Fabrication of 2D Nanomaterial-Based Flexible Electronics

J. P. Millidge¹ & M. T. Cole^{1*}

Introduction

Fabrication of wearable devices is transitioning from rigid materials towards lighter, flexible, and more space efficient devices[1].

This project explores the fabrication of electrically conductive thin-films using 2D materials, pushing towards a clearer realisation of flexible and stretchable, near-transparent electronic skin.

Figure 1. DuoSkin: skin friendly NFC circuit fabricated from gold leaf [2].

Ink Application

Spray deposition was chosen due to simplicity, scalability, and low equipment/setup costs.

Alternative Methods:

- Inkjet printing - were unreliable and inconsistent yet yielded the image in **Fig.6**)
- Langmuir-Blodgett (Fig.5b) expensive and time inefficient

To increase adhesion between the graphene

Figure 3. Air compressor

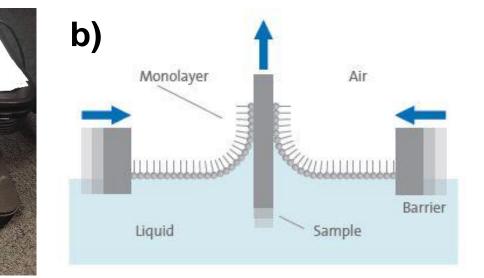
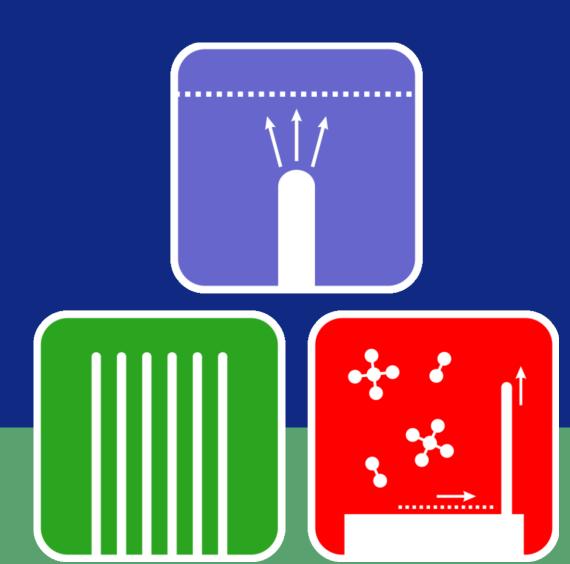
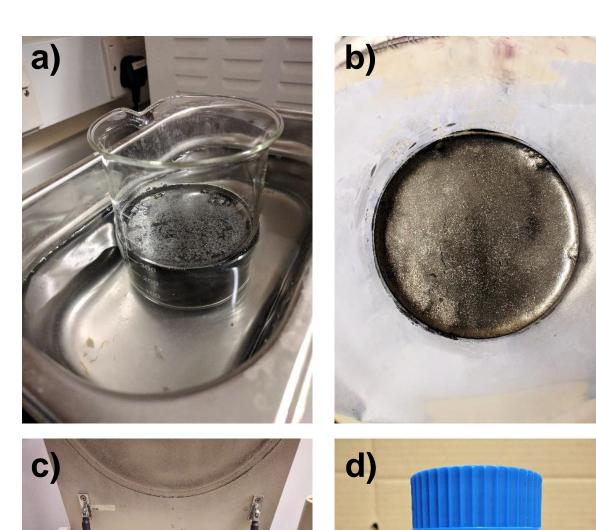



Figure 5. Alternative ink deposition methods: a) inkjet printing, b) Langmuir-Blodgett.

driven spray gun used to vaporise graphene ink

Hydrophilic Treatment:

ink and the glass surface:


Piranha etch solution

Graphene Ink Production

A high-yield, simple, and scalable graphene ink production was developed and conducted as part of the project; based on the liquid-phase exfoliation of with graphite powder surfactant assistance. In total, approximately 600 mL of graphene ink was produced.

The surfactant, sodium cholate was chosen via a decision matrix based on occurrence in literature, toxicity, cost per usage, and availability [3]

Figure 2 presents the pictorial stages of LPE of graphite powder to produce dispersion graphene (ink): a) ultrasonication of graphite power, b) solution sonicated graphene w/ aggregates, c) centrifugation to separate aggregates, d) bottled graphene ink.

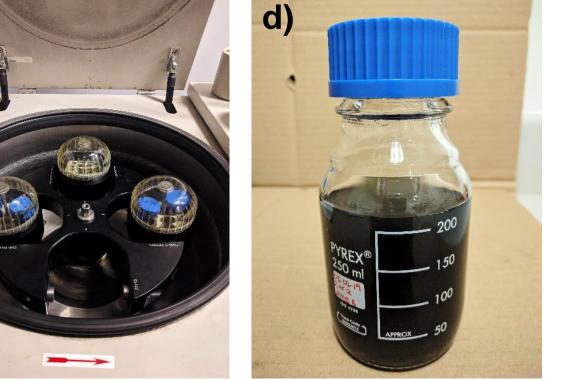


Figure 2. Pictorial stages of graphene ink production by liquid-phase exfoliation (LPE).

g LE

iameter of 'Coffee Stain' Ink Depositions from Single Spray Deposition of Graphene Ink after UV

Hydrophilic Treatment

UNIVERSITY OF

Figure 6. Bath Uni logo printed with graphene ink using inkjet printer (Fig.5a).

