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Chapter 1

Introduction

In this thesis we study systems that can formally be described by the equa-
tions

ẋ(t) = Ax(t) +Bu(t)
x(0) = w
y(t) = Cx(t) +Du(t),

(1.1)

or by the equations

xn+1 = Axn +Bun

x0 = w
yn = Cxn +Dun.

(1.2)

Here A, B, C and D are linear operators on Hilbert spaces.
The main problem in the field of linear systems and control theory is, for

a given system (1.1), designing a system

ẋc(t) = Acxc(t) +Bcuc(t)
xc(0) = wc

yc(t) = Ccxc(t) +Dcuc(t),
(1.3)

such that if we put uc = y and u = yc, then the resulting closed-loop system
has some prespecified properties. The system (1.1) is usually referred to as
the plant and the system (1.3) as the controller. This type of control is
called feedback control since the output y of the system (1.1) is, after being
processed by the system (1.3), fed back into the system (1.1) (see figure 1.1).

Which properties the closed-loop system is required to have depends very
much on the particular application. We will focus on two properties that are
almost always required: stabilization and low complexity of the controller. To
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2 CHAPTER 1. INTRODUCTION

- plant

�controller

uc = yu = yc

Figure 1.1: Feedback interconnection of plant and controller.

start with the second property, the measure of ‘complexity’ of the controller
(1.3) we will use is the dimension of the Hilbert space in which the state
xc of the controller takes its values. In engineering applications it is often
paramount that this dimension is small. Most standard controller design
methods lead to a controller with the same state space as the plant. In
the examples we are interested in the plant has an infinite-dimensional state
space, so applying these standard controller design procedures to the plant
is not an attractive option. There are two possible solutions to this problem.
The first is to develop completely new controller design methods that do not
have this disadvantage of producing in a controller with the same state space
as the plant. The second is to use standard controller design procedures, but
not for the plant, but for a low-dimensional approximation of it. One then
has to prove that the controller designed based on the approximation, when
interconnected with the plant, results in a closed-loop system that has the
prespecified properties (other than having low complexity of the controller).
We will focus on this second alternative. The other prespecified property
we will look at is, as mentioned earlier, stabilization. There are several
types of stability that one can demand the closed-loop system to have. We
concentrate on obtaining so-called input-output stability of the closed-loop
system, since under appropriate stabilizability conditions this is equivalent
to the other (a priori stronger) types of stability.

Infinite-dimensional continuous-time systems

Examples we are interested in are systems described by partial differential
equations. Continuous-time systems like (1.1) are an abstract representation
of such systems described by partial differential equations. The operators A,
B, C and D that result from writing the partial differential equation exam-
ples in this form are usually unbounded, which introduces severe technical
difficulties. These difficulties already start with a correct notion of ‘solution’
of the equations (1.1). For an arbitrary quadruple of unbounded operators
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A, B, C, D it is impossible to do even this, let alone developing a theory for
control design. During the last decades much effort has gone into the ques-
tion under which conditions on the quadruple of operators one can develop a
theory of control design for stabilization. The present state-of-the-art class
of systems for which there is a reasonably complete theory (well-posed linear
systems, see Staffans [89]) does not include all systems described by partial
differential equations that one would like to study. In part II of this thesis we
present a new class of systems, larger than the class of well-posed linear sys-
tems, which also includes many interesting partial differential equations that
are not well-posed. We were able to complete the program outlined above at
this level of generality, showing that a reasonably complete control theory for
this class of systems is certainly feasible. We note that the completion of the
program outlined above is new even for well-posed linear systems (in fact,
even for systems where all operators are bounded it is new). We were able
to complete the program outlined above for our general class of systems by
making the connection with discrete-time systems using a Cayley transform
approach.

Infinite-dimensional discrete-time systems

In contrast to the infinite-dimensional continuous-time case, the infinite-
dimensional discrete-time case does not provide problems due to unbounded
operators. For all purposes one may assume that A, B, C andD are bounded.
As mentioned before, our approach to carrying out the program outlined
above is to first obtain the results in discrete-time and then to translate
these results, using the Cayley transform, to continuous-time. It turns out
that to be able to translate the results using the Cayley transform the re-
sults have to be ‘optimal’, i.e. one has to prove the desired theorems under
the weakest possible assumptions. This meant that we had to rewrite large
parts of infinite-dimensional discrete-time systems theory, since the existing
results were proven under conditions that were too strong and therefore do
not translate well under the Cayley transform. In particular, we had to prove
theorems under weaker stability/stabilizability conditions than the standard
power stability/stabilizability.

Outline of this thesis

This thesis consists of two parts. Part I is the longest and deals with discrete-
time systems. Part II deals with continuous-time systems.



4 CHAPTER 1. INTRODUCTION

We now briefly outline the contents of Part I. In Chapter 2 some basic
notions are defined. Chapter 3 deals with stability and Chapter 4 with sta-
bilizability. The aspects of energy preserving systems that are needed in this
thesis are collected in Chapter 5. The very important linear quadratic regula-
tor problem is the subject of Chapter 6. In Chapter 7 coprime factorizations
are studied. The existence result for (strongly) coprime factorizations proven
in this chapter is probably one of the most important results presented in
this thesis. Robustly stabilizing controllers are the topic of Chapter 8. The
metric in which we measure the distance between systems, the gap metric,
is the topic of Chapter 9. Part I concludes with Chapter 10 on balanced
realizations. These balanced realizations are used to define the desired ap-
proximations of the plant. In this chapter we show that, under certain con-
ditions, a robustly stabilizing controller based on an approximation of the
plant stabilizes the original infinite-dimensional system.

Part II starts with Chapter 11 in which we introduce our new class of
systems. In Chapter 12 we illustrate how systems described by partial dif-
ferential equations fit into this abstract framework. The Cayley transform,
which we use to translate results from discrete-time to continuous-time, is
studied in Chapter 13. In Chapter 14 the continuous-time counterparts of
the most important results obtained in discrete-time are presented. Chapter
15 illustrates the model reduction for controller design approach outlined in
this thesis using an example of a system described by a partial differential
equation (a beam).

In Chapter 16 the most important results obtained in the preceding chap-
ters are collected.

There are two appendices; in the first one some basic results in Hardy
space theory are recalled and in the second one some rather tedious algebraic
calculations with algebraic Riccati equations are performed. At the end of
the thesis one can find a short summary (both in English and in Dutch), a
list of notations, a bibliography and an index.



Part I

Discrete-time systems
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Chapter 2

Basic objects

In this chapter we introduce the main concept of part I of this thesis, that
of a discrete-time system. We also introduce several objects associated with
a discrete-time system that will be used throughout this thesis. Finally, we
study several ways in which we can obtain a new discrete-time system from
one or two known ones.

We first introduce the concept of a dynamical system. Note that WT

denotes the set of functions from T to W.

Definition 2.1. A dynamical system Σ is a triple Σ = (T,W,B) with T
a set, called the time axis; W a set, called the signal space, and B ⊂WT, the
behavior of the system.

In Part I of this thesis we will be concerned with the following dynamical
systems.

Let T = Z+, the nonnegative integers, and W = U ×X × Y , where
U , X , Y are separable Hilbert spaces. Let A ∈ L(X ), B ∈ L(U ,X ),
C ∈ L(X ,Y ) and D ∈ L(U ,Y ) be bounded operators between the given
spaces. Define the behavior by

B :=


 u
x
y

 ∈WT :

[
xn+1

yn

]
=

[
A B
C D

] [
xn

un

]
for all n ∈ Z+

(2.1)

This type of dynamical system will be called a discrete-time system . The
elements of the behavior are called trajectories of the system. It follows
from (2.1) that for arbitrary u : Z+ → U and x0 ∈X there exists a unique
trajectory [u;x; y] ∈ B. The sequence u is called the input, x0 the initial
state, x the state and y the output. The space U is called the input
space, X is called the state space and Y the output space. Usually in

7
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control theory the goal is to choose for a given initial state an input such
that the trajectory has some specified property.

Note that the operator

S :=

[
A B
C D

]
(2.2)

is completely determined by the behavior in the following sense: if the be-
haviors corresponding to S1 and S2 are equal, then S1 and S2 are equal. This
can be proven as follows. Let x0 ∈ X and u : Z+ → U be arbitrary. Since
the behaviors corresponding to S1 and S2 are equal the trajectories corre-
sponding to this initial state and input are equal. In particular the state at
time one and the output at time zero are equal. Hence

S1

[
x0

u0

]
=

[
x1

y0

]
= S2

[
x0

u0

]
,

and since u0 and x0 where arbitrary this shows that S1 = S2.
The above shows that the following definitions are unambiguous. The

operators appearing in (2.1) have the following names: A is called the state
operator, B the input operator, C the output operator, and D the
feedthrough operator of the discrete-time system. The operator S is called
the system operator.

We say that a sequence h : Z → H is finitely nonzero if only a finite
number of elements in the sequence is nonzero.

A discrete-time system is called approximately observable if [0; x; y] ∈
B and [0;w; y] ∈ B implies x = w, i.e. if the output with zero input uniquely
determines the state. A discrete-time system is called approximately con-
trollable if the set

{w ∈X : there exist [u;x; y] ∈ B with u finitely nonzero,

N ∈ Z+ such that x0 = 0, xN = w}

is dense in X . A discrete-time system is called minimal of it is both ap-
proximately controllable and approximately observable.

We define three maps on sequence spaces that will play an important role
in this thesis. The input map of a discrete-time system is defined for finitely
nonzero u : Z− → U by (here Z− is the set of negative integers)

Bu :=
∞∑
i=0

AiBu−i−1,

the output map is defined for x ∈X by

(Cx)k := CAkx k ∈ Z+,
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the input-output map is defined for finitely nonzero u : Z→ U by

(Du)k :=
∞∑
i=0

CAiBuk−i−1 +Duk, k ∈ Z.

Remark 2.2. Let J ⊂ Z. Denote by lc(J,H ) the set of sequences J → H
with compact support and by l(J,H ) the set of all sequences J → H . As
indicated above we consider B : lc(Z−,U ) → X , C : X → l(Z+,Y ), D :
lc(Z,U )→ l(Z,Y ). In this thesis we will not need to consider topologies on
lc(J,H ) and l(J,H ). In connection with stability of the system in Chapter
3 and the subsequent chapters we sometimes consider the extension of B to
a bounded operator on l2(Z−,U ) (which when it exists is unique), C as a
bounded operator into l2(Z+,Y ) (which in some cases it may not be) and
the extension of D as a bounded operator from l2(Z,U ) to l2(Z,Y ) (which
when it exists is unique). It should be clear from the context on which spaces
we consider the input, output and input-output map.

To further study the above maps we introduce the maps τ , π− and π+ on
the space of sequences Z→H where H is a separable Hilbert space

(τh)k := hk+1, (π−h)k :=

{
hk k ∈ Z−

0 k ∈ Z+ , (π+h)k :=

{
0 k ∈ Z−

hk k ∈ Z+ .

The significance of the above maps is apparent from the following result. If
[u;x; y] is a trajectory with u finitely nonzero, then

xn = Anx0 + Bπ−τnu
y = Cx0 +Du.

The above follows from an easy computation.

Proposition 2.3. A discrete-time system is approximately observable if and
only if its output map C is one-to-one and approximately controllable if and
only if its input map B has dense range.

