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Abstract
The so-called ‘universal dielectric response’ of composite materials can be reproduced as a
power-law emergent response (PLER) of electrical network models. Results are presented for
investigations demonstrating the robustness of the PLER of random electrical networks in
order to evaluate the usefulness of such models in simulating real composite materials with
microstructural disorder. The effect of imposed microstructures has been investigated, looking
at both the correlation length and the network size. It is shown that the exact microstructural
details may be reasonably omitted, so long as we take care that the general features of
the structures, such as their relative smallest and largest scales, are represented.

Anisotropy in the random microstructures is shown to alter the bulk response of the
system, with the network responses found to tend towards that expected for purely parallel and
series components. The power-law response is shown to be obtainable by taking the geometric
mean of the two cases, showing that the bulk response of such systems is an averaged property
of these two extreme cases.

It is concluded that, given the longer computing times needed to simulate these more
realistic representations, it is reasonable to use the simpler models.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. The importance of composites

Composite materials are of increasing importance in science
and engineering. New materials have to be designed with
tailor-made properties to suit a host of demands and meet the
many challenges ahead. In coming years advanced energy
technologies will require new materials to perform to exact
specifications in extreme circumstances.

Composites can exhibit surprising features in their overall
response when compared with that of their constituents. This
is in common with many other diverse physical systems under
the umbrella of complex systems, where interactions between
many components give rise to new phenomena at the system
level [1]. These so-called emergent properties can rarely be

predicted by simply knowing the behaviour of the individual
components as the interaction between them is a defining
factor. As such, the microstructure of the composite is crucial
to the combined behaviour.

Of particular importance is the understanding of transport
properties such as the conduction of energy or fluid, especially
in disordered materials. Conduction through random media
has applications throughout many disciplines. For example,
the Earth’s crust is composed of a complex mixture of
rock types and understanding the propagation of seismic
waves through this medium is of importance to geophysical
studies. Similarly, the electrical or thermal conductivity of
binary media with different microstructures is important when
engineering new composites. A comprehensive review of
the historical development of the study of binary disordered
dielectric systems can be found in [2].
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Figure 1. Network admittances (|Y |) for 20 × 20 node resistor–capacitor network simulations of complex materials (using the network
methods described in section 2.1), over a range of the proportion of capacitors: (a) 30%, (b) 40%, (c) 60% and (d) 70%. Below the critical
percolation value of 50% the responses at low and high angular driving frequency (ω) are determined by the existence of conductive
percolation paths and absence of capacitive paths between the terminals, respectively. Similarly, above 50% the limiting response at low and
high ω is determined by the existence of capacitive and absence of conductive paths, respectively. For intermediate values of ω a power-law
response is seen with an exponent close to the proportion of capacitors in the network. Histograms of 100 random realizations are given in
this and all subsequent figures.

1.2. The universal dielectric response

The anomalous power-law frequency dependence of the
dielectric properties on the AC conductivity of materials
[3–5] is a well-known longstanding problem. The
majority of theoretical treatments of this effect [6–10]
suggest it to arise from intricate, atomic level, interactions
between particles within the materials manifesting this
phenomenon. We have presented the alternative suggestion
[11–16] that the anomalous effects are merely the electrical
response characteristics of the two-phase, conductor–
insulator, networks formed by the microstructures of
heterogeneous/composite materials. It has been suggested
that such microstructures can be modelled as large networks
of randomly positioned resistors and capacitors (detailed in
section 2.1). The electrical characteristics of these networks
are found to closely resemble those of the large body of
materials that exhibit the anomalous power law frequency
dependences of permittivity or AC conductivity. We suggested
in [14] that these power-law frequencies dependences were
emergent properties of the complex electrical networks formed
by the microstructures of heterogeneous materials. The
purpose of this paper is to demonstrate the robustness of these
emergent properties to variations in the components and their
distribution within large electrical networks.

1.3. Response characteristics

In order to demonstrate the various features of the observed
responses, we show here some recalculations of results of

earlier work from our group. A selection of simulation results
using the network methods described in section 2.1 are given in
figure 1. The magnitude of the network admittances |Y | versus
the angular frequency of the driving AC field (ω) are plotted
on a log scale over a range of values of the proportion of the
variable (dielectric) inclusions. The networks used for these
simulations have the same geometry as seen in later sections
(specifically 20 × 20 node RC networks, with bonds assigned
randomly according to a binary distribution), similar to those
shown in later figures (e.g. figure 5(a)).

