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Route to hyperchaos in a system of coupled oscillators with multistability
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This work presents the results of a detailed experimental study into the transition between synchronized,
low-dimensional, and unsynchronized, high-dimensional dynamics using a system of coupled electronic chaotic
oscillators. Novel data analysis techniques have been employed to reveal that a hyperchaotic attractor can arise
from the amalgamation of two nonattracting sets. These originate from initially multistable low-dimensional
attractors which experience a smooth transition from low- to high-dimensional chaotic behavior, losing stability
through a bubbling bifurcation. Numerical techniques were also employed to verify and expand on the
experimental results, giving evidence on the locally unstable invariant sets contained within the globally stable
hyperchaotic attractor. This particular route to hyperchaos also results in the possibility of phenomena (such
as unstable dimension variability) that can be a major obstruction to shadowing and predictability in chaotic
systems.
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I. INTRODUCTION

Simple nonlinear systems can give rise to highly compli-
cated or chaotic dynamics, whereby long-term prediction is
practically impossible. When such systems are coupled to form
higher dimensional systems, there may seem to be little hope
of accurately modeling the dynamics of the system as a whole.
However, under certain conditions, degrees of predictability
can exist and it may therefore prove possible to model a variety
of complex natural phenomena. Much is known theoretically
about low-dimensional chaos and trajectories of some models
can be proven to stay close to, or shadow, the dynamics
of the real physical system [1]. Synchronization of coupled
chaotic oscillators is also possible [2], leading to the system
exhibiting lower dimensional dynamics than would otherwise
be observed.

Thus an important problem in nonlinear physics is that of
trying to understand the conditions under which the dynamical
variables are confined to low-dimensional behavior in the
full phase space of the system. The hope is that systems
with multiple interacting components may exhibit lower
dimensional dynamics through synchronization and therefore
be less unpredictable in their behavior. This is important when
trying to model complex natural systems such as the climate
or weather. In numerical weather prediction synchronization
is also used to entrain model trajectories to observation data
in order to more accurately forecast the future behavior
of the true system [3,4]. Results are presented here of an
experimental investigation on a system of coupled electronic
oscillators. The system is studied using novel data-analysis
techniques to reveal a stable hyperchaotic state arising from
the interaction of two hyperchaotic nonattracting sets, which
originate from two phase-multistable synchronization states.
The subsets of the attractor are found to lose individual stability
when they become hyperchaotic through bifurcations of the
unstable periodic orbits they contain—a case of attractor
bubbling. While this mechanism to create a hyperchaotic
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set may not be generic, it is believed to be one important
route to hyperchaos. In the following sections we describe
the phenomena of interest and introduce the methods and
physical system used to demonstrate the transition from
low-dimensional chaos to hyperchaos, which is potentially
unshadowable. This experimental study draws on various
theoretical concepts and provides evidence for links between
phenomena such as synchronization, attractor bubbling, and
phase multistability, as well as interacting invariant sets and
unstable dimension variability, the latter a major obstruction
to predictability through shadowing.

A. Synchronization of chaotic signals

Although chaotic systems exhibit sensitivity to initial condi-
tions, various degrees of synchronization between them is also
possible. Systems exhibiting chaotic oscillations can become
synchronized when the frequencies of oscillation of their
variables become entrained and their relative phases bounded.
For coupled and high-dimensional systems, the transition from
low to high-dimensional dynamics is often associated with
the loss of synchronization between the system. There are
several classes of chaos synchronization, each representing a
different degree to which the systems lose their independence
with respect to each other.

Complete synchronization (CS) of chaotic signals is the
perfect synchronization of interacting systems, where the
instantaneous states of the systems are identically matched
[5,6]. Attractors of a chaotic system contain a dense set of
unstable periodic orbits (UPOs) and synchronization in this
case comes about when the respective UPOs of the subsystems
become locked, in a similar manner to phase locking in stable
limit cycles. A difference in the natural frequencies of the
subsystems results in a phase difference appearing, known as
phase synchronization [7,8].

