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Abstract  

This paper presents results from modelling work investigating the effects of social 

networks on the adoption of energy technologies in the domestic sector. This work 

concerns ideas on social network interventions which have been successfully applied in 

other domains but which have seldom been applied to energy policy questions. We 

employ a dynamical multi-parameter network model where households are represented 

as nodes on a network for which the uptake of technologies is influenced by both 

personal benefit and social influences. This is applied to demonstrate the usefulness of 
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this type of model in assessing the likely success of different roll-out strategies that a 

local authority could pursue in promoting the uptake of domestic energy technologies. 

Local authorities can play a key role in the retrofit of energy-efficiency and low-carbon 

energy-generation technologies in order to realise carbon reductions and alleviate fuel 

poverty. Scenarios are modelled for different local authority interventions that target 

network interactions and uptake threshold effects, and the results provide insights for 

policy. The potential for the use of this type of modelling in understanding the adoption 

of energy innovations in the domestic sector and designing local-level interventions is 

demonstrated. 

Keywords: Modelling, local authorities, domestic sector retrofit, social networks, 

residential, energy efficiency 
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 1. Introduction 

Much recent work in complex systems theory has highlighted the role of social 

networks in influencing individual behaviours (Barabási, 2003). However, the 

implications of these ideas have not been fully exploited in the context of the adoption 

of domestic energy technologies and energy-demand-reducing behaviours. In a recent 

review paper, Wilson and Dowlatabadi (2007) call for integrated approaches to 

modelling domestic energy decision-making that better characterise heterogeneity and 

can be used to help design interventions aimed at influencing behaviours. Models based 

on individual behaviour tend to assume rational choice or reflect only individual 

psychological motivations (Nye et al., 2010), whereas approaches that address the social 

context of decision-making tend to be more qualitative (Shove, 1998). In response to 

this need, we have conducted new interdisciplinary modelling work to demonstrate the 

value of a quantitative approach combining personal and social motivation factors.  

We present results from a simulation of energy-innovation diffusion on a social 

network, employing real-world data. In the model, households are represented as 

dynamical nodes (connection points) on a network who choose whether or not to adopt 

an energy technology (or energy-efficiency measure) depending on both personal 

benefit and social influences. (For simplicity, we treat the household as a single decision 

maker, though in reality, people within the household may vary according to individual 

personal and social benefit.) Building on our previous work exploring the general 

mathematical features of a simpler version of this model (Bale et al., 2013b; McCullen 

et al., 2013), the present work develops the model to the point where it can be used to 

compare potential roll-out strategies available to a local authority aiming to increase 

uptake of energy technologies in the domestic sector. We examine interventions using 
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social networks to promote adoption (‘network interventions’) and also those reducing 

barrier(s) to adoption (‘threshold interventions’). This provides preliminary insights for 

policy design and highlights the potential for further work. 

The objectives of the paper are to: 

1. evaluate the potential for applying social network theories to energy 

policy using a network model for the adoption of energy technologies in the 

domestic sector; 

2.  apply the model to explore different strategies that could be 

implemented by a local authority; 

3. identify those interventions that are likely to lead to the highest uptake, 

providing insight for policy implementation; 

4. inform data gathering to enable refinement of this type of model to make 

it useful as a decision support tool for local authorities. 

In section 2, we discuss the empirical challenges that we aim to address and the 

theoretical approaches on which we draw. In section 3, we discuss the methodology of 

the modelling work, including the data used, assumptions, and related limitations. We 

then, in section 4, discuss the results from modelling different interventions that a local 

authority could take. In section 5, we discuss the insights for local-level policy based on 

the outputs from the model and areas for further research.  
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2. Empirical challenges and theoretical approaches 

2.1 Local authority decision-making 

Local authorities have a significant role to play in the adoption of technologies that 

reduce domestic energy consumption. This role can be either direct, through the 

provision of free installation programmes (e.g. Wrap Up Leeds (Leeds City Council and 

Yorkshire Energy Services, 2012)), or indirect, through energy advice services (e.g. 

Actio2n Woking (Woking Borough Council, 2012)). Often, initiatives are tailored in an 

ad hoc manner to suit a given funding scheme, and are limited by available finance 

(Bale et al., 2012b). Nonetheless, local authorities still have to make choices as to how 

best to engage with residents on any given initiative. For a simple intervention such as 

offering free or reduced-cost insulation, local authorities can choose from a range of 

roll-out strategies, each of which may deliver different adoption rates. This suggests that 

local authorities need tools in order to be able to assess which strategies would be most 

successful. 

Local authority initiatives (both in the UK and elsewhere) aimed at installing domestic 

energy-efficiency measures represent a significant opportunity for achieving carbon 

reductions in line with national targets (Comodi et al., 2012; Hoppe et al., 2011; 

Sheldrick, 1985). Large-scale retrofit of energy-efficiency and renewable and low-

carbon generation technologies in domestic properties (together termed ‘domestic 

energy technologies’) will be required in order to meet the UK’s legally-binding target 

of reducing greenhouse gas emissions of 80% by 2050 (compared with 1990 levels) 

(Great Britain, 2008). In addition, energy-efficiency measures can provide benefits to 
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local residents by tackling fuel poverty and improving health and wellbeing (Clinch and 

Healy, 2001). 

Insulation levels in domestic properties in Great Britain present one opportunity for 

improvement; it is estimated that, at the start of January 2012, only 60% of homes with 

lofts had loft insulation of at least 125mm and 59% of homes with cavity walls had 

cavity wall insulation, while only 2% of homes with solid walls had solid wall 

insulation (Department of Energy and Climate Change, 2012). Local authorities have a 

unique role to play in encouraging adoption of energy-efficient measures in the both the 

social and private domestic sectors (Committee on Climate Change, 2012) as they are 

both a trusted source of information (which energy companies tend not to be (Bale et 

al., 2013a)) and have local knowledge of the needs of their residents and communities 

(which central government does not). In this paper, we examine how local authorities 

may be able to maximise this influence by harnessing or enhancing existing social 

networks to promote adoption of domestic energy technologies such as insulation or 

photovoltaic (PV) panels.  