For under the critical value of 50% capacitors, there is
a finite chance of a conductive path through the medium
but little chance of a percolating path of capacitors. The
conductive response in the percolation dominated regions is
therefore constant in ω. Above the critical value, where
there are likely to be capacitive but no conductive paths, the
response is proportional to ω. It can thus be seen that the
response is governed by percolation at low (or high) values of
the angular frequency (ω) of the applied AC field, where the
dielectric (capacitive) elements are effectively holes (or short-
cuts) in the network. The exact values in these regions is
highly variable and dependent on the exact arrangement of
the components in the system, showing up as a wide spread
on the histograms of 100 random realizations in figure 1.
This is in contrast to the central emergent region, where
paths are tightly bound and exhibit a power-law response.
This central region is thus termed the power-law emergent
response (PLER).
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2. Experimental and theoretical approaches

A similar form of response to that shown in the previous
section has been found in several other systems composed of a
mixture of components with variable contrast ratio (h) between
the components’ individual permittivities (σ1, σ2). Besides
dielectric materials and network simulations thereof, it is also
found in the thermal conductivity of binary composites and
in simulations of mechanical stresses in a binary disordered
network of springs [11]. In all of these cases, the power-
law response over several orders of magnitude in |h| was
found to be independent of the details of the system, such
as the exact microstructural arrangement within a disordered
material. The power-law region was found in all cases to
have a scaling exponent α close to the volume fraction of
the variable component in the composite over a wide range
of volume fractions and decades in contrast ratio [12–14].

The combined permittivity (σ ) of a material composed of
a mixture of two components, as a function of their contrast
ratio, can be studied in various ways. In the current case,
the electrical conductivity of dielectric materials is dependent
on the angular frequency (ω) of the driving AC electric field.
Therefore, the bulk admittance, Y , of composites of a dielectric
(with the admittance Y1 ∝ ω) and conductor (for which Y2 is
independent of ω) can be studied over a range of |h| by varying
ω. The form of the response in the power-law region follows
a logarithmic mixing rule [17]:

ln Y = α1 ln Y1 + α2 ln Y2,

Y = Y
α1
1 Y

α2
2 ,

(1)

where α1 and α2 are the volume fractions of the respective
components. Other composite materials with a variable
contrast ratio between components can be studied in similar
ways. For example, the compressibility of some materials can
be temperature dependent, so the overall compressibility of a
composite in which one of the components has this property
can be studied over a range of h by varying the temperature.

It is shown in [15] that these experimental results are a
feature of microstructural electrical networks, by comparison
with network simulations, as outlined in the next section. It
has been noted that these power-law dispersions are emergent
phenomena characteristic of any system that is effectively a
complex binary random network [11, 14]. As mentioned in
the previous section, the power-law region (PLER) is found in
all studies on finite systems to be bounded at high and low h

by limits determined by percolation paths within the material.
Outside the PLER Y varies from one random realization to
another and is proportional to either Y1 or Y2, depending on
whether a percolation path exists for the respective component.

2.1. Modelling microstructures

Many different approaches exist to model the conductivity of
complex composites. The simplest of these is the largely
empirical Lichtenecker law (cf equation (1)). There are
also analytical approaches such as the effective medium
and Bergman–Milton theories [2, 18–20]. Since the advent

of modern computing and the ability to solve systems
algorithmically using numerical methods, new approaches
to studying complex materials have been developed. In
the case of conductor–dielectric mixtures, large electrical
circuit representations can be used, replacing the constituent
conducting and dielectric parts with a network of resistors and
capacitors, respectively1. For a binary disordered mixture, the
different components can be assigned randomly to bonds on a
lattice [21]. In most previous studies a 2D square lattice has
been used, with bonds assigned randomly as either C or R,
with probability p, 1 − p, respectively (for examples see later
figures). This approach is closely related to percolation models
and a large review of this and binary disordered networks can
be found in [20].

There are many advantages of using RC network
representations of these types of system. Particularly, widely
available circuit simulation software can be used, which
makes use of the available efficient sparse-matrix techniques in
solving the equations of the system. Additionally, for bounded
2D square-lattice networks, equivalence transformations can
be used to efficiently solve the system by taking advantage
of the structure using the circuit analysis methods originally
devised by Frank and Lobb [14, 22]. These techniques
were used in various studies to show that the PLER exists
in any binary random network with variable contrast ratio
[11–13, 16, 21]. This indicates that the universal dielectric
response found experimentally is a feature deriving from the
random nature of the microstructure rather than from any ‘new
physics’ at the microscopic level. These circuit representations
also imply that the logarithmic mixing law of equation (1) can
be derived from the standard equivalence rules:

Y ν =
N∑

k=1

αkY
ν
k (2)

with ν = 1, −1 for parallel or series components, respectively;
where Y is the admittance and αk is the proportion of the kth
component. Following the derivation in [21], we take ν → 0
and use the approximation Y ν → 1 + ν log Y to transform
equation (2) into equation (1).