A weaker type of synchronization between interacting
chaotic systems is where there is not an exact match between
the amplitudes of subsystems but there still exists some (often
complicated) functional relationship which maps states from
one subsystem onto the next:

x2 = g(x1). (1)
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This generalized synchronization (GS) implies a one-to-one
equivalence between states in the subsystems [9]. This implies
that the two subsystems are not independent and there still
exists a synchronization manifold to which the dynamics are
restricted. Also, in discretizations of spatiotemporal systems
this form of synchronization is important for spatial structures
such as waves and patterns to exist. The degree of GS is also
related to the number of positive Lyapunov exponents in the
system, with its onset characterized by a positive Lyapunov
exponent crossing zero [10]. This type of synchronization
is utilized in current attempts to forecast the weather using
data assimilation [3,4]. The loss of GS can occur when the
UPOs contained within the attractors bifurcate and become
unstable transverse to the synchronization manifold [11]
and correlations between amplitudes cannot be detected.
The case where there is only period entrainment and phase
locking but no correlations in amplitude is known as phase
synchronization, and imperfect phase synchronization when
phase slips occur. Systems which are phase synchronized can
be entrained in configurations where they are either in phase
or out of phase [12]. In certain cases both these states can
co-exist, a phenomenon known as phase multistability [13].
In the current system we find phase multistable behavior, as
described in more detail in Sec. II D, and this proves crucial
to understanding the transition between synchronized and
hyperchaotic dynamics.

B. Shadowing breakdown in hyperchaotic systems

The set of UPOs in chaotic attractors results in typical
trajectories possessing, on average, an unstable (expanding)
direction to the flow in phase-space, corresponding to a positive
Lyapunov exponent. Despite this, under the specific conditions
of hyperbolicity the motion is said to be shadowable, whereby
there can be proven to exist trajectories in the physical
system which lie close to (shadow) numerically computed
pseudotrajectories for an arbitrary length of time, known as
the shadowing time [1]. In these cases there is hope that
we can accurately model nature and provide a degree of
reasonable prediction. However, in dissipative systems with
more than three degrees of freedom there can be more than
one locally expanding direction to the flow, where trajectories
have multiple positive Lyapunov exponents. Here, attractors
can suffer from phenomena which render a system unshad-
owable, rendering model predictions unreliable [1,14–20].
In hyperchaotic attractors a phenomenon known as unstable
dimension variability (UDV) is believed to be commonplace
[20], whereby there are variations in the dimension of
the expanding and contracting subspaces in different parts of
the set along a typical trajectory. In this case the obstruction
to shadowing is especially severe and computed averages are
highly unreliable in such cases [21–26]. This phenomenon has
previously been studied in the current system [27], and the
current work sheds light on the origins of that state.

It is important to understand the origin of hyperchaos
and nonhyperbolicities in systems capable of obtaining more
than one positive Lyapunov exponent. This will help in
understanding the structure of hyperchaotic attractors, which
is currently not very well known. It has been previously
shown theoretically how hyperchaotic attractors containing

UPOs with different numbers of unstable directions can be
formed by the interaction with nonattracting sets inside the
attractor [28]. The following results show experimentally that
a hyperchaotic attractor is formed here in a similar manner, as
two nonattracting, individually unstable sets merge. This can
be seen as analogous to the way that chaotic attractors contain
a set of unstable periodic orbits. The transition to hyperchaos
is shown to be due to bifurcations of the UPOs contained
within each set in the direction transverse to a direction of
stability; an experimental demonstration of attractor bubbling.
It has also been shown theoretically and numerically how
the smooth transition to hyperchaos via bifurcations of the
UPOs is intrinsically linked to the existence of UDV in the
system [29,30]. This is also observed here experimentally and
presented in Sec. III.

C. Method for determining the unstable dimension

The techniques described herein work on attractors re-
constructed from a single dynamical variable using embed-
ding techniques based on Takens’ theorem [31]. From this,
quantities such as Lyapunov exponents and the topological
dimension measures used in this work can be estimated. Lya-
punov exponents quantify the rate of exponential expansion
or contraction of volumes over the whole of a given attractor
and thus characterize the expanding (unstable) and contracting
(stable) directions in phase-space. However, the presence of
noise and constraints in the amount of data available impose
serious limitations on techniques available for calculation of
Lyapunov exponents from experimental data [32]; this is a
particular problem when trying to obtain short time Lyapunov
exponents (STLEs), which give information on the local rather
than global expansion and contraction rates.