2.2 Social networks 

The importance of social network influences on behaviour is well recognized outside of 

the energy policy domain, and network interventions can be used to accelerate 

behaviour change (Valente, 2012). In this paper, we define network interventions as 

purposeful efforts to use social networks to accelerate the increase of adoption of energy 

technologies in domestic properties. By ‘social network’, we refer to all inter-household 

interactions that are relevant to energy either face-to-face or online (although the latter 
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currently account for only a small proportion of actual total interactions (King, 2012; 

Southwell et al., 2012)). 

Network interventions have been used successfully for tackling health-related issues 

(Valente, 2010), and much theoretical work exists on various diffusion processes on 

networks (Watts, 2002). Yet the insights from social network theory have so far been 

under-exploited in the area of energy policy. The role of social networks and network 

interventions in the spread of information on energy technologies and behaviours, and 

the subsequent adoption rates of both, is a relatively new area for research. There are 

some early examples of such ideas in the literature e.g. Coltrane et al. (1986), Darley 

and Beniger (1981), and, in relation to climate change, Maibach et al. (2008). In 

addition, there has been some recent empirical work on the role of social networks in 

the diffusion of energy innovations (Fell et al., 2009; McMichael and Shipworth, 2013; 

Michelsen and Madlener, 2013). 

2.3 Modelling diffusion of innovations on a network 

Diffusion of innovations (Rogers, 1983) is a social communication process that 

influences individual adoption of a specific innovation. The theory has been applied in 

the context of domestic energy consumption (Wilson and Dowlatabadi, 2007). The 

spread of ideas or technologies has been widely studied across different domains as 

diffusion on networks (Valente, 2005). One of the most commonly studied network 

diffusion processes is the spread of infection by a single contact where transmission 

occurs from one individual to another, but, for a consumer product (or behaviour) to 

spread, empirical studies show that many people wait for a proportion of their social 

group to precede them in the process (Granovetter and Soong, 1983; Valente, 1996). 
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Threshold models have been developed to account for this phenomenon (Grönlund and 

Holme, 2005; Watts, 2002). Diffusion models usually consider only the social aspects 

of spreading, which is appropriate in many cases. However, the decision to adopt a 

technology may be based on a combination of factors, including ability to install/use the 

technology and the willingness to purchase, which will not only include personal 

considerations but also social influence from peers and the wider population. Modelling 

therefore needs to take into account these multiple factors: ability to adopt, personal 

usefulness of the item (as perceived by the householder), and the benefits of aligning 

with the social norm (Deffuant et al., 2005; Delre et al., 2010; Valente, 1996). In this 

work we include both personal and social aspects of diffusion in the model.  

Mathematical network models can be constructed to reproduce features found on real-

world networks (Castellano et al., 2009). Such features include the small-world effect 

(Watts and Strogatz, 1998) and scale-free degree distributions (Barabási, 2003). In the 

real-world, people often share common groups of friends, where a friend of a friend is 

also a friend. This is known as clustering (or transitivity) and is found to play a 

significant role in the dynamics of diffusion on such models (McCullen et al., 2013). 

However, often the clustering is not uniform across the whole network, with individuals 

being part of groups or communities within which links are denser between individuals 

than with the outside world. More realistic network models have been constructed that 

take this feature into account by linking individuals by associating them through group 

interactions (Newman, 2003). We use a variation on this type of network model, with 

added individual links and geographical information (similar to Hamill and Gilbert 

(2009)). This has the potential to be parameterized using real-world data; the method is 

described in more detail in the Section 3. 
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2.4 Network data  

Although there has been a considerable amount of research and analysis of social 

network structures, this has mainly been conducted for networks for which the data is 

relatively easy to obtain, such as either moderately small systems or online social 

networks. There is limited empirical data available on the networks that may operate 

between households in relation to energy technologies or behaviours, and this remains a 

challenge for modelling the influence of social networks on the adoption of energy 

innovations. Information is needed on the following aspects of the system: 

 The structure of the network — Who do people exchange information 

with regarding domestic energy technologies? 

 The density of the networks — How many others do people 

communicate with about energy? 

 The weight of the links on the networks — What influence do certain 

links to individuals or groups have on adoption decisions? 

In section 3.2.1 we discuss our approach to the inclusion of empirical data, where 

available, and the assumptions that we have made in the absence of appropriate 

information. A more detailed discussion of the data requirements for this type of 

modelling can be found in Bale et al.(2013b). 

By its nature, diffusion on networks is intrinsically very sensitive to the structure and 

properties of the network. In an urban area the true structure of the social network 

cannot be known exactly (and will ceaselessly change over longer time-scales), and the 

factors affecting individual decision-making are complex and varied. Given these 
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limitations, methods are required which can assess the most probable outcome of an 

intervention by means of simulation and scenario analysis over a range of possibilities 

rather than by means of predictive tools. This is common practice in other disciplines, 

where models are very sensitive to details and ensembles are used to derive useful 

insights (Stephens et al., 2012). 

2.5 Approach to application of the model in policy-making 

Adapting a general complexity policy-making approach proposed by Room (2011), we 

follow the following process: 

 Identify the stakeholders and their relationships: we consider households and 

those wishing to influence them. 

 Use real-world data to map out the connectivity between the various elements of 

the system (in these cases between households), as well as the options open to 

policy-makers, and use these to build a conceptual model which will guide the 

network and dynamical models. 

 Modify the system parameters to re-shape the outcomes: we change the 

parameters of the model in ways that relate to real-world interventions in order 

to study the resulting variation in uptake. 