Proof. This follows easily from the above characterization of a trajectory in
terms of the main operator, the input map, the output map and the input-
output map.

The fourth map on sequence spaces that will play an important role in
this thesis is the following map. The Hankel map is defined for finitely
nonzero u : Z− → U by

(Hu)k :=
∞∑
i=0

CAiBuk−i−1 k ∈ Z+.

We state the following lemma on the Hankel map.
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Lemma 2.4. For the Hankel map of a discrete-time system we have

CB = H = π+Dπ−,

where B is the input map, C the output map and D the input-output map of
the discrete-time system.

Proof. The equality H = π+Dπ− is immediate from the definitions. The
equality CB = H is proven as follows. Let u : Z− → U be finitely nonzero
and k ∈ Z+, we then have

(CBu)k = CAk
∑∞

i=0A
iBu−i−1

=
∑∞

i=0CA
k+iBu−i−1 using that u−i−1 = 0 for i < 0

=
∑∞

i=−k CA
k+iBu−i−1 substituting j := k + i

=
∑∞

j=0CA
jBuk−j−1

= (Hu)k.

This shows that CB = H.

We define four operator-valued holomorphic functions associated with
a discrete-time system that will play an important role in this thesis. We
define them through power series expansions. Note that, as in the scalar case,
operator-valued power series have a radius of convergence and we consider
the four operator-valued holomorphic functions as functions on an open disc
with the radius of convergence as radius. The state function of a discrete-
time system is defined by

A(z) =
∞∑
i=0

Aizi.

Note that this series converges for |z| < 1/‖A‖, since it forms a geometric
series with common ratio Az. The radius of convergence of this series equals
1/r(A), where r(A) denotes the spectral radius of A, and so A : D1/r(A) →
L(X ). We denote 1/r(A) by rA. The input function of a discrete-time
system is defined by

B(z) =
∞∑
i=0

AiBzi+1.

We have B : DrB
→ L(U ,X ), where rB is the radius of convergence of the

power series. The output function C : DrC
→ L(X ,Y ) of a discrete-time

system is defined by

C(z) =
∞∑
i=0

CAizi
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and the transfer function D : DrD
→ L(U ,Y ) by

D(z) = D +
∞∑
i=0

CAiBzi+1.

Note that

A = A′(0), B = B′(0), C = C(0), D = D(0). (2.3)

Remark 2.5. We remark that we have the following inequalities

rA ≤ rB, rC ≤ rD

and the equalities

A(z)Bz = B(z) ∀z ∈ DrA
,

CA(z) = C(z) ∀z ∈ DrA
,

D + CB(z) = D(z) ∀z ∈ DrB
,

D + C(z)Bz = D(z) ∀z ∈ DrC
.

A sequence h : Z+ →H is called Z-transformable if the power series

∞∑
i=0

hiz
i

has a positive radius of convergence. The Z-transform of a Z-transformable
sequence h is denoted by ĥ.

Lemma 2.6. If the input of a discrete-time system is Z-transformable, then
the state and output are Z-transformable and they satisfy

x̂(z) = A(z)x0 + B(z)û(z),
ŷ(z) = C(z)x0 + D(z)û(z),

for z such that |z| < rA and |z| smaller than the radius of convergence of the
power series corresponding to the sequence u.

Proof. Due to the linearity of the system we can prove this in two steps: in
the first we can take u = 0 and in the second x0 = 0.

First step (u = 0). Since xn+1 = Axn, we obtain xi = Aix0 and so the
Z-transform of the state is

∞∑
i=0

xiz
i =

∞∑
i=0

Aix0z
i = A(z)x0
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and this power series converges for |z| < rA. Since yn = Cxn we obtain that
y is Z-transformable and

ŷ(z) = C(z)x0.

Second step (x0 = 0). The state is now given by

xn =
n−1∑
i=0

AiBun−i−1,

and so its Z-transform is

∞∑
n=0

xnz
n =

∞∑
n=0

n−1∑
i=0

AiBun−i−1z
n.

On the other hand, we have

B(z)û(z) =
∞∑

j=0

AjBzj+1

∞∑
k=0

ukz
k =

∞∑
n=0

n∑
i=0

AiBun−i−1z
n,

where the rearranging of terms is justified, since the series converge abso-
lutely. Hence x is Z-transformable and satisfies x̂(z) = B(z)û(z). The proof
that ŷ(z) = D(z)û(z) follows along the same lines.

Combining steps 1 and 2 and using linearity proves the lemma.

We now define four other operator-valued holomorphic functions that will
also play a role in this thesis. They are defined on a set that we denote by
1/ρ(A) and that is defined as follows:

1/ρ(A) := {z ∈ C : 1/z ∈ ρ(A)} ∪ {0}.

Here ρ(A) denotes the resolvent set of the operator A. The resolvent A :
1/ρ(A)→ L(X ) of a discrete-time system is defined by

A(z) := (I − zA)−1,

the incoming wave function B : 1/ρ(A) → L(U ,X ) of a discrete-time
system is defined by

B(z) := z(I − zA)−1B,

the outgoing wave function C : 1/ρ(A) → L(X ,Y ) of a discrete-time
system is defined by

C(z) := C(I − zA)−1,
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and the characteristic function D : 1/ρ(A)→ L(U ,Y ) of a discrete-time
system is defined by

D(z) := D + Cz(I − zA)−1B.

It is easily seen that

A(z) = A(z), B(z) = B(z), C(z) = C(z), D(z) = D(z), for |z| < rA, (2.4)

but the following examples show that these functions are not identical.

Example 2.7. Let U = X = Y = C and A = −1, B = C = D = 0.
Then both the transfer function and the characteristic function are zero,
but the transfer function has domain C while the characteristic function has
domain C\{−1}. This shows that the transfer function and the characteristic
function are not identical. Similar arguments apply to the other functions.

The above example is somewhat pathological, since on the intersection
of their domains the functions are equal. This example identifies the only
possible difference when the state space X is finite-dimensional. In the case
that X is infinite-dimensional, the transfer function and the characteristic
function need not even be equal on the intersection of their domains, as the
following example shows.

Example 2.8. Let U = Y = C and X = l2(Z). Define the operators A,B,C
by

(Ax)k = xk−1, (Bu)k =

{
u for k = 0
0 for k 6= 0

, Cx = x−1,

and D = 0. Then CAiB = 0 for all i ≥ 0 and so the transfer function is
defined on the whole complex plane and equals zero. We calculate D(2). We
first note that the solution v of B1 = (I − 2A)v has to satisfy

vk − 2vk−1 =

{
0 for k 6= 0
1 for k = 0.

The unique solution in l2(Z) is given by

vk =

{
−2k for k < 0
0 for k ≥ 0.

So v = (I − 2A)−1B1. It follows that D(2)1 = C2(I − 2A)−1B1 = 2v−1 =
−1. Hence D(2) = −1. We conclude that the transfer function and the
characteristic function are both defined in 2, but that their values in this
point are different. So the transfer function and the characteristic function
are not equal on the intersection of their domains.



14 CHAPTER 2. BASIC OBJECTS

The following result shows on which domain we do have equality of the
transfer function and the characteristic function.

Proposition 2.9. For a discrete-time system we have the following equali-
ties.

A(z) = A(z) ∀z : |z| < rA,

B(z) = B(z) ∀z : |z| < rA,

C(z) = C(z) ∀z : |z| < rA,

D(z) = D(z) ∀z : |z| < max{rB, rC}, z ∈ 1/ρ(A).

Proof. The first three equalities were already mentioned in (2.4). We prove
the fourth equality. From (2.4) we conclude that C(z)(I − zA) = C for all z
with |z| < rA. Since both sides are holomorphic this equality extends to all
z with |z| < rC. We now multiply both sides by (I − zA)−1zB which is well-
defined on 1/ρ(A) and obtain C(z)zB = C(I − zA)−1zB for all z ∈ 1/ρ(A)
with |z| < rC. This shows that D(z) = D(z) for these z and proves the fourth
equality in the case that rC ≥ rB. If rB < rC, then a similar argument with
B instead of C proves the assertion.

Example 2.10. We apply Proposition 2.9 to Example 2.8. It is easily seen
that the spectral radius of A equals one. So we have A = A, B = B,
C = C, D = D on the open unit disc. It is not very difficult to show that
rB = rC = 1, so that the in principle more precise condition for equality of
the transfer function and the characteristic function from Proposition 2.9 in
this case gives the same as the condition based on the spectral radius of A.

As we saw the transfer function of a discrete-time system is always holo-
morphic at zero. The following result shows that any function that is holo-
morphic in zero is the transfer function of some discrete-time system. We
first give the relevant definition.

Definition 2.11. Let G be a L(U ,Y )-valued function defined in a neig-
bourhood of zero. A discrete-time system Σ is called a realization of G if
the transfer function of Σ coincides with G in a neighbourhood of zero.

Proposition 2.12. Any L(U ,Y )-valued function which is holomorphic at
zero has a realization.

Proof. In this proof we will use the Hardy spaces H2 and H∞ (see Appendix
A). First assume that the given function G satisfies G(0) = 0 and G ∈
H∞(D,L(U ,Y )). Define X := l2(Z+,Y ) and for x ∈ X the operator
A ∈ L(X ) by (Ax)n = xn+1 and the operator C ∈ L(X ,Y ) by Cx = x0.
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For u ∈ U define F(z) := G(z)u. Since G ∈ H∞(D,L(U ,Y )) we have
F ∈ H2(D,Y ). It follows from Lemma A.2 that F(z) =

∑∞
n=0 Fnz

n, with
the sequence Fn ∈ l2(Z+,Y ). Define B ∈ L(U ,X ) by (Bu)n = Fn. This
operator is bounded since

‖Bu‖X = ‖(Fn)n≥0‖l2(Z+,Y ) = ‖F‖H2(D,Y )‖ ≤ ‖G‖H∞(D,L(U ,Y )) ‖u‖U ,

where we have used Lemmas A.2 and A.4. It is easily seen that CAnB = Fn

for all n ∈ Z+, from which it follows that G is the transfer function of the
discrete-time system with system operator [A,B;C, 0].

If G ∈ H∞(D,L(U ,Y )), but G(0) 6= 0, then by applying the above
to G(z) − G(0) we see that the discrete-time system with system operator
[A,B;C,G(0)] has the transfer function G.

If G is holomorphic at zero, then there exists a r > 0 such that Gr(z) :=
G(rz) is in H∞(D,L(U ,Y )). Applying the above to Gr we obtain a realiza-
tion [Ar, Br;Cr, Dr] of Gr. Define [A,B;C,D] := [Ar/r,Br;Cr/r,Dr], then
it is easily seen that this is a realization of G.

Remark 2.13. The realization constructed in the proof of Proposition 2.12 for
a function in H∞(D,L(U ,Y )) is called the backward shift realization.
If we define

Xmin := span{AnBu : u ∈ U , n ≥ 0},

then obviously the system operator (see (2.2)) restricts to a bounded oper-
ator from [Xmin; U ] to [Xmin; Y ] and the resulting discrete-time system is
approximately controllable and approximately observable and has the same
transfer function as the backward shift realization. This realization is called
the restricted backward shift realization. We will denote its system
operator by Srs and we will denote its components similarly.

Remark 2.14. In general, a function has infinitely many realizations. If
[A,B;C,D] is a realization of G and S ∈ L(X ) has a bounded inverse,
then [SAS−1, SB;CS−1, D] is also a realization of G. In fact there are many
more realizations. For a reasonably complete discussion of realization theory
we refer to Staffans [89, Chapter 9].