Here we use a method for measuring the expanding
subspace of attractors reconstructed from experimental data
that does not require the calculation of STLEs. The method
determines the topological dimension of the unstable space
for points along a trajectory on the attractor using geometric
arguments. The technique, described in detail in our earlier
work [27], builds on ideas in work by Hammersley [33]
and, later, Bennet [34]. Hammersley showed mathematically
how the mean interpoint distance between pairs of points in
hyperspheres increases with the dimension of the hypersphere
in which they are embedded. Hammersley’s analysis was for
homogeneously distributed points but the principle works well
for less uniformly distributed data also. Bennet used this
result to investigate the dimensionality of signals, producing
numerical values from Hammersley’s formulas. These values
relate this mean distance between points in phase space and
the dimension of the signal. The calculated mean interpoint
distances for sets of points in one, two, and three dimensions
is 0.333, 0.453, and 0.514, respectively. Our method first looks
at points belonging to numerous trajectories within a fixed
radius of a point of interest on the attractor and calculates
mean interpoint distance between all pairs of points in the set,
which is directly related to the local topological dimension
in the manner stated above. This dimension is always equal
to the number of expanding (unstable) directions plus the
neutral direction of the flow, along which points neither expand
nor contract. This process is repeated, using many sites on
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the attractor as origins for the hyperspheres containing the
trajectory points used in the calculations. Therefore if we plot
histograms of these local dimension measurements for many
locations on the attractor it is possible to infer the degree
to which the variables are synchronized and determine the
number of unstable dimensions and whether this is fixed along
a typical trajectory. This is subsequently referred to as the
interpoint distance (IPD) method.

II. RESULTS FROM A SYSTEM OF COUPLED
OSCILLATORS

A. Experimental system

Electronic oscillators were used for this study due to the
high degree of control over the parameters of the system and the
large amounts of high quality data that can be quickly obtained.
Any mismatch of parameters and the small effects of noise are
from real sources and therefore closer to real-world systems.
The individual oscillator units are based on a modification
of the van der Pol oscillator circuit [35], utilizing solid state
components [27,36,37], with data obtained by measuring the
potential difference between two points in the circuit and
measured at a high sampling rate.

Each oscillator has three degrees of freedom and is capable
of exhibiting chaotic behavior. When oscillators are coupled
together the resulting systems can exhibit higher dimensional
dynamics, such as various degrees of synchronization and
hyperchaos. The coupling links make use of high impedance
op-amps, allowing the signal to be fed from one point in the
coupled circuit to another without any feedback [37]. The
coupling strength can also be adjusted, providing a further
control parameter.

B. Model system

An oscillator Oi , which experiences a coupled signal from
another oscillator Oj , can be represented using the following
set of equations:

ẋi = μ

[
(yi − xi)

βi

+ f (yi − xi) − α0 + αi(xi − σxj )

]
,

ẏi = −zi − (yi − xi)

βi

− f (yi − xi), (2)

żi = yi − ρzi,

where xi , yi , and zi are dimensionless voltages and currents
at various points in the circuit of the ith oscillator, βi is
a nondimensionalization of the variable parameter and αi

of the negative resistance in the circuit. The function f (V )
is the voltage response of the nonlinear element, which in
its full form is the exponential f (V ) = Ip(ek(V ) − e−k(V )),
but can be well represented by a series expansion up to
cubic order in V [36]. The overdot represents differentiation
with respect to nondimensional time τ . The parameter σ is
the strength of coupling between elements, experimentally
controlled by a variable resistor, and all other symbols are
dimensionless scaling constants, obtained by measurement of
elements in the circuit [37]. The values for the constants, used
in numerical simulations to confirm the physical observations,
were approximately μ = 3.9, Ip = 1.87 × 10−6, k = 3.9,

and ρ = 0.042. For the current investigation the individual
oscillators were carefully balanced with respect to each other
in order to prevent detuning and other imperfections from
breaking the synchronization. In terms of the parameters this
means that β1 ≈ β2 ≡ β and α1 ≈ α2 ≡ α(≈ 1

3 ). The small
but inevitable imperfections in the system are modeled by a
simple linear term α0 = 7.2 × 10−3 in Eq. (2) [38]. Only a
single variable xi for each oscillator was measured, with the
system reconstructed using the time-series delay embedding
techniques derived from Takens’ theorem [31]. This has the
dual advantage of of both making the techniques more readily
applicable to physical systems where not all of the variables
are accessible and also simplifying the following analysis.