 Use mathematical and computational models to help to identify the range of 

possible scenarios and outcomes. This is done not to forecast the future but to 

guide and inform as to which interventions might provide more leverage.  
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 Identify areas of the model parameter space which give rise to large sudden 

changes, as these can indicate instabilities in either the model or the real-world 

system.  

 

3. Methodology 

In previous work we developed the mathematical basis of a model (McCullen et al., 

2013) to analyse how the diffusion of innovations depends on personal and social 

factors. The present paper focuses on developing this model to incorporate the means to 

explore roll-out strategy scenarios as required for application to local authorities. We 

first summarise, in section 3.1, our previous work on the main features of the approach 

and the mathematical basis for the model. Section 3.2 and onwards then describes the 

novel development and methodology used for the present work. 

3.1 Summary of modelling approach — previous work 

In the model, households are represented as nodes on a network, with the links between 

the nodes representing lines of communication between householders, for example 

between individual households or at workplaces or other group environments. In 

McCullen et al. (2012) all nodes were homogeneous in their parameters, making the 

model amenable to mathematical analysis. In Bale et al. (2013b) we discussed how the 

model could be developed to include empirical data, and reported on the effects of 

introducing heterogeneous nodes representing different household archetypes into the 

network. 
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The nodes on the network are each assigned a binary variable representing the current 

adoption state of the household they represent, xi = 0 or 1 for non-adoption or adoption, 

respectively. The number and pattern of adopters changes at each time-step (which for 

illustrative purposes we take to represent one month) according to the following rules. 

The total perceived usefulness or utility of a product to a household is a combination of 

factors, broadly divided into personal and social benefit (Delre et al., 2010). Personal 

benefit pi is a measure of the perceived benefit of acquiring the technology to the 

household. This could include factors such as cost savings, comfort gains, alignment 

with pro-environmental attitudes and interest in new technology. Total social benefit is 

the utility derived from the perceived benefit of fitting in with others, which can be 

divided into two parts: the influence from a household’s personal social links (peer-

group) and the influence from society in general (population) (Valente, 1996). The 

relative contribution of personal and social benefit for different households is an 

empirical question. The model we have developed thus has three factors, which can be 

given relative weightings i, i and i, (with i + i + i = 1), to account for different 

preferences of the household. The parameter i is the weighting given to the perceived 

personal benefit to the household pi, i is the weighting given to the perceived benefit 

gained from following the influence of adopters within the household’s social network 

neighbourhood si, and i is the weighting given to m, the average uptake over the entire 

population, which represents the perceived benefit of aligning with the mainstream 

social norm. Different household types will weight these factors differently; we are able 

to introduce different archetype groups to reflect this. The total utility to each household 

at any one time is therefore given by the equation: 

ui = i pi + i si + i m  (1) 
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where si is the mean average level of uptake amongst the network neighbours of 

household i (which can be weighted by the strength of communication from each 

neighbour (the link weight)), and m is the weighted mean uptake for the whole 

population. Both si and m are recalculated at every time-step. The initial state for all 

households is chosen to represent the proportion of the households who have adopted 

the technology at the start of the period in question. The decision to adopt a technology 

is determined at each time-step if the perceived total utility to the household outweighs 

the barriers to adoption, seen as a combined threshold i, i.e. adoption occurs if ui > i,, 

and is a one-way process. 

The model was written in Python using NetworkX for the construction of the networks 

and Scientific Python (SciPy) for the dynamical time-stepping. Codes are available at 

http://sourceforge.net/projects/netdifmodel/. 

3.2 Development of the model — the present research 

For the scenario analysis presented here, we base our model on the City of Leeds, where 

we conducted a survey to gather some of the data needed for the model. However, the 

insights are more broadly applicable to urban areas and could easily be modified to 

represent other areas. 

In these model runs, the average properties of the network are largely fixed (except for 

the exact locations of the links, which are randomized), in order to investigate a dense 

set of possible realities covered by the uncertainty in the network structure. We also 

investigate the effect of weighting all links to either 1 or 0.5 in order to represent 

different innovations (more details given in section 3.2.6).  
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We first summarise the main data collection process, and then discuss the approach to 

integrating data for the structure and properties of the network, the archetypes 

(parameter distributions for ,  and ) and the threshold () 

3.2.1. Data 

We have taken primary data from a survey we conducted of domestic households in the 

City of Leeds, and these data are intended to be sufficient to inform and illustrate the 

operation of the model rather than a definitive work on attitudes to energy use in the 

City of Leeds.  

To collect empirical data with which to populate the model, a survey of Leeds residents 

was undertaken in May–June 2011. Two convenience sampling methods were used to 

reach different segments of the population: 1) through an online collection method 

whereby participants were recruited by email and social media advertising via large 

organisations in Leeds (e.g. the university, council and other large employers) and 2) 

attending a twice-weekly drop-in centre for residents in the east Leeds area of 

Burmantofts to encourage participation in the survey by low-income households 

without access to the internet. Burmantofts is an area with a large proportion (> 50%) of 

council-owned homes and has a high score on a number of socio-economic deprivation 

indices (Office for National Statistics, 2011). The questionnaire sought information on 

attitude and behaviours with regard to energy use in the home as well as demographic 

information (including income level, employment status, and geographic area). A series 

of questions was also asked about the respondent’s social network, current sources of 

information about energy, and likely organisations that they would trust to provide 

energy advice. In total, 1068 valid responses were received, which represents 0.34% of 
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the total number of households in the metropolitan district of Leeds. The sample was 

found to be broadly representative of the population in terms of tenancy, house type and 

pro-environmental behaviour (as benchmarked to the Defra Survey of pro-

environmental behaviours (Thornton, 2009)). However, the difficulties in reaching 

certain sectors of the population resulted in under-sampling of the unemployed, the 

retired and those on lower incomes. SPSS was used to analyse the questionnaire data. 

Figure 1 shows the key data that were used to develop the network representation.  