Sample Capture:

Images were captured systematically (Fig.7) using microscope w/ integrated digital camera

Experiments Conducted:

• Time series

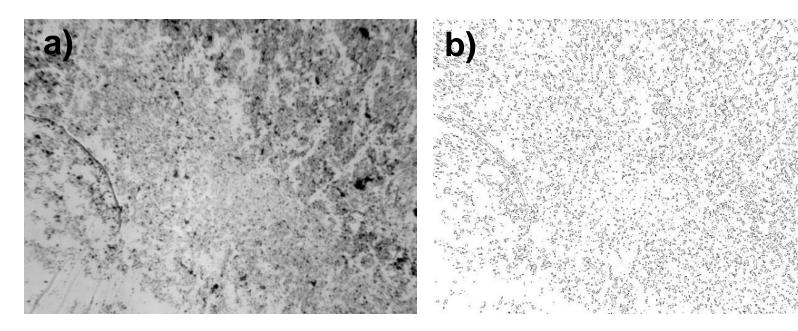
UV radiation

• Multilayer series (1 to 10 layers)

Piranha **Outcome**: solution was found to enable a more contiguous the ink coating on substrate.

Figure 4. UV light box used to apply hydrophilic treatment glass to substrates.

а


0.00

0.05 mm 0.06 mm Figure 7. Schematic to demonstrate method of 888 飞 sample image capture from glass slides.

Analysis & Discussion

Image Analysis: Sample images were analysed in ImageJ to produce the following data:

- Diameter of "coffee-stain" ink depositions
- Percentage area coverage
- Transmission spectroscopy

Percentage Figure 8. coverage calculation using ImageJ a) Original Image b) analysis image.

area Particle Exposure Time (mir Percentage Coverage from Single Spray Deposition of Graphene Ink after UV Hydrophilic Treatmen 6.00 5.00 4.003.00 2.00

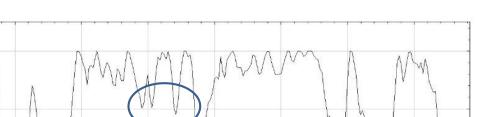
References

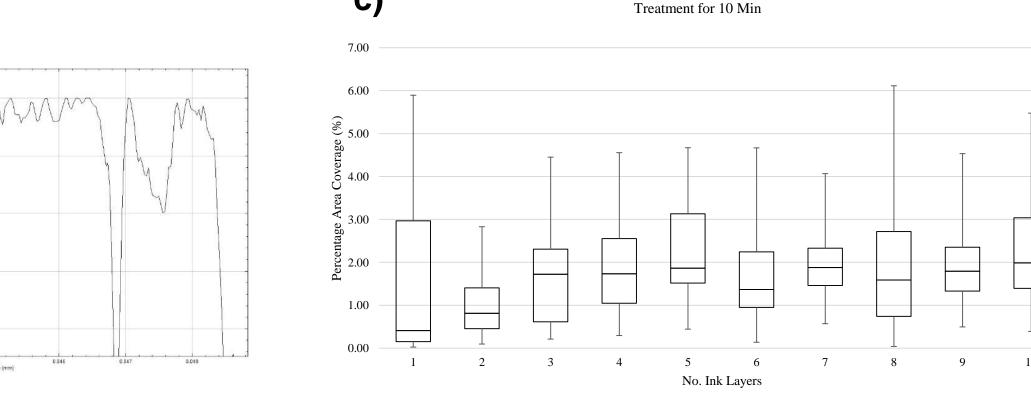
[1] S. J. Kim, K. Choi, B. Lee, Y. Kim and B. H. Hong, "Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials," Annual Reviews, Seoul, 2015.

[2] H.-L. Kao, C. Holz, A. Roseway, A. Calvo Schmandt, "DuoSkin: Rapidly C. and Prototyping On-Skin User Interfaces Using Skin Friendly Materials," ACM, Heidelburg, 2016.

[3] P. J. K. M. L. A. O. E. M. D. Y. H. G. S. D. J.

N. C. Sukanta De, "Flexible, Transparent, Conducting Films of Randomly Stacked Surfactant-Stabilized, Graphene from Oxide-Free Graphene Dispersions," small (nano, micro), vol. 6, no. 3, pp. 458-464, 2010.


[4] Biolin Scientific, "The Deposition and Characterization of Single Sheet Graphene Films," AZO Materials, 06 10 2014. [Online]. Available:


https://www.azom.com/article.aspx?ArticleID= 11433. [Accessed 02 05 2019].

Outcomes:

- Strong positive correlation between duration of UV radiation exposure and diameter of deposition & area coverage
- Increasing durations of exposure to piranha solution led to a small increase of area coverage - i.e. the desired effect was rapidly achieved
- The multilayer investigation demonstrated a positive linear correlation with increasing layers. A contiguous layer of ink could be created over an area of ~0.1 mm² - However, yielded unreliable DC measurements

Transmission Spectroscopy: Using image analysis techniques the population of graphene monolayers

was estimated for a 10-layer deposition:

- Monolayer = $\sim 4 \%$
- **≤5** = 22 %
- **≤10** = 25%

Figure 9. Plot of greyscale values (ImageJ) from sample image.

Figure 10. Presented results: a) b) UV hydrophilic treatment, c) Multilayer Piranha.

Exposure Time (min)

Percentage Coverage of Multilayer Spray Deposition of Graphene Ink after Piranha Etch Hydrophilic

Acknowledgements

Dr Matthew Cole, Sivapathasundaram Sivaraya and the Nanomaterial research group for their mentorship, support and supervision.

Department of **Electronic & Electrical Engineering**

¹ Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom

* mtc47@bath.ac.uk