
This is a preliminary version of the lecture notes for this course. A final
version will be uploaded towards the end of the semester. In the mean time,
if you have any questions about the content of the notes, please do email me.
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1 Preliminaries
Cardinality is a notion used to decide whether or not two sets have the same number of
elements. As an example, consider the sets of natural numbers and integers:

N = {1, 2, 3, . . .} Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

You should recall that it is possible to construct a bijection (that is, a map that is both
injective and surjective) between N and Z, for example by

f : N→ Z, f(j) =

{
−n

2
, if n is even,

n−1
2
, if n is odd.

For this reason, we say that N and Z have the same cardinality. In general, we have the
following definition
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Definition 1.1. (i) Let X and Y be two sets (finite or infinite). If there exists an
injective map f : X → Y , then we say that the cardinality of X is less than or equal to
the cardinality of Y and write #X ≤ #Y . If both #X ≤ #Y and #Y ≤ #X, we say
that X and Y have the same cardinality and write #X = #Y .
(ii) A set X is called countable if #X = #N.

It should be clear that #X = #Y is equivalent to the existence of a bijection from X
to Y . Note that finite sets are not countable according to this definition. This is a matter
of convention; some authors instead define a set #X to be countable if #X ≤ #N.

Proposition 1.2. (i) The set Q of rational numbers has the same cardinality as #N.
(ii) The set R of real numbers has cardinality #N ≤ #R but #N 6= #R.

One can in fact show without difficulty that #(0, 1) = #R. This shows that while
cardinality gives a very important measure of the size of the set, from the point of view
of analysis (and in particular of integration theory), it does not distinguish between the
size of sets that, from another point of view, we might want to consider as being of very
different size.

Definition 1.3. (i) The supremum of a set A ⊂ R is the least upper bound of A. That
is, for all x ∈ A, x ≤ supA and, if S is any other upper bound for A, supA ≤ S.
(ii) The infimum of a set A ⊂ R is the greatest lower bound of A. That is, for all x ∈ A,
x ≥ inf A and, if S is any other lower bound for A, inf A ≥ S.
The completeness of R means that every non-empty set A ⊂ R that is bounded above
has a supremum. Every non-empty set A ⊂ R that is bounded below has an infimum.

Definition 1.4. Let X be a set, f : X → R and, for each n ∈ N, let fn : X → R. We say
that fn → f pointwise if for all x ∈ X, the sequence of real numbers fn(x) → f(x). We
say that fn → f uniformly if: for all ε > 0, there exists N ∈ N such that, for all n ≥ N ,
all x ∈ X, we have |fn(x)− f(x)| < ε.

Recall that pointwise convergence is much weaker than uniform convergence of func-
tions.

Definition 1.5. Let (M,d) be a metric space.

• A set U ⊂ M is said to be open, if for all x ∈ U there exists r > 0 such that
Br(x) ⊂ U .

• A set F ⊂M is said to be closed, if R \ F is open.

• Given a set A ⊂ M , a cover of A is a collection of sets {Uα}α∈A such that A ⊂
∪α∈AUα. It is an open cover if each Uα is an open set.

• A set S ⊂ M is said to be bounded if there exist r > 0 and x ∈ M such that
S ⊂ Br(x).

• A set A in M is said to be compact if every open cover of A contains a finite
subcover of A.

Theorem 1.6 (Heine-Borel). A set A ⊂ Rn is compact if and only if it is closed and
bounded.

Definition 1.7. A normed vector space (V, ‖ ·‖) is a Banach space if it is complete. That
is, if every Cauchy sequence (vn)∞n=1 ⊂ V converges to some v ∈ V .
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2 Introduction
Motivation for studying measure theory

• Mathematical curiosity. It is a natural question to ask whether every set in
Euclidean space Rd has a well-defined volume. For example, we know that in R2,
every rectangle has area given by length times height, every disk has area πr2, and
so on. Is it possible to extend this definition in a sensible manner to ALL sets in
R2?

• Probability theory. Probability theory is important as a mathematical under-
pinning of theoretical statistics, mathematical finance, statistical physics or any
situation where one has incomplete information. The theory of probability is heav-
ily reliant on measure theory. Indeed, the foundations of probability theory can be
viewed as abstract measure theory expressed in a different language.

• Issues with Riemann integration The Riemann integral constructed in earlier
Analysis courses is excellent for integrating continuous or monotone functions. How-
ever, it does have a number of drawbacks.

(i) Firstly, it is hard to characterise the set of Riemann integrable functions. There
are many functions that are Riemann integrable but are neither continuous nor
monotone. This makes it difficult to know whether a given function can be
integrated with the Riemann integral and what its integral should be.

(ii) Secondly, there are many functions that we would like to be able to integrate
that are not Riemann integrable. A good example of such a function is the
Dirichlet function on the interval [0, 1], also known as the characteristic function
of the rationals:

f(x) =

{
1, if x ∈ Q ∩ [0, 1],

0, else.

(iii) Exchanging limits of functions and Riemann integrals requires the very strong
property of uniform convergence (i.e. to show that limn→∞

∫
fn =

∫
limn→∞ fn).

This can often not be checked easily (or in fact fails). As an example of a
sufficient condition for uniform convergence, compare the Arzelà–Ascoli The-
orem which tells us that equicontinuity of a sequence of functions (and equi-
boundedness) gives uniform convergence. This is a very strong condition!

NB: If you cannot remember the notions of pointwise and uniform convergence, you
should revise these (see the Preliminaries section above) as they will be important
throughout the second half of this course.

To think more about the second and third of these issues, let us consider a sequence
of functions that approximates (pointwise) the Dirichlet function f . Let {qi}∞i=1 be
an enumeration of Q ∩ [0, 1] and define the function

fn(x) =

{
1, if x ∈

⋃n
i=1{qi},

0, else.

Clearly fn → f pointwise but not uniformly. In addition, each fn is Riemann
integrable and satisfies

∫
[0,1]

fn = 0 (it is a good exercise to prove this for yourself)
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but
∫

[0,1]
f is not defined. That each fn has zero integral is clear as each fn is zero

except on a finite set of points. To consider how we might want to assign a value
to the integral of f , let us consider how large (in a vague sense) the set of points on
which f is non-zero is.

Let us fix a value ε > 0 and consider the cover of Q ∩ [0, 1] given by

U = {Un |n ∈ N}, Un =
(
qn −

ε

2n
, qn +

ε

2n
)
,

where {qn} is the same enumeration of Q ∩ [0, 1] as before. Clearly Q ∩ [0, 1] ⊂⋃∞
n=1 Un.

On the other hand, we can think of each of the open intervals Un as having a ‘size’
of 2ε

2n
(as this is the length of the interval). As the whole of Q ∩ [0, 1] is contained

in
⋃∞
n=1 Un, we should therefore hope that the ‘size’ of this set is bounded by

∞∑
n=1

2ε

2n
= 2ε

1
2

1− 1
2

= 2ε.

As ε was chosen arbitrarily, we conclude that the only sensible value we could give
to the measure of Q∩ [0, 1] is 0. We should therefore hope that, if we can define an
appropriate notion of integral, we would conclude∫

[0,1]

f = 0 = lim
n→∞

∫
[0,1]

fn.

In fact, this basic approach of covering sets with intervals (for which the appropriate
notion of length or ‘measure’ is clear) is how we are going to construct the Lebesgue
measure on R.

Before we proceed to this most fundamental measure, though, we consider a possible
wish-list that a measure would ideally achieve and an immediate paradox that arises.
A paradox. Suppose we have a function µ(A), representing ‘length’ or ‘size’ (µ is the
Greek letter ‘mu’) of the set A ⊂ R. To match our intuition about length we would also
like µ to have the following wish list of properties:

(a) µ(A) is defined for all A ⊂ R.

(b) µ((a, b]) = b− a for any real a < b. (Recall that (a, b] := {x ∈ R : a < x ≤ b}. We
use := to denote definition.)

(c) Nonnegativity: 0 ≤ µ(A) ≤ ∞ for all A ⊂ R.

(d) Countable additivity: µ(∪∞i=1Ai) =
∑∞

i=1 µ(Ai) whenever A1, A2, . . ., are pairwise
disjoint (i.e., satisfy Ai ∩ Aj = ∅ whenever i 6= j.)

(e) Translation invariance: µ(A + x) = µ(A) for all A ⊂ R and x ∈ R. Here A + x :=
{a+ x : a ∈ A}.

Reminder: Given x1, x2, . . . with xi ≥ 0 for each i, we define
∑∞

i=1 xi := limn→∞
∑n

i=1 xi.
The limit (possibly +∞) exists since it is the limit of an nondecreasing sequence of num-
bers. If any of the xi are +∞ we also define

∑∞
i=1 xi = +∞. We are using these definitions

in the property (d) above (and again in similar situations later on).
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Theorem 2.1. There exists a set E ⊂ (0, 1] such that, setting Eq := E + q for all q ∈ Q
and writing Q = {qn}∞n=1, we have

(0, 1] ⊂
∞⋃
n=1

Eqn (1)

and

the sets Eq, q ∈ (−1, 1] ∩Q are pairwise disjoint. (2)

Proof. (Non-examinable) Define the following relation between elements of the in-
terval (0, 1]: for x, y ∈ (0, 1], we write x ∼ y, if x − y ∈ Q. This is an equivalence
relation:
(i) x ∼ x, because x− x = 0 ∈ Q;
(ii) x ∼ y implies y ∼ x, because y − x = −(x− y) ∈ Q;
(iii) x ∼ y and y ∼ z imply x ∼ z, because x− z = (x− y) + (y − z) ∈ Q.
Consider the equivalence classes with respect to the equivalence relation ∼. Let
E ⊂ (0, 1] be a set that contains exactly one number from each equivalence class.

Suppose we had x ∈ Eq ∩ Er, with q, r ∈ (−1, 1] ∩ Q. Then due to the definitions
of Eq and Er, we must have x = y + q = z + r for some y, z ∈ E. But then
y− z = r− q ∈ Q, and hence y ∼ z. But since E contains exactly one number from
each equivalence class, we can only have y ∼ z if y = z and hence q = r. This proves
(2).

To see (1), let x ∈ (0, 1]. Then there exists a unique y ∈ E such that x ∼ y. Let
q = x− y ∈ (−1, 1] ∩Q. Then x = y + q ∈ Eq, so x is an element of the set on the
right in (1).

Corollary 2.2. There does not exist any ‘length function’ µ satisfying properties (a)–(e)
listed at the start of this section.

Proof. By contradiction. Suppose such a function µ exists. Let E ⊂ (0, 1] be as given by
the preceding Theorem (i.e. with properties (1) and (2)). Observe first that

(0, 1] ⊂ ∪∞n=1Eqn ⊂ (−1, 2], (3)

where the first inclusion comes from (1), and the second is because E ⊂ (0, 1] and each q
is in (−1, 1]. Using (3), we obtain that

1 = µ((0, 1]) ≤ µ(∪∞n=1Eqn) ≤ µ((−1, 2]) = 3, (4)

so µ(∪∞n=1Eqn) is finite and strictly positive. However, for all q we have µ(Eq) = µ(E) by
translation invariance. Hence using (2) and countable additivity we have

µ(∪∞n=1Eqn) =
∞∑
n=1

µ(Eqn) =
∞∑
n=1

µ(E) (5)

Hence µ(∪q∈(−1,1]∩QEq) is either 0 (if µ(E) = 0) or is ∞ (if µ(E) > 0). Either way, this
contradicts (4).
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Similar problems arise when trying to define ‘area’ (respectively ‘volume’) for all sets
in R2 (resp. R3).

To resolve this issue, later on we shall relax Condition (a) in our list, i.e. define the
function µ(A), not for all A ⊂ R, but for a large class of sets A ⊂ R. For example, we’d
like our class of sets to include all intervals in R.

Remark. (Non-examinable.) In defining the set E we used the so-called Axiom of
choice, that asserts that if there is a family of sets {Aα : α ∈ I}, then there exists a
function f : I → ∪α∈IAα such that f(α) ∈ Aα for each α ∈ I. That is, there exists
a choice function that selects one element from each set in the family. In our case
the sets Aα are the equivalence classes with respect to ∼.

3 The Lebesgue (outer) measure
Based on the foregoing observations, we now begin to work towards constructing the
Lebesgue measure. This follows a procedure that is commonly used to construct many
measures, not just the Lebesgue measure (we will come back to this in Section ??).
The basic idea is to define a ‘sensible’ notion of length for every set in the real line,
acknowledging that this notion of length will not define a measure for us by the paradox
just described. Instead, we will try to prove as much as we can for this length (which we
will call the outer measure) and then identify a good collection of subsets of R on which
the outer measure does satisfy all the properties we want our measure to satisfy.

Definition 3.1 (Outer Lebesgue Measure). Let I = (a, b), [a, b), (a, b] or [a, b] with a < b
be an interval. We define the length of I to be |I| = b− a.
Let A ⊂ R. We define the outer measure of A to be

µ∗(A) = inf{
∞∑
j=1

|Ij| | {Ij}∞j=1 is a cover of A by open intervals}.

Note that any set in R can be covered by intervals, and so this is well defined. Moreover,
as the infimum is over a non-empty set of positive numbers, µ∗(A) ≥ 0 (but is possibly
infinite) for each A ⊂ R. Additionally, we do not have to take an infinite collection of
intervals if it is not necessary as we may take most of the intervals to be empty (think of
I = (a, a) = ∅).

The outer measure µ∗ will not in fact have most of the properties that we want our
measure to have. Instead, we are going to find a collection of subsets of R with ‘nice’
properties such that the full wish list holds once we restrict µ∗ to this collection.

Example
µ∗(Q) = 0.
First, note that µ∗(Q) ≥ 0 by definition of µ∗. It is therefore sufficient to show that
µ∗(Q) ≤ 0. To do this, we follow essentially the strategy outlined before in §1. Fix ε > 0,
let {xn}∞n=1 be an enumeration of Q and define the interval Ij =

(
xj − ε

2j
, xj + ε

2j

)
. Now

clearly we have Q ⊂
⋃∞
j=1 Ij, and so

µ∗(Q) ≤
∞∑
j=1

|Ij| =
∞∑
j=1

2ε

2j
= 2ε.
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As ε > 0 may be taken arbitrarily small, we conclude that µ∗(Q) ≤ 0, and hence also
µ∗(Q) = 0.

Example
µ∗([a, b]) = b− a.
We need to check that the two definitions provided for the measure of an interval are
consistent. We first show that µ∗([a, b]) ≤ b− a by taking an open cover, for ε > 0, given
by

I1 =
(
a− ε

2
, b+

ε

2

)
, Ij = ∅, j ≥ 2.

Then

µ∗([a, b]) ≤
∞∑
j=1

|Ij| = |I1| = b− a+ ε.

We therefore conclude µ∗([a, b]) ≤ b− a.
To show the reverse inequality, suppose that ε > 0 and we have an open cover of [a, b]

by intervals {Ij}∞j=1 such that

∞∑
j=1

|Ij| ≤ µ∗([a, b]) + ε.

As [a, b] is compact, we may take a finite subcover of n intervals. By relabelling indices
and removing intervals if necessary, we order the intervals so that each Ij = (aj, bj),
where a ∈ I1, bj ∈ Ij+1 for j = 1 . . . , n− 1, b ∈ In. (NB: this can be done by a process of
induction; Exercise). Then a1 < a < b1 < b2 < · · · < bn−1 < b < bn. Now we note that

b− a < bn − a1 ≤
n∑
j=1

bj − aj ≤
∞∑
j=1

|Ij| ≤ µ∗([a, b]) + ε.

Thus b− a ≤ µ∗([a, b]) + ε for all ε > 0, and hence µ∗([a, b]) = b− a.

Example
The middle third Cantor set.
The middle third Cantor set C is constructed iteratively as follows: At the first step
of the iteration, we take the interval C0 = [0, 1] and remove the middle third (1

3
, 2

3
) to

define the set C1 := [0, 1
3
] ∪ [2

3
, 1]. At the second step, we remove the open middle third

from each of the two disjoint closed intervals that compose C1, which leaves us with
C2 := [0, 1

9
] ∪ [2

9
, 1

3
] ∪ [2

3
, 7

9
] ∪ [8

9
, 1]. We proceed iteratively, so that at the (n+ 1)-th step,

we take the obtained set Cn , which is the union of 2n closed and disjoint intervals, each
of length 1

3n
, and remove from each of them the open middle third to obtain Cn+1. The

Cantor set C is then the intersection of all of these sets:

C =
∞⋂
n=1

Cn.

Claim: C is uncountable (Exercise).

We now show that µ∗(C) = 0 by proving that µ∗(C) ≤
(

2
3

)n for any n ∈ N.
Observe firstly that C ⊂ Cn for all n, so that any cover of one of the sets Cn by open
intervals is necessarily an open cover of C by open intervals. Choose an n ∈ N. As Cn is
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a finite, disjoint union of 2n closed intervals of length 3−n, by a simple adaptation of the
argument in the previous example, we may deduce that the outer measure of each Cn is
(2

3
)n and construct a cover of Cn by open intervals Ij such that

∑∞
j=1 |Ij| ≤ (2

3
)n + ε for

any given ε > 0. In particular, we deduce that µ∗(C) ≤
(

2
3

)n
+ ε for any n ∈ N, ε > 0.

Thus µ∗(C) = 0.
We see from this example that measure does not mix well with cardinality!

Remark 3.2. Let A ⊂ R such that µ∗(A) < ∞ and let ε > 0. By definition of µ∗(A),
there exists an open cover {Ij}∞j=1 of A such that

∞∑
j=1

|Ij| < µ∗(A) + ε.

This observation is very helpful for many proofs!

Proposition 3.3. The outer measure has the following properties.

(i) For all A ⊂ R, 0 ≤ µ∗(A) ≤ ∞.

(ii) For all A,B ⊂ R such that A ⊂ B, we have µ∗(A) ≤ µ∗(B).

(iii) For all A,An ⊂ R such that A ⊂
⋃∞
n=1An, we have µ∗(A) ≤

∑∞
n=1 µ

∗(An).

(iv) For all intervals I = [a, b], [a, b), (a, b], (a, b) with a ≤ b, we have µ∗(I) = |I| = b−a.

(v) For all A ⊂ R and h ∈ R, µ∗(A+ h) = µ∗(A).

Proof. Part (i) is obvious, while part (iv) has already been proven in the second example
above.
(ii) Let ε > 0 and suppose {Ij}∞j=1 is a cover of B by open intervals satisfying

∑∞
j=1 |Ij| <

µ∗(B) + ε. Then as A ⊂ B, it is also an open cover of A, and hence µ∗(A) ≤
∑∞

j=1 |Ij| <
µ∗(B) + ε. As this holds for any ε > 0, we have µ∗(A) ≤ µ∗(B).
(iii) Let ε > 0 and suppose that for each n, {In,j}∞j=1 is a cover of An by open intervals
satisfying

∑∞
j=1 |Ij| < µ∗(An) + ε

2n
. By part (ii), we know that µ∗(A) ≤ µ∗(

⋃∞
n=1An), and

so we estimate this upper quantity.
As {In,j}∞n,j=1 is a countable cover of

⋃∞
n=1 An by open intervals, we may estimate

µ∗(A) ≤ µ∗(
∞⋃
n=1

An) ≤
∞∑
n=1

∞∑
j=1

|In,j| ≤
∞∑
n=1

(
µ∗(An) +

ε

2n
)
≤

∞∑
n=1

µ∗(An) + ε.