 

Figure 1: Responses (valid percentage, excluding missing values 3–7 %) to the question 

‘Do you currently talk to any of the following people about energy use and/or saving 

money on energy?’ from 1068 households in Leeds. 

Our survey showed that around 40–50% of people discuss energy use issues with 

family, friends or work colleagues, whereas only 10–20% talk about energy use to 

neighbours or members of other social groups to which they belong. These results are 

comparable with those reported by Southwell et al., (2012) who found that one third of 

a sample of people in the US reported sharing information about energy use. 

Importantly, they also found that, of those households, 85% shared information verbally 
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and only 3% reported sharing through online social networking sites. These findings 

suggest that, although sharing energy information is not nearly ubiquitous, there is a 

significant proportion of the population that can be targeted by the local authority and 

their existing social networks utilised. 

It was not possible to ascertain the relative weight that people assigned to the views of 

others in their social network or the wider population, without undertaking a more in-

depth survey. For all model runs, pi, the personal benefit of the innovation to the 

household, is set to 0.5 for all nodes. Through the modelling, we investigate how the 

decision to adopt depends on the relative weighting of this personal benefit and the 

social benefits derived from others adopting, relative to that household’s uptake 

threshold value.  

3.2.2 Network 

We gathered information on the network links related to energy information that exist in 

the City of Leeds. Using information from questions in the survey of 1068 respondents, 

we developed a social network relating to the sharing of information on energy between 

households. In the network, each node representing a household shares information with 

other nodes in the network with which it has individual, group or workplace links, as 

shown in table 1. Suggested types of group were given in the questionnaire to aid 

understanding (although the type is not important for the modelling): 

community/volunteer groups, religious meeting places, social groups, sports groups, 

groups related to children’s activities or other. The option of ‘none’ was also available. 

If respondents reported talking to friends, family and/or neighbours about energy they 

were assigned 5, 3 and 2 (or combinations thereof, up to a maximum of 10) links to 
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other nodes, respectively. It was not feasible in a questionnaire format to ask 

respondents to keep track of and report the number of these links, so these are arbitrary 

values for each category. If the respondent reported talking to groups about energy, then 

that household was associated with their reported number of groups. Workplace links 

were assigned if the respondent was employed and reported talking to colleagues about 

energy. From 1068 responses it was found that 756 households reported talking about 

energy-related issues to at least one other individual household, group (local) or 

workplace (long distance). The remaining 312 households are represented as nodes that 

are unconnected to the network but are able to adopt if seeded, or if their combination of 

personal benefit and the influence of the total population exceeds their threshold value. 

Table 1 – Number of households with various links on the network. 

Active Individual Links Active Group Links Active Workplace Links 

# of 

Links 

# of 

Nodes 

% of 

Nodes 

# of 

Links 

# of 

Nodes 

% of 

Nodes 

# of 

Links 

# of 

Nodes 

% of 

Nodes 

0 394 37 0 948 89 0 588 55 

1 0 0 1 50 5 1 480 45 

2 24 2 2 40 4    

3 90 8 3 25 2    

4 0 0 4 3 0    

5 192 18 5 2 0    

7 42 4       

8 247 23       

10 79 7       

 

The construction of a model network based on association with groups (as well as 

individually) is shown in figure 2.  
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 (a)      (b) 

 

 (c)      (d) 

 

Figure 2: Building a network to include groups association (a) each node is associated 

with others as part of association with various groups or individually, (b) the red dots 

show locations (based on the 476 lower level super output areas (LLSOA) in Leeds) for 

households and the larger green dots for theoretical group locations (based on the 108 

middle layer super output areas (MLSOA), (c) household nodes are associated with 

local groups, (d) links are formed to five of the other households with whom they share 

group membership. Further stages in the process involve forming links through 

workplaces (in a similar manner to local groups) and individual links. Some nodes are 

present but remain unconnected on the network, representing those households that do 

not talk to any other household or group about energy.  
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3.2.3 Archetypes 

The archetypes in the model refer to the segments of the population with different 

preferences with regard to the weighting of factors p, s and m; that is, we define a 

particular (j) archetype Aj=(j, j, j). None of the interventions we investigate in the 

present work change the number and/or types of archetypes; instead the interventions 

are aimed at altering the network, threshold, or both. This translates to the interpretation 

that in the real world it would be very difficult for a local authority to alter individual 

household preferences as to whether decisions are led by personal or social (peer or 

population norm) benefit. We do, however, set the archetypes to include heterogeneity 

in the population, as would be seen in the real world. Every run presented in this paper 

is set with three different archetypes: A1 = (0.7, 0.3, 0.0), A2=(0.4, 0.3, 0.3), A3=(0.1, 

0.1, 0.8), with proportions P(A1, A2, A3) = (0.3, 0.5, 0.2). This implies that, for half the 

population, personal, social and societal factors are all significant, whereas other parts 

of the population are more strongly personally oriented or strongly influenced by 

society. The values, for both the relative weighting in each archetype and the proportion 

of that archetype in the population, were chosen on the basis of where meaningful 

results arose in previous analytical work and in order to reflect what is known about the 

proportions of people who exhibit different behaviour in diffusion theory, e.g. early or 

late adopters (Rogers, 1983). From previous work (Bale et al., 2013b), we know that the 

proportion of different archetypes will make a significant change to the simulations. 

However, here we maintain the archetype groups in these proportions, as the aim of this 

work is to compare intervention scenarios for a set population. 
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3.2.4 Threshold 

In the model we introduce further heterogeneity by allocating different thresholds across 

the nodes, relating to households’ ability to adopt. The threshold categories and values 

are estimated as shown in table 2. The percentage of households (nodes) assigned to 

each category are based on household income, house type and tenancy using empirical 

data collected from the survey. We grouped households into threshold categories. Those 

living in flats, halls of residence, or in shared or rented accommodation are deemed 

unable to adopt, as they will typically not be able to change the physical fixtures and 

fittings. 