Since in operator theory the adjoint (also known as conjugate or dual) of
an operator plays an essential role, it might not come as a surprise that the
following dual system plays an important role in systems theory.

Definition 2.15. The dual system of a discrete-time system with system
operator S is the discrete-time system with system operator S∗.
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Note that the state space of the dual system equals the state space of the
system itself, but that the input and output spaces are interchanged.

The following results show how the holomorphic functions of a system
are related to those associated with its dual system. To formulate this we
need the following notation: let f : Λ ⊂ C → L(H1,H2) where H1 and
H2 are separable Hilbert spaces, then f † : Λ → L(H2,H1) is defined by
f †(s) := f(s̄)∗.

Proposition 2.16. The resolvent, the wave functions and the characteristic
function of the dual system satisfy[

Adual Bdual

Cdual Ddual

]
=

[
A† C†

B† D†

]
.

Proof. This follows easily from the definitions.

Proposition 2.17. The state function, input function, output function and
transfer function of the dual system are given by[

Adual Bdual

Cdual Ddual

]
=

[
A† C†

B† D†

]
.

Proof. This follows easily from the definitions.

Definition 2.18. The series interconnection of the system Σ1 and the
system Σ2 is defined when Y1 = U2 by its system operator

Sseries =

[
Aseries Bseries

Cseries Dseries

]
:=

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 .
Proposition 2.19. The resolvent, the wave functions and the characteristic
function of the series interconnection satisfy[

Aseries Bseries

Cseries Dseries

]
=

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 .
Proof. This is an easy calculation.

Proposition 2.20. The state function, input function, output function and
transfer function of the series interconnection are given by[

Aseries Bseries

Cseries Dseries

]
=

 A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1

 .
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Proof. This is an easy calculation.

Lemma 2.21. A realization of the transfer function of the series intercon-
nection of Σ1 and Σ2 is given by the system operator A1 0 B1

A2 +B2C1 − A1 A2 B2D1 −B1

D2C1 + C2 C2 D2D1

 .
Proof. This follows from applying the state space transformation[

I 0
I I

]
to the system operator of the series interconnection given in Definition 2.18.

Proposition 2.22. Let G : D(G) ⊂ C → L(H ) be holomorphic with 0 ∈
D(G). Let [A,B;C,D] be a realization of G and assume that D is boundedly
invertible. Then G(z) is invertible in a neighbourhood of zero and the inverse
of G has a realization [A−BD−1C,BD−1;−D−1C,D−1].

Proof. This follows from writing down realizations of the transfer functions of
the series interconnection of [A,B;C,D] and [A−BD−1C,BD−1;−D−1C,D−1]
in both orders using Lemma 2.21. Since these are both equal to the identity
the result follows.

Proposition 2.23. Let Σ̌ be a discrete-time system with input space U and
output space U × Y . Denote its transfer function by [Ď1; Ď2]. Assume that
Ď1 has a bounded inverse. Define the discrete-time system Σ by its system
operator:

S =

[
Ǎ− B̌Ď−1

1 Č1 B̌Ď−1
1

Č2 − Ď2Ď
−1
1 Č1 Ď2Ď

−1
1

]
. (2.5)

Then the transfer function D of Σ satisfies D(z) = Ď2(z)Ď1(z)−1.

Proof. The operator [Ǎ, B̌; Č2, Ď2]) is a realization of Ď2. A realization of
Ď−1

1 can be obtained from Proposition 2.22. A realization of the transfer
function of their series interconnection is provided by Lemma 2.21 as Ǎ− B̌Ď−1

1 Č1 0 B̌Ď−1
1

0 Ǎ 0

Č2 − Ď2Ď
−1
1 Č1 Č2 Ď2Ď

−1
1

 .
It follows from Proposition 2.20 that this system is a realization of Ď2Ď

−1
1 . It

is easily seen that the transfer function of this system equals that of Σ.
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Notes

The concept of dynamical system as defined in Definition 2.1 is taken from
Polderman and Willems [76]. Discrete-time systems have been studied for
quite some time. The first account in book form of the infinite-dimensional
case seems to be Fuhrmann [31]. Chapter 12 of Staffans [89] contains some
more recent developments. Example 2.8 is adapted from Curtain and Zwart
[18, Example 4.3.8]. The backward shift realization mentioned in Remark
2.13 is due to Fuhrmann [30] and Helton [37].



Chapter 3

Stability

The concept of stability plays a key role in systems theory. In this chapter
we study different notions of stability for discrete-time systems.

Definition 3.1. A discrete-time system is called

• exponentially stable if for all sequences x with [0; x; y] ∈ B we have
x ∈ l2(Z+,X ).

• strongly stable if for all sequences x with [0;x; y] ∈ B we have ‖xn‖ →
0 as n→∞.

• output stable if for all sequences y with [0;x; y] ∈ B we have y ∈
l2(Z+,Y ).

• input stable if the dual system is output stable.

• input-output stable if u ∈ l2(Z+,U ), x0 = 0 and [u;x; y] ∈ B implies
y ∈ l2(Z+,Y ).

We remark that exponential stability is often referred to as power sta-
bility in the literature.

We will first give alternative characterizations of the concepts just intro-
duced. Then we will show that exponential stability implies all the other
types of stability (Proposition 3.28).

The Hardy spaces H2 and H∞ play a role in this chapter. The reader is
referred to Appendix A for the relevant background.

Proposition 3.2. The following are equivalent.

1. The discrete-time system is output stable.

2. The output map C is an element of L(X , l2(Z+,Y )).

19
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3. There exists a nonnegative self-adjoint operator L ∈ L(X ) such that
A∗LA− L+ C∗C = 0.

4. We have rC ≥ 1 and for all x ∈X the restriction of C(·)x to the open
unit disc is in H2(D,Y ).

Proof. We show that output stability is equivalent to 2, that 2 is equivalent
to 3 and that 4 is equivalent to output stability.

(i) 2 implies output stability. The output for initial state x0 and zero
input is given by Cx0 and since C maps into l2(Z+,Y ), by assumption, we
obtain the desired result.

(ii) output stability implies 2. Output stability shows that the range of
the output map is contained in l2(Z+,Y ). We show that C is closed. Assume
that xn → x in X and Cxn → y in l2(Z+,Y ) as n → ∞. We have to show
that y = Cx. Since Cxn → y we have for all k ∈ Z+ that (Cxn)k → yk. Using
the definition of output map we see that this is equivalent to CAkxn → yk.
Since C and A are bounded operators and xn → x we also have for all k ∈ Z+

that CAkxn → CAkx. This shows that for all k ∈ Z+ the following holds
(Cx)k = yk, in other words Cx = y. This proves that C is closed. Since
it is everywhere defined, it follows from the closed graph theorem that it is
bounded.

(iii) 2 implies 3. Since C is bounded L := C∗C is a nonnegative self-adjoint
element of L(X ). We show that it satisfies the given equation. We have for
x ∈X

〈LAx,Ax〉 − 〈Lx, x〉+ 〈Cx,Cx〉 = 〈CAx, CAx〉 − 〈Cx, Cx〉+ 〈Cx,Cx〉 =

∞∑
k=0

‖(CAx)k‖2−
∞∑

k=0

‖(Cx)k‖2+‖Cx‖2 =
∞∑

k=0

‖(Cx)k+1‖2−‖(Cx)k‖2+‖Cx‖2.

The reordering of terms is permitted, since the series involved converge ab-
solutely. Noting that the last series above telescopes, we obtain that the
above expression equals zero. Since this is true for all x ∈X , we see that L
satisfies the above mentioned equation.

(iv) 3 implies 2. Multiply the given equation from the left with A∗k and
from the right with Ak and sum from k = 0 to n to obtain

n∑
k=0

A∗kC∗CAk =
n∑

k=0

A∗kLAk −
n∑

k=0

A∗k+1LAk+1

= L− A∗n+1LAn+1 ≤ L.
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From this we obtain for all x ∈X and n ∈ Z+

n∑
k=0

‖CAkx‖2 ≤ 〈Lx, x〉. (3.1)

Letting n→∞ shows that C is a bounded map.
(v) 4 implies output stability. This follows from the fact that the Z-

transform maps l2(Z+,Y ) one-to-one onto H2(D,Y ). Since by assumption,
the Z-transform of the output with initial condition x0 and zero input restricts
to a function in H2(D,Y ) it follows that this output is in l2(Z+,Y ).

(vi) Output stability implies 4. Using the fact that the Z-transform maps
l2(Z+,Y ) one-to-one onto H2(D,Y ), we obtain that the Z-transform of the
output with initial condition x0 and zero input restricts to a function in
H2(D,Y ). This is equivalent to Cx0 restricting to a function in H2(D,Y ).
This shows that C is defined on the open unit disc and since an operator-
valued function is holomorphic in the strong topology if and only if it is
holomorphic in the uniform topology, it follows that C is holomorphic on the
open unit disc, and this implies that we have rC ≥ 1.

Example 3.3. The backward shift realization and the restricted backward
shift realization from Remark 2.13 are output stable. It is easily seen that
the identity is a solution of the equation mentioned in part 3 of Proposition
3.2.

We formulate a corollary about input stability.

Corollary 3.4. The following are equivalent.

1. The discrete-time system is input stable.

2. The input map B extends uniquely to an element of L(l2(Z−,U ),X ).

3. There exists a nonnegative self-adjoint operator L ∈ L(X ) such that
ALA∗ − L+BB∗ = 0.

4. We have rB ≥ 1 and for all x ∈ X the restriction of B†(·)x is in
H2(D,U ).

Proof. This follows by applying Proposition 3.2 to the dual system.

From the above results on input and output stability we obtain the fol-
lowing result on boundedness of the Hankel map.

Proposition 3.5. The Hankel map of an input and output stable discrete-
time system has a unique extension to an element of L(l2(Z−,U ), l2(Z+,Y )).
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Proof. Proposition 3.2 shows that the output map is bounded and Corollary
3.4 that the input map is bounded. Lemma 2.4 shows that the Hankel map is
the product of these two operators. Hence the Hankel map is bounded.

The operator C∗C that we encountered in the proof of Proposition 3.2
plays an important role.

Definition 3.6. The observability gramian LC of an output stable system
is defined as LC := C∗C. Here C∗ is the adjoint of C considered as an operator
in L(X , l2(Z+,Y )).

The proof of proposition 3.2 shows that the observability gramian is a
solution of the observation Lyapunov equation

A∗LA− L+ C∗C = 0. (3.2)

This equation may have several other bounded nonnegative self-adjoint so-
lutions. The following result gives two additional properties that the observ-
ability gramian has, each of which identifies it uniquely in the set of bounded
nonnegative self-adjoint solutions of the observation Lyapunov equation. This
will be of use to us later to show that a certain bounded nonnegative self-
adjoint operator is the observability gramian of the system.

Lemma 3.7. The set of bounded nonnegative self-adjoint solutions of the
observation Lyapunov equation of an output stable discrete-time system has
a unique element Lmin such that Lmin ≤ L for all other bounded nonnega-
tive self-adjoint solutions L. This unique element Lmin is the observability
gramian.

This set also has a unique element L such that L1/2Anx → 0 for all
x ∈X as n→∞. This unique element is the observability gramian.