These methods have been useful in explaining the
experimentally observed behaviour; however, the validity of
results from numerical models can depend on the accuracy
of the assumptions upon which they rest. It has largely
been presumed that randomly assigning components to bonds
on a lattice using a Bernoulli (p, 1 − p) distribution results
in behaviour equivalent to that produced by microstructural
disorder in the real physical systems. Thus, questions remain
regarding the extent of the validity of this approach, as the
behaviour of the system may depend on the type and scale
of the disorder at the microstructural level, and the nature
of the mixing. If structure is important, a further question
arises as to the degree of refinement needed to sufficiently
simulate the smallest scale structures. This is also important
because in cases where small-scale structures are represented

1 Resistor–resistor networks can also be used, by holding σR1 constant and
varying σR2.
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Figure 2. Histograms showing the conductive responses of 100 random realizations of 50 × 50 node random networks with 60% R (1 k�)
and 40% C with (a) fixed-values of 1 nF and (b) normally distributed C values (1 nF ± 0.333). The PLER can be seen, bounded by
percolation and saturation limits at low and high frequencies.

it is necessary to use larger networks to simulate to a higher
resolution, which consumes more computing time.

Therefore, here we study the effect on the PLER of both
changing the distribution of the respective inclusions and of
simulating more ‘realistic’ microstructures on different scales.
The methods used are essentially the same as in [12, 13];
using freely available SPICE based circuit simulation software,
which takes advantage of sparse-matrix techniques to solve
the linear equations obtained using Kirchhoff’s relations. It
is shown that the main qualitative features of the results are
largely insensitive to such considerations. So long as the
network is of sufficient size to ensure a uniform mixture
(�20 × 20 nodes), the response of the system is robust to the
exact details of the microstructural disorder. These results are
consistent with studies on many complex systems, which can
display the striking feature of universality, whereby the results
are largely independent of the exact details of the system, so
long as the correct essential features are represented by the
model. An exception to this robust behaviour is found when
significant anisotropy is introduced to microstructures in the
system, significantly affecting the percolation probabilities.
It will be seen that, in these cases, where the geometry
of the microstructures begins to resemble series bands of
components either parallel or perpendicular to the applied
field when the anisotropy is in the respective directions, the
power-law behaviour is lost, but can be found strikingly as the
geometric mean of the two cases; giving validation to the use
of equation (2).

3. Results

3.1. Modelling different distributions

We start by investigating the effect of changing the binary
distribution of components assigned to the network. This
is achieved by replacing the single values of the capacitive
elements with a distribution of values, as in real materials
individual responses of the dielectric inclusions would not all
be identical. Values were assigned randomly from various
probability distributions, including uniform and Gaussian. A
comparison is shown in figure 2, where the magnitude of the
complex impedance of the network |Y | is plotted against the
angular frequency ω, on a log scale. Both plots are histograms
over 100 random realizations of circuits with 40% capacitors

and 60% resistors on a 50×50 node square lattice. The network
response is shown between cases where (a) all capacitors have
the same value of 1 nF and (b) values are normally distributed
about 1 nF with a standard deviation of 0.333 nF. In all cases
the resistors have a fixed value of 1 k� and the frequency is
varied from f = 1 Hz to f = 10 GHz, where ω = 2πf . Note
that the critical angular frequency is 106 rad s−1, at which the
capacitors individually have the same magnitude of impedance
as the resistors. The percolation and saturation limits at high
and low ω, where the admittance is constant, can be seen
clearly. The PLER consists of tightly bound paths in the region
104 � ω � 108, where the results are largely independent of
the microstructural details of the realization and have slope
α = 0.4, equal to the proportion of capacitors p in the
networks.

It can be seen from these results that the behaviour is robust
to the extra disorder included in the capacitive elements. In
particular, the PLER appears not to be significantly disturbed,
exhibiting the same features such as power response and range.
This robustness was found generally, no matter which type of
distribution was used for the spread of values of the elements
in the network.

3.2. Varying correlation lengths

The next part of this investigation looks at the effect of
modelling realistic microstructures in the simulations in order
to test the reliability of models used in previous studies. In
such models there was no attempt to represent any physically
realistic features at the mesoscopic level, relying instead on
the inherent randomness of the allocation of resistors and
capacitors to form structures within the simulated material.