Table 2 – Threshold rules and number of nodes assigned to each value for N=1068 (1% 

missing values). The percentage of our sample with a threshold of =1 compares with 

41% in this category using data from the 2001 Census for the Leeds area (Office for 

National Statistics, 2001). 

Threshold 

Value () 

Rules for type and 

tenancy of household 

with threshold() 

Banding threshold 

level for those 

households that 

are able to adopt 

Percentage of 

population in 

model with 

threshold () 

 

0.25 (Low) Able to adopt 
House types: Detached; 

Semi-detached; Terrace. 

Tenancy: Owned 

outright; Buying with 

mortgage. 

High income band  

(> £40,000 pa) 

25 

0.45 (Mid) Middle income 

band (£40,000 < 

£20,000 pa) 

16 

0.75 (High) Low income band  

(< £20,000 pa) 

4 

1 Not able to adopt  
House types: Flat; Halls 

of residence; Other. 

Tenancy: Shared; Rented 

(Privately or from 

Council, HA etc.); Other. 

 52 

 

Given the personal utility value, pi = 0.5, that we adopt (see section 3.2.1), this implies 

that the adoption of the energy technologies will be personally beneficial to high- and 
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middle-income households, but not to low-income households or those unable to adopt 

(because, for example, they are in rented accommodation). Whether those households 

that are able to adopt actually do so will depend on the relative weighting of their 

personal, social and societal benefits.  

3.2.5 Estimates 

In the absence of complete data, we have had to make estimates in the model, as 

follows. For the network representation we assume that households have 5 friends, 3 

family links and 2 neighbours. If a household has a group or workplace link then we 

assume that the household has five active group contacts within that group. This gives 

the numbers shown in table 1. We assume values for p and the archetype groups. Once a 

household’s perceived utility exceeds the threshold they immediately become adopters 

at the next time-step. In reality, the time taken for making the decision and then 

completing the contracting and installation process could be considerably longer, but 

this would not change the basic operation of the model. We also assume that all 

decisions are made synchronously and at regular (monthly) intervals, which is 

computationally convenient but unrealistic in the real world. Although the proportions 

of households assigned to each threshold level are those defined by the survey data, the 

threshold values are assigned only to give meaningful results in the simulation, as there 

are no existing data to enable us to easily quantify these values. 

3.2.6 Simulation of policy scenarios 

For each simulation, a social network is created based on the above rules and 

assumptions, and an initial seeding chosen. The model is run for 36 time-steps. This was 

found to be enough to give a stable final configuration. For each initial network 
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configuration this is repeated for 100 random realisations to give an average final 

uptake. 

Having developed a network representation of the city based on empirical evidence 

(table 1 and figure 2), we simulated the different roll-out strategies that could be 

implemented by the local authority. We largely follow the framework of network 

interventions outlined by Valente (2012), informed by strategies that have been 

proposed, such as the Committee on Climate Change’s proposal that energy-efficiency 

measures be rolled-out in a street-by-street/neighbourhood approach (Committee on 

Climate Change, 2009). However, we also propose interventions that are aimed at the 

threshold (barrier to adoption) as opposed to altering the network itself. The different 

strategies are simulated by altering different parameters in the model and can have 

effects in the following ways: seeding different initial conditions for the households that 

already have the technology at the outset, or have it imposed on them at time-step 1; 

strengthening or adding the weights of the links on the network; or lowering the 

threshold value. The first two strategies are closely related to Valente’s categories 

segmentation and induction. The incentive and snowball strategies are informed by 

ideas from interventions that local authorities have implemented (Bale et al., 2013a) 

In addition to the baseline case (Do Nothing scenario), we investigated four different 

roll-out strategies: 

 Seeded: Free installation of the technology directly to a percentage of 

households (that are able to adopt ( <1)) randomly chosen on the network – 

modelled by increasing the initial seed to a range of 5 to 20% of households. 
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 Communities: Free installation of the technology directly to households that 

are connected via a number of (work or local) groups on the network – 

modelled by seeding all nodes (who are able to adopt ( <1)) of a given 

number of groups from 0 to 20, an attempt to induce a ‘critical mass’ for 

propagation by clustering effects (see McCullen et al.(2013)). 

 Incentive: A voucher is made available to all households on the network 

which lowers their threshold to adoption (if they are able to adopt) – 

modelled by decreasing the threshold for all households that are able to 

adopt ( <1).  

 Snowball: A recommend-a-friend voucher is given to each household that 

becomes an adopter (which gives them a reward for spreading the word). 

Each new adopter is assigned one extra link to another node on the network 

(at random) and the threshold to one, two or all of their linked households is 

lowered to represent the voucher incentive they can pass on to other 

households. 

In addition, this is implemented for two specific technology examples: (a) photo-voltaic 

(PV) panels and (b) loft insulation, which would have different social diffusion 

mechanisms representative of the different characteristics of the technologies. Strong 

peer effects have recently been identified in the diffusion of PV panels; Bollinger and 

Gillingham (2012) show that additional installation of PV panels increased the 

probability of adoption for homes in the same geographic area by a significant and 

observable degree. Bollinger and Gillingham propose that increasing the visibility of 

adoptions would be expected to increase the rate of adoption. In this modelling work the 
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set of archetypes remain the same (as do all other parameters in the given scenario) but 

in case (a) the technology is visible and therefore likely to have a higher social diffusion 

element compared to case (b), where the technology, once installed, is hidden from 

view. In case (b) the network links are weighted to 0.5, whereas in case (a) weighting 

remains at 1. The parameter values for all scenarios and both cases can be seen in Table 

3. Weighting all links by 0.5 is represented in the model by altering equation (1) to:  

 ui = i pi + 0.5i si + 0.5i m  (2) 

for case (b). 

