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Brittle fracture in elastic materials

Many mathematical models for the quasistatic growth of brittle cracks in
elastic material have been developed in recent years. They are based on
the ideas of the seminal work by Francfort and Marigo (1998), who
revisited Griffith’s theory (1920) of brittle fracture and made a
connection with energy minimization problems.

All these models can be formulated in the framework of Mielke’s
variational approach to rate-independent evolution problems: at each
time the state of the system satisfies a minimality property and an
energy-dissipation balance.

In is well known that in real materials the crack front is surrounded by a
plastic zone. Therefore the models of crack growth in elastic materials
describe only the limit case in which the plastic zone is negligible. More
realistic models should consider crack growth in elastoplastic materials.
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Cracks in elastoplastic materials

The quasistatic evolution problem for linearly elastic-perfectly plastic
materials (without cracks) was studied in 1981 by Suquet, who obtained
the existence of a solution in the space BD(Ω) of functions with
bounded deformation, together with a uniqueness result for the stress.

These results were revisited in 2006 by De Simone, Mora, and me in the
framework of Mielke’s variational approach to rate-independent
evolution problems.

A model of crack growth in elastic-perfectly plastic materials was studied
by Toader and me in 2010 in the same framework. An existence result
was obtained, but the main properties of the solutions remained obscure.

In particular we were not able to answer the following questions. Can the
crack growth in elastoplastic materials be continuous in time? Or rather,
does every solution have an intermittent crack growth, with jumps
followed by intervals where the crack is constant?

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 2 / 27



Cracks in elastoplastic materials

The quasistatic evolution problem for linearly elastic-perfectly plastic
materials (without cracks) was studied in 1981 by Suquet, who obtained
the existence of a solution in the space BD(Ω) of functions with
bounded deformation, together with a uniqueness result for the stress.

These results were revisited in 2006 by De Simone, Mora, and me in the
framework of Mielke’s variational approach to rate-independent
evolution problems.

A model of crack growth in elastic-perfectly plastic materials was studied
by Toader and me in 2010 in the same framework. An existence result
was obtained, but the main properties of the solutions remained obscure.

In particular we were not able to answer the following questions. Can the
crack growth in elastoplastic materials be continuous in time? Or rather,
does every solution have an intermittent crack growth, with jumps
followed by intervals where the crack is constant?

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 2 / 27



Cracks in elastoplastic materials

The quasistatic evolution problem for linearly elastic-perfectly plastic
materials (without cracks) was studied in 1981 by Suquet, who obtained
the existence of a solution in the space BD(Ω) of functions with
bounded deformation, together with a uniqueness result for the stress.

These results were revisited in 2006 by De Simone, Mora, and me in the
framework of Mielke’s variational approach to rate-independent
evolution problems.

A model of crack growth in elastic-perfectly plastic materials was studied
by Toader and me in 2010 in the same framework. An existence result
was obtained, but the main properties of the solutions remained obscure.

In particular we were not able to answer the following questions. Can the
crack growth in elastoplastic materials be continuous in time? Or rather,
does every solution have an intermittent crack growth, with jumps
followed by intervals where the crack is constant?

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 2 / 27



Cracks in elastoplastic materials

The quasistatic evolution problem for linearly elastic-perfectly plastic
materials (without cracks) was studied in 1981 by Suquet, who obtained
the existence of a solution in the space BD(Ω) of functions with
bounded deformation, together with a uniqueness result for the stress.

These results were revisited in 2006 by De Simone, Mora, and me in the
framework of Mielke’s variational approach to rate-independent
evolution problems.

A model of crack growth in elastic-perfectly plastic materials was studied
by Toader and me in 2010 in the same framework. An existence result
was obtained, but the main properties of the solutions remained obscure.

In particular we were not able to answer the following questions. Can the
crack growth in elastoplastic materials be continuous in time? Or rather,
does every solution have an intermittent crack growth, with jumps
followed by intervals where the crack is constant?