C. Behavior of the coupled system

In isolation each subsystem has a pair of solutions, which
originate in the x < 0 and x > 0 branches of a pitchfork
bifurcation from a null equilibrium solution. On increasing
the bifurcation parameter β, the system bifurcates from the
nonzero fixed point via a Hopf bifurcation and a sequence
of period doublings resulting in chaos. At higher values of β

the degenerate attractors in the negative and positive voltage
regimes combine to form one large double-lobed “glued” state
[39]. The imperfections in the system, modeled by the α0 term
in Eqs. (2) are assumed to be a constant offset in the operational
amplifier. The effect of this offset is to disconnect the
branches of the pitchfork bifurcation, breaking the reflection
symmetry of the subsequent dynamics and shifting the various
bifurcations to different parameter values on each branch. The
coupled signal from Oi introduces a perturbation (proportional
to xi) to the α0 term of the Oj , shifting its bifurcations
accordingly. This mutual addition to the imperfection term
of each oscillator disconnects the branch corresponding to the
voltage state of the other. Furthermore, at the parameter values
used here, where x1,2 have large magnitudes, the disconnected
branch of the pitchfork bifurcation is shifted to parameter
values out of the range of the current study, forcing states
on the continuous branches of each oscillator to always have
the opposite sign.

D. Synchronization sets and phase multistability

For certain parameter values, the oscillators are found to
be synchronized, but not identically. The focus of oscillation
of each of the x variables for both oscillators, x̄1 and x̄2, are
related by a sign change such that x̄1 = −x̄2. The dynamics
of the individual oscillators can synchronize in two ways in
this regime, one with the phases locked with the amplitudes
in perfect antiphase about the origin, and the other with both
a sign change and a π phase shift. This results in two distinct
states of the system, which coexist multistably. These states
can be seen in Fig. 1. Both in-phase and antiphase oscillations
have been observed in a range of systems [12,13,40]. This
form of phase degeneracy was shown in [13] to be important
in understanding the transition to hyperchaos.

At parameter values just above the Hopf bifurcation the
oscillations are almost sinusoidal and symmetric under the
transformation [t → t + T/2,(x − x0) → −(x − x0)], where
T is the period and x0 is the focus of oscillation. However, at
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FIG. 1. Time-series and phase portraits showing the phase mul-
tistable states. At low β the oscillators can lock in two states. In (a)
oscillations are antisymmetrically synchronized (AS) whereas in (b)
they are synchronized with an additional phase lag. The characteristic
states of regions “A” and “B” in Fig. 2 are of the type shown here
in (a) and (b), respectively. The oscillations of AS exhibit perfectly
synchronized chaos (of opposite sign) at the same value of β where
the lag-symmetric (LS) states which dominate in region “B” are limit
cycles.

higher parameter values the oscillations are asymmetric and
contain higher harmonics and xn(t) �= −xn(t + T/2). In these
cases there is a mirror symmetry about the time axis between
the states of the two oscillators, such that x1(t) = −x2(t)
for one state and x1(t) = −x2(t + T/2) for the other. These
properties can be seen in Figs. 1(a) and 1(b) at the same
value of β. The phase relationship shown in (a), where
x1(t) = −x2(t), will be referred to as the antisymmetric AS
state and those states having the phase relationship shown in
(b), where x1(t) = −x2(t + T/2), as lag symmetric (LS). The
one parameter bifurcation diagram for the region of interest
is shown in Fig. 2(a), obtained by varying the combined
parameter β and recording the variable x1.

The dynamics here can be divided into three regions,
characterized by the different mix of dynamical behaviors
encountered within them. In the region labeled “A” the AS
oscillations are preferred by the system and most likely to be
encountered from an arbitrary initial condition. The LS states
can also be found at these same parameter values, a case of
phase multistability. However, in region “B” the AS states are
absent and in “M” the phase is found to be a mixture of both
types of behavior (later shown to be an amalgamation of the
nonattracting remnants of both sets).