As this holds for all ε > 0, we conclude.
(v) The set of open covers of A by intervals is in bijection with the covers of Ah by open
intervals via the correspondence {Ij}∞j=1 ↔ {Ij + h}∞j=1. As |I| = |I + h| for any interval
I and h ∈ R, we conclude the proof.

NB: It is worth remarking at this point that we will frequently see expressions of the
form

∑∞
n=1 µ

∗(An) throughout this course. As each of the terms µ∗(An) is non-negative,
the sequence of partial sums

∑n
j=1 µ

∗(Aj) is always a monotone increasing sequence and
will therefore converge either to a non-negative real number or to ∞. Such expressions
therefore always make sense provided we are careful to interpret inequalities involving
them in such a way that we never consider expressions like 0 · ∞ or ∞−∞.
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With this Proposition, we have recovered points (a), (b), (c) and (e) of our wish list
of properties for a measure on R, but we now come to a problem: we cannot show (and
it isn’t true) that

A ∩B = ∅ =⇒ µ∗(A ∪B) = µ∗(A) + µ∗(B).

We will rectify this issue soon by introducing the notion of a measurable set, but first
we turn to identify what kinds of collections of sets are appropriate for a measure to be
defined upon. We therefore take a detour at this point into the world of set theory.

4 σ-algebras
In this chapter, X denotes an arbitrary non-empty set. For example X could be Rd, or
in probability theory X might be a sample space of possible ‘outcomes’. If A,B are sets
then we write A\B for the set of all elements of A that are not elements of B (also known
as A−B). We will write X \A = Ac for subsets A ⊂ X where there is no confusion over
the space X. We use capital letters (A, B,...) to denote sets, and calligraphic notation
(A, B,...) to denote collections of sets (i.e. sets whose elements are themselves sets!)

As discussed in the last chapter, it is sometimes not possible to consistently define the
‘size’ (or in terminology to be used later, the measure), of ALL the sets in the space X,
so as to have all desired properties such as countable additivity. One would like the ‘size’
of sets to be defined for a class of ‘elementary’ sets (for example in R, the intervals) and
also for ‘nice’ sets that can be built up from the elementary sets by operations such as
taking unions or complements. This motivates the following which can be thought of as a
criterion for a collection of ‘nice’ sets whose ‘size’ we might hope to be able to consistently
define.

Definition 4.1 (Algebra). A collection A of subsets of X is an algebra if

(i) X ∈ A;

(ii) (Closure under complement) If A ∈ A, then X \ A ∈ A;

(iii) (Closure under finite union) If A1, . . . , An ∈ A, then
⋃n
i=1 Ai ∈ A.

Much more important for our purposes is the notion of σ-algebra.

Definition 4.2 (σ-algebra). A collection A of subsets of X is a σ-algebra if

(i) X ∈ A;

(ii) (Closure under complement) If A ∈ A, then X \ A ∈ A;

(iii) (Closure under countable union) If {Ai}∞i=1 ⊂ A, then
⋃∞
i=1Ai ∈ A.

Remark 4.3. We could replace the requirement (i) in each definition with the requirement
that A be non-empty. From this and (ii) and (iii) of each definition, it follows that if
E ∈ A, then so is Ec, and hence X = E ∪ Ec ∈ A also. From this, we find ∅ = Xc ∈ A
for every algebra or σ-algebra.
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Examples
(i) The trivial σ-algebra is given by A = {∅, X}.
(ii) The power set P(X) is always a σ-algebra.
(iii) IfX is uncountable, thenA = {E ⊂ X |E or Ec is at most countable} is a σ-algebra.
(iiv) If X is countable, then A = {E ⊂ X |E or Ec is finite} is an algebra but not a σ-
algebra.
(Proving these facts will be a homework exercise.)

The next lemma lists some easy consequences of the definition of a σ-algebra.

Lemma 4.4. Let A be a σ-algebra in X.

(i) If A1, A2 ∈ A, then also A1 ∪ A2 ∈ A (and thus A is an algebra);

(ii) If A1, A2, · · · ∈ A, then also ∩∞n=1An ∈ A;

Proof. (i) Suppose A1, A2 ∈ A. Take A3 = A4 = · · · = ∅ ∈ A. Then ∪∞i=1Ai = A1 ∪A2 ∈
A.
(ii) Suppose A1, A2, . . . ∈ A. For each i ∈ N we have Aci ∈ A by (ii). Then using De
Morgan’s law, and (iii), we have

(∩∞n=1An)c = ∪∞n=1A
c
n ∈ A.

Then using (ii) again we have ∩∞n=1An = ((∩∞n=1An)c)c ∈ A.

Roughly speaking, there are two ways we could go about trying to define a ‘good’
σ-algebra for us to define a measure on. We could start with a small collection of subsets
(for example, intervals in R) and define the measure on them (e.g., the length function).
We could then try to extend this collection via unions, intersections, complements, etc,
until we had added enough sets to the collection to have a true σ-algebra, and attempt
to extend the definition of the measure onto this whole σ-algebra.

Alternatively, we can define something like a measure on all subsets (e.g., the outer
measure defined on P(R) above) and then try to identify a σ-algebra of ‘good’ subsets on
which the measure behaves the way we would like.

Both of these approaches can be extremely useful. For now, we will focus on the
former, and so we introduce the notion of a generated σ-algebra.

First, we show a simple property of σ-algebras.

Lemma 4.5. Suppose {Aj}j∈J is a (not necessarily countable) collection of σ-algebras.
Then the intersection A =

⋂
j∈J Aj is also a σ-algebra.

Proof. We show that the three defining properties of a σ-algebra all hold.
(i) As X ∈ Aj for all j ∈ J , clearly X ∈ A.
(ii) Suppose A ∈ A. Then A ∈ Aj for all j ∈ J . As each Aj is a σ-algebra, we have
X \ A ∈ Aj for all j ∈ J also. Hence Ac ∈ A.
(iii) Suppose that {Ai}∞i=1 ⊂ A. Then {Ai}∞i=1 ⊂ Aj for all j ∈ J and so, as each Aj is a
σ-algebra, we have

⋃∞
i=1Ai ∈ Aj for all j ∈ J , and so

⋃∞
i=1 Ai ∈ A.

Definition 4.6. Given any family of subsets G ⊂ P(X), the σ-algebra σ(G) generated
by G is the smallest σ-algebra containing G in the sense that, if A is any other σ-algebra
containing G, then σ(G) ⊂ A.

12



Proof that the definition is well-posed. To show that such a generated σ-algebra exists,
we first note that P(X) is a σ-algebra containing G, and so the collection of all σ-algebras
containing G is a non-empty (possibly not countable) collection, which we denote {Aj}j∈J .
We let σ(G) =

⋂
j∈J Aj which is a σ-algebra by the previous proposition. As G ⊂ Aj for

all j ∈ J , we have G ⊂ σ(G).
To show that σ(G) is the smallest such σ-algebra, suppose that A is another such σ-

algebra containing G. Then A = Aj for some j ∈ J , and hence σ(G) ⊂ A, as required.

Remark. The algebra generated by C is defined analogously, as the intersection of
all algebras in X that contain C. By a similar argument to the proof of the preceding
theorem, this is indeed an algebra (HW).

Example. Suppose C = {B} for some B ⊂ X with B 6= ∅ and B 6= X. Then

σ(C) = {∅, B,Bc, X}.

One particularly important σ-algebra is the Borel σ-algebra, which we now define.

Definition 4.7. The Borel σ-algebra in a metric space (M,d), denoted BM , is the
σ-algebra generated by the collection of open sets. That is, setting

O := {U : U ⊂M , U open},

so that O here denotes the collection of all open sets, we define

BM := σ(O) = smallest σ-algebra containing all open sets.

If A ⊂M with A ∈ BM , then A is said to be a Borel set in M .

Let I ⊂ P(R) be the class of all half-open intervals in R which are open on the left
and closed on the right, that is,

I := {(a, b] : −∞ < a < b <∞} ∪ {∅}.

Theorem 4.8. (a) Let H be the class of all closed sets in R. Then BR = σ(H).
(b) Also BR = σ(I).

Proof. (a) Suppose A ∈ H, that is A ⊂ R is a closed set. Then Ac is open, so Ac ∈ O.
Therefore since O ⊂ σ(O) = BR we have Ac ∈ BR, and hence also A = (Ac)c ∈ BR
(because BR is closed under complementation). Thus, for A ∈ H we have A ∈ BR.
Therefore H ⊂ BR, and hence σ(H) ⊂ BR (since BR = σ(O) is a σ-algebra).

We prove the reverse inclusion similarly. Suppose B ∈ O, i.e. B is open. Then
Bc ∈ H ⊂ σ(H) so B = (Bc)c ∈ σ(H) (because σ(H) is closed under complementation).
Thus O ⊂ σ(H), and since σ(H) is a σ-algebra, therefore also BR = σ(O) ⊂ σ(H).

Combining the last two paragraphs gives BR = σ(H).
(b) First we show that I ⊂ BR. For −∞ < a < b we claim (a, b] ∈ BR. This is because

(a,∞) ∈ O ⊂ BR, and likewise (b,∞) ∈ BR, so by Lemma 4.4 (d),

(a, b] = (a,∞) \ (b,∞) ∈ BR,

as claimed above. Hence I ⊂ BR, so that BR is a σ-algebra containing I, and hence

σ(I) ⊂ BR. (1)
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Next we show that O ⊂ σ(I). Let U ∈ O. Then for each x ∈ U we can find
q ∈ Q, r ∈ Q with q < x < r and (q, r] ⊂ U . Therefore since Q×Q is countable,

U = ∪(q,r)∈Q×Q,q<r,(q,r]⊂U(q, r] ∈ σ(I).

Hence O ⊂ σ(I) and therefore BR = σ(O) ⊂ σ(I). Combined with (1) this gives the
result.

Remark. By the preceding theorem, we could equally well have defined the Borel σ-
algebra BR by BR := σ(H) or BR := σ(I). There are various other equivalent ways to
define BR, for example as the σ-algebra generated by the collection of all intervals of the
form (−∞, x], x ∈ R (HW).

5 Measures
We often use the Greek letter µ (mu) to stand for a measure.

Definition 5.1 (Measure). Let X 6= ∅, A a σ-algebra on X. A function µ : A → [0,∞]
is a measure iff

(i) µ(∅) = 0;

(ii) (Countable additivity) If Ai ∈ A for all i ∈ N and Ai ∩ Aj = ∅ for i 6= j, then

µ
( ∞⋃
i=1

Ai
)

=
∞∑
i=1

µ(Ai).

Definition 5.2. Let X 6= ∅, A a σ-algebra on X, and µ a measure. We call the pair
(X,A) a measurable space and the triple (X,A, µ) a measure space.
If µ(X) = 1, we say that µ is a probability measure and (X,A, µ) is a probability
space. In this case one often uses notation (Ω,F ,P) instead of (X,A, µ).
If µ(X) < ∞ we say that µ is a finite measure. If there exist sets F1, F2, F3, . . . ∈ A
with ∪∞i=1Fi = X and µ(Fi) <∞ for all i, then we say that µ is a σ-finite measure.

Examples
(i) Let (X,A) be any measurable space such that {x} ∈ A for all x ∈ X. The counting
measure is defined by

µ(A) =

{
# (i.e. number) of elements of A when A is finite;
+∞ when A is infinite.

If X is countable, then the counting measure on (X,A) is σ-finite. Conversely, if X is
uncountable (e.g. if X = (0, 1]), then the counting measure is not σ-finite. (In this course
we mainly consider finite or σ-finite measures).

(ii) Let (X,A) be any measurable space, x0 ∈ X. Then the Dirac measure at x0 is defined
by setting, for A ∈ A,

µ(A) =

{
1, x0 ∈ A,
0, x0 6∈ A.
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(iii) In fact, both of these are special cases of the following situation. Let f : X → [0,∞].
Then the function defined as

µ(A) =

{∑
x∈A f(x), E 6= ∅,

0, A = ∅

is a measure. In the case that f(x) = 1 for all x ∈ X, this measure is the counting
measure. In the case that there exists x0 ∈ X such that

f(x) =

{
1, x = x0,

0, x 6= x0,

then µ is the Dirac measure at x0.
(iv) Scalar multiples of measures. If (X,A, µ) is a measure space and a ≥ 0 is a constant,
then aµ (defined pointwise, i.e. (aµ)(A) := aµ(A) for all A ∈ A) is also a measure on
(X,A). [Here we need to use the convention 0 ×∞ := 0 if a = 0. This convention may
come up again later.]
(v) Countable sums of measures. If (X,A) is a measurable space and µ1, µ2, µ3, . . . are
measures on (X,A) then

∑∞
i=1 µi (defined pointwise, i.e. (

∑∞
i=1 µi)(A) :=

∑∞
i=1 µi(A) for

all A ∈ A) is a measure on (X,A).
(HW): Check that (i)–(v) are indeed measures.

Non-example
Let X be infinite, A = P(X) and define

µ(A) =

{
0, A finite,
∞, A infinite.

The defined function µ is not a measure as it only finitely additive, not countable additive.

Theorem 5.3. Let (X,A, µ) be a measure space. Then

(i) (Monotonicity) Let A,B ∈ A and A ⊂ B. Then µ(A) ≤ µ(B). If also µ(B) < ∞
then µ(B \ A) = µ(B)− µ(A).

(ii) (Subadditivity) Let {Ai}∞i=1 ⊂ A. Then µ(
⋃∞
i=1Ai) ≤

∑∞
i=1 µ(Ai).

(iii) (Continuity from below) Let {Ai}∞i=1 ⊂ A be such that A1 ⊂ A2 ⊂ . . .. Then
µ(
⋃∞
i=1 Ai) = limi→∞ µ(Ai).

(iv) (Continuity from above) Let {Ai}∞i=1 ⊂ A be such that A1 ⊃ A2 ⊃ . . . and there
exists k ∈ N such that µ(Ak) <∞. Then µ(

⋂∞
i=1 Ai) = limi→∞ µ(Ai).

Proof. (i) Let A,B be as in the statement. Then, as B = (B \ A) ∪ A, we have

µ(B) = µ((B \ A) ∪ A) = µ(B \ A) + µ(A) ≥ µ(A),

where we have used finite additivity and non-negativity of the measure. In the case µ(B)
is finite, we rearrange the equality to obtain µ(B \ A) = µ(B)− µ(A).
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(ii) Let {An}∞n=1 ⊂ A. We define B1 = A1 and, for n ≥ 2, Bn = An \
⋃n−1
j=1 Aj. Then

the sets Bn are pairwise disjoint,
⋃∞
n=1An =

⋃∞
n=1Bn, and clearly also Bn ⊂ An for all n.

Therefore, using countable additivity,

µ
( ∞⋃
n=1

An
)

= µ
( ∞⋃
n=1

Bn

)
=
∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An),

where we have also used monotonicity in the last step.

(iii) Let {An}∞n=1 ⊂ A such that A1 ⊂ A2 ⊂ . . .. Define A0 = ∅. Then we have the simple
identity

⋃∞
n=1An =

⋃∞
n=1(An \An−1), where the latter union is over pairwise disjoint sets.

Therefore, using countable additivity,

µ
( ∞⋃
n=1

An
)

=µ
( ∞⋃
n=1

(An \ An−1)
)

=
∞∑
n=1

µ(An \ An−1)

= lim
n→∞

n∑
j=1

µ(Aj \ Aj−1) = lim
n→∞

µ
( n⋃
j=1

(Aj \ Aj−1)
)

= lim
n→∞

µ(An).

(iv) Suppose An ⊃ An+1 for all n, and µ(A1) <∞. The idea is that we take comple-
ments and apply part (iii), but to make this work we should take complements within a
set of finite measure, namely A1.

Set A = ∩∞n=1An, and for k ∈ N set Bk := A1 \ Ak (i.e. the complement of Ak within
A1). Then Bk ⊂ Bk+1 for each k, and

∪∞n=1Bn = A1 ∩ (∪∞n=1A
c
n) = A1 ∩ (∩∞n=1An)c = A1 ∩ Ac = A1 \ A.

Also, for n ∈ N we have µ(A1) <∞ and An ⊂ A1 so µ(Bn) = µ(A1)− µ(An) by part (i).
Similarly A ⊂ A1 so µ(A1 \A) = µ(A1)−µ(A). Hence by (iii) and the Algebra of Limits,
as n→∞ we have

µ(An) = µ(A1)− µ(Bn)

→ µ(A1)− µ(A1 \ A) = µ(A).

Now that we have seen the definition of a measure and some examples, we turn our
attention to a particularly nice class of measures and show how they can be obtained
from other measures. These measures are those called complete. Essentially, complete
measures are those that can measure all subsets of sets with measure zero.

Definition 5.4. Let (X,A, µ) be a measure space. We say that a set A ⊂ A is null if
µ(A) = 0 (equivalently, we say it has measure zero).
A property (P) is said to hold almost everywhere on a measure space (usually abbreviated
as a.e.) if the set where (P) does not hold is of measure zero.

For example, two functions f and g are equal a.e. if the set {x | f(x) 6= g(x)} is of measure
zero.

Definition 5.5. Let (X,A, µ) be a measure space. We say that µ is complete if A
contains every subset of every null set.
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Theorem 5.6 (Completing a measure). Let (X,A, µ) be a measure space. Define

N = {N ∈ A |µ(N) = 0}, A = {A ∪B |A ∈ A, B ⊂ N for some N ∈ N}.

Then A is a σ-algebra and there exists a unique extension of µ, µ̄, such that (X,A, µ̄) is
a complete measure space.

Proof. Non-examinable. Step 1: We first show that A is a σ-algebra.
To show thatA is closed under complements, take (A∪B) ∈ A such that A ∈ A, B ⊂
N for some N ∈ N . If A∩N 6= ∅, then we define a new null set N ′ = N \ (A∩N)
and B′ = B ∩N ′ and observe

A ∪B = A ∪ (B ∩ (N \N ′))︸ ︷︷ ︸
⊂A

∪ (B ∩ (N ′))︸ ︷︷ ︸
=B′

= A ∪B′.

Then, as we now have A ∩B = ∅ we decompose the set as

A ∪B =
(
(A ∩N c) ∪ (N ∩N c)

)
∪
(
(A ∩B) ∪ (N ∩B)

)
=
(
(A ∪N) ∩N c

)
∪
(
(A ∪N) ∩B

)
= (A ∪N) ∩ (N c ∪B)

so that (A∪B)c = (A∪N)c∪ (N ∩Bc). As A is a σ-algebra, we have (A∪N)c ∈ A,
while clearly (N ∩Bc) ⊂ N ∈ N , and we are done.

To show that A is closed under countable unions, we take {Aj ∪ Bj}∞j=1 such that,
for all j ∈ N, we have Aj ∈ A, Bj ⊂ Nj for some N ∈ N . Let N =

⋃∞
j=1Nj and

observe µ(N) ≤
∑∞

j=1 µ(Nj) = 0, so that

∞⋃
j=1

Bj ⊂
∞⋃
j=1

Nj = N ∈ N .

Now as
⋃∞
j=1Aj ∈ A, we have

∞⋃
j=1

(Aj ∪Bj) =
( ∞⋃
j=1

Aj
)
∪
( ∞⋃
j=1

Bj
)
∈ A.

Step 2: We now construct the extension measure µ̄.
First, note that if µ̄ is an extension of µ, so that µ̄(A) = µ(A) for all A ∈ A, then if
B ⊂ N ∈ N , we have

µ(A) = µ̄(A) ≤ µ̄(A ∪B) ≤ µ̄(A ∪N) = µ(A ∪N) ≤ µ(A) + µ(N) = µ(A).