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 2 / 27



Answer imposing a prescribed crack path

In this talk I will present a model for the quasistatic crack growth in
elastic-perfectly plastic materials, with a prescribed crack path, for
which we can answer the previous question with a mathematical result.

In this model the crack growth is always jerky. In other words, the crack
length is a pure jump monotone function. Note that this happens even if
the material is homogeneous.

This agrees with the recent numerical results obtained by Brach, Tanné,
Bourdin, and Bhattacharya for the quasistatic growth, and with many
experimental results in the dynamic regime. As far as I know, no
mathematical proof of this phenomenon was known.
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Reference configuration and cracks

The reference configuration Ω is a bounded connected open subset of
R2 with Lipschitz boundary ∂Ω .

To simplify the exposition, in this talk the crack path, in the reference
configuration, is a segment of the form

Γ := {(x1, 0) : 0 ≤ x1 ≤ L} ⊂ Ω,

with Γ ∩ ∂Ω = {(0, 0), (L, 0)} .

For every 0 ≤ s1 ≤ s2 ≤ L we set Γ s2
s1

:= {(x1, 0) : s1 ≤ x1 ≤ s2} . We
assume that at each time the crack, in the reference configuration, is of
the form Γ

s(t)
0 for some 0 ≤ s(t) ≤ L . The crack tip is x(t) := (s(t), 0) .

The energy spent to produce it is equal to its length s(t) .

For every 0 ≤ s ≤ L we set Ωs := Ω\Γ s
0 and Ω̂s := Ω\Γ s

0 .
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Elastic and plastic strains

For every open set U ⊂ R2 the space BD(U) of functions of bounded
deformation is defined as the space of functions u ∈ L1(U;R2) such that
the symmetric part of the gradient Eu := 1

2(Du + (Du)T) is a bounded
Radon measure with values in the space R2×2

sym of symmetric 2×2
matrices.

At each time t ∈ [0,T] the displacement u(t) belongs to BD(Ωs(t)) .

Its strain Eu(t) is additively decomposed as Eu(t) = e(t) + p(t) . The
elastic part e(t) belongs to L2(Ω;R2×2

sym ) , while the plastic part p(t)
belongs to Mb(Ω̂s(t);R2×2

sym ) , the space of bounded Radon measures on
Ω̂s(t) with values in R2×2

sym .

The possible singular part of the measure p(t) accounts for concentrated
strains, which may occur in Ωs(t) and also on ∂Ω , where it will be
interpreted as a mismatch between the trace of the displacement u(t) and
the prescribed boundary condition.
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Boundary conditions

The evolution in the time interval [0,T] is driven by a time-dependent
Dirichlet boundary condition u(t) = w(t) imposed on ∂Ω . As usual, we
assume that w ∈ AC([0,T];H1(Ω)) .

In general the desired equality u(t) = w(t) cannot be obtained on the
whole of ∂Ω , since concentrated strains may occur at the boundary.

The weak formulation of the Dirichlet boundary condition is

p(t) = (w(t) − u(t))�νΩH1 as measures on ∂Ω ,

where νΩ is the outer unit normal to ∂Ω and a� b is the symmetrized
tensor product between two vectors a, b ∈ R2 , i.e., the symmetric matrix
with entries (aibj + ajbi)/2.

The restriction of p(t) to ∂Ω accounts for the mismatch between the
trace of the displacement u(t) and the prescribed boundary condition,
given by the trace of w(t) .
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Stress and stress constraint

The stress σ(t) at time t belongs to L2(Ω;R2×2
sym ) and depends on the

elastic strain e(t) through the linear relation

σ(t) := Ce(t) ,

where C : R2×2
sym → R2×2

sym , the elasticity tensor, is symmetric, linear, and

λ|A|2 ≤ CA:A ≤ Λ|A|2 for every A ∈ R2×2
sym , with 0 < λ ≤ Λ .