Proof. From (3.1) we obtain by letting k →∞ that LC ≤ L for all bounded
nonnegative self-adjoint solutions L of the observation Lyapunov equation.
Obviously the smallest element is unique.

We have

‖L1/2
C Anx‖2 = 〈LCA

nx,Anx〉 = ‖CAnx‖2 =
∞∑

k=0

‖CAkAnx‖2 =
∞∑

i=n

‖CAix‖2.

For n → ∞ this converges to zero, since Cx ∈ l2(Z+,Y ). This shows that
the observability gramian indeed satisfies the given convergence condition.
Let L be a bounded nonnegative self-adjoint solution of the observation Lya-
punov equation with the above mentioned convergence property. Multiply
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the Lyapunov equation from the left with A∗k and from the right with Ak

and sum from k = 0 to n to obtain
n∑

k=0

A∗kC∗CAk =
n∑

k=0

A∗kLAk −
n∑

k=0

A∗k+1LAk+1

= L− A∗n+1LAn+1

From this we obtain for all x ∈X

n∑
k=0

‖CAkx‖2 = 〈Lx, x〉 − ‖L1/2An+1x‖2.

Letting n → ∞ the left-hand side converges to ‖Cx‖2 = 〈LCx, x〉 while,
since ‖L1/2An+1x‖2 → 0 by assumption, the right-hand side converges to
〈Lx, x〉. Hence we obtain 〈LCx, x〉 = 〈Lx, x〉 for all x ∈ X , which implies
L = LC .

Lemma 3.8. Let Σ be output stable and strongly stable. Then the observabil-
ity gramian is the unique nonnegative self-adjoint solution of the observation
Lyapunov equation.

Proof. According to Lemma 3.7 the observability gramian is a nonnegative
self-adjoint solution of the observation Lyapunov equation, so we only have
to show that it is the unique nonnegative self-adjoint solution. Let L be
a nonnegative self-adjoint solution of the observation Lyapunov equation.
Then, as in the proof of Lemma 3.7, we have for all N ∈ N

N∑
n=0

A∗nC∗CAn =
N∑

n=0

A∗nLAn −
N∑

n=0

A∗n+1LAn+1 = L− A∗N+1LAN+1.

We then have for all x, y ∈ X〈
N∑

n=0

A∗nC∗CAnx, y

〉
= 〈Lx, y〉 − 〈LAN+1x,AN+1y〉.

Letting N →∞ and using the fact that A is strongly stable, we have for all
x, y ∈ X

〈LCx, y〉 = 〈Lx, y〉.

This implies that L = LC . Since L was an arbitrary nonnegative self-adjoint
solution, this implies that LC is the unique nonnegative self-adjoint solution
of the observation Lyapunov equation.
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Example 3.9. The backward shift realization and the restricted backward
shift realization from Remark 2.13 have the identity as observability gramian.
From Example 3.9 we obtain that the identity is a solution of the observation
Lyapunov equation. Since the systems are strongly stable it follows from
Proposition 3.8 that the identity is the observability gramian of both systems.

Proposition 3.10. Consider an output stable discrete-time system with ob-
servability Gramian LC. If [u;x; y] ∈ B with u finitely nonzero, then L

1/2
C xn →

0 as n→∞.

Proof. Let N be such that un = 0 for n ≥ N . We have L
1/2
C AnxN → 0

by Lemma 3.7. Since for k ≥ N we have xk+N = AkxN this implies that

L
1/2
C xn → 0.

Proposition 3.11. An output stable discrete-time system is approximately
observable if and only if LC > 0.

Proof. This follows since 〈LCx, x〉 = ‖Cx‖2 and a discrete-time system is
approximately observable if and only if C is one-to-one by Proposition 2.3.

The following Lyapunov equation that we already encountered in Corol-
lary 3.4 is called the control Lyapunov equation

ALA∗ − L+BB∗ = 0. (3.3)

Definition 3.12. The controllability gramian LB of an input stable sys-
tem is defined as LB := BB∗. Here B∗ is the adjoint of B considered as an
operator in L(l2(Z−,U ),X ).

By duality we obtain similar results for the control Lyapunov equation
as we obtained for the observability Lyapunov equation.

Lemma 3.13. The set of bounded nonnegative self-adjoint solutions of the
control Lyapunov equation of an input stable discrete-time system has a
unique element Lmin such that Lmin ≤ L for all other bounded nonnega-
tive self-adjoint solutions L. This unique element Lmin is the controllability
gramian.

This set also has a unique element L such that L1/2A∗nx → 0 for all
x ∈X as n→∞. This unique element is the controllability gramian.

Proof. This follows from applying Lemma 3.7 to the dual system.

Lemma 3.14. Let Σ be input stable with a strongly stable dual system. Then
the controllability gramian is the unique nonnegative self-adjoint solution of
the control Lyapunov equation.



25

Proof. This follows from applying Lemma 3.8 to the dual system.

Proposition 3.15. An input stable discrete-time system is approximately
controllable if and only if LB > 0.

Proof. Assume the system is approximately controllable. Then the input
map has dense range. It follows that its adjoint is injective. From this we
obtain that LB = BB∗ is a positive operator.

Assume LB > 0. Then B∗ is injective, from which it follows that B has
dense range. This implies that the system is approximately controllable.

The following lemma and its corollary will be used throughout the thesis.

Lemma 3.16. Let H1 and H2 be Hilbert spaces, Z ∈ L(H1,H2), T ∈
L(H2,H1) and λ 6= 0. Then λ ∈ σ(ZT ) if and only if λ ∈ σ(TZ).

Proof. Suppose that λ ∈ ρ(ZT ). Then we have

1

λ
(I + T (λI − ZT )−1Z)(λI − TZ) = I

and

(λI − TZ)
1

λ
(I + T (λI − ZT )−1Z) = I.

This implies λ ∈ ρ(TZ). The converse follows from interchanging the role
of Z and T . Since the spectrum is the complement of the resolvent set the
result follows.

Note that λ 6= 0 is essential for Lemma 3.16 to hold: the left and right
shift on l2(Z+) offers a counterexample for the case λ = 0. Lemma 3.16 has
the following obvious corollary on the spectral radius of a product.

Corollary 3.17. Let H1 and H2 be Hilbert spaces, Z ∈ L(H1,H2), T ∈
L(H2,H1). Then r(ZT ) = r(TZ).

Proof. This follows from Lemma 3.16.

We use Corollary 3.17 to prove the following.

Lemma 3.18. Let Σ be an input and output stable discrete-time system. Let
LC and LB be its observability and controllabilty gramian, respectively, and
H its Hankel map. Then ‖H‖ =

√
r(LCLB).
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Proof. We use Corollary 3.17 and Lemma 2.4 to obtain the following.

r(LCLB) = r(C∗CBB∗) = r(B∗C∗CB) = r(H∗H).

Since H∗H is a self-adjoint operator its spectral radius equals its norm. Since
the norm of a self-adjoint operator T can be computed as

‖T‖ = sup
‖x‖=1

|〈Tx, x〉|

we obtain

‖H∗H‖ = sup
‖x‖=1

|〈H∗Hx, x〉| = sup
‖x‖=1

|〈Hx,Hx〉| = ‖H‖2.

Combing the above we obtain

‖H‖2 = ‖H∗H‖ = r(H∗H) = r(LCLB),

as desired.

Lemma 3.19. Let Σ be an input and output stable discrete-time system. Let
LC and LB be its observability and controllabilty gramian, respectively, and
let Lc and Lb be arbitrary nonnegative self-adjoint solutions of its observation
and control Lyapunov equations, respectively. Then r(LCLB) ≤ r(LcLb).

Proof. Lemma 3.17 implies that

r(LCLB) = r(L
1/2
C LBL

1/2
C ).

By Lemma 3.7 we have LC ≤ Lc and by Lemma 3.13 we have LB ≤ Lb. From
LB ≤ Lb we conclude that L

1/2
C LBL

1/2
C ≤ L

1/2
C LbL

1/2
C . This implies that

r(L
1/2
C LBL

1/2
C ) ≤ r(L

1/2
C LbL

1/2
C ).

Using Lemma 3.17 we obtain

r(L
1/2
C LbL

1/2
C ) = r(L

1/2
b LCL

1/2
b ).

Since LC ≤ Lc we obtain L
1/2
b LCL

1/2
b ≤ L

1/2
b LcL

1/2
b , which implies that

r(L
1/2
b LCL

1/2
b ) ≤ r(L

1/2
b LcL

1/2
b ).

Using Lemma 3.17 again we obtain

r(L
1/2
b LcL

1/2
b ) = r(LcLb).

Combing the above obtained inequalities we arrive at r(LCLB) ≤ r(LcLb).
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Output stability tells us the following about the transfer function.

Proposition 3.20. For an output stable discrete time system we have the
following:

D(z) = D + C(z)zB ∀z ∈ D,
D(z) = D(z) ∀z ∈ ρ(A) ∩ D,

and for all u ∈ U we have that D(·)u restricts to a function in H2(D,Y ).

Proof. Proposition 3.2 part 4 shows that rC ≥ 1. Remark 2.5 and Proposition
2.9 now give the indicated equalities. The first of these equalities together
with Proposition 3.2 part 4 (with x = Bu) shows the H2 property.

The dual result reads as follows.

Proposition 3.21. For an input stable discrete time system we have the
following:

D(z) = D + CB(z) ∀z ∈ D,
D(z) = D(z) ∀z ∈ ρ(A) ∩ D,

and for all y ∈ Y we have that D†(·)y restricts to a function in H2(D,U ).

Proof. This follows along similar lines as Proposition 3.20.

We now give a necessary and sufficient condition for input-output stabil-
ity.

Proposition 3.22. A system is input-output stable if and only if rD ≥ 1 and
D restricts to a function in H∞(D,L(U ,Y )).

Proof. We first prove the if part. Let u ∈ l2(Z+,U ) and denote the output
corresponding to this input and initial condition zero by y. By Lemma 2.6
the Z-transform of the output is given by D(z)û(z). From Lemmas A.2 and
A.4 we obtain that y ∈ l2(Z+,Y ). Hence the system is input-output stable.

We now prove the only if part. We first show that the map from the
input to the output (with initial condition zero) is closed from l2(Z+,U )
to l2(Z+,Y ). So assume that un → u in l2(Z+,U ) and the corresponding
outputs yn → y in l2(Z+,Y ). We have to show that y is the output for input
u. For yn we have

yn
k =

k−1∑
i=0

CAiBun
k−i−1 +Dun

k .
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Since A, B, C and D are continuous and un
j converges to uj, we have

yn
k →

k−1∑
i=0

CAiBuk−i−1 +Duk.

On the other hand, since yn → y, we have yn
k → yk. This shows that

yk =
k−1∑
i=0

CAiBuk−i−1 +Duk.

So y is indeed the output for input u. By the closed graph theorem the map
that sends an input to the corresponding output is in L(l2(Z+,U ), l2(Z+,Y )).
This map obviously commutes with right-translations: if y is the output for
the input u then [0; y] is the output for the input [0; u]. Since the Z-transform
is an isometric isomorphism between l2(Z+,H ) and H2(D,H ) the map that
sends û to ŷ is bounded from H2(D,U ) to H2(D,Y ). The shift-invariance
in time-domain translates to commutation with multiplication by z in the
frequency domain. Hence û 7→ ŷ is a bounded linear map from H2(D,U ) to
H2(D,Y ) that commutes with multiplication by z. By Lemma A.4 it is given
by multiplication by an H∞(D,L(U ,Y )) function. This function coincides
with the input-output function restricted to the unit disc.