This firstly guarantees uniqueness of the extension, and also forces us to define

µ̄(A ∪B) = µ(A) for all A ∪B ∈ A with A ∈ A, B ⊂ N ∈ N .

To verify that this extension is well-defined, we take any set E ∈ A and suppose
that E = A1 ∪ B1 = A2 ∪ B2 where Ai ∈ A, Bi ⊂ Ni ∈ N , i = 1, 2. We
need to prove that µ(A1) = µ(A2) to show that µ̄ is well-defined. Now note that
A1 ⊂ A2 ∪B2 ⊂ A2 ∪N2, so that

µ(A1) ≤ µ(A2 ∪N2) ≤ µ(A2) + µ(N2) = µ(A2)

and, similarly, µ(A2) ≤ µ(A1). Thus the extension is well-defined.
Exercise: Show that µ̄ satisfies the definition of a measure and is complete.
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6 Outer measures, Pre-measures, and Caratheodory’s
Extension Theorem

6.1 Outer Measures and Carathéodory’s Lemma

Next, we turn out attention to the construction of measures. As we saw in Section 3, one
convenient approach to constructing measures is to start with a collection of sets that
we want to define the size of (such as intervals, rectangles, etc) and use this to define an
outer measure of all other sets. This is in fact a well-defined approach, and so we first
make precise the notion of outer measure.

Definition 6.1. Let X 6= ∅. A function µ∗ : P(X) → [0,∞] is an outer measure if it
satisfies

(i) µ∗(∅) = 0,

(ii) A ⊂ B =⇒ µ∗(A) ≤ µ∗(B),

(iii) µ∗
(⋃∞

j=1Aj
)
≤
∑∞

j=1 µ
∗(Aj).

Recall that these are exactly the properties that we showed for the Lebesgue outer
measure on R in addition to the R-specific properties (the R-specific properties we mean
are the translation invariance and the identity for the measure of intervals, neither of
which generalises to an abstract measure space).

Following this analogy to the construction of Section 3, we now show how to obtain
an outer measure from a pre-determined notion of size of a sub-collection of sets.

Proposition 6.2. Let ξ ⊂ P(X), ∅ ∈ ξ, X ∈ ξ. Let ρ : ξ → [0,∞] be such that ρ(∅) = 0.
Then there exists an outer measure µ∗ on X defined by, for all A ⊂ X,

µ∗(A) = inf
{ ∞∑
j=1

ρ(Ej) |Ej ∈ ξ, A ⊂
∞⋃
j=1

Ej
}
.

In this proposition, the key point in the assumptions on ξ is that, for any A ⊂ X, we
can find at least one cover of A by elements of ξ because X ∈ ξ. We often refer to ξ as
the covering class, and, when certain additional properties are satisfied (see Section 6.3),
we call ρ the pre-measure.

The proof is formally identical to the proof of Proposition 3.3(i)–(iii). For complete-
ness, we include it here anyway.

Proof. We need to check the three defining properties of an outer measure. Observe first
that, by definition, µ∗(∅) = 0.
Property (ii) is also essentially trivial: given A ⊂ B, every cover of B is also a cover of A,
so that the infimum in the definition of µ∗(A) is an infimum over a larger class of covers
than that for µ∗(B).
(iii) Let ε > 0. For each Aj, we find a cover {Ej,k}∞k=1 such that Aj ⊂

⋃∞
k=1Ej,k, all

Ej,k ∈ ξ, and
∑∞

k=1 ρ(Ej,k) ≤ µ∗(Aj) + ε
2j
. If we do not have µ∗(Aj) <∞ for all j, there

is nothing to prove (the inequality holds trivially), so suppose that this holds.
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Then
⋃∞
j=1Aj ⊂

(⋃∞
j,k=1Ej,k

)
(and note that the collection {Ej,k}∞j,k=1 is countable),

so that

µ∗
( ∞⋃
j=1

Aj
)
≤

∞∑
j,k=1

ρ(Ej,k) =
∞∑
j=1

∞∑
k=1

ρ(Ej,k) ≤
∞∑
j=1

(µ∗(Aj) +
ε

2j
) =

∞∑
j=1

µ∗(Aj) + ε.

As this holds for all ε > 0, we conclude the proof.

As with the outer Lebesgue measure, this proposition gives a useful tool for construct-
ing outer measures. However, as it stands, we need to take care with how we choose both
ξ and ρ in order to obtain a measure that is actually useful for anything. You will recall
from Section 3 that we worked quite hard to show that the outer measure agreed with
the pre-measure on intervals (|I| corresponds to ρ in this notation, and such objects are
sometimes called pre-measures in the literature). If we do not have that µ∗(E) = ρ(E)
for E ∈ ξ, it is not at all clear that µ∗ is doing anything useful!

This bad scenario can, of course, occur.
Example
Let X = R and consider the covering class ξ = {∅, [0, 2], [2, 4], [1, 3],R}. Let ρ be given
as follows:

ρ(∅) = 0, ρ([0, 2]) = 3, ρ([2, 4]) = 1, ρ([1, 3]) = 5, ρ(R) =∞.

Then the outer measure µ∗ given by Proposition 6.2 satisfies µ∗([1, 3]) ≤ 4 because [1, 3] ⊂
[0, 2] ∪ [2, 4] and ρ([0, 2]) + ρ([2, 4]) = 4 (actually µ∗([1, 3]) = 4 in this example, but the
inequality ≤ 4 suffices for our purposes). Therefore µ∗([1, 3]) < ρ([1, 3]) and µ∗ does not
extend ρ.

Given an outer measure, we now want to know how to construct a measure from it.
Again, the intuition in the case of the Lebesgue measure on R is our guide, and so we
come to the definition of measurability in order to construct a σ-algebra of measurable
sets.

Definition 6.3. Let X 6= ∅ and suppose µ∗ is an outer measure on X. We say that a
set A ⊂ X is µ∗-measurable (or simply measurable if no confusion can arise) provided

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X.

Note that, from the definition, we always have X and ∅ are measurable. Moreover, if
E is measurable, then so is Ec.

One way of interpreting this condition is to think of the set E as a set which we use
to test A. The definition entails that A ‘splits’ every test set E well (in some sense) with
respect to the outer measure µ∗. We now need to know that the collection of measurable
sets has enough desirable properties to be useful, specifically, that the collection of mea-
surable sets forms a σ-algebra. This is the content of Carathéodory’s Theorem, which we
will come to soon, but we first return to the example of the Lebesgue outer measure.

Lemma 6.4. Let µ∗ be the Lebesgue outer measure on R. If a ≤ b, then I = (a, b), [a, b),
(a, b], [a, b] are all µ∗-measurable.

Proof. consider the case I = (a, b).
Let E ⊂ R. We need to show µ∗(E) ≥ µ∗(E ∩ I) + µ∗(E ∩ Ic). Take an open cover of

E by intervals {Ik}∞k=1 and observe that, for each k, the intersection
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• I ∩ Ik is either ∅ or an open interval;

• Ic ∩ Ik is either ∅, one interval or two intervals (not necessarily open).

Let ε > 0. For each k, we take three open intervals, I ′k, I ′′k , I ′′′k such that

(I ∩ Ik) ⊂ I ′k, (Ic ∩ Ik) ⊂ (I ′′k ∪ I ′′′k )

and also
|I ′k|+ |I ′′k |+ |I ′′′k | ≤ |Ik|+

ε

2k
.

As {Ik}∞k=1 is an open cover of E, we observe

(E ∩ I) ⊂
∞⋃
k=1

I ′k, (E ∩ Ic) ⊂
∞⋃
k=1

(I ′′k ∪ I ′′′k ).

Then

µ∗(E ∩ I) + µ∗(E ∩ Ic) ≤
∞∑
k=1

(|I ′k|+ |I ′′k |+ |I ′′′k |) ≤
∞∑
k=1

(|Ik|+
ε

2k
) =

∞∑
k=1

|Ik|+ ε.

Now taking the infimum on the right over all covers of E by open intervals, we obtain

µ∗(E ∩ I) + µ∗(E ∩ Ic) ≤ µ∗(E) + ε,

and hence we conclude.

We now provide the general theorem that ensures that the collection of measurable
sets gives the ‘right’ σ-algebra on which to define a measure.

Theorem 6.5 (Carathéodory’s Lemma). Let X 6= ∅, µ∗ an outer measure on X. Then

(i) The collection A of measurable sets is a σ-algebra;

(ii) The restriction µ of µ∗ to A is a complete measure.

Non-examinable. (i) We show A is a σ-algebra by showing that it is closed under
complements and countable unions. That A is closed under complements is trivial
from the definition of measurability and the fact that (Ac)c = A.
Step 1: We show that A is closed under finite unions.
Let A,B ∈ A, E ⊂ X. As A ∈ A, we have µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac). As
B ∈ A, each term in this identity extends as

µ∗(E) = µ∗
(
(E∩A)∩B

)
+µ∗

(
(E∩A)∩Bc

)
+µ∗

(
(E∩Ac)∩B

)
+µ∗

(
(E∩Ac)∩Bc

)
. (1)

Noting that the last term on the right is equal to µ∗(E ∩ (A∪B)c), we try to relate
the first three terms to µ∗(E ∩ (A∪B)). Observe that we may decompose A∪B as
the disjoint union

A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B),

so that

E ∩ (A ∪B) =
(
E ∩ (A ∩B)

)
∪
(
E ∩ (A ∩Bc)

)
∪
(
E ∩ (Ac ∩B)

)
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and, as µ∗ is an outer measure, by monotonicity,

µ∗
(
E ∩ (A ∪B)

)
≤ µ∗

(
E ∩ (A ∩B)

)
+ µ∗

(
E ∩ (A ∩Bc)

)
+ µ∗

(
E ∩ (Ac ∩B)

)
.

Substituting this now into (1), we have obtained

µ∗(E) ≥ µ∗
(
E ∩ (A ∪B)

)
+ µ∗

(
E ∩ (A ∪B)c

)
.

As the reverse inequality is always true by sub-additivity, we have obtained

µ∗(E) = µ∗
(
E ∩ (A ∪B)

)
+ µ∗

(
E ∩ (A ∪B)c

)
,

and so A ∪B is measurable.

By induction, A is closed under all finite unions and, as it is closed under comple-
ments, is also closed under finite intersections.

Step 2: We show A is closed under countable unions. In fact, as we have already
shown that A is an algebra, it is enough to show that A is closed under countable
disjoint unions, as the remaining case follows in the usual way.
Therefore, we take {Aj}∞j=1 ⊂ A, Ai ∩Aj = ∅ for i 6= j, and we define

Bn =
n⋃
j=1

Aj , B =
∞⋃
j=1

Aj .

Now Bn ∩An = An and Bn ∩Acn = Bn−1. So, by measurability of An,

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Acn) = µ∗(E ∩An) + µ∗(E ∩Bn−1).

Inductively,

µ∗(E ∩Bn) =
n∑
j=1

µ∗(E ∩Aj).

As A is an algebra, we know that Bn, Bc
n ∈ A, and hence

µ∗(E) = µ∗(E∩Bn)+µ∗(E∩Bc
n) ≥ µ∗(E∩Bn)+µ∗(E∩Bc) =

n∑
j=1

µ∗(E∩Aj)+µ∗(E∩Bc),

where we have used that Bc ⊂ Bc
n and the previous identity.

As
∑n

j=1 µ
∗(Aj) is monotone increasing, its limit as n → ∞ exists (but may be

infinite) and so, as the other terms in the inequality are all independent of n, we
may pass to the limit to obtain

µ∗(E) ≥
∞∑
n=1

µ∗(E ∩An) + µ∗(E ∩Bc) ≥ µ∗(E ∩B) + µ∗(E ∩Bc)

where we have used sub-additivity in the second inequality as E∩B ⊂
⋃∞
n=1(E∩An).

As the reverse inequality is trivial, we conclude that B ∈ A, and so A is a σ-algebra.

(ii) We need to show that the restriction of µ∗ to A is a complete measure. Clearly
µ∗(∅) = 0 already, so we require countable additivity.

Adopting the notation from Step 2, we let Aj , B be as in that step, and note that
we showed there

µ∗(E) ≥
∞∑
n=1

µ∗(E ∩An) + µ∗(E ∩Bc) ≥ µ∗(E ∩B) + µ∗(E ∩Bc) = µ∗(E),
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where the final equality follows from B ∈ A. Therefore all inequalities here are
actually equalities, and so

∞∑
n=1

µ∗(E ∩An) = µ∗(E ∩B).

Now taking E = B, as all the An are pairwise disjoint, B ∩ An = An, and so this
becomes

∞∑
n=1

µ∗(An) = µ∗(B)

as required. Thus the restriction µ is a measure.

It remains only to show that µ is complete. Suppose that µ(A) = 0 and B ⊂ A.
For µ(A) to be defined, we must have A ∈ A. By subadditivity of µ∗, we also
have µ∗(B) ≤ µ∗(A) = µ(A) = 0, so µ∗(B) = 0. We therefore need to show that
µ∗(B) = 0 implies B ∈ A.
Let E ⊂ X and consider µ∗(E ∩B) ≤ µ∗(B) = 0. Then

µ∗(E ∩B) + µ∗(E ∩Bc) = µ∗(E ∩Bc) ≤ µ∗(E)

by subadditivity, and hence we obtain that B is measurable.

With Carathéodory’s Theorem, we now have a full recipe for defining measures on a set
X:
Step 1: Define a collection of sets ξ and a pre-measure ρ satisfying some mild compatibility
conditions.
Step 2: Use Proposition 6.2 to extend the pre-measure to an outer measure on X.
Step 3: Use Carathéodory’s Lemma, Theorem 6.5, to find the σ-algebra of measurable
sets and obtain the complete measure on this σ-algebra.

As a specific example, we have the following.

Definition 6.6. The Lebesgue measure on R is defined as the restriction of the Lebesgue
outer measure to the σ-algebra of measurable sets. It is commonly denoted by µ, m, or
λ1. The σ-algebra of Lebesgue measurable sets is usually denoted Σ or Σ1.

You may well wonder at this point whether we could equally well have just restricted
the Lebesgue outer measure to the Borel σ-algebra to produce this measure. As the Borel
σ-algebra is generated by the open sets, and the open sets are all measurable, clearly
B ⊂ Σ. However, it turns out that this inclusion is strict: there are Lebesgue measurable
sets that are not Borel sets, and the restriction of the Lebesgue measure to the Borel
σ-algebra is not complete.

6.2 Pre-measures and Carathéodory’s Theorem

Having seen that we can always obtain a measure from an outer measure by restricting
to the measurable sets, the next obvious question is how can we get hold of ‘good’ outer
measures? After all, an outer measure is defined on the whole power set, i.e. on all
subsets of our space. We would like a general recipe for generating an outer measure from
something defined on a simpler collection of sets, like we used for the Lebesgue measure
and in Proposition 6.2. However, we have seen from examples that this proposition can
lead to bizarre objects if we are not careful. The goal of the following definitions is to
define the ‘right’ way of constructing outer measures.
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Definition 6.7. A collection S ⊂ P(X) is a semi-ring or semi-algebra on X if
(i) ∅ ∈ S;
(ii) A,B ∈ S =⇒ A ∩B ∈ S;
(iii) If A,B ∈ S, then there exist finitely many disjoint D1, . . . , DN ∈ S such that A\B =⋃N
j=1Dj.

The definition of semi-algebra is similar to the earlier definition of an algebra (Defini-
tion 4.1), except that (iv) above is a weaker version of the ‘closed under complementation’
condition for an algebra. It can be shown that every algebra is a semi-algebra (HW).

When we discussed the construction of outer measures using Carathéodory’s Lemma
(Theorem 6.5 in the previous section, we mentioned that there are certain compatibility
conditions that we should ask for on our initial assignment of values in order to guarantee
that the constructed outer measure really does extend the initial set function (see the dis-
cussion and example after Proposition 6.2). These compatibility conditions are precisely
those that define a pre-measure:

Definition 6.8. Let S ⊂ P(X) be a semi-ring. A function ρ : S → [0,∞] is called a
pre-measure if it satisfies:
(i) ρ(∅) = 0;
(ii) Whenever {Rj}∞j=1 ⊂ S are pairwise disjoint and satisfy

⋃∞
j=1 Rj ∈ S also, then

ρ(
⋃∞
j=1Rj) =

∑∞
j=1 ρ(Rj).

As S is not a σ-algebra, it may not always be the case that countable unions are
contained in S, but the second condition in the definition of pre-measure guarantees
that whenever such a union is contained, then the pre-measure is compatible with the
requirement of σ-additivity.

You may have noticed that we are not imposing the usual monotonicity condition.
This actually follows directly from the definitions of semi-ring and pre-measure: Suppose
A ⊂ B. Then there exists a finite, disjoint set D1, . . . , DN ∈ S such that B = A∪

⋃N
j=1Dj.

Then, using condition (ii) of the pre-measure,

ρ(B) = ρ(A) +
N∑
j=1

ρ(Dj) ≥ ρ(A).

Theorem 6.9 (Carathéodory’s Extension Theorem). Let S ⊂ P(X) be both a covering
class and a semi-ring and suppose that ρ : S → [0,∞] is a pre-measure. Then there exists
a measure µ defined on the measurable space (X, σ(S)) such that µ and ρ are equal on S.
More precisely, denote by µ∗ the outer measure constructed from Proposition 6.2. Then ρ
and µ∗ agree on S and every set S ∈ S is µ∗-measurable.

Sketch proof. The proof that ρ and µ∗ agree on S is formally identical to that of Lemma
3.3(iv), while the fact that every S ∈ S is µ∗-measurable follows as in Lemma 6.4. We
therefore leave it as an exercise (that you should do!) In fact, an inspection of those
proofs will show you that the conditions that are used are precisely those contained in
the definition of a pre-measure.

To conclude the Theorem, we now simply apply Carathéodory’s Lemma, Theorem 6.5
to deduce (a) that the collection of µ∗-measurable sets is a σ-algebra, and hence contains
σ(S); and (b) that the restriction of µ∗ to σ(S) is a measure.

23



Another interesting question that we might ask is whether there is another way of
extending the pre-measure, either to a measure on some σ-algebra or as an outer measure
on the full power set. This question of uniqueness of the extension is a subtle one, but we
can give some kind of an answer with the following general theorem (which is sometimes
stated as part of Carathéodory’s Extension Theorem).

Theorem 6.10. Let S be a semi-ring on X and ρ a σ-finite pre-measure. Let µ∗ be the
outer measure defined from ρ through Proposition 6.2 and let Σ be the set of µ∗-measurable
sets. Suppose that µ̃∗ : P(X) → [0,∞] is another outer measure such that µ̃∗ = ρ on S.
Then we necessarily have that µ∗ = µ̃∗ on Σ.

Note that Theorem 6.9 already guarantees that µ∗ = ρ on S as ρ was a pre-measure.
The σ-finiteness in this theorem is necessary, as is shown by the following example:

Example
Let X = R and consider the semi-algebra (and covering class) S = {∅,R} and the pre-
measure on it defined by ρ(∅) = 0, ρ(R) = ∞. Then the outer measure µ∗ defined
through Proposition 6.2 produces

µ∗(A) =

{
0 if A = ∅,
∞ if A 6= ∅.

However, we can also extend ρ via the counting outer measure

µ̃∗(A) =

{
#A if A is finite,
∞ else.

A third possible extension is λ1, the one-dimensional Lebesgue measure on R. The σ-
algebra of measurable sets in each of the first two cases is the whole power set, P(R), yet
the outer measures do not agree on this set.