It is observed that bifurcations of AS and LS are found
to occur at different parameter values; notably, LS states
are limit cycle until after AS has bifurcated to chaos. On a
single sweep of the parameter β, starting from an AS state,
after the system bifurcates to chaos in AS it loses stability
to simple periodic motion in LS at β ≈ 3.35. Shortly after
this another sequence of bifurcations follows, resulting again
in chaotic motion, this time with LS. At higher parameter
values, trajectories enter a mixed state, jumping intermittently
between the two phase states, similar to behavior noted in
previous numerical studies of phase-multistable systems. In
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FIG. 2. (Color online) Experimental bifurcation diagram for the
two-in-a-ring system (a), showing the transition when starting from
the antisymmetric state AS. Oscillations bifurcate to chaos in region
“A” before returning to periodic lag-symmetric LS states in region
“B.” These then bifurcate to chaos again before a third, mixed
state is encountered in “M,” which is found to be hyperchaotic.
(b) Bifurcation diagram based on the difference in the phases
� = φ1 − φ2 is shown at various β in the bifurcation diagram. Both
the phase-symmetric (� = 0) AS state and the π phase-shifted LS
state coexist for values of β � 3.35. The AS state (red circles) loses
stability to the LS state (blue dots) as β is increased. When LS also
loses stability the mixture of the two unstable saddles, the remnants
of the AS and LS attractors, forms the globally stable hyperchaotic
attractor. Numerical computations show almost identical behavior,
with small differences in the exact parameter values due to the tiny
mismatch between the numerical and inexactly known experimental
values.

this “M” region, starting at β ≈ 3.52, the system flips between
both the negative and positive voltage lobes of a single large
attractor, joined by what has previously been identified as a
gluing bifurcation [39]. The relative phases of the oscillations
were obtained from experimental data using the analytic
signal method by performing a Hilbert transform on the time
series [41]. The bifurcation diagram showing these phases as
a function of β is shown in Fig. 2(b). The qualitative dynamics
and quantities such as the Lyapunov exponents and stability to
perturbations or detuning are therefore different for each of the
two states.

Bifurcations of AS and LS were studied experimentally
to determine how they separate as the coupling strength is
increased and the results are shown in Fig. 3. Here, the loci of
Hopf and the first two period doubling bifurcations of both
AS and LS are shown in β-σ parameter space. Values at
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FIG. 3. (Color online) Experimental results showing the shift of
bifurcations in β with increasing coupling σ for both AS and LS
states. The AS state is stable over less of the parameter space, so
parameter values where it appears and then loses stability are shown
(ASStab, black dots joined by lines, surrounding stable shaded region).
The loci of Hopf bifurcations are also shown (red triangles), and
very slightly above this the states are in perfect synchrony while
the amplitude is small and symmetric, before quickly switching
to AS when higher harmonics appear. Subscripts P2 and P4 refer
to the transition to period-2 and period-4 oscillations, respectively.
As before, numerical simulations give qualitatively identical (but
parameter shifted) results.

which the AS state first appears and then when it becomes
unstable are also shown. Both AS and LS originate from a
common Hopf bifurcation, which is offset to lower values of β

as σ is increased, due to the coupling dislocating the primary
pitchfork bifurcation and resulting in a parameter offset in
all subsequent bifurcations. As the coupling strength σ is
increased from zero (uncoupled), the two systems interact
progressively more strongly, with the various bifurcations
shifting in parameter space. However, bifurcations for states
synchronized in perfect antiphase (AS) and the lag-symmetric
(LS) states are shifted by different amounts. The bifurcations of
AS approximately follow the Hopf bifurcation in their relative
displacement, but for LS the parameter difference between the
Hopf and the first period doubling (βP2 − βHopf) increases on
increasing σ . This separates the dynamics of the two phase
states in parameter space, with AS bifurcating to chaos at
lower values of β than LS.