Corollary 3.23. The dual system of an input-output stable system is input-
output stable.

Proof. This follows from Proposition 3.22 since D ∈ H∞(D,L(U ,Y )) if and
only if D† ∈ H∞(D,L(Y ,U )).

Proposition 3.24. The Hankel map of an input-output stable discrete-time
system has a unique extension to an element of L(l2(Z−,U ), l2(Z+,Y )).

Proof. By Proposition 3.22 the transfer function of the system is an element
of H∞(D,L(U ,Y )). It follows from Definition A.24 that it has a bounded
Hankel operator. By Lemma A.26 the Hankel operator and the Hankel map
are similar with as similarity operator the Z-transform. It follows that the
Hankel map extends to a bounded operator from l2(Z−,U ) to l2(Z+,Y ) as
desired.

Example 3.25. The backward shift realization and the restricted backward
shift realization of a H∞(D,L(U ,Y )) function from Remark 2.13 are input
stable. From Lemma 2.4 we obtain H∗H = B∗C∗CB = B∗LCB. From Exam-
ple 3.9 we obtain LC = I. From Proposition 3.24 we obtain that the Hankel
map is bounded. It follows that B is bounded. Hence the system is input
stable by Proposition 3.4.
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The following result gives necessary and sufficient conditions for expo-
nential stability.

Proposition 3.26. The following are equivalent.

1. The discrete-time system is exponentially stable.

2. There exists a nonnegative self-adjoint operator L ∈ L(X ) such that
A∗LA− L+ I = 0.

3. The spectral radius of the state operator is strictly smaller than one.

4. There exist M ≥ 0 and r ∈ [0, 1) such that for all sequences x with
[0;x; y] ∈ B we have ‖xn‖ ≤Mrn‖x0‖ for all n ≥ 0.

5. We have rA ≥ 1 and the restriction of the state function to the open
unit disc is in H∞(D,L(X )).

Proof. We will show that exponential stability implies 2 implies 3 implies 4
implies 5 implies exponential stability.

(i) exponential stability implies 2: this follows from Proposition 3.2 with
C = I.

(ii) 2 implies 3. We will show that it follows from the Lyapunov equa-
tion that the approximate eigenvalues of A must lie in the open unit disc.
Since the boundary of the spectrum of an operator consists of approximate
eigenvalues (see Taylor and Lay [91, Theorem V.4.1 page 282]), this shows
that the spectrum of A is contained in the open unit disc which is equivalent
with the spectral radius being strictly smaller than one. Suppose λ is an
approximate eigenvalue and xn is a sequence of approximate eigenvectors;
that is, ‖xn‖ = 1 and ‖(λI − A)xn‖ → 0. Using the Lyapunov equation we
obtain

(λI − A)∗L(λI − A)− λ(λI − A)∗L− λ̄L(λI − A) = (1− |λ|2)L− I.

By applying this to xn and taking the inner product with xn we obtain
(1−|λ|2)〈Lxn, xn〉 → 1. Since L is nonnegative this implies that 1−|λ|2 > 0.

(ii) 3 implies 4. From the Gelfand formula r(A) = limn→∞
n
√
‖An‖ it

follows that for r := (1 + r(A))/2 ∈ (0, 1) there exists a N ∈ Z+ such that
for all n ≥ N we have ‖An‖ ≤ rn. Define M̃ := maxi=0,...,N−1 ‖Ai‖/ri and
M = max{M̃, 1}. Then ‖An‖ ≤ Mrn for all n ≥ 1. Since xn = Anx0 the
assertion follows.

(iii) 4 implies 5. From the given inequality we conclude that Z-transform
of x is holomorphic on the open disc with radius 1/r. In particular, it follows
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that for all x0 ∈X the function A(·)x0 is holomorphic in a neighborhood of
the unit disc. It follows that for all x0 ∈ X the function z 7→ ‖A(z)x0‖2 is
continuous on the closed unit disc. Since the closed unit disc is compact, this
function is bounded. We conclude that for all x0 ∈ X the function A(·)x0

restricts to a function in H∞(D,X ). It follows that rA ≥ 1 and A restricted
to the unit disc is in H∞(D,L(X )).

(iv) 5 implies exponential stability. Let x be the state corresponding to
initial state x0 and zero input. Since the state function restricts to a function
in H∞(D,L(X )) we have that the Z-transform of the state, x̂(z) = A(z)x0,
restricted to the unit disc is in H∞(D,X ). Since H∞(D,X ) is contained in
H2(D,X ) and the Z-transform is isometric from l2(Z+,X ) onto H2(D,X )
we obtain that the state is in l2(Z+,X ) and so the system is exponentially
stable.

Corollary 3.27. The dual system of an exponentially stable system is expo-
nentially stable.

Proof. This follows from Proposition 3.26 since the spectral radius of an
operator and its dual are equal.

After having established equivalent conditions for the types of stability
we have introduced, we are now ready to study their relationships to each
other.

The following proposition shows that exponential stability implies all the
other types of stability.

Proposition 3.28. If a discrete-time system is exponentially stable, then it
is strongly stable, output stable, input stable and input-output stable.

Proof. (i) Exponential stability implies strong stability: any square summable
sequence tend to zero.

(ii) Exponential stability implies output stability: since the input is as-
sumed to be zero we have yn = Cxn and so ‖yn‖ ≤ ‖C‖ ‖xn‖. Since x is
square summable it follows that y is.

(iii) Exponential stability implies input stability: by Corollary 3.27 the
dual system is exponentially stable so it follows by (ii) that the dual system
is output stable, which shows that the original system is input stable.

(iv) Exponential stability implies input-output stability: by Proposition
3.26 part 5 we have rA ≥ 1 which by Remark 2.5 implies rD ≥ 1. From
the same proposition we obtain that A restricted to the open unit disc is in
H∞(D,L(X )), using Remark 2.5 again we obtain that the restriction of D
to the unit disc is in H∞(D,L(U ,Y )). Proposition 3.22 now shows that the
system is input-output stable.
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Remark 3.29. It follows similarly as in part (iv) of the proof of Propo-
sition 3.28 that B and C restrict to functions in H∞(D,L(U ,X )) and
H∞(D,L(X ,Y )), respectively, when the system is exponentially stable.

As the following example shows Proposition 3.28 is the only possible
positive result on the connection between the different stability concepts.

Example 3.30. 1. An example of a system that is strongly stable, input
stable, output stable and input-output stable, but not exponentially
stable. Take X = l2(Z+,C), U = C, Y = C, B = 0, C = 0, D = 0.
It trivially follows that this system for any A is input stable, output
stable and input-output stable. Define A as follows: (Ax)n := xn+1.
Then A is strongly stable: we have

‖Anx‖2 =
∞∑

k=0

‖(Anx)k‖2 =
∞∑

k=0

‖xk+n‖2 =
∞∑

i=n

‖xi‖2,

and since x ∈ l2(Z+,C) this expression tends to zero as n → ∞. Let
{en} be the standard basis of l2(Z+,C). The system is not exponentially
stable: take e0 as initial state, then the state at time n equals en. Since
the state at any time instance has norm one it is not square summable
over time.

2. An example of a system that is input stable, output stable and input-
output stable, but not strongly stable. Take X = U = Y = C, A = 1,
B = 0, C = 0, D = 0. It trivially follows that this system is input
stable, output stable and input-output stable. Since Anx = x for all
n ∈ Z+ the system is not strongly stable.

3. An example of a system that is strongly stable, input stable and input-
output stable, but not output stable. Take X = l2(Z+,C), U = C,
Y = l2(Z+,C), B = 0, D = 0. Define A as follows: (Ax)n := xn+1.
Then, as in part 1, A is strongly stable. Since B = 0 the system is
obviously input and input-output stable for any choice of C. Choose
C = I. Then the state and the output coincide and it follows that the
system is output stable if and only if it is exponentially stable. We saw
in part 1 that A is not exponentially stable. It follows that the system
is not output stable.

4. An example of a system that is strongly stable, output stable and input-
output stable, but not input stable. The dual system of the system from
part 3 provides such an example.
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5. An example of a system that is strongly stable, input stable, output
stable, but not input-output stable. The function G : D → C defined
by

G(z) :=
∞∑

n=1

1

n
zn

is in H2(D,C) since
∑∞

n=1 1/n2 <∞, but is not in H∞(D,C) since for
z → 1 we have that |G(z)| becomes arbitrarily large since

∑∞
n=1 1/n

diverges. It follows using Proposition 3.22 that any system with G as
transfer function is not input-output stable. Define X := l2(Z+,C),
the operator A ∈ L(X ) by (Ax)n = xn+1 and the operator C ∈
L(X ,C) by Cx = x0. Define B ∈ L(C,X ) by (Bu)n = u/(n + 1).
This operator is bounded since

‖Bu‖2X =

∥∥∥∥ u

n+ 1

∥∥∥∥2

l2(Z+,C)

= |u|2
∞∑

k=1

1

k2
.

It is easily seen that CAnB = 1/(n + 1) for all n ∈ Z+, from which
it follows that G is the transfer function of the discrete-time system
Σ with system operator [A,B;C, 0]. As in part 1 A is strongly sta-
ble. It is easily seen that the identity is a solution of the observation
Lyapunov equation, from which it follows using Proposition 3.2 that
Σ is output stable. It is easily computed that the output map of the
dual system has, with respect to the standard basis of l2(Z+,C), the
following matrix represention.

1 1/2 1/3 . . .
1/2 1/3 . . . . . .
1/3 . . . . . . . . .
. . . . . . . . . . . .

 .
This matrix is called the infinite Hilbert matrix and is known to define
a bounded operator on l2(Z+,C) with norm π (see Peller [75, page 6]).
It follows that Σ is input stable.

Notes
Exponential stability and input-output stability have been the main stability
concepts in systems and control theory in the last decades. Proposition 3.26
can be considered as the discrete-time version of a now classical continuous-
time result of Datko [20]. Connections between Lyapunov equations and
strong stability were investigated by Przy luski [77]. Proposition 3.22 is clas-
sical, see for example Weiss [96] for more information on the continuous-time
version.



Chapter 4

Stabilizability

Stabilizability is an important concept in systems theory. In this chapter we
consider several forms of stabilizability.

Definition 4.1. Let S be the system operator of a discrete-time system and
[F,G] ∈ L(X ×U ,U ). Then [F,G] is called an admissible feedback pair
if I −G is boundedly invertible. The corresponding closed-loop system is
the discrete-time system with system operator

S[F,G] :=

 A+B(I −G)−1F B(I −G)−1

(I −G)−1F (I −G)−1

C +D(I −G)−1F D(I −G)−1

 . (4.1)

Remark 4.2. Definition 4.1 is motivated by the following. We first add the
equations vn = Fxn + Gun to the equations xn+1 = Axn + Bun, yn =
Cxn + Dun that describe the system. We then choose the input u to be
un = vn + rn, i.e. we feed the additional output v back. We consider r as the
input and [u; y] as the output of a new system. This new system is described
by the system operator given in Definition 4.1.