On the other hand, the strength of the uniqueness statement in this theorem is limited
to the σ-algebra of measurable sets which, in general, may be very small, as is shown by
the following example.
Example
Let X = [0, 1] and consider the semi-ring (and covering class) S = {∅, [0, 1]} and the
pre-measure on it defined by ρ(∅) = 0, ρ([0, 1]) = 1. Then the Carathéodory extension
µ∗ defined through Proposition 6.2 produces the outer measure

µ∗(A) =

{
0, if A = ∅,
1, if A 6= ∅.

Another outer measure that extends ρ is the 1-dimensional Lebesgue measure λ1 restricted
to the interval [0, 1]. Note that the σ-algebra of µ∗-measurable sets is just Σ = {∅, [0, 1]}.
Indeed, whenever A 6∈ {∅, [0, 1]}, choose B that has non-empty intersection with both A
and [0, 1]\A: then µ∗(B) = 1, µ∗(B∩A) = 1 and µ∗(B\A) = 1, so A is not µ∗-measurable.
Note, however, that λ1 has the same action as µ∗ on the σ-algebra Σ = {∅, [0, 1]}, so that
this does not violate the uniqueness theorem!

The next natural thing we would like to consider is the Lebesgue measure in more
than one dimension, i.e. on Rn. The theory we have just developed makes this very
straightforward.
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6.3 Lebesgue measure on Rn

To construct the Lebesgue measure on Rn, we follow a very similar approach to that taken
to construct the Lebesgue measure on R. In place of the set of open intervals, we turn to
the space of half-open rectangles In = {[a, b) | a, b ∈ Rn}, where the notation

[a, b) = [a1, b1)× [a2, b2)× · · · × [an, bn), where aj ≤ bj, j = 1, . . . , n.

We leave the verification that In is a semi-ring as a (non-examinable) exercise (compare
the proof of Lemma 6.4 for an idea of the third bullet point in the definition).

We begin by assigning a function λ : In → [0,∞) which captures the ‘natural’ volume
by setting

λ([a, b)) =
n∏
j=1

(bj − aj), (2)

where if any bj = aj, we note that the rectangle is empty and we have λ([a, b)) = λ(∅) = 0,
while in any other case each factor is positive.

Lemma 6.11. The function λ : In → [0,∞) defined by (2) is a pre-measure on In.

We omit the proof, which is based on an induction in n.
We now have the Lebesgue measure on Rn.

Definition 6.12. Let µ∗ be the outer measure on Rn given by Theorem 6.9 applied to λ
on In. Then the restriction of µ∗ to the σ-algebra Σn of measurable sets is the Lebesgue
measure on Rn, which we denote λn.

We would like to know now that the σ-algebra of Lebesgue measurable sets on Rn

includes the Borel σ-algebra (it does). To get there, though, we need first to turn to the
theory of product spaces.

7 Product measures
Throughout this section, we let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces.

Recall that for any two sets A,B, the cartesian product (or just product) of A and B
is the set A×B := {(x, y) : x ∈ A, y ∈ B}.

We would like to define a product measure ϕ on an appropriate σ-algebra F in the
space X × Y , with the property that

ϕ(A×B) = µ(A)ν(B), for all A ∈ A, B ∈ B. (1)

where we use the convention ∞× 0 = 0×∞ = 0 if needed for the product on the right.
In this section we shall prove that this can indeed be done.

One reason this is important is the special case where (X,A, µ) = (Y,B, ν) = (R,Σ1, λ1)
(the real line with the Lebesgue σ-algebra and Lebesgue measure). By taking A and B
both to be intervals, the product measure ϕ in this case has the property that ϕ(R) equals
the area of R for any rectangular set of the form R = (a, b] × (c, d] (since such a set has
area (b−a)(d−c)). The measure ϕ in this special case coincides with the two-dimensional
Lebesgue measure λ2. It extends our notion of area for rectangles to a larger class of sets.
This is important, for example, if we want to define integrals of functions via ‘area under
the curve’.
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Definition 7.1. Let (X,A) and (Y,B) be measurable spaces. A set of the form A×B ⊂
X × Y , where A ∈ A and B ∈ B, is called a measurable rectangle. We denote by R
the collection of all measurable rectangles, that is, we set

R := {A×B : A ∈ A, B ∈ B} .

We write A⊗ B for σ(R), the σ-algebra in X × Y generated by the class of measurable
rectangles, and call it the product σ-algebra (of A and B).

Caution: some authors write A × B rather than A ⊗ B for the product σ-algebra.
However, A⊗ B is not a Cartesian product of the collections A and B.

Note that it follows from the definition that

(A×B) ∩ (E × F ) = (A ∩ E)× (B ∩ F ),

(A×B)c = (X ×Bc) ∪ (Ac ×B) = (A×Bc) ∪ (Ac × Y ).

Given we want our product measure ϕ to have property (1), we would like ϕ(S) to be
defined whenever S is a measurable rectangle, i.e. S ∈ R. Therefore our σ-algebra F on
X × Y should include all such S. It is simplest to take the smallest σ-algebra containing
R, namely the product σ-algebra A⊗ B.

In general, it will not be the case that every set in the product σ-algebra A⊗ B is of
the form A×B (or even a disjoint union of such sets). However, if R is a semi-ring in the
sense of Definition 6.7, then we can try to define a pre-measure on R (recall Definition
6.8) and apply Carathéodory’s Theorem to extend it to a measure on A⊗ B.

Proposition 7.2. Let (X,A, µ) and (Y,B, ν) be measurable spaces. Then the collection
R = {A×B |A ∈ A, B ∈ B} is a semi-ring on X × Y .

Proof. It should be clear that ∅ = ∅×∅ ∈ R.
We have already noted that if A,E ∈ A, B,F ∈ B, then (A×B)∩ (E × F ) = (A∩E)×
(B ∩ F ) ∈ R as required.
The final point to check is the complementation. We need to show that if two rectangles
R1 = A1×B1 and R2 = A2×B2 ∈ R, then there exist finitely many disjoint T1, . . . , TN ∈
A× B such that R1 \R2 =

⋃N
j=1 Tj. We use the identity

R1 \R2 = {(x, y) |x ∈ A1, y ∈ B1} \ {(x, y) |x ∈ A2, y ∈ B2}
= {(x, y) |x ∈ A1 \ A2, y ∈ B1} ∪ {(x, y) |x ∈ A1 ∩ A2, y ∈ B1 \B2}
=
(
(A1 \ A2)×B1

)
∪
(
(A1 ∩ A2)× (B1 \B2)

)
which is a disjoint union of sets in R.

Following the intuition from the Lebesgue measure, we are going to define the function
ρ : R → [0,∞] by

ρ(A×B) = µ(A)ν(B) for all A×B ∈ R.

The next proposition shows that this is a pre-measure.

Proposition 7.3. Let (X,A, µ) and (Y,B, ν) be measure spaces, let R = {A × B |A ∈
A, B ∈ B}, and define

ρ(A×B) = µ(A)ν(B) for all A×B ∈ R.

Then the function ρ is a pre-measure on the semi-ring R.
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There are several ways of proving this proposition, but it is most convenient to use
tools of integration that we have not yet defined (in particular, the proof becomes much
easier once we have the Monotone Convergence Theorem). For this reason, the proof is
omitted.

Therefore we may apply the Carathéodory method to construct a measure π on A⊗B.
The measure π is the restriction of the outer measure

π∗(E) = inf
{ ∞∑

j=1

ρ(Aj ×Bj) |E ⊂
∞⋃
j=1

(Aj ×Bj), Aj ∈ A, Bj ∈ B
}

constructed as in Proposition 6.2 to the collection of π∗-measurable sets. By Proposition
6.9, every set in S is π∗-measurable, π agrees with ρ on S and so, as A⊗ B is generated
by S, π is defined on all of A⊗ B.

Observe that if both µ and ν are σ-finite, then so is π as we may write

X =
∞⋃
j=1

Aj, Y =
∞⋃
j=1

Bj

where all µ(Aj) < ∞, ν(Bj) < ∞ and then X × Y =
⋃∞
j,k=1 Aj × Bk and π(Aj × Bk) =

µ(Aj)ν(Bk) <∞.
In the case that both spaces are σ-finite, Theorem 6.10 guarantees the uniqueness of

the product measure in the sense that any other measure π̃ that agrees with π on S must
agree with π on A⊗ B (actually on all of the π-measurable sets).

Definition 7.4. Let (X,A, µ) and (Y,B, ν) be measure spaces. The measure π defined as
in the above construction is called the product measure on A⊗B and denoted π = µ⊗ ν.
The product measure space is the triple (X × Y,A⊗ B, µ⊗ ν).

Corollary 7.5. Whenever k+d = n, the Lebesgue measure on Rn, restricted to the Borel
σ-algebra, is the product measure of the Lebesgue measures on Rk and Rd. Specifically,

(Rn,B(Rn), λn) = (Rk × Rd,B(Rk)⊗ B(Rd), λk ⊗ λd).

Note that we have restricted the Lebesgue measure here to the Borel measurable sets,
not the Lebesgue measurable sets. In fact, it is not the case that the product σ-algebra
Σk ⊗ Σd is the same as Σn. However, the product measure π = λk ⊗ λd obtained from
Carathéodory’s Theorem, when restricted to all of the π∗-measurable sets is the Lebesgue
measure λn, and the σ-algebra of π∗-measurable sets is Σn.

What this tells us is that even if we start with complete measure spaces, the product
measure restricted to the product σ-algebra may not be complete (but its completion will,
by definition, be complete).
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8 Measurable functions and their properties

8.1 Motivation for measurability

Recall that at the beginning of the course, we tried to think about how we might define
the integral of the so-called Dirichlet function, also known as the indicator function of the
rationals: f : [0, 1]→ R given by

f(x) =

{
1, if x ∈ Q,
0, if x 6∈ Q.

We can think of this function as a pointwise limit of Riemann integrable functions fn
with

∫ 1

0
fn = 0 for all n, but Riemann integral theory does not allow us to exchange

the integral and the limit. However, we have now seen that Q is Lebesgue measurable
and has measure zero. So if the integral of f is somehow to capture the ‘area under the
graph’, the only sensible way to assign a value to the integral of f should be to have∫ 1

0
f = 0 = limn→∞

∫ 1

0
fn.

More generally, we can consider the indicator function of a set A ⊂ X, where (X,A, µ)
is a measure space:

1A =

{
1, if x ∈ A,
0, if x 6∈ A.

If we want to integrate 1A with respect to the measure µ, then provided the set A ∈ A
(i.e., is µ-measurable), we can try to assign the value∫

X

1A dµ = µ(A).

Once we have assigned the value of integrals to such functions, we can try to treat them (or
linear combinations of them) as the equivalents of the step functions in the construction
of the Riemann integral.

One advantage of this approach is that it will vastly increase the range of functions
that we can integrate. However, as we saw when measuring sets, we cannot hope in gen-
eral to be able to integrate all functions (just as we could not measure all sets). This leads
us naturally to the notion of measurable functions, which is where this chapter begins.
We will soon see that such functions are exactly those that can be well approximated by
linear combinations of characteristic functions of measurable sets.

Notation (range, pre-image): Suppose Y is a set and f : X → Y is a function.
The image of f (also called the range of f), denoted f(X), is the set of possible values
taken by the function f , i.e.

f(X) := {f(x) : x ∈ X}.

The set f(X) could be strictly contained in Y . The whole set Y is called the codomain
of f . Some authors (not these notes!) use the word ‘range’ to mean the codomain, rather
than the image, of f .

Given B ⊂ Y , we define the pre-image (or inverse image) of B under f as

f−1(B) := {x ∈ X : f(x) ∈ B}.
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Note that nothing is implied about f having an inverse function: in general, it will not
have one. For example, f−1(B) could be empty, even if B is not. The notation f−1(B) is
simply a shorthand for the set of points in X that f maps into the set B. For example if
X = Y = R and f(x) = x2 then f−1([1, 9]) = [1, 3] ∪ [−3,−1] while f−1((−∞, 0)) = ∅.

Before we continue, we should note the following facts concerning the action of pre-
images (independent of measure theory):

(i) f−1 preserves complements: f−1(Ec) = (f−1(E))c;

(ii) f−1 preserves unions: f−1
(⋃

α∈AEα
)

=
⋃
α∈A

(
f−1(Eα)

)
;

(iii) f−1 preserves intersections: f−1
(⋂

α∈AEα
)

=
⋂
α∈A

(
f−1(Eα)

)
.

Notation: Extended real line. We are mainly interested in functions f from X
to R but sometimes it is useful to allow f to take values ±∞ as well. We write R or
[−∞,∞] to denote the set R ∪ {−∞,+∞}, known as the extended real line.

8.2 Measurable functions

We begin with the definition of a measurable function.

Definition 8.1. Let (X,A) and (Y,B) be two measurable spaces. A function f : X → Y
is (A,B)-measurable (or simply measurable if no confusion can arise) iff f−1(E) ∈ A for
all E ∈ B.

This definition should recall that of continuity between metric (or topological) spaces.
Moreover, it should be obvious from the definition that the composition of measurable
functions is measurable. As a test for measurability of a given function, it is helpful to be
able to reduce to testing a generating set of the σ-algebras. This is content of the next
lemma.

Lemma 8.2. Let (X,A) and (Y,B) be two measurable spaces and suppose that B is
generated by E. Then f is measurable if and only if f−1(E) ∈ A for all E ∈ E.

Proof. Note that if f is measurable, then as E ⊂ B, we immediately have that f−1(E) ∈ A
for all E ∈ E . It remains to prove the reverse implication.

For the converse, we note that

M = {E ⊂ Y | f−1(E) ⊂ A}

is a σ-algebra in Y : by the properties (i)–(ii) above, we have that if E ∈M, then as A is
a σ-algebra, also f−1(Ec) = (f−1(E))c ∈ A, so that Ec ∈M, and similarly for countable
unions. As E ⊂M by assumption, we therefore have that σ(E) ⊂M, as required.

Corollary 8.3. Let X and Y be metric spaces, A = BX , B = BY . Then every continuous
function f : X → Y is measurable.

Proof. As BY is generated by the open sets in Y and preimages of open sets under con-
tinuous maps are open, we simply apply the definitions and conclude.

Although the definition we have just given is the general definition of measurability, in
practice, there are certain specific σ-algebras that occur so often that we give measurability
with respect to them its own terminology.

29



Definition 8.4. Let (X,A) be a measurable space and f : X → R. We say that f is
Borel measurable if it is (A,BR)-measurable.
Let Σn denote the Lebesgue measurable sets on Rn and f : Rn → R. We say that f is
Lebesgue measurable if it is (Σn,BR) measurable.

Remark 8.5. It is very important to note that the σ-algebras on the domain and target
in Lebesgue measurability are not the same, even when n = 1! This means that the
composition of Lebesgue measurable functions is not necessarily measurable; if f and g
are both Lebesgue measurable from R to R, then g−1(B) for a Borel set B may be Lebesgue
measurable but not Borel, and so we have no knowledge of the preimage f−1(g−1(B)).
(This of course relies on the existence of sets which are Lebesgue measurable but not
Borel, which we will shortly prove).

Notation: Positive and negative parts. For y ∈ R, we define y+ := max(y, 0)
(the positive part of y) and y− := max(−y, 0) (the negative part of y). Note that
y = y+ − y− and |y| = y+ + y−. Similarly, given a function f : X → R, we define f±
pointwise as (f(x))±.

Corollary 8.6. Let a ∈ R. If f : X → R is measurable, so are af , |f |, f+ and f−.

Proof. This follows directly from observing that each of these functions is a composition of
the measurable function f with the continuous (and hence measurable) function g given,
in each case, by g(y) = ay, g(y) = |y|, g(y) = y+ and g(y) = y− respectively.

Theorem 8.7 (Limits of measurable functions). If fn : X → R, are measurable functions,
defined for n ∈ N, then the functions g : X → R and h : X → R defined by

g := sup
n≥1

fn and h := lim sup
n→∞

fn

are also measurable. Similarly for infn≥1 fn, and lim infn→∞ fn.

Proof. We begin by setting some notation:

{f > a} = f−1((a,∞)), {f < b} = f−1((−∞, b)).

For each of the combinations h in the statement of the proposition, we will show that {h >
a} ∈ A. As the intervals (a,∞) generate BR, this then suffices to deduce measurability
of the function h.

For any a ∈ R we have

g−1((a,∞]) =
∞⋃
n=1

{x ∈ X : fn(x) > a} =
∞⋃
n=1

f−1
n ((a,∞]) ∈ A,

where we have used that each set in the union is in A since each fn is measurable.
Therefore g is measurable. Also g̃ := infn≥1 fn = −(supn≥1−fn) is also measurable.

We can write
h = lim

n→∞
sup
k≥n

fk = inf
n≥1

sup
k≥n

fk,

and this is measurable by the previous paragraph. Similarly, lim infn fn = supn≥1 infk≥n fk
is also measurable.
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Corollary 8.8. If fn : X → R are measurable, and f(x) := limn→∞ fn(x) exists in R for
each x ∈ X, then f is also measurable.

For the proof of this, just note that if f(x) := limn→∞ fn(x) exists, then f = lim supn→∞ fn.

Definition 8.9. A function f : X → R is said to be simple, if (i) it is measurable and
(ii) the range f(X) is a finite set, i.e. f takes only finitely many values.

Note 1: Here we exclude ±∞ from the possible values.
Note 2: It is convenient to include measurability in the definition of a simple function,

though not all authors do so.

Theorem 8.10 (Existence of Approximating Simple Functions). Let f : X → [0,∞]
be measurable. There exist nonnegative simple functions fn, n ∈ N, such that fn ↑ f
pointwise, or in other words, such that for all x ∈ X:
(a) 0 ≤ fn(x) ≤ fn+1(x) for all n ∈ N;
(b) fn(x)→ f(x) as n→∞.

That is, every nonnegative measurable function can be expressed as an increasing limit
of simple functions.

Proof. For each n ≥ 1, define the function fn : X → R by:

fn(x) :=

{
(k − 1)10−n if (k − 1)10−n ≤ f(x) < k10−n for some integer 1 ≤ k ≤ n10n;
n if f(x) ≥ n.

In other words, fn(x) is obtained by rounding f(x) down to the nth decimal place if
f(x) < n, and setting fn(x) = n if f(x) ≥ n. For example, if f(x) = π − 2 = 1.14159...,
then f1(x) = 1, f2(x) = 1.14, f3(x) = 1.141, f4(x) = 1.1415 and so on.

For each n the function fn is simple. Indeed, the possible values taken by fn all lie
in the finite set {k10−n : k ∈ Z ∩ [0, n10−n]}; moreover, fn is measurable because for
1 ≤ k ≤ n10n,

f−1
n ({(k − 1)10−n}) = f−1([(k − 1)10−n, k10−n)) ∈ A

and f−1
n ({n}) = f−1([n,∞]) ∈ A, and each set of the form f−1

n (α,∞) is a finite union of
such sets.

Moreover for all x ∈ X:

• 0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ f(x), so (a) holds;

• fn(x) → f(x) as n → ∞ for all x (so (b) holds). The convergence follows because
if 0 ≤ f(x) ≤ n then f(x)− 10−n ≤ fn(x) ≤ f(x).

Theorem 8.11 (Sums and products of measurable functions). If f : X → R and g :
X → R are measurable, then so are f + g and fg.
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Proof. First suppose f and g are simple. Let α ∈ R. Then

(f + g)−1((α,∞)) = ∪a∈f(X),b∈g(X):a+b>αf
−1({a}) ∩ g−1({b}),

which is a finite union of sets in A and therefore in A. Thus f + g is measurable in this
case.