E. Explanation of the observed stability variation
of the phase states

This behavior can be understood using symmetry arguments
in the combined system, along with the theorem of Swift [42],
as follows. Recalling that the equations of motion have the
form

ẋ1/2 = g(x1/2,y1/2) + h(x1/2 − σx2/1), (3)

where g and h are functions obtained from Eq. (2), the phase
difference between the solutions of the two oscillators can now
be taken into consideration. Considering only the symmetry

in the form of the oscillations and taking the two solutions
x1(t) = −x2(t) (for AS) and x1(t) = −x2(t + T/2) (for LS),

ẋ1/2(t) = g(x1/2(t),y1/2(t)) + h[(1 + σ )x1/2(t)] (4)

and

ẋ1/2(t) = g(x1/2(t),y1/2(t)) + h[x1/2(t) + σx1/2(t + T/2)]
(5)

are obtained for AS and LS, respectively. Now, since x1(t) and
x2(t) are asymmetric under [t → t + T/2,x → −x], it can be
seen that the two phase states lead to two unique systems,
which diverge more as both σ is increased and the asymmetry
of the individual oscillations increases on increasing β beyond
the Hopf bifurcation. It is clear from Eq. (4) that, as long as the
oscillators are in perfect antiphase synchrony, the coupled
system is simply a parameter-shifted version of the single
oscillator.

Whereas in AS x2(t) = −x1(t), in LS the oscillations are
synchronized such that second harmonics are π

2 out of phase:

x1(t) = Aeiω0t + Be2iω0t + C,
(6)

x2(t) = Aeiω0t − Be2iω0t − C,

where ω0 is the frequency of the first harmonic. The second
harmonics cancel in the magnitude of the trajectory vector in
the phase space of the combined system:

|x| ∝ eiω0t , (7)

leading to extra symmetry in the system dynamics when
compared to oscillations in AS. Swift proved that for a large
class of systems period doubling bifurcations are suppressed
if symmetry exists in the solutions under the transform [t →
t + T/2,x → −x], until symmetry breaking occurs [42]. This
gives a possible mechanism for the extra stability of LS to
bifurcation and chaos.

F. Transition between phase states

The symmetric and asymmetric AS and LS states are
stable within a different range of detuning of the individual
oscillators, similar to previous work on phase multistability.
The work of Postnov et al. describes the coexistence of both
in-phase and antiphase synchronized attractors in a system,
dubbed phase multistability [13]. There, phase multistability
was found numerically in a coupled Rössler system, with one
state losing stability to the other, before they both merged
into a single hyperchaotic attractor. Dawson [28] shows
how such a stable hyperchaotic set can be formed from
invariant nonattracting subsets. The results here demonstrate
experimentally the link between these and other phenomena,
such as attractor bubbling and UDV, in the origins of the
hyperchaotic state.

The Lyapunov exponents of the system were obtained
here from experimental data using the method of Wolf et al.
[43]. The first physical observation of two positive Lyapunov
exponents is at the point where AS and LS combine. This is
in agreement with the numerical study of Postnov et al., on
the coupled Rössler system, where hyperchaos came about
as a result of the merger of two phase states [13]. The
Lyapunov exponents of AS and LS were also calculated
individually using numerical methods. In cases where the
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set under investigation was an unstable saddle, the sets
were separated using the PIM-simplex method introduced in
Ref. [44] and in all numerical cases the Lyapunov exponents
were determined using the method of Benettin et al. [45].
The results of the application of these methods to AS and LS
revealed that the loss of stability of AS coincides with one
of the negative Lyapunov exponents crossing zero. Therefore
at this point AS becomes a nonattracting set of the system
with two expanding (unstable) directions to the flow. A second
positive Lyapunov exponent also emerges in LS at the point
at which it also becomes a hyperchaotic nonattracting set.
However, in this case LS combines with AS to form the mixed
state in M, a globally stable hyperchaotic attractor composed
of individually non-attracting subsets. This provides evidence
that the Lyapunov exponents in M just after the merger come
from a combination of those from the individual subsets, due
to the fluctuation of trajectories between AS and LS. This is
investigated further in Sec. IV using numerical techniques to
separate the component sets visited by computed trajectories
of the system.