Remark 4.3. Let [F,G] be an admissible feedback pair. Then [(I −G)−1F, 0]
is also an admissible feedback pair and the state operator and output oper-
ator of the respective closed-loop systems are equal. This explains why it is
often assumed in the literature that the second component of an admissible
feedback pair equals zero. It turns out that for making the connection with
continuous-time systems using the Cayley transform it is however useful to
work with general admissible feedback pairs.

Definition 4.4. Let S be the system operator of a discrete-time system and
let [L;K] ∈ L(Y ,X × Y ). Then [L;K] is called an admissible injec-
tion pair if I −K is boundedly invertible. The corresponding closed-loop

33
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system is the discrete-time system with system operator

S[L;K] :=

[
A+ L(I −K)−1C L(I −K)−1 B + L(I −K)−1D

(I −K)−1C (I −K)−1 (I −K)−1D

]
. (4.2)

The following result shows that the notions of admissible feedback pair
and admissible injection pair are dual.

Lemma 4.5. Let S be the system operator of a discrete-time system. The
closed-loop system of S with the admissible feedback pair [F,G] is the dual
of the closed-loop system of S∗ with the admissible injection pair [L;K] :=
[F,G]∗.

Proof. This is immediate.

Definition 4.6. A discrete-time system is called

• exponentially stabilizable if there exists an admissible feedback pair
such that the closed-loop system is exponentially stable.

• exponentially detectable if there exists an admissible injection pair
such that the closed-loop system is exponentially stable.

• output stabilizable if there exists an admissible feedback pair such
that the closed-loop system is output stable.

• input stabilizable if there exists an admissible injection pair such
that the closed-loop system is input stable.

Proposition 4.7. A discrete-time system is exponentially stabilizable if and
only if its dual system is exponentially detectable. It is output stabilizable if
and only if its dual system is input stabilizable.

Proof. This follows using Lemma 4.5.

Proposition 4.8. If a discrete-time system is exponentially stabilizable, then
it is output stabilizable. If a discrete-time system is exponentially detectable,
then it is input stabilizable.

Proof. If the system is exponentially stabilizable, then there exists an admis-
sible feedback pair such that the closed-loop system is exponentially stable.
By Proposition 3.28 this closed-loop system is also output stable. The second
statement follows by duality.
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Remark 4.9. Note that an exponentially stable system is exponentially sta-
bilizable (take F and G equal to zero) and exponentially detectable (take K
and L equal to zero). An output stable system is output stabilizable (take F
and G equal to zero) and an input stable system is input stabilizable (take
K and L equal to zero).

Proposition 4.10. Let S be the system operator of a discrete-time system
and [F,G] an admissible feedback pair. Define F(z) = F (I − zA)−1 and
G(z) = G + Fz(I − zA)−1B, then the generalized resolvents of the closed-
loop system are[

Acl Bcl

Ccl Dcl

]
=

 A + B(I −G)−1F B(I −G)−1

(I −G)−1F (I −G)−1

C + D(I −G)−1F D(I −G)−1

 . (4.3)

Proof. This is easily computed.

The following concerns a relationship between stabilizability and stability.

Proposition 4.11. If a discrete-time system is input-output stable and

• output stabilizable, then it is output stable.

• input stabilizable, then it is input stable.

• exponentially stabilizable and detectable, then it is exponentially stable.

Proof. It follows from (4.3) that C = Ccl
2 −DCcl

1 . It follows that C = Ccl
2 −DCcl

1

in a neighbourhood of zero. Since the closed-loop system is output stable
we have that for every x ∈ X the function Cclx restricts to a function
in H2(D; U × Y ). By input-output stability D restricts to a function in
H∞(D;L(U ,Y )). It follows that for every x ∈X the function Cx restricts
to a function in H2(D; Y ). Hence the system is output stable.

We note that in the case that the system is exponentially stabilizable we
have that Ccl restricts to a function in H∞(D;L(X ,U × Y )) by Remark
3.29. The argumention above then leads to the stronger conclusion C ∈
H∞(D;L(X ,Y )).

The second statement follows by duality.
From (4.3) we obtain that A = Acl−BCcl

1 . It follows that A = Acl−BCcl
1 in

a neighbourhood of zero. By exponential stabilizability Acl restricts to a func-
tion in H∞(D;L(X )). That Ccl

1 restricts to a function in H∞(D;L(X ,U ))
we already concluded in the second paragraph of this proof. Applying the
second paragraph of this proof to the dual system, since the system is expo-
nentially detectable this is justified, we see that B restricts to a function in
H∞(D;L(U ,X )). It follows that A restricts to a function in H∞(D;L(X )),
which shows that the system is exponentially stable.
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Proposition 4.12. Let Σ be a discrete-time system, [F,G] an admissible
feedback pair and Σ[F,G] the corresponding closed-loop system. If Σ is expo-
nentially stabilizable, then Σ[F,G] is. If Σ is exponentially detectable, then
Σ[F,G] is.

Proof. Since Σ is exponentially stabilizable, there exists an admissible feed-
back pair [F,G] such that A+ B(I −G)−1F is exponentially stable. Define
the admissible feedback pair [G̃, F̃ ] := [0, (I − G)(I − G)−1F − F ]. It is
easily seen that the state operator of the closed-loop system of Σ[F,G] with
this admissible feedback pair equals A+B(I −G)−1F . It follows that Σ[F,G]

is exponentially stabilizable.
Since Σ is exponentially stabilizable, there exists an admissible injection

pair [L;K] such that A + L(I − K)−1C is exponentially stable. Define the
admissible injection pair [L̃; K̃] by L̃ := [−(B + L(I −K)−1D), L(I −K)−1]
and K̃ := 0. It is easily computed that the state operator of the closed-loop
system of Σ[F,G] with this admissible injection pair equalsA+ L(I −K)−1C.
It follows that Σ[F,G] is exponentially detectable.

Corollary 4.13. Let Σ be a discrete-time system, [F,G] an admissible feed-
back pair and Σ[F,G] the corresponding closed-loop system. If Σ is exponen-
tially stabilizable and detectable and Σ[F,G] is input-output stable, then Σ[F,G]

is exponentially stable.

Proof. It follows from Proposition 4.12 that Σ[F,G] is exponentially stabiliz-
able and detectable. Proposition 4.11 now shows that Σ[F,G] is exponentially
stable.

Proposition 4.14. Let Σ̌ be a discrete-time system with input space U and
output space U × Y . Assume that Ď1 is boundedly invertible. Define the
system Σ as in Proposition 2.23. Then [Č1; I − Ď1] is an admissible feedback
pair for Σ and the corresponding closed-loop system equals Σ̌.

Proof. This is an easy computation.

Corollary 4.15. Use the notation and assumptions of Proposition 4.14. If
Σ̌ is exponentially stable, then Σ is exponentially stabilizable. If Σ̌ is output
stable, then Σ is output stabilizable.

Proof. This follows immediately.

Notes

The concept of stabilizability is classical. The notion of admissible feedback
pair as given here is due to Staffans [89]; previously G was always taken equal
to zero.



Chapter 5

Energy preserving systems

In this chapter we consider energy preserving systems. We will not go very
deeply into the theory. Only those results that will be used in later chapters
are discussed. For more on energy preserving systems we refer to Staffans
[89, Chapter 11] and the references therein. We start with the definition of
an energy preserving system.

Definition 5.1. A discrete-time system is called energy preserving if there
exists an L = L∗ ∈ L(X ) such that for any trajectory [u;x; y] ∈ B and any
n ∈ Z+ we have

〈Lxn, xn〉+
n−1∑
k=0

‖yk‖2 = 〈Lx0, x0〉+
n−1∑
k=0

‖uk‖2. (5.1)

The operator L is called the storage operator.

The idea of the definition is that the norms in the input and output spaces
represent energy so that

∑n−1
k=0 ‖uk‖2 is the amount of energy supplied to the

system up to time n and
∑n−1

k=0 ‖yk‖2 is the amount of energy extracted from
the system up to time n; the quadratic form 〈Lx, x〉 is supposed to represent
the energy stored in the system if it is in the state x; (5.1) then says that the
amount of energy supplied to the system up to time n plus the energy stored
inside the system initially is equal to the amount of energy extracted from
the system up to time n plus the energy stored inside the system at time
n. This physical interpretation will not be important in the sequel. Note
that we allowed the storage operator L to be indefinite which means that the
energy stored in the system can be negative.

Our first result concerns stability.

Proposition 5.2. An energy preserving discrete-time system with nonnega-
tive storage operator is both output stable and input-output stable.
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Proof. Let x0 ∈X and u ∈ l2(Z+,U ). Adding the finite nonnegative quan-
tity

∑∞
k=n ‖uk‖2 to the right-hand side of (5.1) we obtain for all n ∈ Z+

〈Lxn, xn〉+
n−1∑
k=0

‖yk‖2 ≤ 〈Lx0, x0〉+ ‖u‖2.

Since L is nonnegative we obtain from this the inequality

n−1∑
k=0

‖yk‖2 ≤ 〈Lx0, x0〉+ ‖u‖2.

This inequality shows that for any initial condition and zero input the output
is in l2(Z+,Y ), i.e the system is output stable; it also shows that for initial
condition zero and input in l2(Z+,U ) the output is in l2(Z+,Y ), i.e. the
system is input-output stable.

The next result gives algebraic conditions for a system to be energy pre-
serving.

Proposition 5.3. A discrete-time system is energy preserving if and only if
there exists a L = L∗ ∈ L(X ) such that

A∗LA− L+ C∗C = 0, B∗LB +D∗D = I, B∗LA+D∗C = 0. (5.2)

This L is then a storage operator.

Proof. We first note that a system is energy preserving with storage operator
L if and only if for all w ∈X and v ∈ U we have

〈L(Aw+Bv), Aw+Bv〉+ 〈Cw+Dv,Cw+Dv〉 = 〈Lw,w〉+ 〈v, v〉. (5.3)

Indeed, this equation is (5.1) for n = 1 with x0 = w and u0 = v and so it is
clearly implied by (5.1). It follows using induction that (5.1) is implied by
(5.3). Equation (5.3) can be written in the following form〈[

A∗LA− L+ C∗C A∗LB + C∗D
B∗LA+D∗C B∗LB +D∗D − I

] [
w
v

]
,

[
w
v

]〉
= 0,

which is equivalent to (5.2).

Note that we already met the first equation of (5.2) in Chapter 3 and
called it the observation Lyapunov equation (Definition 3.6).
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Proposition 5.4. Consider a discrete-time system for which the observ-
ability gramian is a storage operator. Let [u;x; y] ∈ B with x0 = 0 and
u ∈ l2(Z+,U ). Then ‖y‖l2(Z+,Y ) = ‖u‖l2(Z+,U ).

Proof. First assume that u : Z+ → U is finitely nonzero. We have

〈LCxn, xn〉+
n−1∑
k=0

‖yk‖2 =
n−1∑
k=0

‖uk‖2.

By Proposition 3.10 we have 〈LCxn, xn〉 → 0 as n → ∞. So we obtain
‖y‖l2(Z+,Y ) = ‖u‖l2(Z+,U ) in case u is finitely nonzero. Using that the finitely
nonzero sequences are dense in l2(Z+,U ) and that the system is input-output
stable by Proposition 5.2 we obtain the general case.

Lemma 5.5. Consider an output stable discrete-time system with the prop-
erty that if [u;x; y] ∈ B with x0 = 0 and u ∈ l2(Z+,U ), then ‖y‖l2(Z+,Y ) =
‖u‖l2(Z+,U ). Then B∗LCB +D∗D = I.