In the general case, by Theorem 8.10 we can take simple f+
n : X → R and f−n : X → R

with 0 ≤ f+
n ↑ f+ and 0 ≤ f−n ↑ f− pointwise. Set fn := f+

n − f−n . Then fn is simple (for
each n) and fn → f pointwise. Similarly we can find simple gn with gn → g pointwise.

But then fn+gn → f+g pointwise and since fn and gn are simple, fn+gn is measurable
by the first case considered. Therefore by Corollary 8.8, f + g is also measurable.

The argument for measurability of fg is the same.

Remark 8.12. It can further be shown that if f : X → [−∞,∞] is measurable, then so
are f+ := max{f, 0} and f− := max{−f, 0}. Also, if f, g : X → [0,∞] are measurable,
then so are f + g and fg. (HW)

Before moving on to integration, we introduce one more useful proposition.

Proposition 8.13. Let (X,A, µ) be a complete measure space.
(i) Let f : X → R be Borel (or Lebesgue in the case X = Rn) measurable. Suppose that
g : X → R is such that g = f almost everywhere. Then g is measurable.
(ii) Suppose that for all n ∈ N, fn : X → R is Borel (or Lebesgue in the case X = Rn)
measurable and that fn → f almost everywhere. Then f is measurable.

Recall that the terminology of almost everywhere was introduced at the beginning of
Section 6.

9 The Lebesgue integral for non-negative functions
Consider a Borel function f : R→ R. If f(x) ≥ 0 for all x, we may define

∫∞
−∞ f(x)dx as

the ‘area under the curve’, i.e. the two-dimensional Lebesgue measure (λ2) of the region
between the x-axis and the graph y = f(x) (we call this region the hypograph of f). Then
for general f we shall define

∫∞
−∞ f(x)dx by considering f+ and f− separately.

This strategy works just as well for f : X → R with (X,A, µ) an arbitrary measure
space; instead of λ2 we use the product measure µ ⊗ λ1. We denote the integral by∫
fdµ. The integral

∫∞
−∞ f(x)dx amounts to the special case where X = R, A = Σ1 and

µ is Lebesgue measure. In the case where µ is a probability measure, the function f is
usually called a random variable and the integral

∫
fdµ is called the expected value (or

expectation) of f (often denoted E[f ]).
We are now in a position to begin to define the Lebesgue integral on a measure space.

Due to the difficulties with functions that can take infinite values and still be measurable,
we begin by focusing on the integral for non-negative functions. To shorten the notation,
we introduce the following space of functions.

Definition 9.1. Let (X,A) be a measurable space. We define the set L+(X,A) (or
simply L+ when clear) by

L+ := {f : X → [0,∞] | f is measurable}.
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Throughout this section, (X,A, µ) denotes an arbitrary σ-finite measure space.

Definition 9.2. Given f : X → [0,∞] we define the hypograph of f to be a subset of
X × R given by

hyp(f) := {(x, y) ∈ X × R : 0 < y < f(x)}.

Lemma 9.3. If f : X → [0,∞] is measurable, then hyp(f) ∈ A⊗ B.

Proof. If 0 < y < f(x) we can find a rational number q ∈ (y, f(x)). Therefore

hyp(f) = ∪q∈Q∩(0,∞){(x, y) ∈ X × R : 0 < y < q < f(x)}
= ∪q∈Q∩(0,∞)[f

−1((q,∞])× (0, q)],

which is a countable union of sets in A⊗ B, and hence itself is in A⊗ B.

Remark 9.4. Conversely, it can be proved that if f : X → [0,∞] satisfies hyp(f) ∈ A⊗B,
then f is measurable. We leave the proof of this as an exercise.

Recall that we are assuming that the measure space (X,A, µ) is σ-finite (and so is the
measure space (R,B, λ1)). Therefore the product measure µ ⊗ λ1 is well defined, as the
unique measure on (X × R,A ⊗ B) that agrees with the ‘area’ function for measurable
rectangles (see Definition 7.4).

We may now define the integral of a nonnegative measurable function on X as the
product measure of its hypograph, and then extend to general real-valued functions on X
by taking positive and negative parts.

Definition 9.5. If f ∈ L+(X,A), then we define the integral of f with respect to µ to be∫
f dµ = (µ⊗ λ1)(hyp(f)). (2)

It is important to note at this stage that we have not assumed that the integral of a
non-negative function is finite! It could very well be infinite. This causes some problems
in terminology: we want to be able to say that the integral of a function is infinite, but we
also want to say that a function is integrable if it has finite integral. In other words, we
will end up in a situation where some functions are not integrable but can be integrated
(and have infinite integral).
Notation: Given a function f ∈ L+ and a set A ∈ A, we define∫

A

f dµ =

∫
f1A dµ.

Lemma 9.6. Suppose f, g ∈ L+(X,A).
(a) If f ≤ g pointwise then

∫
f dµ ≤

∫
g dµ.

(b) If
∫
f dµ <∞, then µ(f−1({∞})) = 0.

Proof. (a) Suppose 0 ≤ f ≤ g. Then hyp(f) ⊂ hyp(g) so (µ ⊗ λ1)(hyp(f)) ≤ (µ ⊗
λ1)(hyp(g)), or in other words

∫
f dµ ≤

∫
g dµ.

(b) Set E := f−1({∞}). Then hyp(f) ⊃ E × (0,∞), and if µ(E) > 0 then (µ ⊗
λ1)(hyp(f)) ≥ (µ⊗ λ1)(E × [0,∞)) =∞, and the result follows.
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Theorem 9.7 (Monotone Convergence Theorem). Let {fn}∞n=1 be a sequence such that
fn ∈ L+ for all n ∈ N and such that 0 ≤ f1 ≤ f2 ≤ . . .. Define f(x) = limn→∞ fn(x).
Then ∫

f dµ = lim
n→∞

∫
fn dµ.

As the sequence fn is monotone, the limit function f is well-defined and in L+.

Proof. Since fn ≤ fn+1 we have hyp(fn) ⊂ hyp(fn+1) for each n ∈ N. Also, we claim

hyp(f) = ∪∞n=1 hyp(fn).

Indeed, if (x, y) ∈ hyp(f) then 0 < y < f(x), and since fn(x)→ f(x) we have fn(x) > y
for some n, and hence (x, y) ∈ ∪∞n=1 hyp(fn). Hence hyp(f) ⊂ ∪∞n=1fn and the reverse
inclusion holds because fn ≤ f pointwise so hyp(fn) ⊂ hyp(f) for all n, justifying the
claim. Therefore by continuity from below of µ⊗ λ1 (compare Theorem 5.3(iii)),∫

f dµ = (µ⊗ λ1)(hyp(f)) = lim
n→∞

((µ⊗ λ1)(hyp(fn))) = lim
n→∞

∫
fn dµ,

as required.

Lemma 9.8 (Integrating simple functions). (i) If f : X → [0,∞] is simple then it has a
representation

f =
n∑
i=1

αi1Ai
(3)

for some n ∈ N and α1, . . . , αn ∈ R, and A1, . . . , An ∈ A, pairwise disjoint.
(ii) If f is given by (3) for some n ∈ N with α1, . . . , αn ∈ [0,∞], and A1, . . . , An ∈ A

pairwise disjoint, then ∫
f dµ =

n∑
i=1

αiµ(Ai). (4)

Proof. (i) Suppose f is simple. Let α1, . . . , αn be an enumeration of the range of f , i.e.
f(X) = {α1, . . . , αn}. Set Ai = f−1({αi}). Then (3) holds and the sets Ai are in A and
pairwise disjoint.

(ii) Note we do not assume here that the αi are distinct. For (x, y) ∈ X × R, to have
(x, y) ∈ hyp(f) we must have for some i ≤ n that x ∈ Ai and 0 < y < f(x) = αi. Thus

(x, y) ∈ hyp(f)⇔ ∃i ≤ n : (x, y) ∈ Ai × (0, αi).

Therefore hyp(f) = ∪ni=1(Ai × (0, αi)) (interpreting (0, αi) = ∅ in any cases with αi = 0)
and the sets in the union are pairwise disjoint (since the Ai are pairwise disjoint), so that
using (2) we have ∫

f dµ =
n∑
i=1

µ⊗ λ1(Ai × (0, αi)) =
n∑
i=1

αiµ(Ai).
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Remark 9.9. We make several remarks:
(i) In (4), there might be some indices i for which αi = 0 and µ(Ai) =∞ or αi =∞ and
µ(Ai) = 0. To interpret the right hand side of (4) in these cases, we take the product to
be zero.
(ii) In the case where µ is a probability measure and denoted P, (4) gives us the well-known
formula for the expectation of a discrete random variable:

E[f ] =
∑
α

αP[{f = α}]

where {f = α} is short for {x ∈ X : f(x) = α}, and the sum is over all possible values α
for f , i.e. over α ∈ f(X).
(iii) By working a bit harder, we could have defined the integral for simple functions
directly through (4) and then defined, for functions f ∈ L+,∫

f dµ = sup
{∫

ϕ dµ |ϕ is simple and 0 ≤ ϕ ≤ f
}
.

Such a definition would not have required us to assume that (X,A, µ) is σ-finite, but
would have needed more work to show that the integral is well-defined for simple functions,
independent of the choice of representation, and then to prove the Monotone Convergence
Theorem.

We would like to show that
∫

(af + bg)dµ = a
∫
fdµ + b

∫
gdµ, for any a, b ∈ R

and f, g ∈ R(X) such that
∫
fdµ and

∫
gdµ are finite (the function af + bg is defined

pointwise, i.e. (af + bg)(x) = af(x) + bg(x) for all x ∈ X). As a first step, we consider
the special case where f and g are nonnegative simple functions, and a, b ≥ 0.

Lemma 9.10. Suppose f : X → [0,∞) and g : X → [0,∞) are simple functions, and
c ∈ [0,∞) is a constant. Then
(i)
∫

(cf) dµ = c
∫
f dµ, and

(ii)
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

Proof. (i) By Lemma 9.8(i), we can write f =
∑n

i=1 αi1Ai
with Ai ∈ A disjoint. Then

cf =
∑n

i=1 cαi1Ai
, and by Lemma 9.8(ii)

∫
(cf) dµ =

∑
i(cαi)µ(Ai) = c

∫
f dµ.

(ii) Suppose f(X) = {α1, . . . , αm} and g(X) = {β1, . . . , βn}. Set Ai = f−1({αi}) and
Bj = g−1({βj}). Then f =

∑m
i=1 αi1Ai

and g =
∑n

j=1 βj1Bj
with α1, . . . , αm distinct

and β1, . . . , βn distinct. Also A1, . . . , Am form a partition of X (that is, they are pairwise
disjoint and their union is X) and so do B1, . . . , Bn. For each (i, j) ∈ {1, . . . ,m} ×
{1, . . . , n}, set Eij = Ai ∩Bj. Then Ai = ∪nj=1Eij (disjoint union) so∫

f dµ =
m∑
i=1

αiµ(Ai) =
m∑
i=1

n∑
j=1

αiµ(Eij)

and similarly
∫
g dµ =

∑n
j=1

∑m
i=1 βjµ(Eij). Hence∫

f dµ+

∫
g dµ =

m∑
i=1

n∑
j=1

(αi + βj)µ(Eij). (5)

35



Now (f + g)(x) = αi + βj for all x ∈ Eij; in other words

f + g =
m∑
i=1

n∑
j=1

(αi + βj)1Eij
,

and the sets E11, . . . , Emn are pairwise disjoint, so by Lemma 9.8(ii),∫
(f + g) dµ =

m∑
i=1

n∑
j=1

(αi + βj)µ(Eij).

Comparing this with (5) gives us the result.

Lemma 9.11. Suppose f, g ∈ L+. Let c ∈ [0,∞). Then: (i)
∫

(cf ) dµ = c
∫
f dµ, and

(ii)
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

Proof. By Theorem 8.10, there exist simple functions 0 ≤ fn ↑ f and 0 ≤ gn ↑ g. To
prove (i), note that cfn ↑ cf , and cfn is simple, so that by the MCT and Lemma 9.10,∫

cfdµ = lim
n→∞

∫
cfndµ

Lemma 9.10
= lim

n→∞
c

∫
fndµ = c lim

n→∞

∫
fndµ = c

∫
fdµ.

For (ii), note that 0 ≤ (fn + gn) ↑ (f + g). Applying MCT and the additivity of
integration for nonnegative simple functions (Lemma 9.10), we get:∫

(f + g) dµ MCT
= lim

n→∞

∫
(fn + gn) dµ Lemma 9.10

= lim
n→∞

[∫
fn dµ+

∫
gn dµ

]
= lim

n→∞

∫
fn dµ+ lim

n→∞

∫
gn dµ

MON
=

∫
f dµ+

∫
g dµ.

Using the Monotone Convergence Theorem, we can easily exchange integral with sums
for non-negative functions. In fact, we can do this even for infinite sums of functions.

Theorem 9.12. Let fn ∈ L+ for n ∈ N and define f =
∑∞

n=1 fn. Then
∫
f dµ =∑∞

n=1

∫
fn dµ.

Proof. We define the sequence of partial sums pointwise as gk(x) :=
∑k

n=1 fn(x), and set
g(x) :=

∑∞
n=1 fn(x). Then gk ↑ g∞ pointwise and g∞ is measurable by Corollary 8.8.

Hence by the MCT, and Lemma 9.11,∫
g∞dµ = lim

k→∞

∫
gkdµ = lim

k→∞

k∑
n=1

∫
fndµ =

∞∑
n=1

∫
fndµ,

as required.

We would like to recover some of the classical results of integration theory from the
Riemann integral, such as the very useful lemma that states that if f ≥ 0, f is continuous,
and

∫
f = 0, then f = 0 everywhere. As we have already seen that measurable functions

do not have to be continuous (or even close to continuous), we would like a stronger
version of this lemma that drops the assumption of continuity. In general, of course, such
a result would then be false (consider a function that takes the value 1 at a single point
and is zero elsewhere), but with the language of measure theory, we can make a statement
that is almost as good.

Recall the terminology almost everywhere (abbreviated a.e.) from Section 6: a function
f = 0 a.e. if µ({x | f(x) 6= 0}) = 0.
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Lemma 9.13. Let f ∈ L+. Then
∫
f dµ = 0 if and only if f = 0 a.e.

The proof of this lemma is left as a homework exercise (HW).
There are numerous consequences of this lemma, which basically says that to under-

stand the integral of a function (or sequence of functions), we can neglect sets of measure
zero. One example is the following corollary.

Corollary 9.14. Let fn ∈ L+ for all n ∈ N be a sequence that is increasing a.e. and
define the limit function f = limn→∞ fn on the set where fn is increasing (and defined
arbitrarily on the remaining set) such that f ∈ L+. Then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. Define the set

E = {x ∈ X | fn(x) is not increasing}, µ(E) = 0.

Then as f = f1Ec a.e., we have f − f1Ec = 0 a.e. and f − f1Ec ∈ L+. Thus
∫

(f −
f1Ec)dµ = 0, and so, by adding

∫
f1Ec dµ to both sides,∫

f dµ =

∫
f1Ec dµ =

∫
lim
n→∞

fn1Ec dµ = lim
n→∞

∫
fn1Ec dµ by MCT

= lim
n→∞

∫
fn dµ,

where we used that fn− fn1Ec = 0 a.e. and fn− fn1Ec ∈ L+ for all n in the last step.

The assumption in this corollary that the sequence fn be increasing is essential; we
can easily construct a sequence of functions that converges a.e. but where the integrals
fail to converge to the integral of the limit function. A simple example is on R equipped
with the Lebesgue measure. Let fn = 1(n,n+1). Then fn → 0 a.e. but

∫
fn = 1 for all n.

While this simple example shows that we cannot take limits without at least some kind
of additional assumption, the following, highly significant lemma shows that the integral
of the limit can never exceed the limit of the integrals.

Lemma 9.15 (Fatou’s Lemma). Let {fn}∞n=1 be a sequence of functions in L+. Then∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

Note that even if the function limn→∞ fn exists, the sequence of integrals
∫
fn dµ may

not have a limit (Exercise: construct such a sequence).

Proof. First note that, by definition,

lim inf
n→∞

fn = sup
k∈N

inf
n≥k

fn

as the sequence of infima is increasing: infn≥k fn ≤ infn≥k+1 fn. In addition, infn≥k fn ≤ fj
for all j ≥ k.

Therefore, ∫
inf
n≥k

fn dµ ≤
∫
fj dµ for all j ≥ k.
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Taking the infimum in j, we therefore obtain∫
inf
n≥k

fn dµ ≤ inf
j≥k

∫
fj dµ.

Both the left and right hand sides of this inequality are increasing sequences of real
numbers, and so we may take limits (in the extended real line) to find

lim
k→∞

∫
inf
n≥k

fn dµ ≤ lim
k→∞

inf
j≥k

∫
fj dµ.

The right hand side is clearly lim infn→∞
∫
fn dµ, as required. For the left hand side, we

use the monotone convergence theorem to see

lim
k→∞

∫
inf
n≥k

fn dµ =

∫
lim
k→∞

inf
n≥k

fn dµ =

∫
lim inf
n→∞

fn dµ.

Example 9.16. Another example of a situation in which we have a strict inequality in
Fatou’s lemma is as follows. Suppose X = {0, 1} with the counting measure. Suppose
fn(1) = (1 + (−1)n)/2 and fn(0) = 1− fn(1). That is, fn(1) equals 1 for even n and zero
for odd n, and fn(0) is the other way round.

Then
∫
fn dµ = 1 + 0 = 1 for all n, while lim infn→∞ fn(x) = 0 for all x ∈ X so∫

lim infn→∞ fn = 0. Thus, in this case the inequality in the statement of Fatou’s lemma
is strict.

Corollary 9.17. Let {fn}∞n=1 be a sequence of functions in L+ such that fn → f a.e.
Then ∫

f dµ =

∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

10 Integration of general measurable functions
Having established a method for integrating non-negative integrable functions, we now
extend this theory to real or complex valued functions without a definite sign. We begin
with real-valued functions.

Definition 10.1. Let f : X → R be measurable. We define the positive and negative
parts f+ := max{f, 0}, f− := max{−f, 0}, so that f = f+ − f−. We define the integral
of f to be ∫

f dµ =

∫
f+ dµ−

∫
f− dµ

when at most one of
∫
f+ dµ and

∫
f− dµ is +∞.

This definition holds for many measurable functions. We now define the particular
class of functions we call integrable.

Definition 10.2. Let f : X → R be measurable. We say that f is integrable if∣∣ ∫ f dµ
∣∣ <∞.

38



NB: Note that the integral is still defined for many functions that are not integrable!

Observe also that, by definition, f is integrable if and only if
∣∣ ∫ f dµ∣∣ < ∞. This holds

if and only if both
∫
f+ dµ <∞ and

∫
f− dµ <∞. Thus f is integrable if and only if |f |

has a finite integral:
∫
|f | dµ =

∫
(f+ + f−) dµ <∞.

Recall from the theory of the Riemann integral that the space of Riemann integrable
functions is a vector space. The same is true for Lebesgue integrable functions.

Definition 10.3. Define the space L1(µ) (or simply L1 when no confusion can arise) as

L1(µ) :=
{
f : X → R |

∣∣∣ ∫ f dµ
∣∣∣ <∞}.

Proposition 10.4. The space L1(µ) is a vector space and the integral is a linear functional
on this space. Moreover, |

∫
f dµ| ≤

∫
|f | dµ.