Table 3 — Intervention scenarios and parameter values. The value for p = 0.5 is set the 

same for all runs. Each scenario is run for a set of archetypes A1 = (0.7,0.3,0.0), 

A2=(0.4,0.3,0.3), A3=(0.1,0.1,0.8), with proportions P(A1, A2, A3) = (0.3, 0.5, 0.2). For 

technology case (a), where innovation is more easily socially diffused (such as solar 

panels, as people tend to see and discuss these more), all links are weighted to 1; for 

technology case (b), for those that are not (e.g. insulation, where the intrinsic benefits 

are considered by potential adopters but the technology, once installed, is hidden from 

view), links are weighted to 0.5. 

Scenario Type of 

Intervention 

Example of 

possible action 

taken by LA to 

affect intervention 

Parameters 

Do Nothing 

(Fig 3 & 4) 

None. None. values assigned in table 

2 

Initial seed = 0 

Network = Baseline 

Seeded 
(Fig 5) 

Network: Target 

individual 

households on 

network.  

Free installation of 

the technology to a 

proportion of 

randomly selected 

households in the 

city. 

values assigned in table 

2 

Initial seed (m0) = 0.05–

0.20, randomly assigned 

Network = Baseline 

Communities 
(Fig 6) 

Network: Target 

households 

connected by a 

Free installation of 

the technology to a 

proportion of 

values assigned in table 

2 

Initial seeding (m0) for 0–
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group or 

community hub.  

households in the 

city who are 

connected to 

selected groups. 

20 groups, assigned via 

groups 

Network = Baseline 

Incentive 
(Fig 7) 

Threshold: Reduce 

threshold for 

random selection 

of households. 

Voucher to refund 

part of the cost of 

installation for all 

households in the 

city. 

 = values reduced by 0–

0.20 

Network = Baseline 

Snowball 

(Fig 8) 
Threshold and 

Network: One new 

link to another 

random node on 

the network is 

added to each new 

adopter. In 

addition the 

threshold is 

reduced for 1 

(single voucher 

scheme), 2 (two 

vouchers) or all 

(unlimited 

vouchers), of the 

adopters’ network 

neighbours. 

Money-back 

voucher(s) for new 

adopters which they 

pass to other 

households whose 

threshold is 

lowered. 

 reduced by 0–0.20 

for households that receive 

a voucher from a new 

adopter on the network. 

Network = Baseline + 

increased number of links 

on the network at each 

time-step.

 

The data used to populate the model show that a significant portion of the social 

interactions important to domestic energy-use behaviour are between households that 

are not physically adjacent, due to social interactions in other venues (e.g. the 

workplace) that affect behaviour at home (Thøgersen and Ölander, 2003). This was a 

typical feature of all of the strategies investigated. Hence, the “communities” strategy, 

for example, focuses on communities that are not necessarily geographic, but rather 

those that are work-based or social in nature.     
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4. Results 

In this section we discuss the results from the intervention scenarios modelled (table 3). 

4.2.1 Scenario analysis 

Model results are shown in Figure 3 for the baseline case where the local authority has 

taken no intervention. Note that maximum uptake is limited by the high proportion 

(50%) of households in this case who are unable to adopt (threshold value, 



 

Figure 3: Uptake over 36 time-steps on the baseline model with no initial seeding for 

cases (a, red) and (b, blue). The dashed lines give the average of all the runs. In case (a) 

links on the network are weighted to 1.0 and in (b) are 0.5. 100 runs are shown to assess 

the effect of the initial conditions.  

The uptake curves exhibited in figure 3 can be explained as follows. In the first month, 

uptake is entirely a consequence of adoption for those households for whom the 

weighted personal benefit to them exceeds their personal threshold (p > ). In the 

following months, those who are initially below the threshold begin to adopt as the 

social benefit from peer-group (s) and the wider population (m) come into effect. The 

higher level of uptake for case (a) compared to case (b) is a result of the social effect 
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being greater as the connection weighting is stronger (1.0 versus 0.5). This shows the 

effect of the greater visibility of the technology inducing social network propagation. 

There are two steady states found in case (a): one where the uptake ‘stagnates’ at around 

15% and one where uptake of nearly 30% is achieved. This is a particular feature of the 

sensitivity of networks, where cascading dynamics can depend strongly on the precise 

network structure. For these reasons we look at ensemble averages over 100 different 

realizations for the following results.  

‘Seeded’ and ‘communities’ scenarios 

Figure 4 shows the results from the ‘seeded’ scenario, where we represent the local 

authority giving the technology free of charge to a certain number of households. Nodes 

in the model are randomly seeded and are therefore assigned to the adopted state at the 

start of the model run. The model reveals that there is a certain range in the level of 

initial seeding, in which the total rate of adoption is greater than one-to-one with the 

level of investment. This level is seen at a lower level of seeding (m0) in case (a) than 

case (b). This effect gives rise to more adoption by propagation on the network than 

could be achieved by the seeding alone. This demonstrates how such network models 

can reveal non-intuitive results that would give the local authority a better return on 

investment (‘more bang for their buck’) and could be explored in more detail when 

designing interventions of this type. 
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Figure 4: Seeded scenario: Increasing the initial level of seeding (m0) randomly across 

the network. The average final uptake after 36 time-steps, over 100 realizations, is 

shown for case (a; red squares) and case (b; blue dots); the lines show the 1:1 ratio in 

rates of increase of seed level to final uptake.  

In figure 4, segments of the graph with a slope greater than the 1:1 line indicate levels 

where more adoption is induced through the network effects over and above the 

increase in seeding level alone. 

In figures 5 and 6, the ‘communities’ results are shown, where the seeded nodes are 

linked to a certain number of groups, either workplace groups (figure 5) or social groups 

(figure 6), instead of being assigned randomly across the network.  
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Figure 5: Communities scenario – workplace group case: Results are shown for case (a; 

red squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio 

in the increase of seeding. A line is drawn in at 10% to allow comparison with the 

results in figure 4 and 6. There are 24 households assigned to each workplace and 0–10 

workplaces are seeded.  