In plasticity we have a constraint on the stress of the form

σ(t, x) ∈ K for a.e. x ∈ Ω,

where K is a prescribed closed and convex set in R2×2
sym depending on the

material, whose boundary plays the role of yield surface.
In our model K (and hence the yield surface) depends also the pressure
component of the stress (pressure-sensitive elasto-plastic material). To
simplify the exposition in this talk I choose K := {A ∈ R2×2

sym : |A| ≤ 1} .
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Elastic energy and dissipation distance

The stored elastic energy at time t depends only on the elastic strain e(t)
and is given by 1

2

∫
Ω

σ(t):e(t) dx =

∫
Ω

Q(e(t)) dx ,

where Q(A) := 1
2CA:A for every A ∈ R2×2

sym .
The energy dissipated in a time interval depends on the evolution of the
pair (p(t), s(t)) composed of the plastic strain and the (lenght of the)
crack. According to the terminology of rate-independent systems, the
dissipation distance between two pairs (p2, s2) and (p1, s1) , with
si ∈ [0,L] and pi ∈Mb(Ω̂si ;R2×2

sym ) , is given by

d((p2, s2), (p1, s1)) :=

{
|p2 − p1|(Ω̂s2) + s2 − s1 if s1 ≤ s2 ,

+∞ otherwise,

where |p2 − p1|(Ω̂s2) accounts for the plastic dissipation distance and
s2 − s1 is the energy dissipated to produce the crack increment Γ s2

s1
.
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Discrete-time incremental formulation

Given s ∈ [0,L] and w ∈ H1(Ω;R2) , let A(w, s) (admissible triples) be
the set of (u, e, p), with u∈BD(Ωs), e∈L2(Ω;R2×2

sym ), p∈Mb(Ω̂s;R2×2
sym ),

which satisfy the weak kinematic admissibility conditions
Eu = e + p as measures inΩs ,

p = (w − u)� νΩH1 as measures on ∂Ω .

Given a subdivision 0 = t0 < t1 < · · · < tn−1 < tn = T of [0,T] , for
i = 1, . . . , n let (ui, ei, pi, si) be a solution of the incremental minimum
problem for the quadruple (u, e, p, s) :

min
s∈[si−1,L]

(u,e,p)∈A(w(ti),s)

( ∫
Ω

Q(e)dx + |p − p(ti−1)|(Ω̂s) + s − si−1

)
.

As in our 2010 paper we can prove that, passing to a subsequence, the
piecewise constant interpolation of (ui, ei, pi, si) converges, as the
fineness of the subdivision tends to zero, to a continuous-time quasistatic
evolution, according to the definition given in the next slide.
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Definition of quasistatic evolution

Definition. A quasistatic evolution with boundary value t 7→ w(t) on ∂Ω is a
function t 7→ (u(t), e(t), p(t), s(t)) , with s(t) ∈ [0,L] , u(t) ∈ BD(Ωs(t)) ,
e(t) ∈ L2(Ω;R2×2

sym ) , and p(t) ∈Mb(Ω̂s(t);R2×2
sym ) , which satisfies the

following conditions:
(irreversibility) t 7→ s(t) is nondecreasing;
(equilibrium) for every t we have (u(t), e(t), p(t)) ∈ A(w(t), s(t)) and∫

Ω

Q(e(t))dx ≤
∫
Ω

Q(ẽ)dx + |p̃ − p(t)|(Ω̂s̃) + s̃ − s(t) ,

for every s̃∈[s(t),L] and every (ũ, ẽ, p̃) ∈ A(w(t), s̃) ;
(energy-dissipation inequality) for every t1 < t2 it is∫

Ω

Q(e(t2))dx + |p(t2) − p(t1)|(Ω̂s(t2)) + s(t2) − s(t1)

≤
∫
Ω

Q(e(t1))dx +
∫ t2

t1

( ∫
Ω

σ(τ):Eẇ(τ)dx
)

dτ .
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(energy-dissipation inequality) for every t1 < t2 it is∫

Ω

Q(e(t2))dx + |p(t2) − p(t1)|(Ω̂s(t2)) + s(t2) − s(t1)

≤
∫
Ω

Q(e(t1))dx +
∫ t2

t1

( ∫
Ω

σ(τ):Eẇ(τ)dx
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The Euler condition

Using a suitable notion of dissipation, which I will never use in this talk,
we can prove that the three conditions in the definition of quasistatic
evolution imply also an energy-dissipation balance.