III. LOSS OF SYNCHRONIZATION AND INCREASE IN
UNSTABLE DIMENSION

The increase in the dimension of the local unstable manifold
(along with the appearance of a second positive Lyapunov
exponent) is associated with a reduction in the synchronization
between oscillations of the subsystems. In AS the oscillators
are initially completely synchronized until the oscillations are
well into chaotic regimes. Synchronization then weakens as the
system moves toward hyperchaos. A smooth transition to high-
dimensional dynamics would suggest a bubbling bifurcation,
whereby UPOs in the attractor start to bifurcate and lose
stability in the direction transverse to the synchronization
manifold [11].

If attractors are indeed experiencing bubbling as orbits de-
viate from the synchronization manifold when they encounter
a transversely bifurcated UPO, this should be detectable by
the local dimension of the set of embedded points steadily
increasing as this behavior becomes more prominent on
increasing β.

The IPD method outlined in Sec. I C was applied over the
range of β over which the phase states AS and LS merge.
Results are shown in the three-dimensional histogram of Fig. 4.
Averaged mean interpoint distances (μ̄) in the reconstructed
attractors are shown as histograms in the vertical slices, with
the colors indicating the relative occurrences at each value. A
smooth transition in the dimension can be seen, from the value
associated with a locally two-dimensional manifold [i.e., con-
taining mainly one-dimensional (1D) unstable orbits] toward
one with two expanding directions to the flow. This indicates
that steadily more of the UPOs contained in the attractor are
bifurcating and becoming transversely unstable, thereby dis-
placing trajectories away from the synchronization manifold.

A second peak is seen to emerge in the histograms as the AS
state is re-absorbed into the attractor, at around β ≈ 3.55. Two
peaks in the histogram indicate that trajectories pass through
regions of varying numbers of positive Lyapunov exponents;
i.e., the system experiences UDV during the transition to
hyperchaos, as predicted previously [29,30]. The peaks for AS
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FIG. 4. (Color online) Experimental results showing the combi-
nation of histograms for the range of β where AS and LS combine
into the mixed state in M and a second Lyapunov exponent emerges
in the system. Along with the observation of a smooth transition
from low- to high-dimensional dynamics, the multiple peaks (after
β ≈ 3.55) indicate UDV existing during the transition. Numerical
techniques were also used on the model system to separate and
study the individual subsets, and their associated (local) Lyapunov
exponents, in isolation (Sec. IV, Fig. 6).

are at greater μ̄ than LS at the same parameter values because
AS bifurcated to hyperchaos at lower β than LS and contains
more 2D unstable UPOs. This leads to embedded points in the
vicinity of AS being more spread into the direction transverse
to the synchronization manifold than in LS. Therefore UDV
appears strongest while there is mixing between AS and LS,
demonstrating the existence of different numbers of bifurcated
and unbifurcated UPOs in the combined manifold of the
system. The re-absorption of AS into LS can also clearly
be seen in this figure. Finally, as AS again dominates, the
dimension is seen to tend toward that of a hyperchaotic
attractor containing two directions along which trajectories
from different initial conditions will diverge. The same types of
behavior and transition can also be found in the model system,
and investigations using the advanced techniques available to
numerical systems are described in Sec. IV.

A. Interaction of the phase synchronized states

In order to fully understand how the two phase states AS
and LS interact and combine to form the merged hyperchaotic
attractor, the synchronization state in terms of the phase
relationship was studied at various parameter values. The
phase difference � = φ2 − φ1 between the subsystems 2 and 1
was obtained using the analytic signal method for finite times.
Time series of � are shown in part (i) of Figs. 5(a)–5(c), with
histograms showing the distributions of the density of points
as a function of � in (ii). In the AS set the phases of O1 and O2
were found to be completely locked, with the phase difference
fixed at � = ±π . However, in LS the phase difference
oscillates in a narrow range of � ≈ 0 due to the asymmetry
of the wave forms, as can be seen in Fig. 5(a). In both AS
and LS no phase slips are observed and phase synchronization
holds. This is in agreement with there being only a single
Lyapunov exponent at zero, indicative of the network acting as
a single system. The dynamics of the subsystems suffer phase
slips at the merger of AS and LS, separating their dynamics,
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FIG. 5. Phase differences �, used for detecting phase synchronization states. At values of β such as shown in (a) (β = 3.356), where
states are in LS, � oscillates close to zero. In the M region shown in (b) for (β = 3.532) intermittencies are found between LS and AS, where
� ≈ ±π radians. At higher β phases are mainly restricted to ±π radians and trajectories spend most of their time in AS, as shown in (c)
(β = 3.602).