 

Figure 6: Communities scenario – social group case: Results are shown for case (a; red 

squares) and case (b; blue dots); the lines show the 1:1 (seed level:final uptake) ratio in 

the increase of seeding.  

This is a scenario which, in theory, as a result of propagation via clusters, was expected 

to show a significant increase in uptake versus the randomly seeded scenario. However, 

as can be seen in figure 5, the model does not support this assumption. The results for 

the ‘communities’ scenario for seeding up to 10% are no better than in the ‘seeded’ 
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scenario, and higher levels of seeding do not result in any significant increase in final 

uptake. On closer consideration, we conclude that this is because there is no significant 

overlap between communities (seeded clusters), and thus even once each cluster is 

seeded there is no mechanism for adoption to propagate socially across the whole 

network and the results are therefore similar to those in the randomly seeded case. 

For the social group 'communities' case shown in figure 6, the uptake is much the same 

as in the workplace case, however more people are connected to, and talk with 

colleagues at, workplace, so there is potentially scope for increased peer reinforcement 

towards adoption.  

‘Incentives’ scenario 

Figure 7 shows the results from the intervention which aims to reduce the threshold to 

adoption rather than altering anything related to network properties.  

 

Figure 7: Incentives scenario: Results are shown for case (a; red squares) and case (b; 

blue dots). The thresholds are lowered by increasing amounts (except those with a 

threshold of 1, who cannot adopt, and remain unable to do so). 

In case 7(a), where there is a higher social spreading component (reflected by the 

connection weightings), a small decrease in threshold level significantly increases the 
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uptake of the technology at a critical value. This is the point at which the thresholds of 

members of one of the archetypes are reduced below the level of their utility required to 

induce social spreading, bringing final adoption up to the theoretical maximum. A 

larger decrease in the threshold levels is needed in case 7(b), as their utility is lower due 

to the reduced weighting on social aspects. In this latter case, several steps can be seen 

as increasingly more subgroups are enabled by their threshold crossing below their 

utility. 

‘Snowball’ scenario 

Results are shown in figure 8 for the snowball scenario intervention, where a link is 

added to nodes that have just adopted and thresholds reduced for their new network 

neighbour, two neighbours, or all of their neighbours. This is a simple model of a 

voucher scheme, which would encourage interaction by giving cash-back for the giver, 

and make the receiver more likely to listen by giving them an incentive (reducing their 

threshold). This can be seen to have a positive effect on uptake. For full comparison 

with the other scenarios, more data would be required on the effect on individual 

behaviour of such a voucher scheme. However, these results are a first attempt to model 

roll-out strategies based on network-based interventions, and can be seen to show 

potential gains in levels of adoption.  
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Figure 8: Snowball scenario: Results are shown for case (a; red squares) and case (b; 

blue dots). A new link is added to every adopting node to another node randomly 

selected in the network. In 1 (dotted lines) the newly connected node has the threshold 

parameter reduced by a set amount (single voucher scheme), in 2 (dashed lines) this 

happens for two network neighbours (two vouchers) of the adopting node, and in 3 

(solid lines) all network neighbours have their thresholds reduced (unlimited vouchers). 

Results are plotted over a range of this fixed reduction. 

 

4.2.2 Evaluation of scenarios 

The aim of modelling the different roll-out interventions is to determine the potential for 

employing network models to compare and identify those interventions that will most 

likely lead to increased uptake of the technology. 

The most easily comparable results are the two seeded scenarios, seeded (where 

households are randomly seeded) and communities (where groups are seeded). Here we 

can compare directly, as costs for either intervention would be roughly the same 

(because they are proportional to the number of people to whom we seed the 

innovation). The only difference will be the logistic costs of delivery, as it would likely 

be cheaper to install technologies if the seeded households were located close to each 

other. In this case we see, unexpectedly, that there is no appreciable difference between 
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the effectiveness of the two scenarios. This is at first surprising, as we might have 

expected to induce a ‘critical mass’ of adopters from which the innovation would spread 

via the clustering effects given in McCullen et al. (2013). Here the model reveals the 

possibility that the system does not meet intuitive expectations and we are driven to ask 

why, and whether this could arise in the real world. The network topology we use in 

these simulations has very little overlap between communities; this is seen as the 

primary reason for the lack of enhanced spreading. If many members of one (seeded) 

community were also members of another, the cluster-based spreading would take over 

as a diffusion mechanism, but this is not the case here. This highlights two findings: 

firstly, that these models can reveal possible diffusion dynamics that it would be 

difficult to anticipate without a model, which could have a negative or positive effect on 

the outcome, and, secondly, that we need to be careful that the essential features 

revealed by the model are accurately programmed using real-world data to ensure that 

we are seeing the correct behaviour. In general, to quantify and fully compare the 

different strategies would need two things: i) better understanding of individual-level 

behaviour in response to various incentives and information, in order to quantify the 

relative level of modification of the network parameters; and ii) costing of the various 

options, so that a cost-benefit analysis could be carried out by a local authority.  

In all the modelled scenarios, it is important to note that the results show non-trivial 

emergent behaviour that would not have been revealed through conventional analysis. 

In this respect, there is a clear case for using this type of complexity modelling to 

support the design of local-level policy interventions. 
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5. Discussion 

We have shown the importance of this type of dynamical network modelling to 

understand the role of network interactions in the diffusion of technologies by using 

complexity modelling to assess the emergent behaviour of the system. This method 

provides several advantages for studying the diffusion of energy technologies, and 

assessing interventions, that other methods may not provide. These include the ability 

to: 

 include the effects of both personal preferences and social influences in the 

diffusion process. 

 model a heterogeneous population of households with different network 

connections, thresholds to adoption, and preferences towards the balance 

between personal and social benefits.  

 include nodes on the network that, while they may not be ‘active’ in terms of 

talking to others about energy, are still important to include, as they may 

mediate the spread of technologies by their adoption state being visible to 

others and may still be able to be seeded (if they are able to adopt  < 1)). 

 include nodes that are ‘active’ on the network, cannot (under our rules) 

themselves become adopters, but may still have a role in the diffusion process. 