For every t ∈ [0,T] the equilibrium condition, applied with s̃ = s(t) ,
implies that (u(t), e(t), p(t)) is the solution of the minimum problem

min
(ũ,ẽ,p̃)∈A(w(t),s(t))

∫
Ω

Q(ẽ)dx + |p̃ − p0|(Ω̂s(t)) ,

with p0 = p(t) .

The corresponding Euler conditions are divσ(t) = 0 in Ωs(t) , σ(t)ν = 0

on Γ s(t)
0 , and ‖σ(t)‖∞ ≤ 1 (stress constraint).
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The main result

Definition
We set s(t±) := limτ→t± s(τ) for t ∈ (0,T) , with the convention
s(0−) := s(0) and s(T+) := s(T) . We can write s = scont + sjump , where
scont is continuous and sjump is the pure jump component of s , defined by

sjump(t) = s(t) − s(t−) +
∑

τ∈Js,τ<t

(s(τ+) − s(τ−)) for every t ∈ [0,T] ,

where Js is the (at most countable) set of jump points of t 7→ s(t) .

Theorem (DM-Toader 2020)
Let (u, e, p, s) be a quasistatic evolution with boundary value w on ∂Ω , with
w ∈ AC([0,T];H1(Ω)) . Then scont is constant on the interval [0,T] .

I shall present only the ideas of the proof of the following partial result: if
t 7→ s(t) is continuous in [0,T] and |p(t2) − p(t1)|(Ωs(t2)) ≤ C(t2 − t1) for
every t1 < t2 , then t 7→ s(t) is constant. The general case can be reduced to
this one, but requires much more technicalities.
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Using the Euler conditions

At the beginning of the proof we fix 0 ≤ t1 < t2 ≤ T . To simplify the
notation we set, for i = 1, 2, ui = u(ti) , ei = e(ti) , pi = p(ti) ,
σi = σ(ti) , wi = w(ti) , and si = s(ti) .
Let (ϕ, η, q) ∈ A(0, s2) . Assuming regularity, and using the fact that
divσ1 = 0 in Ωs1 and σ1ν = 0 on Γs1 , we obtain∫

Ω

σ1·η dx +
∫
Ωs2

σ1·dq =

∫
Ωs2

σ1·Eϕ dx =

∫
Γ

s2
s1

σ1ν[ϕ] dH1 ,

where [ϕ] denotes the jump of ϕ . Using ‖σ1‖∞ ≤ 1 we get

−

∫
Ω

σ1·η dx ≤ |q|(Ω̂s2) +

∫
Γ

s2
s1

|[ϕ]| dH1 .

By approximation this holds also without regularity.
With ϕ=u2−u1−w2+w1, η=e2−e1−Ew2+Ew1, and q=p2−p1, we get

−

∫
Ω

σ1:(e2−e1)dx +
∫
Ω

σ1:(Ew2−Ew1)dx ≤ |p2−p1|(Ω̂s2) +

∫
Γ

s2
s1

|[u2−u1]|dH1
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Using the energy-dissipation inequality

Since Q(ei) =
1
2

∫
Ω σi:eidx , from energy-dissipation we obtain

1
2

∫
Ω

σ2:e2dx−
1
2

∫
Ω

σ1:e1dx+|p2−p1|(Ω̂s2)+s2−s1 ≤
∫ t2

t1

( ∫
Ω

σ(τ):Eẇ(τ)dx
)

dτ .

