set µ = iη where η = ωCR is now assumed to be close to unity and
take β = log(η) to be close to zero. It then follows that log(µ) = iπ/2 + β so that

sinh(γ ) = −ϵ sinh(iπ/4 + β/2) = −ϵ(i + β/2 + O(β2))/
√
2.

If β = 0 then γ = iθ0 where sin(θ0) = −ϵ/
√
2. Linearising about this solution we have, to leading order,

γ = iθ0 −
ϵ

2
√
2 cos(θ0)

β + O(β2) ≡ iθ0 + Λ log(η) + O(β2).

Thus, to leading order

|Y | =


ωC/R | exp(γ )| =


ωC/R (ωCR)Λ
≡ Kωα.

This gives the power law observed in Section 2 in a frequency range centred around ωCR = O(1) and with

α(p) =
1
2

+ Λ =
1
2

−
ϵ

2
√
2

1 − ϵ2/2

. (53)
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6.1.3. Percolation behaviour
It is well known that the EMA approximation for p ≠ 1/2 exhibits percolation behaviour which we summarise. If ν is

large and positive then the asymptotic form of the solution depends upon the sign of ϵ. If ϵ > 0, which corresponds to
p < 1/2 then for large α Eq. (51) reduces to e−γ

= ϵeν/2 so that we have the percolation behaviour given by:

1/θ = ϵ
√

µ, Y = y1/ϵ. (54)

In contrast, if ϵ < 0, (p > 1/2) then for large ν Eq. (51) simplifies to: eγ
= (−ϵ)eν/2 so that we have the percolation

behaviour given by:

θ = −ϵ
√

µ, Y = −ϵy2. (55)

Similar results for ν large and negative follow from duality arguments. The (frequency) limits of the emergent region can be
estimated by finding when the power-law behaviour of (52) overlaps with the percolation type behaviour. This leads to the
following estimates for the values µ1 < µ < µ2 over which we expect to see power-law emergent behaviour

ϵ > 0 : µ1 = 1/µ2 ∼ ϵ1/p, ϵ < 0 : µ1 = 1/µ2 ∼ (−ϵ)1/(1−p). (56)

Note, these results predict that as ϵ → 0 the percolation amplitudes scale as |ϵ|±1. In contrast, calculations in Ref. [9]
imply instead a scaling law of the form |ϵ|±1.3.

6.2. Large, but finite, networks

We now give a more speculative calculation which combines the EMA estimate with finite size effects and the spectral
calculations of the previous section, for Cases 1 and 4. Our starting point is the spectrally derived formula for Y = Y1 (40)
which has percolation limits proportional to y2 when µ is large. Casting Y in terms of y1 and y2 we have

Y 2
=

µ2y21
N

(µ + N)

(µ + 1/N)
= µy21

(1 + µ/N)

(1 + 1/Nµ)
= y1y2

(1 + µ/N)

(1 + 1/Nµ)
.

It follows that

(1 + 1/Nµ)Y 2
− y1y2(1 + µ/N) = 0.

If we again set θ = Y/
√
y1y2 this formula can be rearranged into the symmetric form

θ − 1/θ =
1
N

(µ/θ − θ/µ) . (57)

Similarly, the spectrally derived formula Y4 in (43), which has percolation limits proportional to y1 for µ large, takes the
symmetric form

θ − 1/θ =
1
N

(1/µθ − µθ) . (58)

These expressions are both very similar in form to the result (50) of the EMA calculation. We conjecture that a more general
expression can be obtained by combining them into the following two formulaewhich agreewith each in the limits of ϵ = 0
and N = ∞ and which include both the effects of component proportion and network size and which respectively have
percolation limits proportional to y1 and y2:

θ −
1
θ

+ ϵ


√

µ −
1

√
µ


=

1
N


1

µθ
− µθ


(59)

and

θ −
1
θ

+ ϵ


√

µ −
1

√
µ


=

1
N


µ

θ
−

θ

µ


. (60)

We observe that each of (59) and (60) is self-dual under themapµ → 1/µ, θ → 1/θ . Similarly the symmetryµ → 1/µ,
ϵ → −ϵ maps (59)–(60) and vice versa. We now proceed to show that (59) and (60) have the correct asymptotic form of
solution and give numerical evidence for their validity in Section 7. We firstly consider the percolation limits of (59) and
(60). Motivated by the analysis in the previous subsection we consider solutions of the form θ = β

√
µ so that Y = βy2,

and θ = β/
√

µ, so that Y = βy1, in the two cases of µ large and µ small. If µ is large and ϵ > 0 then (59) has a solution
with percolation limit proportional to, and in phase with, y1, so that θ = β/

√
µ if β satisfies the quadratic equation

β2

N
+ ϵβ − 1 = 0. (61)
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Fig. 11. (Color online) Comparison of the asymptotic formulae obtained from the spectral derivationwith the numerical computations for the C–R network
over many realisations, with p = 1/2 and network sizes S = 10, 20, 100, N = S(S − 1).

If µ is small then we have the reciprocal solution given by the map β → 1/β . Note that if θ = β/
√

µ then |Y | = β|y1| and
hence the dynamic range is given by

Ŷ = β2 where
β2

N
+ ϵβ = 1. (62)
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Fig. 12. (Color online) Comparison of the asymptotic formulaewith the numerical computations for the R–R network overmany realisations, with p = 1/2
and network sizes S = 10, 20, 100, N = S(S − 1).