For example, they could either block diffusion by being non-adopting 

neighbours of a potential adopter, or be a potential route to higher rates of 

adoption if the barriers to their adoption are specifically targeted. 
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 model a population without the need to understand the exact motivation of each 

individual household for adopting a certain technology (e.g. pro-environmental 

behaviour, saving money, enthusiasm for the technology). With further insight 

into the types of household that fall into different archetype groups and 

different threshold categories (alongside information on the social network), it 

is envisaged that larger datasets of socio-economic information could be used in 

future to define a population and assist modelling at the city level. 

This work, therefore, provides the basis for decision-making tools that could be used by 

a local authority to inform the design of roll-out strategies for initiatives aimed at 

encouraging uptake of energy technologies in the domestic sector. Informal feedback 

we received from local authority representatives suggested that this type of quantitative 

modelling and scenario analysis would be useful in supporting internal business case 

development for energy-efficiency retrofit programmes. There are many variations that 

could be made to the scenarios as implemented in the model and to the parameters of 

the model (thresholds, network properties, archetypes). However, we have chosen 

illustrative strategies guided by the literature of technology uptake – see section 2.1. In 

the absence of specific data, examining further strategies would not at this stage provide 

further insights. Nevertheless, the investigation and development of the model we have 

undertaken to date could, with appropriate inputs, form the basis of a decision-making 

or assessment tool for specific local-level interventions. Suggestions for future 

investigation include: 
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 Different policy scenarios where those with barriers to adoption are targeted, 

e.g. private rented sector where tenants do not have the power to install 

technologies that alter the building. 

 The uptake of different energy technologies that each exhibit different social 

diffusion properties. 

 Uptake of the Green Deal (Department of Energy and Climate Change, 2011) in 

the UK. Local authorities are likely to play a significant role in encouraging 

uptake (Bale et al., 2012a) and network effects could be used to leverage the 

social benefits. 

As we consider in detail elsewhere, the issue of availability of data is key, and it is 

worth emphasising that more data and experiments in this area, as well as evidence (as 

to the success or otherwise) of real-world network interventions for promoting uptake, 

are warranted. 

Although it would be important to investigate in more detail using data appropriate to 

each specific intervention and target population before using models such as ours to 

support specific decisions, we are able to draw some useful generic policy implications 

for local authorities seeking to influence the likely uptake of an energy technology. As 

we have explained above, our model scenarios were parameterized using generalized, 

rather than policy-specific, input data (section 3.2.1).  

As can be seen from the numbers presented in table 2, we estimate that 50% of our 

sample is not able to adopt either insulation or PV panels because they are either in flats 

(with limited roof area per resident and where concerted action is needed) and/or rented 



 

 

37 

 

properties (where the decision would be out of residents’ hands). Enabling such 

households to adopt specific energy technologies would have an enhanced effect, over 

and above simply their own level of adoption, by making them active influences on the 

network, ‘unblocking’ obstacles in the whole-system network and allowing spreading to 

occur more widely. The return on investment in such cases has the potential to be 

greater than that expected when not accounting for network effects.  

Initial adopters who adopt because the technology is considered personally beneficial to 

their household are needed to trigger spreading on the network. Increasing the perceived 

value of the innovation (p) or its average relative weighting in the decision process () 

would increase this activation. It would be difficult for a local authority to change the 

intrinsic preferences of a household, and thereby influence the weighting factor  A 

potentially easier route to the same outcome would be to make the personal benefits of 

the technology clearer to different groups across the city (including those that are on 

low incomes and/or those who are landlords of privately tenanted properties).  

An important finding is that network effects can play a significant role in increasing 

uptake, as is particularly seen in the Snowball scenario. Potentially beneficial social 

network effects can be enhanced by increasing the communication of energy 

information between peers on the network. Encouraging communication of energy-

related issues increases the weighting of the links, which in turn can lead to a wider 

uptake.  

Prior to the application of modelling results in policy decision support, it would be 

important to investigate in more detail using data appropriate to each specific case, 

where necessary. 
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6. Conclusions 

In this paper we have highlighted the value of incorporating complex-systems thinking 

on social networks into models of energy decision-making and policy interventions. 

This is based on consideration of the existing evidence for the success of network 

interventions in other domains and the development of a model that enables exploration 

of different roll-out strategies for local authority interventions. In this model we have 

incorporated both personal benefits (and therefore intrinsic properties of the technology, 

e.g. cost) and social influences in order to draw together both sides of the decision-

making process. For a case for which the social influence is reduced, corresponding to a 

less visible technology, there are lower levels of technology uptake in the model, 

showing the importance of social network effects. Whilst our work does not go all the 

way to addressing the problems identified by Wilson and Dowlatabadi (2007), this type 

of modelling could be useful in bridging the gap identified between adoption models 

based only on individual behavioural motivations and more qualitative approaches 

based on the social context of decision-making (Nye et al., 2010). We have shown the 

potential for use of these modelling methods in the assessment of local authority 

interventions. The results of the simulations have revealed the qualitative dynamics of 

the uptake in response to various alternative strategies and provided a strong motivation 

for using this type of network model-based thinking to inform policy decisions. Further 

work is certainly needed in this area, including more data, experimental evidence for the 

success (or otherwise) of different strategies, and a better understanding of household 

decision-making related to different energy technologies. Nonetheless, the results 

presented here suggest ways in which a dynamical network approach could be used as 
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the conceptual basis of a decision-support tool for local authority interventions in 

domestic energy demand.  

We propose that local authorities could use this type of modelling to their advantage for 

maximizing adoption of retrofit domestic energy technologies at a time of limited 

resources and great imperative for action in the face of rising fuel bills and climate 

change. 
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