From the inequality obtained from the Euler condition we get

−

∫
Ω

σ1:(e2−e1)dx ≤ |p2−p1|(Ω̂s2)+

∫
Γ

s2
s1

|[u2−u1]|dH1−

∫
Ω

σ1:(Ew2−Ew1)dx .

Adding these inequalities and using Ew2−Ew1 =
∫t2

t1
Eẇ(τ)dτ we obtain

1
2

∫
Ω

(σ2−σ1):(e2−e1)dx + s2−s1 ≤
∫
Γ

s2
s1

|[u2−u1]|dH1 +ω1,2 ,

where ω1,2 = ω(t1, t2) :=
∫ t2

t1

( ∫
Ω

(σ(τ)−σ1):Eẇ(τ)dx
)

dτ .

Since (σ2−σ1):(e2−e1) = C(e2−e1):(e2−e1) , using coerciveness we get
λ

2

∫
Ω

|e2−e1|
2dx + s2−s1 ≤

∫
Γ

s2
s1

|[u2−u1]|dH1 +ω1,2 .
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Eẇ(τ)dτ we obtain

1
2

∫
Ω

(σ2−σ1):(e2−e1)dx + s2−s1 ≤
∫
Γ

s2
s1

|[u2−u1]|dH1 +ω1,2 ,

where ω1,2 = ω(t1, t2) :=
∫ t2

t1

( ∫
Ω

(σ(τ)−σ1):Eẇ(τ)dx
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A crucial estimate

The trace estimate in BD gives∫
Γ

s2
s1

|[u2 − u1]| dH1 ≤ c0|Eu2 − Eu1|(Bs2−s1(x2) ∩Ωs2) ,

where x2 := x(t2) := (s2, 0) is the crack tip at time t2 and c0 is
independent of s1 and s2 .
Hence λ

2

∫
Ω

|e2−e1|
2dx + s2−s1 ≤

∫
Γ

s2
s1

|[u2−u1]|dH1 +ω1,2

≤ c0

∫
Bs2−s1(x2)∩Ωs2

|e2−e1|dx + c0|p2−p1|(Bs2−s1(x2) ∩Ωs2) +ω1,2 .

Using the Cauchy inequality we find that for η > 0 small we have

1
2
(s2−s1) ≤ c0|p2−p1|(Bs2−s1(x2)∩Ωs2)+ω1,2 ≤ c0|p2−p1|(Bη(x2)∩Ωs2)+ω1,2

for s2 − s2 < η .
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∫
Γ

s2
s1

|[u2−u1]|dH1 +ω1,2

≤ c0

∫
Bs2−s1(x2)∩Ωs2

|e2−e1|dx + c0|p2−p1|(Bs2−s1(x2) ∩Ωs2) +ω1,2 .

Using the Cauchy inequality we find that for η > 0 small we have

1
2
(s2−s1) ≤ c0|p2−p1|(Bs2−s1(x2)∩Ωs2)+ω1,2 ≤ c0|p2−p1|(Bη(x2)∩Ωs2)+ω1,2

for s2 − s2 < η .
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Use of the Lipschitz continuity

Let 0 = t0 < t1 < · · · < tm = T with s(tj) − s(tj−1) < η . Applying the
inequality of the previous step to [tj−1, tj] we obtain

s(T)−s(0) ≤ 2c0

m∑
j=1

|p(tj)−p(tj−1)|(Bη(x(tj))∩Ωs(tj))+2
m∑

j=1

ω(tj−1, tj) ,

where x(t) := (s(t), 0) is the crack tip at time t .
By the Lipschitz continuity we have

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) ≤
∫ tj

tj−1

|ṗ|(Bη(x(tj)) ∩Ωs(τ))dτ

Since Bη(x(tj)) ⊂ B2η(x(τ)) for τ ∈ [tj−1, tj] we have

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) ≤
∫ tj

tj−1

|ṗ|(B2η(x(τ)) ∩Ωs(τ))dτ ,
hence

m∑
j=1

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) ≤
∫T

0
|ṗ|(B2η(x(τ)) ∩Ωs(τ))dτ .