The simulated microstructures here were generated from
Gaussian random fields [23]; in which the variables in space are
governed by probability density functions. In this way sites in
the network have a higher probability of being similar to their
neighbours, up to some correlation length; imposing a spatial
structure on the network. In the following cases a spherical
correlation function was used with a defined correlation length,
as given in [23].

The fields generated in this way can then be thresholded
at the required occupation probability to give a binary image
with different proportion of components and have a specified
correlation length, defining an average imposed size on the
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(a) (b)
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Figure 3. Examples of networks generated to resemble random microstructures, each with 50 : 50 mixture of components. In the first three
subfigures the correlation length is set to 5% of network size S (components along an edge): (a) S = 20, (b) S = 40, (c) S = 100. In (d) the
correlation length is 10% of the network size S = 40. Note that the total number of components N = S2 + (S − 1)2.

structures. The networks thus obtained have microstructural
features qualitatively similar to those seen in real materials.
Examples of networks obtained using this technique are
shown in figure 3, demonstrating different correlation lengths
and network sizes, which correspond to different resolution
simulations. A 50 : 50 mixture of components is used for
the examples shown in figures 3 and 4. Parts (a)–(c) show
examples where the correlation length is set to 5% of the length
along one edge of the network, defined as the network size S,
which is assigned the values S = 20, 40 and 100, respectively,
in the three subfigures. The total number of components in
the networks is N = S2 + (S − 1)2, including both horizontal
and vertical components. Part (d) of figures 3 and 4 has a
correlation length of 10% of S, where S = 40 for comparison
with (b).

In this way we can compare simulations with different
resolutions with respect to a fixed correlation length by
looking at (a)–(c), as well as see the effect of varying the
correlation length by itself by comparing (b) and (d). It
can be seen immediately that the qualitative features of the
plots remain unchanged. The central PLER region has slope
α = 0.5 on a log scale and extends over several orders of
magnitude in ω. Beyond the limits of the PLER the response
is dominated by percolation effects and is either constant or
directly proportional to the frequency depending on whether
there is a resistive or capacitive percolation path. This is true
despite there being an imposed correlation length for clusters
due to the fact that, as the 50% threshold is approached, clusters

in the embedded phase become more dense and join up to make
larger clusters, resulting in a transition at 50% where it becomes
the matrix phase.

Quantitatively there are some small differences in the
response. Particularly the exact extent of the PLER is
affected, giving slightly different mean values for the upper
and lower limits. This can be seen upon considering the
increasing resolution, represented by increasing network size
in figures 4(a)–(c), whereby the extent of the PLER increases
with increasing N . This could have consequences when
simulating real materials, where the grains tend to aggregate
into structures similar to those used in these simulations.
However, the similarity between subfigures (a) and (d) is
also striking. In the first case a coarse network with small
correlation length is used, whereas both the correlation length
and the network size have been doubled in the second. This
indicates that low-resolution simulations, which do not include
arbitrarily fine-scale detail may be useful, so long as the
random spread of structure sizes is comparable to those in
the real physical samples, with the smallest structures in the
model representing the smallest grains in the sample.

3.3. The effect of anisotropy

In real materials the microstructures may not be completely
isotropic, so the effect of anisotropy on the results is studied in
this section. Figure 5 shows two example RC networks with
different correlation lengths along the directions perpendicular
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Figure 4. Histograms of admittances corresponding to the example networks shown in figure 3, using a 50 : 50 mixture of components. In
(a)–(c) the correlation length (corresponding to structure sizes) is 5% of the network size S = 20, S = 40 and S = 100, respectively, and in
(d) the correlation length is 10% of S = 40.

(a) (b)

Figure 5. Size 100 × 100 node networks representing anisotropic structures, with the direction of longer correlation length running (a)
perpendicular and (b) parallel to the direction of the applied field. A 10 : 1 ratio of correlation lengths was used for these example figures. It
can be seen that the systems tend towards circuits with components arranged purely in parallel/series.

and parallel to the applied field. As the ratio of stretching
becomes very large, the two cases of where the longest
correlation axis is (a) perpendicular and (b) parallel to the
applied field approximate a system where bands of parallel
resistors and capacitors are either in series or parallel with this
field.

