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Introduction Effect of Work Function on Field Emission

Fieldemission from -
nanomaterials has received a) b) Increasing ¢ - Materials are directly compared by work function, ¢, in
interest for applications including —0— 3 a) | - Figure 3 by setting E. = 0.01 mA/cm for every emitter.
displays [1] microwave amplifiers —— .
2], electron microscopy [3], cleclrons barrier
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On average, 1D and 2D materials show similar
performance, with <E_> = 4.74 V/um and 4.21 V/um

respectively. 3D/bulk materials show twice this value, with
<E > = 8.09 V/um. <J__>, however, was similar in each

max

dimensionality: 1D = 3.61 mA/cm?, 2D = 3.31mA/cm® and
3D/bulk =3.70 mA/cm?’.

metal vacuum
Fowler Nordheim equation:
' 3] Figure 1. a) Field emission device operating in diode
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No correlation can be seen between materials when
ordered according to ¢ only. Materials can be judged on a
material-to-material basis, with the nanocarbons

b) performing consistently well.
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Figure 2. Effect of plasma etching on nanocarbons by a) mA/cm?. _ : 8 _ _ _
etchant gas b) material ¢) exposure time d) operating power. Figure 3. E_,and J_,, for materials according Figure 4. a) Work function, @, vs local
to a) 1D b) 2D and c) 3D/bulk ordered by ¢ field enhancement (from the
(written above material). literature),3,,b) Aspectratio, AR, vs 3,
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different geometries.
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Figure 6. Examples of a) inverse hexagonal pillar array (black region
where CNTs are grown) and b) square pillar array.

Factors that are commonly implicated in describing 3 are aspect ratio, surface roughness,
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