Proof. Let f ∈ L1(µ). Let a > 0. Then (af)+ = af+, (af)− = af−. Thus∫
af dµ =

∫
(af)+ dµ−

∫
(af)− dµ =

∫
af+ dµ−

∫
af− dµ = a

(∫
f+ dµ−

∫
f− dµ

)
= a

∫
f dµ.

Now suppose a < 0 (the case a = 0 is straightforward). Then (af)+ = |a|f− and
(af)− = |a|f+, leading to ∫

af dµ = −|a|
∫
f dµ = a

∫
f dµ.

Next, take f, g ∈ L1(µ). Then |f + g|, |f |, |g| ∈ L+ and |f + g| ≤ |f |+ |g|, so that∫
|f + g| dµ ≤

∫
|f | dµ+

∫
|g| dµ.

Hence f + g ∈ L1(µ) and L1(µ) is a vector space.

To show that
∫
is a linear functional, we need to show that

∫
af dµ = a

∫
f dµ (which we

have already shown) and
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ.

Let h = f + g, h = h+ − h−, f = f+ − f−, g = g+ − g−. Note that we have no
guarantee that h+ = f+ + g+. However, we may observe that

h+ − h− = f+ − f− + g+ − g−

so that
h+ + f− + g− = h− + f+ + g+

where both sides are sums of functions in L+.
Then∫
h+ dµ+

∫
f− dµ+

∫
g− dµ =

∫
(h+ + f− + g−) dµ

=

∫
(h− + f+ + g+) dµ =

∫
h− dµ+

∫
f+ dµ+

∫
g+ dµ.

Rearranging, we obtain ∫
h dµ =

∫
f dµ+

∫
g dµ,

as required.
The final claim that |

∫
f dµ| ≤

∫
|f | dµ is left as an exercise (HW).
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Now that we have defined the class of integrable functions, we are going to show some
very basic properties that have to hold for such functions to show that they are not too
bad.

Proposition 10.5. (i) Let f ∈ L1(µ). Then {x ∈ X | f(x) 6= 0} is σ-finite and {x ∈
X | f(x) = ±∞} has measure zero.
(ii) Let f, g ∈ L1(µ). Then

∫
E
f dµ =

∫
E
g dµ for all E ∈ A if and only if

∫
|f −g| dµ = 0

if and only if f = g a.e.

Proof. (i) Suppose without loss of generality that f ≥ 0 as {f 6= 0} = {|f | 6= 0}. Note
that

{x | f(x) > 0} =
∞⋃
n=1

{x | f(x) >
1

n
}.

Now observe that

∞ >

∫
f dµ ≥

∫
{f> 1

n
}
f dµ ≥

∫
{f> 1

n
}

1

n
dµ =

1

n
µ
(
{f > 1

n
}
)
,

so that we see {f > 1
n
} has finite measure and hence {f 6= 0} is σ-finite.

Moreover, if the set {x ∈ X | f(x) =∞} has positive measure, then we have

∞ >

∫
f dµ ≥

∫
{f=∞}

f dµ =∞,

a contradiction. Similarly, {x ∈ X | f(x) = −∞} has measure zero also, concluding the
proof of (i).

The proof of (ii) is left as a homework exercise (HW).

As we have shown that L1(µ) is a vector space with some nice properties, one obvious
next step might be to try to create a norm on this space that allows us to bring functional
analysis techniques to bear on the integrable functions. This is indeed what we are going
to do, but we first need to address a certain technical difficulty.

The clearest candidate for a norm on L1(µ) is the functional

‖ · ‖L1(µ) : L1(µ)→ R≥0 defined by ‖f‖L1(µ) =

∫
|f | dµ.

Clearly we have, for λ ∈ R, ‖λf‖L1(µ) = |λ|‖f‖L1(µ) and also ‖f + g‖L1(µ) ≤ ‖f‖L1(µ) +
‖g‖L1(µ). However, the final property of a norm is that ‖f‖L1(µ) = 0 implies f = 0. This
clearly fails for any function f which is non-zero on a non-empty set of measure zero! For
example, with X = R and the Lebesgue measure, we have

∫
1Q dµ = 0.

To handle this issue, we are instead going to work with equivalence classes of functions
(this is less strange that it may at first seem for reasons that will become apparent soon).

Definition 10.6 (L1(µ)). We define the equivalence relation: for f, g ∈ L1(µ),

f ∼ g if and only if f = g a.e.

The quotient space L1(µ)/ ∼ is the collection of equivalence classes and is the space L1(µ).
We define a norm on L1(µ) by

‖[f ]‖L1(µ) :=

∫
X

|f | dµ.
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NB: By Proposition 10.5, this is well-defined. Indeed, if two functions are in the same
equivalence class, then they agree a.e., and so they have the same integral (and the same
is true for their absolute values).

We have claimed in the definition that ‖ · ‖L1(µ) is in fact a norm. We now prove that
this is so.

Lemma 10.7. The map ‖ · ‖L1(µ) : L1(µ)→ R is a norm.

Proof. Clearly ‖[f ]‖L1(µ) ≥ 0 for all [f ] ∈ L1. If ‖[f ]‖L1(µ) = 0, then we may take a
representative f of the equivalence class and see that ‖[f ]‖L1(µ) =

∫
|f | dµ, so that f = 0

a.e. by Proposition 10.5(ii). Thus [f ] = [0] (the equivalence class generated by the zero
function) which is the zero element in the quotient space L1(µ).

The remaining properties of a norm follow from the same arguments as above once we
note that [λf ] = λ[f ] and [f + g] = [f ] + [g].

11 Dominated convergence and sets of measure zero
We have already seen one way of exchanging limits with integrals: via the Monotone
Convergence Theorem. However, in general, we cannot expect that sequences of functions
will be monotone (or even monotone a.e.) and so we want a theorem that gives sufficient
conditions to exchange limits and integrals without needing monotonicity. It turns out
that the space of integrable functions is a good one in which to work for this.

We saw earlier that sequences such as 1(n,n+1) do not allow us to pass the limit through
the integral. What is happening here, in a sense, is that the mass of the function is escaping
off to infinity and being lost in the limit. An alternative way of ‘losing’ integral in the
limit (equivalently, having a strict inequality in Fatou’s Lemma) is to think of a sequence
of functions where the mass is concentrating, such as n1[0, 1

n
]. Again the integral is always

1, but the mass accumulates at the origin and is lost in the a.e. limit.
The key assumption that will prevent this in the next theorem in the assumption that

all of the functions in the sequence can be bounded by a single integrable function. When
this happens, we say that this upper bound dominates the sequence, hence the name of
the theorem: the Dominated Convergence Theorem. This dominating function prevents
both the accumulation of mass and the possibility of mass escaping to infinity.

Theorem 11.1 (Dominated Convergence Theorem). Let {fn}∞n=1 ⊂ L1(µ), f ∈ L1(µ) be
such that fn → f a.e. and suppose that there exists a function g ∈ L1(µ) such that g ≥ 0
and |fn(x)| ≤ g(x) for all x ∈ X. Then∫

f dµ = lim
n→∞

∫
fn dµ.

Proof. First, observe that as |fn(x)| ≤ g(x) for all n ∈ N and fn → f a.e. we have that
|f(x)| ≤ g(x) a.e. Thus f ∈ L1(µ) (

∫
|f | dµ <∞).

Next, using again the bound |fn| ≤ g, observe that the functions g − fn, g + fn ≥ 0
for all n. We may therefore apply Fatou’s lemma to each of these two sequences and find∫
g dµ−

∫
f dµ =

∫
lim inf
n→∞

(g − fn) dµ ≤ lim inf
n→∞

∫ ∫
(g − fn) dµ =

∫
g dµ− lim sup

n→∞

∫
fn dµ,∫

g dµ+

∫
f dµ =

∫
lim inf
n→∞

(g + fn) dµ ≤ lim inf
n→∞

∫ ∫
(g + fn) dµ =

∫
g dµ+ lim inf

n→∞

∫
fn dµ.
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Rearranging these inequalities, we have found

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fn dµ,

and so we conclude∫
f dµ = lim sup

n→∞

∫
fn dµ = lim inf

n→∞

∫
fn dµ = lim

n→∞

∫
fn dµ.

Theorem 11.2. Let {fn}∞n=1 ⊂ L1(µ) be such that
∑∞

n=1

∫
|fn| dµ < ∞. Then

∑∞
n=1 fn

converges a.e. to a function in L1(µ) and∫ ∞∑
n=1

fn dµ =
∞∑
n=1

∫
fn dµ.

Proof. We begin by considering the function (valued in the extended real line)
∑∞

j=1 |fn|.
By the Monotone Convergence Theorem, we have∫ ∞∑

n=1

|fn| dµ =
∞∑
n=1

∫
|fn| dµ,

where, by the assumption in the theorem, the right hand side is finite, and so the left
hand side is finite also. Thus we have shown

∑∞
n=1 |fn| ∈ L1(µ) and therefore the sum is

finite a.e.
Now we notice that, for all n ∈ N∣∣∣ n∑

k=1

fk(x)
∣∣∣ ≤ ∞∑

n=1

|fn| =: g(x)

so that g is a dominating function in the sense of the Dominated Convergence Theorem.
Let gn(x) =

∑n
k=1 fk(x), so that |gn| ≤ g, g ∈ L1(µ) satisfies the assumptions of the

DCT. By that theorem, we therefore take∫
lim
n→∞

gn dµ = lim
n→∞

∫
gn = lim

n→∞

∫ n∑
k=1

fk dµ = lim
n→∞

n∑
k=1

∫
fk dµ =

∞∑
n=1

∫
fn dµ.

When we were defining measurable functions, we saw that there was a sense in which
they could be well approximated by simple functions. The question now arises whether
the same can be said in the space L1(µ) with the topology induced by the norm. The
answer is that it can, though we will not prove it in this course.

Theorem 11.3. (i) Let f ∈ L1(µ), ε > 0. Then there exists a simple function ϕ such
that

∫
|f − ϕ| dµ < ε. In particular, the set of equivalence classes of simple functions is

dense in L1(µ).
(ii) If µ is the Lebesgue measure on R, then, writing ϕ =

∑n
j=1 aj1Ej

, we may take each
of the sets Ej to be a finite union of open intervals. Additionally, there exists a continuous
function g such that

∫
|f − g| dµ < ε.
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We have compared the Lebesgue integral to the Riemann integral repeatedly so far,
but have not yet made the comparison precise. The next theorem not only shows that
the two integrals coincide on the set of Riemann integrable functions, it also gives us a
characterisation of the Riemann integrable functions (something that was not possible
with the classical theory of analysis developed in the 19th Century).

Theorem 11.4. Let f : [a, b]→ R.
(i) If f is Riemann integrable, then f is also Lebesgue integrable and the two integrals are
the same.
(ii) f is Riemann integrable if and only if the set {x ∈ [a, b] | f is not continuous at x} has
Lebesgue measure zero.

The proof of this theorem is non-examinable (but ask if you would like to see a proof;
the proof of (i) is quite direct from the DCT).

Theorem 11.5. Let f : X → [0,∞] be measurable, and for E ∈ A, put ϕ(E) :=
∫
E
f dµ.

Then ϕ is a measure on (X,A).

Proof. It is clear that ϕ : A → [0,∞], and that ϕ(∅) = 0. Suppose that E1, E2, . . . ∈ A
are disjoint and set E := ∪∞n=1En. Then 1Ef =

∑∞
n=1 1Enf so by Theorem 9.12,

ϕ(E) =

∫
1Ef dµ =

∞∑
n=1

∫
1Enf dµ =

∞∑
n=1

ϕ(En).

This proves that ϕ is a measure.

Remark. It is customary to write f dµ for dϕ, and call f the density function of ϕ
with respect to µ.

There is an important converse to the above theorem that we now state.

Definition 11.6. If ν and µ are both measures on (X,A), we say that ν is absolutely
continuous with respect to µ, denoted ν � µ, if whenever µ(E) = 0 then also
ν(E) = 0.

Observe that ϕ has this property: if µ(E) = 0, then ϕ(E) =
∫
E
f dµ = 0, by Proposi-

tion 10.5.
The following theorem states that under a σ-finiteness assumption, any finite measure

that is absolutely continuous with respect to µ has a density.

Theorem 11.7 (Radon-Nikodým Theorem). Suppose ν and µ are both measures on a
measurable space (X,A), and ν � µ. If µ is σ-finite, and ν(X) <∞, then there exists a
measurable function f : X → [0,∞) such that ν(E) =

∫
E
f dµ for all E ∈ A.

(Non-examinable) For the proof see any of the books mentioned at the start of the
course.

Example 11.8. Suppose P is a probability measure on (R,B) such that P(B) = 0 for
all B ∈ B with λ1(B) = 0. Then by the Radon-Nikodým Theorem, the measure P
has a probability density function, that is, a Borel function f : R → [0,∞) such that
P(A) =

∫
A
f(x) dx for all A ∈ B. In particular taking A = R shows that

∫∞
−∞ f(x) dx = 1.
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12 Fubini-Tonelli Theorem
Fubini’s theorem is an important result which gives conditions under which we are guar-
anteed to be able to interchange the order of a double integral.

Before we state and prove the Fubini–Tonelli Theorem for exchanging the order of
integration, we gather some preliminary notation and results for the slicings of sets and
functions in the product space.
Notation:
If E ⊂ X×Y , x ∈ X, y ∈ Y , we let Ex := {y ∈ Y | (x, y) ∈ E} and Ey = {x ∈ X | (x, y) ∈
E}.
If f : X × Y → R, we let fx(y) = f(x, y) for each fixed x ∈ X, f y(x) = f(x, y) for each
fixed y ∈ Y .

Proposition 12.1. Let (X,A) and (Y,B) be measurable spaces.
(i) If E ∈ A⊗ B, then Ex ∈ B, Ey ∈ A for all x ∈ X, y ∈ Y .
(ii) Let f : X × Y → R be A ⊗ B-measurable. Then fx(y) is B-measurable and f y(x) is
A-measurable.

Proof. (i) Define a collection of sets

R =
{
E ⊂ X × Y |Ex ∈ B, Ey ∈ A

}
.

We aim to show that R ⊃ A⊗ B.
First, note that if A ∈ A, B ∈ B, then

(A×B)x =

{
B if x ∈ A,
∅ if x 6∈ A,

and (A×B)y =

{
A if y ∈ B,
∅ if y 6∈ B.

Thus A×B ∈ R.
It now suffices to show that R is closed under complements and countable unions, as

it must then contain the σ-algebra generated by rectangles A×B (which is A⊗ B).
Let {Ej}∞j=1 ⊂ R. Then( ∞⋃

j=1

Ej

)
x

=
{
y ∈ Y | (x, y) ∈

∞⋃
j=1

Ej
}

=
∞⋃
j=1

{y ∈ Y | (x, y) ∈ Ej} =
∞⋃
j=1

(Ej)x ∈ B.

Similarly,
(⋃∞

j=1Ej

)y
∈ A.

Now suppose E ∈ R. Then

(Ec)x = {y ∈ Y | (x, y) 6∈ E} = (Ex)
c ∈ B

and similarly (Ey)c = (Ec)y ∈ A.
(ii) To show that fx(y) is B-measurable, we need to show that (fx)

−1(B) ∈ B for all
B ∈ B(R) (the Borel σ-algebra). But it is clear from the definition that

(fx)
−1(B) = (f−1(B))x.

By part (i), as f−1(B) ∈ A ⊗ B (by measurability of f), this must be in B, as required.
The proof for f y is similar.
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Remark 12.2. This proposition lets us make more precise the claim above that even
when µ and ν are complete, µ ⊗ ν may not be. Suppose that B 6= P(Y ) and that there
exists a non-empty set A ∈ A with µ(A) = 0. As A is complete, we may assume that
A = {x} for a single x ∈ X. Then for E ∈ P(Y ) \ B, we must have that A× E 6∈ A ⊗ B
(as if A× E ∈ A ⊗ B then Proposition 12.1(i) implies (A× E)x = ({x} × E)x = E ∈ B,
a contradiction). But A× E ⊂ A× Y , and µ⊗ ν(A× Y ) = µ(A)× ν(Y ) = 0. So µ⊗ ν
is not complete.

Theorem 12.3. Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces and suppose E ∈
A⊗ B. Then the maps

x 7→ ν(Ex) and y 7→ µ(Ey)

are measurable on X, Y , respectively, and∫
X

ν(Ex) dµ =

∫
Y

µ(Ey) dν = π(E) = µ⊗ ν(E).

Proof. Non-examinable. First suppose that µ and ν are finite and let C be the set
of all E ∈ A⊗B such that the Theorem holds. Now if E = A×B, by definition, we
have ν(Ex) = 1A(x)ν(B) and µ(Ey) = µ(A)1B(y), so clearly E ∈ C. By additivity
of the measures, finite disjoint unions of rectangles A×B are in B.

Claim: C is continuous from above and below (i.e., is closed under countable in-
creasing unions and countable decreasing intersections).
Assuming the claim, we conclude from Homework 5, Q4 that C is a σ-algebra and
hence contains A⊗ B.
Proof of Claim: Let E1 ⊂ E2 ⊂ · · · , all Ej ∈ C and let E =

⋃∞
j=1Ej . Then

the functions fn(y) = µ((En)y) are all measurable and increase pointwise to f(y) =
µ(Ey) (as En is an increasing sequence of sets). Hence f is measurable by Proposi-
tion 8.13 and, by the Monotone Convergence Theorem,∫

Y
µ(Ey) dν(y) = lim

n→∞

∫
µ
(
(En)y

)
dν(y) = lim

n→∞
µ⊗ ν(En) = µ⊗ ν(E).

A similar argument gives µ⊗ ν(E) =
∫
ν(Ex) dµ(x), so we conclude E ∈ C.

Now if {En} is a decreasing sequence in C and E =
⋂∞
n=1En, then the function

y 7→ µ((E1)y) ∈ L1(Y, ν) because µ((E1)y) ≤ µ(X) < ∞ and ν(Y ) < ∞. Then we
may apply the Dominated Convergence Theorem to show, in a similar way to the
above, that E ∈ C.
Finally, to remove the assumption that µ and ν are finite, we write X×Y as a union
of an increasing sequence of finite measure rectangles Xj × Yj , and the result just
proved for finite measure spaces applies to each E ∩ (Xj × Yj), yielding

µ⊗ ν
(
E ∩ (Xj × Yj)

)
=

∫
X
1Xj (x)ν(Ex ∩ Yj) dµ(x) =

∫
Y
1Yj (y)ν(Ey ∩Xj) dν(y).

Applying the Monotone Convergence Theorem again, we conclude the claim, and
hence the Theorem.

Theorem 12.4 (Fubini–Tonelli). Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces.
(i) (Tonelli) Let f ∈ L+(X × Y ) be A⊗ B-measurable. Then the functions

g(x) :=

∫
Y

fx(y) dν(y), h(x) :=

∫
X

f y(x) dµ(x)
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are measurable and in L+(X), L+(Y ) respectively and∫
X×Y

f dπ =

∫
X

(∫
Y

f(x, y) dν(y)
)
dµ(x) =

∫
X

g dµ (1)

=

∫
Y

(∫
X

f(x, y) dµ(x)
)
dν(y) =

∫
Y

h dν. (2)

(ii) (Fubini) Let f ∈ L1(µ ⊗ ν). Then the functions fx ∈ L1(ν) for µ-a.e. x ∈ X,
f y ∈ L1(µ) for ν-a.e. y ∈ Y , and the a.e. defined functions

g(x) :=

∫
Y

fx(y) dν(y), h(x) :=

∫
X

f y(x) dµ(x)

are measurable and in L1(µ), L1(ν) respectively and (1) holds.