The resulting admittances and phases in cases where the
proportion of capacitors p = 0.4 are shown in figures 6(a) and
(b) for perpendicular and parallel banding, respectively, where
the ratio of long and short axes is 10 : 1. The networks were
again derived from a Gaussian random field, stretched in the
required direction and applied to 100 × 100 node networks
(N = 19801 components). The value of p = 0.4 was
chosen for (a)–(c) to show how the essential features of the
now familiar response curve are distorted by the introduction
of anisotropy into the system. It can be clearly seen that in

these cases the power law is lost, with the curves tending
towards those expected for the ideal cases of perpendicular
and parallel bands of resistors and capacitors. However, the
central region is still tightly bound and independent of the
exact microstructural details of the realizations. In addition,
a great deal of symmetry can be seen between the two cases
when looking at both the admittances and the phase angles (φ)
between the complex voltages at the terminals.

A remarkable result is obtained when taking the geometric
mean of the admittances of parallel and perpendicular
realizations (

√|Y |‖|Y |⊥). When this is performed, as shown
in subfigure (c), the PLER is recovered and can be seen to exist
over a considerably wide range in ω. Very similar results are
obtained for other values of p, the most striking being when
p = 0.5; the critical percolation threshold for a 2D binary
network. Here the combined admittance forms an almost
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Figure 6. Responses of 100 × 100 node networks with microstructures scaled anisotropically perpendicular and parallel to the applied field
are shown in (a) and (b), respectively. In each case the long axis has a correlation length 10 times that of the short, with a mix of 40%
capacitors and 60% resistors. The geometric mean of the admittances of the two orientations of each realization was taken to produce the
histograms in (c), showing how the PLER can be obtained in this way. Figure (d) shows the same, but for a 50 : 50 mix of components.

perfect power law (figure 6(d)), stretching from near zero to
very high values of ω, as would be expected for a random
network at p = 0.5 where N → ∞.

It can be seen (figures 5(a) and (b)) that in the limit
where the ratio of long to short axes is very large, the systems
asymptote towards the Wiener limits, which are equivalent
circuits of components purely in parallel/series and are used to
give the lower/upper bulk conductivity bounds. Therefore, the
results presented in figure 6 provide strong evidence that the
effective conductivity of a composite network is given by the
geometric mean of the parallel and series equivalent circuits,
allowing for the existence or absence of a dc conducting path
through the medium; giving validation to equation (2).

4. Discussion

In this paper we have addressed many of the outstanding
concerns regarding the assumptions made when using network
models to simulate the universal dielectric response found in
composite materials. The robustness of the PLER of random
electrical networks with bimodal distributions of components
has been studied in detail. This was carried out in order
to evaluate the usefulness of such models in simulating real
composite materials with microstructural disorder. In real
materials we may not know the details of the microstructures,
so it is important to know the relevance of such knowledge
and how it impacts on the reliability of our numerical models.
To deal with this, the effect of imposed microstructures was
investigated, looking at both the size of structures and the
network size. It was shown that the exact microstructural
details may be reasonably omitted, so long as we take care
that the general features of the structures, such as their relative
smallest and largest scales, are represented. Therefore, effort

and computing time may be saved by taking account of these
findings. Such network representations also have applications
beyond electrical conduction; having relevance to systems in
mechanical systems amongst others [11], thus giving wider
validity to these results outside of dielectrics.

It was also shown that the inclusion of anisotropy in
the directions parallel and perpendicular to the applied field
alters the bulk response of the system, destroying the power
law while at the same time retaining the robustness to the
exact details of each random realization. In these cases the
network responses were found to tend towards what would
be expected for purely parallel and series components (cf the
Wiener limits). This reveals that it is possible to further
tailor the response of complex materials by including such
features at the microstructural level. Remarkably, the power
law can be obtained by taking the square root of the product
of the two cases, indicating that the bulk response of such
systems is given by the geometric mean of the parallel and
series equivalent circuits. This additionally validates using
the logarithmic mixing rule to model the universal dielectric
response in composite materials.

A final point to note is that in the majority of studies
on network representations of this kind of system two-
dimensional grids have been used. While these models have
the advantage of making the computational implementation
easier to handle, some may doubt the extent of their validity,
given that real materials are usually three-dimensional and
many critical theoretical quantities and results are sensitive
to the dimension of the system. For example the critical
probability for bond percolation is pc = 0.5 only on two-
dimensional square lattices; on a 3D cubic lattice pc ≈ 0.249
[24]. In work previously published by our group [16], results
were shown for simulations of conduction using finite element
methods to investigate a 20 × 20 × 20 element composite with
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a 50% mix of each component. The qualitative features were
as we would expect given the results of the 2D calculations and
knowledge of the properties of 3D lattice percolation networks,
with percolation in both components and the appropriate limits
to the observed PLER. Given the much longer computing
times needed to simulate in higher dimensions, it is therefore
reasonable to use more amenable 2D representations when
investigating complex composite materials, so long as we
account for the discriminating features of each approach.
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