Proof. Define the sequence u by u0 = v and ui = 0 if i > 0. Let y denote the
corresponding output for initial condition zero. Then, since (yn)n≥1 is the
output for initial condition Bv and zero input and y0 = Dv, we have (here
C is the output map of the system)

‖y‖2l2(Z+,Y ) = ‖CBv‖2 + ‖Dv‖2 = 〈B∗LCBv, v〉+ 〈D∗Dv, v〉.

Since ‖u‖2l2(Z+,U ) = ‖v‖2 we obtain the desired equality.

Lemma 5.6. Consider an approximately controllable output stable discrete-
time system with the property that if [u;x; y] ∈ B with x0 = 0 and u ∈
l2(Z+,U ), then ‖y‖l2(Z+,Y ) = ‖u‖l2(Z+,U ). Then B∗LCA+D∗C = 0.

Proof. We first note that in a real Hilbert space we have

〈h1, h2〉 =
(
‖h1 + h2‖2 − ‖h1‖2 − ‖h2‖2

)
/2,

and that in a complex Hilbert space a similar equation expressing the inner
product in terms of the norm exists. This shows that from ‖y‖l2(Z+,Y ) =
‖u‖l2(Z+,U ) it follows that 〈y1, y2〉l2(Z+,Y ) = 〈u1, u2〉l2(Z+,U ), where yi is the
output for input ui and initial condition zero. By shift-invariance we obtain

〈Du1,Du2〉l2(Z,Y ) = 〈u1, u2〉l2(Z,U ) (5.4)

when both u1 and u2 have support bounded to the left. Here D is the input-
output map of the system.
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Let u1 : Z→ U have support bounded to the left and be zero on Z+. Let
v ∈ U and define u2 : Z → U by u2

0 = v, u2
i = 0 for i 6= 0. Since obviously

〈u1, u2〉l2(Z,U ) = 0 we obtain using (5.4) that 〈Du1,Du2〉l2(Z,Y ) = 0. Since u2

equals zero on Z− we have that Du2 equals zero on Z− and using this we see
that

〈Du1,Du2〉l2(Z+,Y ) = 0. (5.5)

Since u1 is zero on Z+, we have that Du1 restricted to Z+ equals Hu1, where
H is the Hankel map of the system. It follows that

〈Hu1,Du2〉l2(Z+,Y ) = 0. (5.6)

Define w := Bu1, where B is the input map of the system. Then we see
that Hu1 = CBu1, where C is the output map of the system, using Lemma
2.4. Since u2

n equals zero for n ≥ 1 we have (Du2)n = (CBv)n for n ≥ 1.
Separating the first term in (5.6) we obtain

〈Cw,Dv〉Y + 〈CAw, CBv〉l2(Z+,Y ) = 0.

Since this holds for all v ∈ U this implies (B∗LCA + D∗C)w = 0. Since by
approximate controllability B has dense range we obtain B∗LCA+D∗C = 0
on a dense set. Hence B∗LCA+D∗C = 0 by continuity.

Combining the last two lemmas we obtain the following result.

Proposition 5.7. An approximately controllable output stable discrete-time
system with the property that if [u;x; y] ∈ B with x0 = 0 and u ∈ l2(Z+,U ),
then ‖y‖l2(Z+,Y ) = ‖u‖l2(Z+,U ) is energy preserving with the observability
gramian as storage operator.

Proof. This follows immediately from Lemmas 5.5 and 5.6 combined with
the algebraic conditions for energy preservation from Proposition 5.3.

Proposition 5.8. A discrete-time system that is energy preserving and input
stable is input-output stable.

Proof. Let u ∈ l2(Z+,U ) and denote the output for this input and ini-
tial condition zero by y. Since the system is input stable the input map is
bounded from l2(Z−,U ) to X and we have

‖xn‖ ≤ ‖B‖ ‖u‖l2(Z+,U ).

Using that the system is energy preserving we obtain

n−1∑
k=0

‖yk‖2 =
n−1∑
k=0

‖uk‖2 − 〈Lxn, xn〉 ≤ (1 + ‖L‖ ‖B‖2) ‖u‖2l2(Z+,U ),

and so y ∈ l2(Z+,Y ).
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Notes

The concept of energy-preserving, or more generally passive or dissipative,
systems is well-established within systems and control theory. We refer to
Staffans [89, Chapter 11] for more information on energy-preserving infinite-
dimensional systems. Propositions 5.2 and 5.3 are rather obvious and well-
known. We took most of the other results in this chapter from Curtain and
Opmeer [16] and Opmeer and Curtain [71], but we make no priority claim,
these results may have appeared elsewhere earlier.
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Chapter 6

The linear quadratic optimal
control problem

In this chapter we consider the best-studied problem in systems theory, the
linear quadratic optimal control problem. This problem is also known
as the linear quadratic regulator or LQR-problem. We first review several
well-known results. Many of these are available in the literature only under
stronger assumptions then the ones we impose. Towards the end of this chap-
ter some completely new results are presented that are of crucial importance
in later chapters.

Problem 6.1. For a given discrete-time system, consider the cost function

J(x0, u) = ‖u‖2l2(Z+,U ) + ‖y‖2l2(Z+,Y ), (6.1)

where y is the output for initial state x0 and input u. The goal is the minimize
this cost function over all inputs.

An obvious condition on the underlying system is that, for each initial
state, there should exist an input that makes the cost finite. We formalize
this in the following definition.

Definition 6.2. A discrete-time system satisfies the finite cost condition
if the following holds. For each initial state x0 ∈ X there exists an input
u ∈ l2(Z+,U ) such that the corresponding output is in l2(Z+,Y ).

The principal ingredient in the solution of the LQR-problem is the fol-
lowing well-known result, which is often referred to as the orthogonal pro-
jection lemma.

Proposition 6.3. Let H be a Hilbert space and K a nonempty closed sub-
space of H . Define, for h0 ∈H , the affine set

K (h0) := {h ∈H : h = h0 + k for some k ∈ K }.

43
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Then there exists a unique hmin ∈ K (h0) such that

‖hmin‖ = min
h∈K (h0)

‖h‖.

hmin is characterized by the fact that it is the unique fixed point in K (h0) of
the orthogonal projection onto K ⊥.

Proof. See for example Kreyszig [47, Section 3.3].

We will first analyze a certain set associated with the system. For a
discrete-time system consider the set of stable input-output pairs

V (x0) :=

{[
u
y

]
∈

[
l2(Z+,U )
l2(Z+,Y )

]
: y satisfies (2.1)

}
. (6.2)

Note that V (x0) is nonempty for every x0 ∈X if and only if the finite cost
condition is satisfied. V (x0) will play the role of K (h0) in the orthogonal
projection lemma.

Lemma 6.4. V (0) is a closed linear subspace of l2(Z+,U × Y ).

Proof. If [u; y] ∈ V (0), then

yn =
n−1∑
k=0

CAkBun−k−1 +Dun. (6.3)

From this it is easily seen that V (0) is a linear space. We now prove that V (0)
is closed. Let [um; ym] ∈ V (0) and assume that there exist u ∈ l2(Z+,U )
and y ∈ l2(Z+,Y ) such that um → u in l2(Z+,U ) and ym → y in l2(Z+,Y ).
Then um

n → un in U , from which we obtain

ym
n =

n−1∑
k=0

CAkBum
n−k−1 +Dum

n →
n−1∑
k=0

CAkBun−k−1 +Dun,

since we also have ym
n → yn in Y we obtain that y is the output corresponding

to u. This shows that V (0) is closed.

The next result establishes existence and uniqueness of the minimizing
input.

Proposition 6.5. If the finite cost condition is satisfied, then, for every
x0 ∈ X , there exists a unique element in V (x0) with minimal norm. This
element is characterized by the fact that it is the unique fixed point in V (x0)
of the orthogonal projection onto V (0)⊥.
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Proof. We apply Proposition 6.3 with H = l2(Z+,U ×Y ) and K = V (0).
Note that if (u1, y1), (u2, y2) ∈ V (x0), then (u1 − u2, y1 − y2) ∈ V (0).

So V (x0) is a translation of the closed subspace V (0) just like K (h0) is a
translation of the closed set K . V (0) is nonempty since it contains zero.
That V (0) is a closed convex subset follows from Lemma 6.4. The above
shows that all the conditions of Proposition 6.3 are fulfilled. This proposition
now gives the desired result.

Definition 6.6. Define for a system that satisfies the finite cost condition
the operator

I+ : X → l2(Z+,U × Y ), I+w :=

[
umin

w

ymin
w

]
,

that assigns to w ∈ X the element of V (w) with minimal norm. This
operator is called the minimizing operator of the system.

Proposition 6.7. The minimizing operator is linear.

Proof. Let w1, w2 ∈ X . We shall prove that I+(w1 + w2) = I+w1 + I+w2.
Since the system is linear, we have that the output for initial state w1 + w2

and input umin
w1

+ umin
w2

is ymin
w1

+ ymin
w2

. Hence I+w1 + I+w2 ∈ V (w1 + w2).
Let P be the orthogonal projection onto V (0)⊥. Since I+w1 and I+w2 are
both fixed points of P , it follows that I+w1 + I+w2 is. So I+w1 + I+w2 is
a fixed point of P in V (w1 + w2). Since by Proposition 6.5 the element of
V (·) with minimal norm is the unique fixed point of P in this set, it follows
that I+w1 + I+w2 is the element of minimal norm in V (w1 + w2). Hence
I+(w1 + w2) = I+w1 + I+w2.

Proposition 6.8. The minimizing operator is bounded.

Proof. We show that the minimizing operator is closed. It then follows from
the closed graph theorem that it is bounded. Let wk ∈ X → w∞ in X ,
I+wk = [umin

wk ; ymin
wk ] → [u∞; y∞] in l2(Z+,U × Y ). We need to show that

[umin
w∞ ; ymin

w∞ ] = [u∞; y∞].
The output y for initial condition w and input u is given by

yn = CAnw +
n−1∑
i=0

CAiBun−1−i +Dun.

Applying this with w = wk and u = umin
wk we obtain

(
ymin

wk

)
n

= CAnwk +
n−1∑
i=0

CAiB
(
umin

wk

)
n−1−i

+D
(
umin

wk

)
n
.
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Taking the limit for k →∞ we obtain

y∞n = CAnw∞ +
n−1∑
i=0

CAiBu∞n−1−i +Du∞n .

This shows that the output for initial state w∞ and input u∞ is y∞. This
shows that [u∞; y∞] ∈ V (w). We show that [umin

w∞ ; ymin
w∞ ] = [u∞; y∞] by prov-

ing the latter is a fixed point of the projection onto V (0)⊥. Since [umin
wk ; ymin

wk ]
is the element with minimal norm in V (wk), we have

PV (0)⊥

[
umin

wk

ymin
wk

]
=

[
umin

wk

ymin
wk

]
.

Letting k →∞ we obtain

PV (0)⊥

[
u∞

y∞

]
=

[
u∞

y∞

]
.

So [u∞; y∞] is indeed a fixed point of the projection onto V (0)⊥. Since
[u∞; y∞] ∈ V (w), and by the uniqueness of the fixed point, we have [umin

w∞ ; ymin
w∞ ]

= [u∞; y∞].

Definition 6.9. Define the following sesquilinear form for a system that
satisfies the finite cost condition

qmin : X ×X → C, qmin(w1, w2) = 〈I+w1, I+w2〉.