Proof. (i) Notice first that when f = 1E for some measurable E, then the result follows
from Theorem 12.3 as, in this case, the function g is the map x 7→ ν(Ex) and h is
y 7→ µ(Ey).

By linearity of the integrals (and recalling that linear combinations of measurable
functions are measurable), we therefore have Tonelli’s Theorem for simple functions.

Now for a general f ∈ L+, we take a sequence of simple functions {fn}∞n=1 such that
fn is monotone increasing and converges to f using Theorem 8.10. We define a sequence

gn(x) :=

∫
Y

(fn)x(y) dν(y), hn(x) :=

∫
X

(fn)y(x) dµ(x).

By the Monotone Convergence Theorem, gn → g pointwise and hn → h pointwise. There-
fore, starting from (1) for simple functions, we have∫

X×Y
fn dπ =

∫
X

(∫
Y

fn(x, y) dν(y)
)

︸ ︷︷ ︸
=gn(x)

dµ(x) =

∫
Y

(∫
X

fn(x, y) dµ(x)
)

︸ ︷︷ ︸
=hn(y)

dν(y)

and, sending n→∞, we again apply the Monotone Convergence Theorem three times to
see that ∫

X×Y
fn dπ →

∫
X×Y

f dπ,∫
X

gn(x)dµ(x)→
∫
X

g(x)dµ(x) =

∫
X

(∫
Y

f(x, y) dν(y)
)
dµ(x),∫

X

hn(y)dν(y)→
∫
Y

h(y)dν(y) =

∫
Y

(∫
X

f(x, y) dµ(x)
)
dν(y),

which concludes the proof of Tonelli’s Theorem.

(ii) We write f = f+ − f− where f+, f− ∈ L+. Applying Tonelli’s Theorem to each of
f+ and f− separately and then using linearity of the integral, we conclude the proof of
Fubini’s Theorem.

Remark 12.5. We can slightly weaken the assumptions of the theorem to say that if any
of the three integrals∫

X×Y
|f | dπ,

∫
X

(∫
Y

|f |(x, y) dν(y)
)
dµ(x),

∫
Y

(∫
X

|f |(x, y) dµ(x)
)
dν(y)

is finite, then all three are finite and coincide and the conclusion of Fubini’s Theorem
holds.
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It is reasonable to ask whether there is a straightforward way to see that a function is
in L1(µ) in order to be able to apply Fubini. As a general rule, one first considers |f | and
applies Tonelli to compute the integral

∫
X×Y |f | dπ. If this is finite, then f ∈ L1(µ) and

we may apply Fubini to compute
∫
X×Y f dπ. If it is not, we do not know what to do!

In general, if f 6∈ L1(µ), the exchange of integrals may well fail. There will be examples
of this below and in your homework.

Recall from above that the product of the Lebesgue σ-algebras on Rm and Rk is not
the Lebesgue σ-algebra on Rn. Nonetheless, Fubini’s Theorem still holds for Lebesgue
measurable functions.

Theorem 12.6. Let f : Rn → R be Lebesgue measurable and suppose n = m + k. Then
f ∈ L1(λn) if and only if one of the integrals∫

Rk

(∫
Rm

|f |(x, y) dλm(x)
)
dλk(y),

∫
Rm

(∫
Rk

|f |(x, y) dλk(y)
)
dλm(x)

is finite. In this case∫
Rn

f(x, y) dλn =

∫
Rk

(∫
Rm

f(x, y) dλm(x)
)
dλk(y) =

∫
Rm

(∫
Rk

f(x, y) dλk(y)
)
dλm(x)

where all the inner integrals are well-defined a.e.

We now give a couple of Counterexamples where Fubini’s theorem does not apply.

Example 12.7. Let X = Y = {1, 2, . . .} with µ = ν = counting measure (then µ ⊗ ν is
also counting measure on X × Y ). Put f(m,m) = 1, f(m,m + 1) = −1 for all m ≥ 1,
and put f(m,n) = 0 otherwise. Then

∞∑
m=1

∞∑
n=1

f(m,n) = 0 and
∞∑
n=1

∞∑
m=1

f(m,n) = 1.

Here f 6≥ 0 and f 6∈ L1(µ⊗ ν). (The integrals are equal to sums, i.e.
∫
f(n,m)ν(dm) =∑

m f(n,m) and so on, by one of the Exercises on the problem sheets).

Example 12.8. Let X = (0, 1), A = B(0,1) (Borel), µ = Lebesgue measure, and let
Y = (0, 1), B = P((0, 1)) (all subsets of (0, 1)), and ν = counting measure. Let f(x, y) = 1
for x = y and f(x, y) = 0 otherwise. Then∫

X

[∫
Y

f(x, y) ν(dy)

]
µ(dx) =

∫
X

1 dµ = 1∫
Y

[∫
X

f(x, y)µ(dx)

]
ν(dy) =

∫
Y

0 dν = 0.

Here ν is not σ-finite (actually we’ve not defined integration with respect to non-σ-finite
measures, but if we did, we’d start with the formula for integrating simple functions).
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13 The Lp(µ) spaces
In this final section, we will extend the theory developed above for the space L1 to a wider
family of spaces: the Lp(µ) spaces. These spaces are of enormous importance in modern
analysis and, in fact, provide the language in which many of the most significant theorems
of modern analysis are stated.

Throughout this section we will have an exponent 1 ≤ p ≤ ∞ and a measure space
(X,A, µ). Similarly to the case of L1(µ) and L1(µ), we begin by defining the functionals

‖f‖Lp(µ) =


(∫

X
|f |p dµ

) 1
p for 1 ≤ p <∞,

inf
{
a ≥ 0 |µ({x ∈ X | |f(x)| > a}) = 0

}
for p =∞.

(1)

Then the spaces Lp(µ) are defined as

Lp(µ) :=
{
f : X → R | f is measurable, ‖f‖Lp(µ) <∞

}
. (2)

The Lebesgue spaces Lp(µ) are defined to be the quotients

Lp(µ) := Lp(µ)/ ∼, where f ∼ g if f = g a.e. (3)

From henceforth, we will restrict attention to Lp(µ) and, in a slight abuse of notation, will
refer directly to measurable functions f ∈ Lp rather than equivalence classes of functions.

Notation: Where the measure space (X,A, µ) is clear, we will commonly write ‖ · ‖p
for ‖ · ‖Lp(µ).

Example 13.1. When µ = λ1 is Lebesgue measure on the Borel sets in R, we write
Lp(R), or even just Lp, for Lp(λ1).

Likewise, if W ⊂ R with W ∈ B (e.g. W = [0, 1]) we write Lp(W ) for the Lp space on
(X,A, µ) = (W,BW , λ1|W ), where λ1|W denotes the restriction of 1-dimensional Lebesgue
measure to (W,BW ).

Example 13.2. Suppose A = P(X) and µ is counting measure.
(a) If X = {1, . . . , d} for some d ∈ N, then for Borel measurable functions f : X → R,

by a homework exercise,

‖f‖p =

(
d∑
i=1

|f(i)|p
)1/p

which is called the `p-norm of the d-dimensional vector (f(1), . . . , f(d)). For example, the
`2-norm is the same as the Euclidean norm on Rd.

(b) If X = N then by homework exercise, for Borel measurable functions f : X → R,

‖f‖p =

(
∞∑
i=1

|f(i)|p
)1/p

which is called the `p norm of the infinite sequence (f(1), f(2), f(3), . . .). In this case we
write `p for Lp(µ), which is in effect the space of infinite sequences (x1, x2, . . .) such that∑∞

i=1 |xi|p <∞) (here writing xi for f(i)).

The first thing to check is that Lp(µ) is a vector space.
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Lemma 13.3. For 1 ≤ p ≤ ∞, Lp(µ) is a vector space.

Proof. Clearly if λ ∈ R, then we have, for f ∈ Lp(µ), ‖λf‖p = |λ|‖f‖p < ∞, so λf ∈
Lp(µ).
If f, g ∈ Lp(µ) and p <∞, then we may estimate, pointwise a.e.,

|f + g|p ≤
(
2 max{|f |, |g|}

)p ≤ 2p max{|f |p, |g|p} ≤ 2p(|f |p + |g|p).

Thus ∫
|f + g|p dµ ≤ 2p

∫
|f |p dµ+ 2p

∫
|g|p dµ <∞.

If p =∞, then we may let Af and Ag respectively be the null sets such that |f | ≤ ‖f‖∞
on Acf , |g| ≤ ‖g‖∞ on Acg. Then on (Af ∪ Ag)c (which is again the complement of a null
set), we have |f + g| ≤ ‖f‖∞ + ‖g‖∞, and so f + g ∈ L∞(µ).

We see from the above proof that ‖ · ‖∞ satisfies the triangle inequality, and hence
defines a norm on L∞. However, we have not shown the triangle inequality when p <∞.
This is because our estimate on sums of Lp functions is rather crude. To show that the
triangle inequality does hold, we will need to do a bit more work. First, we prove the
following technical lemma.

Lemma 13.4. Let a ≥ 0, b ≥ 0, λ ∈ (0, 1). Then aλb1−λ ≤ λa+ (1− λ)b.

Proof. First, note that if b = 0, the inequality is trivial.
Suppose b > 0. Then let f(t) := tλ − λt. Differentiating f , we have f ′(t) = λtλ−1 − λ.
This vanishes when tλ−1 = 1, i.e. only for t = 1. f ′′(1) = λ(λ − 1) < 0, so t = 1 is a
maximum for f . Thus tλ − λt ≤ f(1) = 1− λ. Therefore evaluating at t = a

b
, we obtain

aλ

bλ
− λa

b
≤ 1− λ,

which rearranges to the desired inequality.

The next result we will prove is Hölder’s inequality. While this inequality may look
strange initially, it is very useful in practice and crops up frequently throughout Functional
Analysis, PDE Theory, and a range of other fields related to analysis. Essentially, it tells
us how to relate the L1 norm of products of functions in different Lp spaces.

Proposition 13.5 (Hölder Inequality). Let p, q ∈ [1,∞] satisfy 1
p

+ 1
q

= 1 (if q = ∞,
then p = 1 and vice versa). Then, for any measurable f ∈ Lp(µ), g ∈ Lq(µ),∫

fg dµ ≤ ‖f‖p‖g‖q.

Proof. First, consider the case p = 1, q = ∞. Then on the full measure set on which
|g| ≤ ‖g‖∞, we have the pointwise bound |fg| ≤ |f |‖g‖∞, and hence the trivial bound∫

fg dµ ≤
∫
|fg| dµ ≤

∫
|f | dµ‖g‖∞ = ‖f‖1‖g‖∞.

Next, suppose p, q > 1 and that ‖f‖p = 0 (or ‖g‖q = 0). Then by definition of ‖f‖p, we
conclude ∫

|f |p dµ = 0 and hence |f | = 0 a.e.
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which means f = 0 in Lp. Thus also∫
fg dµ =

∫
0 dµ = 0 = ‖f‖p‖g‖q.

We now move onto the non-trivial cases. Again suppose p, q > 1 and that ‖f‖p, ‖g‖q > 0.
Then, by considering the functions f̄ = f

‖f‖p and ḡ = g
‖g‖q , we observe that ‖f̄‖p = ‖ḡ‖q =

1 and that Hölder’s inequality is equivalent to∫
f̄ ḡ dµ ≤ 1.

We therefore seek to prove this inequality, assuming without loss of generality that ‖f‖p =
‖g‖q = 1.

By Lemma 13.4, applied with a = |f |p and b = |g|q, λ = 1
p
, 1− λ = 1

q
, we have

|f ||g| ≤ 1

p
|f |p +

1

q
|g|q.

Integrating, we have∣∣∣ ∫ fg dµ
∣∣∣ ≤ ∫ |f ||g| dµ ≤ ∫ (1

p
|f |p +

1

q
|g|q
)
dµ =

1

p

∫
|f |p dµ+

1

q

∫
|g|q dµ

=
1

p
‖f‖pp +

1

q
‖g‖qq =

1

p
+

1

q
= 1.

One consequence of this (though not an immediate consequence) is that the dual space
of Lp is isometric to Lq, where 1

p
+ 1

q
= 1.

Definition 13.6. If 1 ≤ p, q ≤ ∞ and 1
p

+ 1
q

= 1, we say that p and q are Hölder
conjugate exponents. (A special case is p = q = 2.)

Given p > 1, its conjugate exponent q is given in terms of p by q = 1/(1− (1/p)), i.e.
q = p/(p− 1).

Hölder’s inequality is the tool we needed to prove the triangle inequality in Lp(µ). This
inequality often goes by the name of Minkowski’s inequality, but should not be confused
with a different inequality, also called Minkowski’s inequality and related to Lp(µ) spaces.

Proposition 13.7 (Minkowski Inequality). Let 1 ≤ p ≤ ∞ and suppose f, g ∈ Lp. Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof. This is trivial in the case p = 1 by the usual triangle inequality in R, and we
have already seen a proof in the case p =∞. It therefore remains to prove it in the case
1 < p <∞.

We assume moreover that ‖f + g‖p > 0, else the inequality is trivial. Note first that,
setting q = 1− 1

p
= p−1

p
, we have

(∫
|f + g|(p−1)q dµ

)1− 1
p

=
(∫
|f + g|p dµ

)1− 1
p

=
‖f + g‖pp
‖f + g‖p

.

50



So we have checked that

‖|f + g|p−1‖q =
‖f + g‖pp
‖f + g‖p

.

Now we write

‖f + g‖pp =

∫
|f + g|p dµ =

∫
|f + g||f + g|p−1 dµ ≤

∫
|f ||f + g|p−1 dµ+

∫
|g||f + g|p−1 dµ

≤‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q =
(
‖f‖p + ‖g‖p

)‖f + g‖pp
‖f + g‖p

,

where we have applied Hölder’s inequality in the first inequality of the second line and the
previous identity in the last equality. This now rearranges to the desired inequality.

Having shown that Lp(µ) is a normed vector space, we may ask whether it has any of
the nice properties that make it amenable to Functional Analytic techniques. In general,
we cannot expect that Lp(µ) will be a Hilbert space (though L2(µ) is an extremely im-
portant example of a Hilbert space), but we can show that Lp(µ) is a Banach space (i.e.,
it is complete).

Theorem 13.8. Let 1 ≤ p ≤ ∞. Then Lp(µ) is a Banach space.

Proof. Let 1 ≤ p <∞. We use the characterisation of a Banach space that states that a
normed vector space is complete if and only if every absolutely convergent series in the
space converges. We therefore let {fk} ⊂ Lp(µ) be such that

∑∞
k=1 ‖fk‖p = A < ∞.

Denoting by Gn the partial sum function
∑n

k=1 |fk| and G =
∑∞

k=1 |fk|. By Minkowski’s
inequality, we have

‖Gn‖p =
∥∥∥ n∑
k=1

|fk|
∥∥∥
p
≤

n∑
k=1

‖fk‖p ≤ A for all n.

Then, by the Monotone Convergence Theorem, we take the limit to see

‖G‖pp =

∫
Gp dµ = lim

n→∞

∫
Gp
n dµ ≤ Ap.

Hence G ∈ Lp and, in particular, G(x) < ∞ for a.e. x. Therefore, for a.e. x, the series∑∞
k=1 fk(x) converges to a value F (x). Clearly |F | ≤ G, and therefore F ∈ Lp(µ).
We still need to show that

∑n
k=1 fk → F in Lp(µ) (i.e. in the topology induced by the

Lp(µ) norm), which we do by observing that∣∣∣F − n∑
k=1

fk

∣∣∣p ≤ (2G)p ∈ L1(µ)

so that we may apply the Dominated Convergence Theorem and observe∥∥∥F − n∑
k=1

fk

∥∥∥p
p

=

∫ ∣∣∣F − n∑
k=1

fk

∣∣∣p dµ→ 0,

as required.

The case p =∞ is left as an exercise.

Lemma 13.9. Let 1 ≤ p <∞. Let {fn}∞n=1 ⊂ Lp(µ) be such that fn → f in Lp(µ). Then
there exists a subsequence (fnk

)k≥1 such that fnk
→ f a.e.

The proof of this lemma is non-examinable.
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14 Convex functions in measure theory
The Hölder and Minkowski inequalities were key results in our discussion of Lp spaces
in Section 13. We now provide a final inequality, Jensen’s inequality, which is especially
important in probability theory, and concerns convex functions.

Notation. Assume throughout this section that (X,A, µ) is a σ-finite measure space.
Assume also that a, b are given with −∞ ≤ a < b ≤ ∞, and let I := (a, b). That is,
I ⊂ R is an open interval (possibly the whole of R).

Given f ∈ R(X), in this section we shall often write µ(f) for
∫
X
fdµ.

We say that h : R → R is a linear function (also known as an affine function)
if there are constants c, d ∈ R such that h(x) = cx + d for all x ∈ R. (This is not the
same as a ‘linear map’ in linear algebra, for which the second constant d would have to
be zero.)

Definition 14.1. A function ϕ : I → R is said to be convex if

ϕ(αx+ (1− α)y) ≤ αϕ(x) + (1− α)ϕ(y) (1)

for all x, y ∈ I and for all 0 ≤ α ≤ 1.

In other words, ϕ is convex if for all x, y ∈ I, the linear function h that satisfies
h(x) = ϕ(x) and h(y) = ϕ(y) satisfies h(z) ≥ ϕ(z) for all z ∈ [x, y].

How to check convexity? A continuously differentiable function ϕ is convex on I =
(a, b), if ϕ′(s) ≤ ϕ′(t) for all a < s < t < b.

Indeed, if a < x < y < b and 0 < α < 1, then setting z = αx + (1 − α)y, by the
Intermediate Value theorem we have for some u ∈ (x, z) and v ∈ (z, y) that

ϕ(y)− ϕ(x)

y − x
=
(z − x
y − x

)(ϕ(z)− ϕ(x)

z − x

)
+
(y − z
y − x

)(ϕ(y)− ϕ(z)

y − z

)
=
(z − x
y − x

)
ϕ′(u) +

(y − z
y − x

)
ϕ′(v)

≥
(z − x
y − x

)
ϕ′(u) +

(y − z
y − x

)
ϕ′(u) = ϕ′(u)

=
ϕ(z)− ϕ(x)

z − x
,

where for the inequality in the third line we used that f ′(u) ≤ f ′(v) since u < v. The
convexity follows.

Therefore if ϕ is twice differentiable on I, it is convex if ϕ′′(x) ≥ 0 for all x ∈ I.

Examples. (i) Suppose c ∈ R, and I = (−∞,∞) and ϕ(x) = ecx for all x ∈ I. Then
ϕ′′(x) = c2ex > 0 for all x ∈ I so ϕ is convex on I.

(ii) Suppose p ∈ (1,∞), and I = (0,∞), and we set ϕ(x) = xp for all x ∈ I. Then
ϕ′′(x) = p(p− 1)xp−2 > 0 for all x ∈ I so ϕ is convex on I.

As preparation for the last result of this section (Jensen’s inequality), we shall use the
following result from elementary analysis.

Lemma 14.2. Suppose ϕ : I → R is convex on I. then:
(i) ϕ is continuous on I.
(ii) Given t ∈ I, there exists a linear function h : R → R such that h(t) = ϕ(t) and

h(x) ≤ ϕ(x) for all x ∈ I.
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Proof. (Non-examinable) (i) Fix t ∈ (a, b). We show that ϕ is continuous at t. Fix
any a < u < t < v < b. Then for u < s < v we have:

ϕ(t)− ϕ(u)

t− u
≤ ϕ(s)− ϕ(t)

s− t
≤ ϕ(v)− ϕ(t)

v − t
.