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 16 / 27



Use of the Lipschitz continuity

Let 0 = t0 < t1 < · · · < tm = T with s(tj) − s(tj−1) < η . Applying the
inequality of the previous step to [tj−1, tj] we obtain

s(T)−s(0) ≤ 2c0

m∑
j=1

|p(tj)−p(tj−1)|(Bη(x(tj))∩Ωs(tj))+2
m∑

j=1

ω(tj−1, tj) ,

where x(t) := (s(t), 0) is the crack tip at time t .
By the Lipschitz continuity we have

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) ≤
∫ tj

tj−1
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|ṗ|(B2η(x(τ)) ∩Ωs(τ))dτ ,
hence

m∑
j=1

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) ≤
∫T

0
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Towards the conclusion

Therefore

s(T) − s(0) ≤ 2c0

m∑
j=1

|p(tj) − p(tj−1)|(Bη(x(tj)) ∩Ωs(tj)) + 2
m∑

j=1

ω(tj−1, tj)

≤ 2c0

∫T

0
|ṗ|(B2η(x(τ)) ∩Ωs(τ))dτ+ 2

m∑
j=1

ω(tj−1, tj) .

Since B2η(x(τ)) ∩Ωs(τ) → Ø as η→ 0, we have

2c0

∫T

0
(|ṗ|(B2η(x(τ)) ∩Ωs(τ))dτ→ 0 as η→ 0 .

Let us fix ε > 0. Then there exists η > 0 such that

s(T) − s(0) ≤ ε+ 2
m∑

j=1

ω(tj−1, tj) if s(tj)−s(tj−1) < η for j = 1, . . . ,m .

To conclude the proof of the theorem it is enough to show that∑m
j=1ω(tj−1, tj) < ε if we choose a suitable subdivision.

This would give s(T) − s(0) < 3ε , which leads to the conclusion.
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Looking for a suitable subdivision

Since t 7→ s(t) is continuous, for every η > 0 there exists δ > 0 such
that tj − tj−1 < δ⇒ s(tj) − s(tj−1) < η .

It remains to prove that, given ε > 0 and δ > 0, we can find a
subdivision 0 = t0 < t1 < · · · < tm = T such that tj − tj−1 < δ for every
1 ≤ j ≤ m and

∑m
j=1ω(tj−1, tj) < ε .

Recall that ω(tj−1, tj) :=
∫ tj

tj−1

( ∫
Ω

(σ(τ)−σ(tj−1)):Eẇ(τ)dx
)

dτ .

Therefore, the result about ω holds if and only if∫T

0

( ∫
Ω

σ(t):Eẇ(t)dx
)

dτ−
m∑

j=1

∫
Ω

σ(tj−1):(Ew(tj)−Ew(tj−1))dx < ε .
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Riemann sums for Lebesgue integrals

The inequality∫T

0

( ∫
Ω

σ(t):Eẇ(t)dx
)

dτ−
m∑

j=1

∫
Ω

σ(tj−1):(Ew(tj)−Ew(tj−1))dx < ε

can be easily obtained from the following well known result about Riemann
sums for Lebesgue integrals.

Theorem (Hahn 1914)
Let f : [0,T]→ R be Lebesgue integrable. For every ε > 0 and δ > 0 there
exists a subdivision 0 = t0 < t1 < · · · < tm = T such that tj − tj−1 < δ for

every 1 ≤ j ≤ m and
∫T

0
f (t)dt −

m∑
j=1

f (tj−1)(tj − tj−1) < ε .

An elegant proof, based only on Fubini Theorem, can be found in Doob:
Stochastic Processes, page 63.
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Does the crack really grow?

All results proved so far are compatible with a crack that is constant in
the whole interval [0,T] .