It is immediate that β is given by

β =
N
2


−ϵ +


ϵ2 + 4/N


, (63)

where the positive sign for the square root term is taken to ensure that β > 0 so that the response is in phase with y1.
This expression takes two different forms depending on whether (i) N ≪ ϵ−2 or (ii) N ≫ ϵ−2. In the first case the network
behaves in a similar way to one with p = 1/2 and we have β ∼

√
N . In the second case we have behaviour similar to

N = ∞ with β ∼ 1/ϵ. This is in exact correspondence with the calculations of the dynamic range reported in Section 2.
Similarly, if µ is large and ϵ < 0 then Eq. (60) has a solution with percolation limit proportional to, and in phase with, y2, so
that θ = β

√
µ, if β satisfies the quadratic equation

β2
+ ϵβ −

1
N

= 0. (64)
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Fig. 13. (Color online) Comparison of the numerically obtained solutions of (59)with the numerical computations formany realisations of the C–Rnetwork,
with p = 0.4 and network sizes N = 90, 9900.

7. Comparison of the asymptotic and numerical results

Wenow give two sets of calculations for finite networks. The first tests the validity of the spectral calculation in Section 5
for the case of p = 1/2. The second the validity of the amalgamated spectral and averaging based calculation in Section 6.

7.1. Spectral based calculations for p = 1/2

We firstly consider a C–R network with µ = iωCR. We compare the absolute values of the four asymptotic formulae
(40)–(43) obtained by using the spectral method with the numerical calculations of the absolute network conductance |Y |

withC = 1nF andR = 1 k� as a function ofω for four different configurations of the system,with different percolation paths
for low and high frequencies. The results of this comparison are shown in Fig. 11 inwhichwe plot the numerical calculations
together with the asymptotic formulae for a range of values of N given by N = S(S − 1) with S = 10, 20, 100. We can see
that the predictions of the asymptotic formulae (40)–(43) fit perfectly with the results of the numerical computations over
all of the values of N considered. Indeed they agree both in the (square-root) power-law emergent region and in the four
possible percolation regions, and clearly demonstrate the effect of the network size.

We next look at an R–R network with y1 = 1/R and y2 = µ/R, with real µ and R as above. Again we compare the
predictions of the asymptotic formulae (40)–(43) with the numerical computations of |Y | in this case. Again we see an
excellent agreement in all cases, as shown in Fig. 12.

7.2. Combined averaging and spectral based calculations for general p

Wenowconsider the responses for general pdescribed by the pair of Eqs. (59) and (60).We compare thesewith numerical
results for the C–R networks described in the previous sub-section. In each case of p we take the equation for which the
corresponding solution in the percolation regime is physically correct.
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Fig. 14. (Color online) Comparison of the numerically obtained solutions of (60) with the numerical computations of |Y (ω)| for many realisations of the
C–R network with p = 0.6 and network sizes N = 90, 9900.

As a first computation we take p = 0.4, so that ϵ = 0.2 > 0, and consider a C–R network with the same values of
C, R and taking N = 90, 9900. For an infinitely large network we expect to see resistive type percolation behaviour (with
probability one) for both small and large frequencies. We compute |Y (ω)| from (59) and compare these values with the
results of computations of |Y (ω)| from a large realisation of the network in Fig. 13. The results from this computation are
interesting. When N = 90, there is quite a large statistical range in the calculations which reduces when N = 9900. The
predictions of |Y | from (59) closely follow the mid-range (PLER) of the computations for both N = 90 and N = 9900.
However, as expected from the EMA results, the maximum and minimum values of |Y | are slightly underestimated by (59).
The results for computations of the R–R network are very similar and we do not include them here.

As a second computation we take p = 0.6, so that ϵ = −0.2 < 0. For an infinitely large C–R network we expect to see
reactive type percolation behaviour (with probability one) for both small and large frequencies. We present the results of
computing |Y (ω)| from (60) comparedwith computations fromanumber of realisations of the networkwhenN = 90, 9900,
in Fig. 14. In this computationwe again see a greater statistical range whenN = 90 thanwhenN = 9900. Indeed in the case
of N = 90 a small number of the realisations show resistive percolation behaviour rather than reactive. This is not seen in
the calculations for N = 9900. In both cases the results of the calculations from (60) closely match the computations over
the whole range.

8. Discussion

By considering large binary networks we have shown how power-law emergence can be directly related to the statistical
regularity of the spectrum of the matrices associated with the network and hence can be studied by combining spectral
and averaging methods. In particular we have studied the effects of network size, and the variation from criticality on the
observed power-law behaviour of these systems. We have shown how the response of the networks depends strongly upon
p and less strongly on the network size N , except at p = 1/2 exactly, where the dynamic range has been found to scale in
direct proportion to N . When p = 1/2 we analysed how the network response is described in terms of poles and zeros of
the conductance and can be determined from distribution of these values, making use of numerically observed statistical
patterns of these. This has revealed four asymptotic formulae, corresponding to the four qualitatively different emergent
responses that can arise when p = 1/2 and these show very precisely the effects of the (finite) network size N . The case of
p = 1/2 is very complete asymptotically and shows particularly good agreement with the numerical computations, which
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is remarkable given the number of approximations made. An important open question is to now rigorously establish the
observed statistical results of the spectrum in this case, for example to show rigorously that µp,N ′ ∼ N . When p ≠ 1/2 the
analysis is less complete. It is interesting, however, that the results of the averaging based EMA calculation can be combined
with those of the spectral computation in a consistent manner to the case of finite N , leading to predictions (59) and (60), of
the conductance and its dynamic range which is in good qualitative agreement with what is observed. However a limitation
of this analysis remains the lack of precision of the estimation of the power-law scaling of the magnitude of the percolation
response as p → 1/2. We conclude that combining both the spectral based and the averaging based methods lead to useful
asymptotic formulae with excellent numerical support, and establishing these more rigorously is an interesting area of
further study.
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