Hence
|ϕ(s)− ϕ(t)| ≤ |s− t|max

{∣∣∣∣ϕ(t)− ϕ(u)

t− u

∣∣∣∣ , ∣∣∣∣ϕ(v)− ϕ(t)

v − t

∣∣∣∣} .
This shows that as s→ t, ϕ(s)→ ϕ(t). (We even get the stronger statement that ϕ
is Lipschitz on any compact subinterval of (a, b).)

(ii) Let

β := sup
s:a<s<t

ϕ(t)− ϕ(s)

t− s
.

Then we have
ϕ(s) ≥ ϕ(t) + β(s− t), a < s < t. (2)

On the other hand, it follows from (1) that for all a < s < t < u < b we have

ϕ(t)− ϕ(s)

t− s
≤ ϕ(u)− ϕ(t)

u− t
(3)

and therefore
β ≤ ϕ(u)− ϕ(t)

u− t
, t < u < b,

so we also have
ϕ(u) ≥ ϕ(t) + β(u− t), t < u < b. (4)

Renaming u to be s in (4), together with (2), we get:

ϕ(s) ≥ ϕ(t) + β(s− t), a < s < b.

Therefore taking h(x) := ϕ(t)+β(x−t) for x ∈ I, gives us a linear function h having
the stated properties.

Theorem 14.3. (Jensen’s Inequality) Suppose µ(X) = 1 (so (X,A, µ) is a probability
space), and f ∈ L1(µ) with f(X) ⊂ I, and ϕ : I → R is convex on I. then

ϕ

(∫
X

f dµ
)
≤
∫
X

(ϕ ◦ f) dµ, (5)

that is, ϕ(µ(f)) ≤ µ(ϕ ◦ f), where we set ϕ ◦ f(x) = ϕ(f(x)) for all x ∈ X.

Remark. By Lemma 14.2(i), ϕ is continuous so ϕ ◦ f (defined by ϕ ◦ f(x) = ϕ(f(x)) is
measurable. It may happen that (ϕ ◦ f) 6∈ L1(µ). In this case the proof below will show
that the right hand side of (5) is +∞.

Proof of Theorem. (Non-examinable) Denote t := µ(f). Then t ∈ I; this can be
proved using linearity (Theorem ??) and Lemma ?? (HW).

Using Lemma 14.2(ii), choose constants c, c′ ∈ R such that the linear function
h(x) := cx + c′ satisfies h(t) = ϕ(t) and h ≤ ϕ pointwise on I. Therefore inte-
grating, and using linearity (Theorem ??), and also the fact that µ is a probability
measure so

∫
X c
′dµ = c′, we obtain that

µ(ϕ ◦ f) ≥ µ(h ◦ f) = µ(cf + c′) = cµ(f) + c′ = h(µ(f)) = ϕ(µ(f)),

as required.
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Remark. As mentioned earlier, when working on a probabililty space (as is the case
here) the integral

∫
X
fdµ is known as the expectation of f , often denoted E[f ]. Jensen’s

inequality says that ϕ(E[f ]) ≤ E[ϕ ◦ f ] for convex ϕ.

Example 14.4. In all of the following examples we are assuming µ is a probability
measure.

(i) Take ϕ(x) = x2. Then ϕ′(x) = 2x and ϕ′(x) = 2 so ϕ is convex on R. In
probabilistic notation, Jensen’s inequality tells us that (E[f ])2 ≤ E[f 2], for any f ∈ L1(µ)
which is well known from probability theory.

(ii) Take ϕ(x) = ex. Then ϕ′′(x) = ex so ϕ is convex on R. So by Jensen’s inequality,
exp(µ(f)) ≤ µ(ef ), whenever f ∈ L1(µ).

(iii) Suppose X is finite, X = {x1, . . . , xn}, with µ({xi}) = 1
n
, f(xi) = ai. Then the

previous example specializes to:

exp

{
1

n
(a1 + · · ·+ an)

}
≤ 1

n
(ea1 + · · ·+ ean).

Now putting bi = eai , we get the familiar inequality between the geometric and arithmetic
mean:

(b1 · · · bn)1/n ≤ 1

n
(b1 + · · ·+ bn).
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15 Applications to probability theory
(Non-examinable)
This section summarizes some applications of measure theory to probability. This dis-
tinction is of course a bit artificial, because all of measure theory applies to probability
spaces.

Throughout this section we consider a probability space (that is, a measure space with
total measure 1) denoted (Ω,F ,P) instead of (X,A, µ).

As mentioned before, a measurable function from Ω to R is called a random variable
(RV). Following the usual conventions of probability theory, in this section we use capital
letters such as X, Y etc. (rather than f , g etc.) to denote random variables.

As mentioned at the start of Section 9, the Expectation of a random variable X is
defined to be the integral

∫
Ω
XdP, and denoted by E[X].

Also, in probability theory a measurable subset of Ω (that is, a set that is an element
of F) is called an event.

Definition 15.1. Suppose X : Ω→ R is a random variable (RV) (that is: a measurable
function). We define the σ-algebra generated by X as

σ(X) := {X−1(B) : B ⊂ R, B ∈ B},

where we recall that B denotes the Borel sets in R.

Remarks. We claim that σ(X) is a sub-σ-algebra of F . That is, (i) σ(X) is a σ-algebra,
and (ii) σ(X) ⊂ F . We leave it as HW to check (i), while (ii) is a consequence of Theorem
??.

Moreover X is measurable with respect to σ(X) since for any α ∈ R we have (α,∞) ∈
B so X−1((α,∞]) ∈ σ(X).

In fact, σ(X) is the smallest σ-algebra with respect to which X is measurable (HW).

Definition 15.2. Events A,B ∈ F are said to be independent, if P[A∩B] = P[A]P[B].
We say that σ-algebras F1,F2 ⊂ F are independent, if for any A ∈ F1 and B ∈ F2

the events A and B are independent.
Suppose X : Ω → R and Y : Ω → R are RVs. The RVs X and Y are said to be

independent, if σ(X) and σ(Y ) are independent σ-algebras. In other words, X and Y
are independent if for all A,B ∈ B,

P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B],

where {X ∈ A} := X−1(A) and {X ∈ A, Y ∈ B} := X−1(A) ∩ Y −1(B).
Suppose Z : Ω → R is a further RV. The RVs X, Y and Z are said to be mutually

independent, if for all A,B,C ∈ B we have

P[X ∈ A, Y ∈ B,Z ∈ C] = P[X ∈ A]P[Y ∈ B],P[Z ∈ C].

Theorem 15.3 (independence criterion). Suppose X : Ω → R and Y : Ω → R are
RVs. If P[X ≤ a, Y ≤ b] = P[X ≤ a]P[Y ≤ b] for all a ∈ R, b ∈ R, then X and Y are
independent.
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Proof. (Outline). Let a ∈ R. Define the collections of sets

La := {B ∈ B : P[X ≤ a, Y ∈ B] = P[X ≤ a]P[Y ∈ B]};
D := {(−∞, b] : b ∈ R}.

Then one can show that L is a λ-system. Also, by assumption, D ⊂ L, and D is a π-system
which generates B. Therefore by Dynkin’s π-λ theorem (Theorem ??), L ⊃ σ(D) = B.

Now, for B ∈ B, set

LB := {A ∈ B : P[X ∈ A, Y ∈ B] = P[X ∈ A]P[Y ∈ B]}

Again, this is a λ-system and by the previous paragraph, it contains D, so by Dynkin’s
π-λ theorem, LB ⊃ σ(D) = B. The conclusion follows.

Theorem 15.4 (Independence and expectation). If X and Y are integrable RVs on
(Ω,F ,P), then E[XY ] = E[X]E[Y ].

Proof. First suppose X, Y are nonnegative and simple, i.e. X(Ω) and Y (Ω) are finite and
contained in [0,∞). Enumerate the possible values of X (i.e., the elements of X(Ω)) as
a1, . . . , an (taken to be distinct) and the possible values of Y as b1, . . . , bm (taken to be
distinct). Set Ai = X−1({ai}) for 1 ≤ i ≤ n and set Bj = Y −1({bj}) for 1 ≤ j ≤ m. Then
X =

∑n
i=1 ai1Ai

and Y =
∑m

j=1 bj1Bj
so

XY =

(
n∑
i=1

ai1Ai

)(
m∑
j=1

bj1Bj

)
=

n∑
i=1

m∑
j=1

aibj1Ai
1Bj

=
n∑
i=1

m∑
j=1

aibj1Ai∩Bj
.

Then Ai ∈ σ(X) and Bj ∈ σ(Y ) for all i, j so by independence, and Lemma 9.8,

E[XY ] =
n∑
i=1

m∑
j=1

aibjP[Ai ∩Bj]

=
n∑
i=1

m∑
j=1

aibjP[Ai]P[Bj]

=

(
n∑
i=1

aiP[Ai]

)(
m∑
j=1

bjP[Bj]

)
= E[X]E[Y ],

so the result holds in this case.
Next, suppose only that X ≥ 0 (i.e., X(Ω) ⊂ [0,∞)) and Y ≥ 0. Then by Theorem

8.10, there exist nonnegative simple random variables Xn and Yn (for n ∈ N) such that
Xn ↑ X and Yn ↑ Y (pointwise) as n → ∞. Then by the algebra of limits we also have
XnYn ↑ XY pointwise, and hence by MON (Theorem ??) and the case considered already,

E[XY ] = lim
n→∞

E[XnYn] = lim
n→∞

E[Xn]E[Yn].

Hence by the algebra of limits and MON again,

E[XY ] = ( lim
n→∞

E[Xn])( lim
n→∞

E[Yn]) = E[X]E[Y ],

so the result holds in this case.
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In the general case, we have (XY )+ = X+Y ++X−Y −, and (XY )− = X+Y −+X−Y +.
Therefore by linearity (Theorem ??),

E[XY ] = E[(XY )+]− E[(XY )−] = E[X+Y +] + E[X−Y −]− E[X+Y −]− E[X−Y +],

provided all of these expectations are finite. Hence by the case considered previously,

E[XY ] = E[X+]E[Y +] + E[X−]E[Y −]− E[X+]E[Y −]− E[X−]E[Y +]

= (E[X+]− E[X−])(E[Y +]− E[Y −]) = E[X]E[Y ],

and all of the expectations mentioned are finite because we assumed integrability of X
and Y . The proof is complete.

Theorem 15.5 (Existence of conditional expectation). Let X : Ω → R be a RV,
such that X ∈ L1(P). Suppose that G ⊂ F is a σ-algebra. There exists a RV Y : Ω→ R,
such that:
(i) Y is measurable with respect to G;
(ii) Y ∈ L1(P);
(iii) For every B ∈ G we have: ∫

B

Y dP =

∫
B

X dP.

Moreover, Y is unique up to a.e.[P] equivalence.

Definition 15.6. The RV Y constructed in Theorem 15.5 is called the conditional
expectation of X given G, and is denoted Y =: E[X | G].

Proof of Theorem 15.5. We prove the statement when X ≥ 0. The general case follows
by considering the positive and negative parts of X.

Observe that (Ω,G) is a measurable space itself. Define the measure µ : G → [0,∞)
by the formula:

µ(B) :=

∫
B

X dP, B ∈ G.

This is a measure by Theorem 11.5.
We have µ� P|G, where P|G denotes the restriction of P to the σ-algebra G. Indeed,

if B ∈ G and P[B] = 0, we have µ(B) =
∫
B
X dP = 0. Also, µ(Ω) =

∫
Ω
X dP < ∞, since

X ∈ L1(P). By the Radon-Nikodým Theorem (Theorem 11.7), there exists a function
Y : Ω→ R, measurable on the space (Ω,G), such that Y ∈ L1(P|G) and µ(B) =

∫
B
Y dP.

This proves statements (i)–(iii) of the theorem. If Y ′ is another G-measurable RV satifying
(i)–(iii), then we have

∫
B
Y dP =

∫
B
Y ′ dP for all B ∈ G, and hence Y = Y ′ a.e.[P|G] (see

Exercise 44(b)).

Remarks. Another way to write property (iii) in Theorem 15.5 is to say that for every
A ∈ G we have E[Y 1A] = E[X1A].

The Tower property of conditional expectations (also called the law of total prob-
ability) says that

E[E[X|G]] = E[X].

This is immediate from the definition above; taking Y = E[X|G] and taking B = Ω in
property (iii) of Theorem 15.5 gives E[Y ] = E[X].
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Definition 15.7. In the special case where Z is a further RV on (Ω,F ,P), we write
E[X|Z] for E[X|σ(Z)].

It can be shown that in this case, any σ(Z)-measurable random variable Y can be
written as a function of Z: Y = f(Z) for some Borel function f : R → R. [Tricky
exercise: prove this, starting with the case where Y is simple]

Therefore E[X|Z] can be characterized as an integrable variable of the form Y = f(Z),
with f : R→ R a Borel function, satisfying (iii) above.

A Lebesgue but not Borel measurable sets
Theorem A.1. There exists a set B ⊂ R such that B ∈ Σ1 \ BR.

Non-examinable. We begin by recalling the construction of the middle third Cantor set
C ⊂ [0, 1] from Section 3. C has a helpful characterisation in terms of ternary expansions
of real numbers (that is, expansions in base 3). Observe that every x ∈ [0, 1] can be
expanded as a sum

x =
∞∑
n=1

an
3n
, where each an ∈ {0, 1, 2}.

This expansion is unique unless x = m3−k for integers m and k (with m not divisible by
3), in which case we can either have aj = 0 for all j > k or aj = 2 for all j > k. One
of these expansions will have ak = 1 and the other will have either ak = 0 or ak = 2.
By convention, we will always choose the latter expansion. Under this convention, we see
that a1 = 1 if and only if x ∈ (1

3
, 2

3
), if a1 6= 1, then a2 = 1 if and only if x ∈ (1

9
, 2

9
)∪ (7

9
, 8

9
),

etc. That is, the sets removed in the middle third construction are exactly those for which
the ternary expansion of x contains a 1. We saw in Section 3 that the outer measure of C
is zero, and hence we know that C is measurable and λ1(C) = 0. We label the removed
sets Ij = (aj, bj) and recall λ1

(⋃∞
j=1 Ij

)
= 1.

One more fact that will be helpful is to note that if x =
∑∞

n=1
an
3n

and y =
∑∞

n=1
bn
3n

then we have x < y if and only if there exists n such that aj = bj for j < n and an < bn.

With this notation in hand, we return to the construction. We define the Cantor function
f as follows: For each x ∈ C expanded as

∑∞
n=1

an
3n
, we define

f(x) =
1

2

∞∑
n=1

an
2n
.

It should be apparent that f(x) is the base 2 expansion of a number in [0, 1] (as an ∈ {0, 2},
so that 1

2
an ∈ {0, 1}) and every number is [0, 1] is obtained via this procedure, so that f is

surjective from C to [0, 1]. We extend f to a function f : [0, 1]→ [0, 1] by observing that
if x, y ∈ C and x < y, then either f(x) < f(y) or x and y are the two endpoints of one of
the intervals Ij removed in the construction of C. In this case, we define f = f(x) = f(y)
on Ij. In this way, we arrive at a weakly increasing surjective function from [0, 1] to [0, 1],
which must therefore be continuous (as it has no jump discontinuities). [NB: the Cantor
function f is sometimes referred to as the Devil’s staircase. f is constant on each interval
Ij, the union of which is a set of full measure; but f is continuous and f(1)− f(0) = 0!]
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We now define a new function, g : [0, 1] → [0, 2] as g(x) = f(x) + x. As g is a
sum of continuous functions, it is continuous, while from the weak monotonicity of f ,
we see that if x < y, then g(x) = f(x) + x < f(y) + y = g(y), so that g is strictly
monotone. g is therefore a continuous, strictly increasing bijection with a continuous
inverse, h : [0, 2]→ [0, 1].

Claim: The measure λ1(g(C)) = 1.
To prove the claim, we recall that [0, 1] \ C =

⋃∞
j=1 Ij, where each Ij is an open interval,

all the Ij are pairwise disjoint, and f is constant on each Ij. By additivity of λ1 and
bijectivity of g, we observe

2 = λ1([0, 2]) = λ1(g([0, 1])) = λ1(g([0, 1] \ C) ∪ g(C)) = λ1(g([0, 1] \ C)) + λ1(g(C)).

To prove the claim, we will therefore show that λ1(g([0, 1] \ C)) = 1. In fact, as g is a
bijection, the sets g(Ij) are pairwise disjoint, so that by σ-additivity,

λ1(g([0, 1] \ C)) =λ1
(
g
( ∞⋃
j=1

Ij
))

=
∞∑
j=1

λ1(g(Ij))

=
∞∑
j=1

λ1
(
(f(aj) + aj, f(bj) + bj)

)
where we write Ij = (aj, bj)

=
∞∑
j=1

(
f(bj) + bj − f(aj)− aj

)
=

∞∑
j=1

(bj − aj) as f is constant on Ij

=
∞∑
j=1

λ1(Ij) = λ1
( ∞⋃
j=1

Ij
)

= 1.

This proves the claim.

As the set g(C) has measure 1, it must contain a non-measurable subset A ⊂ g(C)
(the proof of this is a variant of the construction of the Vitali set). Then the set B =
g−1(A) ⊂ C has outer Lebesgue measure 0 (as µ∗(B) ≤ µ∗(C) = 0) and is therefore
Lebesgue measurable (with measure zero). But B cannot be Borel else we would have
that h−1(B) = g(B) = A is also Borel due to the continuity of h. But as A is not
measurable, it cannot be Borel.

B π and λ systems and the Monotone Class Theorem
We first present the following result, known as the Monotone Class theorem, This should
not be confused with the Monotone Convergence theorem (Theorem ??)! To further
confuse matters, there are some other versions of the Monotone Class theorem in the
literature, but we just consider this version here.

Theorem B.1 (Monotone Class theorem). Let D be a π-system in a non-empty set X
with X ∈ D. Let H be a collection of functions X → R, satisfying the following:
(a) If A ∈ D, then 1A ∈ H.
(b) If f, g ∈ H and α ∈ R, then also f + g ∈ H and αf ∈ H (that is, H is a linear space);
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(c) If fn ∈ H for n ∈ N, with 0 ≤ fn ↑ f pointwise, and the limit function f is bounded,
then also f ∈ H (that is, H is closed under bounded monotone convergence of non-negative
functions).
Then H contains all bounded measurable functions with respect to σ(D).

Proof. (Non-examinable) First we prove the result for indicator functions. Set

L := {A ⊂ X : 1A ∈ H}.

Then D ⊂ L by assumption (a). We show that L is a λ-system in X:
• Since the constant function 1 = 1X ∈ H, by (b) all constant functions are in H.
In particular the zero function is in H so ∅ ∈ H;
• If B ∈ L, then 1Bc = 1− 1B ∈ H. Hence Bc ∈ L.
• If Bn ∈ L and {Bn} are pairwise disjoint, then setting Uk = ∪kn=1Bn and U =
∪∞n=1Bn, we have 1Uk

=
∑k

n=1 1Bn ∈ H, and 1Uk
↑ 1U , and by (c) we have 1U ∈ H.

Hence U ∈ L.
This verifies that L is a λ-system. By the π-λ theorem, we conclude that σ(D) ⊂ L.
Summarizing the previous paragraph: the indicator function of any element of σ(D)
is in H. It follows using (b) that all simple σ(D)-measurable functions belong to H.
Using (c) and approximation from below by simple functions (Theorem 8.10), we
get that all non-negative bounded σ(D)-measurable functions belong to H. Using
f = f+ − f−, the statement follows for all bounded σ(D)-measurable functions.
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