This is a serious issue. In a similar problem, the dynamic evolution of
cracks in viscoelastic materials, the crack cannot grow if we consider the
Kelvin-Voigt model of viscoelasticity. This phenomenon is known and is
called “viscoelastic paradox” in the mechanical literature.

In our model of crack growth in elastoplastic materials, are there
boundary conditions for which the crack really grows?

The answer is: yes. If we replace |p2 − p1| by β|p2 − p1| in the definition
of the dissipation distance, we obtain that the stress constraint becomes
‖σ(t)‖∞ ≤ β , and we can prove that the limit of the quasistatic
evolutions as β→ +∞ is the quasistatic evolution for brittle cracks in
elastic materials (without plasticity), for which we know that the crack
can grow.

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 20 / 27



Does the crack really grow?

All results proved so far are compatible with a crack that is constant in
the whole interval [0,T] .

This is a serious issue. In a similar problem, the dynamic evolution of
cracks in viscoelastic materials, the crack cannot grow if we consider the
Kelvin-Voigt model of viscoelasticity. This phenomenon is known and is
called “viscoelastic paradox” in the mechanical literature.

In our model of crack growth in elastoplastic materials, are there
boundary conditions for which the crack really grows?

The answer is: yes. If we replace |p2 − p1| by β|p2 − p1| in the definition
of the dissipation distance, we obtain that the stress constraint becomes
‖σ(t)‖∞ ≤ β , and we can prove that the limit of the quasistatic
evolutions as β→ +∞ is the quasistatic evolution for brittle cracks in
elastic materials (without plasticity), for which we know that the crack
can grow.

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 20 / 27



Does the crack really grow?

All results proved so far are compatible with a crack that is constant in
the whole interval [0,T] .

This is a serious issue. In a similar problem, the dynamic evolution of
cracks in viscoelastic materials, the crack cannot grow if we consider the
Kelvin-Voigt model of viscoelasticity. This phenomenon is known and is
called “viscoelastic paradox” in the mechanical literature.

In our model of crack growth in elastoplastic materials, are there
boundary conditions for which the crack really grows?

The answer is: yes. If we replace |p2 − p1| by β|p2 − p1| in the definition
of the dissipation distance, we obtain that the stress constraint becomes
‖σ(t)‖∞ ≤ β , and we can prove that the limit of the quasistatic
evolutions as β→ +∞ is the quasistatic evolution for brittle cracks in
elastic materials (without plasticity), for which we know that the crack
can grow.

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 20 / 27



Does the crack really grow?

All results proved so far are compatible with a crack that is constant in
the whole interval [0,T] .

This is a serious issue. In a similar problem, the dynamic evolution of
cracks in viscoelastic materials, the crack cannot grow if we consider the
Kelvin-Voigt model of viscoelasticity. This phenomenon is known and is
called “viscoelastic paradox” in the mechanical literature.

In our model of crack growth in elastoplastic materials, are there
boundary conditions for which the crack really grows?

The answer is: yes. If we replace |p2 − p1| by β|p2 − p1| in the definition
of the dissipation distance, we obtain that the stress constraint becomes
‖σ(t)‖∞ ≤ β , and we can prove that the limit of the quasistatic
evolutions as β→ +∞ is the quasistatic evolution for brittle cracks in
elastic materials (without plasticity), for which we know that the crack
can grow.

Gianni Dal Maso Crack growth in elastoplastic materials OWPDE 20 / 27



A simplified model

We also studied in a simplified model with antiplane displacement and
with plastic strain constrained to be supported on the segment Γ . For this
case obtain a stronger result: the function t 7→ s(t) has a finite number of
jumps.

Moreover we have a direct proof of the fact that the crack is not constant
in a specific example.

Numerical solutions of further examples in this simplified model have
been obtained in collaboration with Luca Heltai.
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β = 20, elevation
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β = 20, stress
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β = 20, crack and plastic opening on Γ
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β = 20, crack and plastic fronts as functions of time
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β = 80, elevation
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