before they again become progressively more unified at
higher parameter values. These intermittencies found on the
transition between different synchronization regimes can be
seen in Fig. 5(b). At such parameter values it was difficult to
experimentally measure a Lyapunov exponent at zero, so it
is believed that the intermittent loss of phase synchronization
in these regimes results in the dynamics of the subsystems
temporarily separating from each other. However, as β is
further increased trajectories are found to spend less time in
LS and the system again approaches phase synchronization,
as can be seen in (i) of Fig. 5(c).

IV. NUMERICAL INVESTIGATIONS OF THE STRUCTURE
OF THE HYPERCHAOTIC STATE

The equations of motion (2) were used to simulate the
system numerically. As well as verifying the experimental
results above, the computational techniques used allowed
deeper investigation into the structure of the hyperchaotic
state. Only a single zero Lyapunov exponent was detected

numerically (as well as experimentally) at these higher param-
eter values, indicating that the system’s dynamics, although
hyperchaotic, lie on a reduced dimensional manifold. This
occurs as phase synchronization is re-established in the system
and trajectories spend progressively more time in AS. This
demonstrates that, although each of AS and LS develop hy-
perchaos independently, the final attractor is mainly composed
of the hyperchaotic remnant of AS, with a small contribution
from LS. Studying the system numerically, the AS and LS
states of the attractor were separated using the PIM-simplex
method [44]. This makes it possible to isolate unstable saddles
contained within the attractor and compute their properties,
such as equivalents of their short-time Lyapunov exponents
(STLEs). These local Lyapunov exponents (LLEs), shown in
Fig. 6, are different in magnitude for the two phase states, each
originating at different parameter values. The results show
that, prior to the loss of stability of LS to the mixed state,
each of the positive LLEs of AS is larger than its counterpart
in LS, showing a greater degree of instability. However, the
rate of increase of the positive LLEs of LS, λB , is greater
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FIG. 6. (Color online) Numerically obtained local Lyapunov
exponents (LLE—similar to STLEs) for the AS and LS phase
states, extending into the unstable parameter regimes for each state.
Although AS has greater instability for the studied range (which
is constrained by the complexity of the data), the gradient of the
LLEs for LS shows that it becomes more unstable at the point where
AS becomes dominant in the mixed state. The invariant set became
difficult to isolate for parameter values to the right of the diagram
and the computing time for the resulting calculations made further
extension of the results impossible.

than that for AS, λA, and it can be seen that the crossing
point can be projected to be approximately at the point where
AS becomes dominant in the mixed-phase state. The larger
positive LLEs of the LS state and resulting relative instability
compared to the AS state explains why AS comes to dominate
at higher parameter values and helps complete the picture of
the development of high-dimensional hyperchaotic dynamics
and resulting reduction in predictability.

V. SUMMARY

Understanding the development of hyperchaos and the
structure of hyperchaotic attractors is important for knowing
the reliability of numerical models through the shadowing
theorem, which breaks down in the presence of phenomena
such as unstable dimension variability which can be present in
hyperchaotic systems. This study has experimentally demon-
strated the formation and structure of one type of hyperchaotic
attractor and shown many aspects of the transition between
synchronized and high-dimensional dynamics in a specific ex-
perimental context. Hyperchaos is experimentally observable
in this system only after two nonattracting sets have merged.
These sets originate in phase-multistable synchronized states,
which have differing initial stability due to the induced
symmetry in one of the states. These results show clear
evidence of a smooth transition to hyperchaos, demonstrating
that attractor bubbling, due to the bifurcation of UPOs of the
chaotic attractors, is the origin of high-dimensional dynamics
in this system. Both sets are therefore believed to develop
a second Lyapunov exponent via this route, whereby they
become nonattracting hyperchaotic saddles. These eventually
combine to form a single merged hyperchaotic attractor,
containing within it the remnants of both invariant sets. This
is believed to be one possible route to hyperchaos, which may
be present in many high-dimensional systems.
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