This sesquilinear form is called the optimal cost sesquilinear form of the
system.

Note that qmin(w,w) is the optimal cost for the initial condition w. We
remind the reader that a sesquilinear form (linear in the first variable and
anti-linear in the second) f is called hermitian if f(x, y) = f(y, x) for all x
and y, nonnegative if f(x, x) ≥ 0 for all x and positive if f(x, x) > 0 for all
nonzero f .

Proposition 6.10. The optimal cost sesquilinear form is continuous, her-
mitian and nonnegative.

Proof. The optimal cost sesquilinear form is continuous, since the minimizing
operator is continuous by Proposition 6.8. That it is hermitian, nonnegative
follows immediately from the definition.
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Definition 6.11. For a system that satisfies the finite cost condition define
the bounded self-adjoint nonnegative linear operator Qmin ∈ L(X ) by

qmin(w1, w2) = 〈Qminw1, w2〉.

This operator is called the optimal cost operator of the system.

Proposition 6.12. Assume that Σ satisfies the finite cost condition. Σ is
approximately observable if and only if the optimal cost sesquilinear form is
positive (or equivalently, the optimal cost operator is positive).

Proof. Assume that the optimal cost sesquilinear form is not positive. Then
there exists a nonzero w ∈ X with zero optimal cost. It follows that the
output for initial state w and zero input is zero. This contradicts approximate
observability.

Assume that Σ is not approximately observable. Then there exists a
nonzero w ∈ X such that with w as initial state and zero input the output
is zero. It follows that the optimal cost with w as initial state is zero. Hence
the optimal cost sesquilinear form is not positive.

Definition 6.13. For a system that satisfies the finite cost condition define
the operator

Fmin : X → U , Fminw =
(
umin

w

)
0
.

This operator is called the optimal cost feedback operator.

Proposition 6.14. The optimal cost feedback operator is linear and bounded.

Proof. Denote by P the projection from l2(Z+,U ×Y ) onto the U -component
of the zero-th coordinate. Then Fmin = PI+. Since both P and I+ are linear
and bounded it follows that Fmin is.

Proposition 6.15. For every initial state x0 ∈ X and input u : Z+ → U
we have

qmin(x0) ≤ ‖u0‖2 + ‖y0‖2 + qmin(x1), (6.4)

where y is the output and x the state. Equality holds if and only if u0 =
(umin

x0
)0.

Proof. For notational simplicity we denote umin
x0

by umin in this proof. The
input [u0, u

min
1 , umin

2 , . . .] is denoted by v. If (6.4) would not hold, then the
input v would have a strictly lower cost than umin, which is impossible by
definition of umin. So (6.4) must hold. If we have an equality in (6.4), then
umin and v give rise to the same cost. By the uniqueness of the optimal input
we have umin = v and so u0 = (umin

x0
)0.
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Proposition 6.16. For every initial state x0 ∈ X and input u : Z+ → U
we have

qmin(x0) ≤ 〈Cx0, Cx0〉+ qmin(Ax0)

−〈S−1(B∗QminA+D∗C)x0, (B
∗QminA+D∗C)x0〉 (6.5)

+〈u0 + S−1(B∗QminA+D∗C)x0, S
(
u0 + S−1(B∗QminA+D∗C)x0

)
〉,

where S := I +D∗D +B∗QminB. Equality holds if and only if u0 = umin
x0

.

Proof. Some elementary algebraic manipulations show that the right-hand
side of (6.5) is identical to the right-hand side of (6.4). The statement then
follows from Proposition 6.15.

Proposition 6.17. Given x0 ∈ X we have equality in (6.5) if and only if

u0 =
(
I +D∗D +B∗QminB

)−1
(B∗QminA+D∗C)x0.

Proof. According to Proposition 6.16, for every u0 ∈ U the inequality (6.5)
holds and for exactly one we have equality. It follows that this u0 is the one
that minimizes

〈Cx0, Cx0〉+ qmin(Ax0)− 〈S−1(B∗QminA+D∗C)x0, (B
∗QminA+D∗C)x0〉

+〈u0 + S−1(B∗QminA+D∗C)x0, S
(
u0 + S−1(B∗QminA+D∗C)x0

)
〉.

The first three terms do not depend on u0. It follows that equality holds only
for that u0 that minimizes

〈u0 + S−1(B∗QminA+D∗C)x0, S
(
u0 + S−1(B∗QminA+D∗C)x0

)
〉.

This function is nonnegative since S is nonnegative. It is zero if and only if

u0 = −
(
I +D∗D +B∗QminB

)−1
(B∗QminA + D∗C)x0. It follows that with

this u0 and only with this u0, we have equality in (6.5).

Proposition 6.18. The optimal cost feedback operator can be written in
terms of the optimal cost operator as follows:

Fmin = −
(
I +D∗D +B∗QminB

)−1
(B∗QminA+D∗C).

Proof. This follows from Proposition 6.16 which says that we have equality
in (6.5) if and only if u0 = umin

x0
and Proposition 6.17 which says that we have

equality in (6.5) if and only if u0 = −
(
I +D∗D +B∗QminB

)−1
(B∗QminA+

D∗C)x0.
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Proposition 6.19. The optimal cost operator satisfies

A∗QminA−Qmin + C∗C

−(A∗QminB +D∗C)(I +D∗D +B∗QminB)−1(AQminB∗ +DC∗) = 0.

Proof. This follows from substituting u0 from Proposition 6.17 into (6.5).

Definition 6.20. The equation

A∗QA−Q+ C∗C (6.6)

−(C∗D + A∗QB)(I +D∗D +B∗QB)−1(D∗C +B∗QA) = 0.

is called the control algebraic Riccati equation. We consider only bounded
self-adjoint nonnegative solutions of this equation. With a nonnegative self-
adjoint solution Q ∈ L(X ) we associate the following operators:

S := I +D∗D +B∗QB, F := −S−1(D∗C +B∗QA). (6.7)

For a bounded nonnegative seld-adjoint solution Q of the control algebraic
Riccati equation and S as above, define the sesquilinear forms q and s by
q(x1, x2) := 〈Qx1, x2〉X and s(u1, u2) := 〈Su1, u2〉U , respectively. The triple
(q, s, F ) is called a control Riccati triple.

The next two propositions give alternative characterizations of control
Riccati triples.

Proposition 6.21. The triple (q, s, F ) is a control Riccati triple if and only
if

• q : X ×X → C is a bounded nonnegative hermitian sesquilinear form.

• s : U ×U → C is a bounded nonnegative hermitian sesquilinear form.

• F : X → U is a bounded linear operator.

• For all w ∈X , u ∈ U we have

q(Aw) + ‖Cw‖2Y = q(w) + s(Fw),

s(u) = ‖u‖2U + ‖Du‖2Y + q(Bu), (6.8)

−s(Fw, u) = 〈Cw,Du〉Y + q(Aw,Bu).

Proof. The second equation of (6.8) is easily seen to be equivalent to the def-
inition of S in (6.7). The third equation of (6.8) is then seen to be equivalent
to the definition of F in (6.7). Finally it follows that the first equation of
(6.8) is equivalent to Q satisfying the control algebraic Riccati equation.
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Proposition 6.22. The triple (q, s, F ) is a control Riccati triple if and only
if

• q : X ×X → C is a bounded nonnegative hermitian sesquilinear form.

• s : U ×U → C is a bounded nonnegative hermitian sesquilinear form.

• F : X → U is a bounded linear operator.

• For all w ∈X , u ∈ U we have

q(Aw +Bu) + ‖Cw +Du‖2Y + ‖u‖2U = q(w) + s(Fw − u). (6.9)

Proof. Writing out (6.9) shows that it is equivalent to

q(Aw) + q(Bu) + q(Aw,Bu) + q(Bu,Aw) + ‖Cw‖2 + ‖Du‖2

+〈Cw,Du〉+ 〈Du,Cw〉+ ‖u‖2 (6.10)

= q(w) + s(Fw) + s(u)− s(Fw, u)− s(u, Fw).

Using equations (6.8) we see that this holds. The first equation of (6.8) is
(6.9) with u = 0, the second with w = 0. Using these first two equations we
obtain that (6.10) reads

− [s(Fw, u) + s(u, Fw)] = q(Aw,Bu)+q(Bu,Aw)+〈Cw,Du〉+〈Du,Cw〉,

which is equivalent to

−Re(s(Fw, u)) = Re(〈Cw,Du〉+ q(Aw,Bu)).

Applying the above with iw instead of w gives equality of the imaginary
parts of the third equation of (6.8).

From Proposition 6.22 we obtain the following by induction.

Proposition 6.23. If (q, s, F ) is a control Riccati triple for the system Σ
and [u;x; y] ∈ B, then

q(xn) +
n−1∑
k=0

‖uk‖2 + ‖yk‖2 = q(x0) +
n−1∑
k=0

s(Fxk − uk).

Proof. This follows from (6.9) using induction.

Proposition 6.24. Let (q, s, F ) be a control Riccati triple. Then for the
input defined by un := Fxn we have

J(x0, u) ≤ q(x0),

where J is the cost function (6.1).
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Proof. Proposition 6.23 with uk = Fxk gives

q(xn) +
n−1∑
k=0

‖uk‖2 + ‖yk‖2 = q(x0).

Since q ≥ 0 we obtain from this

n−1∑
i=0

‖uk‖2 + ‖yk‖2 ≤ q(x0).

Letting n→∞ gives the desired result.

Proposition 6.25. If a discrete-time system has a bounded nonnegative self-
adjoint solution to its control algebraic Riccati equation, then the discrete-
time system satisfies the finite cost condition.

Proof. Proposition 6.24 shows that, for given x0 ∈ X , the input defined by
un := Fxn gives rise to a finite cost.

Proposition 6.26. Assume that the discrete-time system Σ satisfies the
finite cost condition. Let (q, s, F ) be a control Riccati triple of Σ. Then
qmin ≤ q, where qmin is the optimal cost sesquilinear form of Σ.

Proof. This follows from Proposition 6.24 since

qmin(x0) ≤ J(x0, u) ≤ q(x0),

where u is the input defined in Proposition 6.24.

Corollary 6.27. The optimal cost operator is the smallest bounded nonneg-
ative self-adjoint solution of the control algebraic Riccati equation.

Proof. This is a reformulation of Proposition 6.26.

Proposition 6.28. Let Σ satisfy the finite cost condition and let [u;x; y] ∈ B
with [u; y] ∈ V (x0). Then

lim
n→∞

qmin(xn) = 0.

Proof. Since qmin(xn) is the optimal cost when starting from state xn we have

qmin(xn) ≤ J(xn, [un, un+1, . . .]) =
∞∑

k=n

‖uk‖2 + ‖yk‖2.

The right hand side converges to zero since u ∈ l2(Z+,U ) and y ∈ l2(Z+,Y ).
It follows that the left-hand side converges to zero as desired.
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Combining Propositions 6.23 and 6.28 we obtain the following.

Proposition 6.29. Let Σ satisfy the finite cost condition and let [u;x; y] ∈ B
with [u; y] ∈ V (x0). Then

∞∑
k=0

‖uk‖2 + ‖yk‖2 = qmin(x0) +
∞∑

k=0

smin(Fminxk − uk).

Proof. This follows by letting n → ∞ in Proposition 6.23 and using Propo-
sition 6.28.

Proposition 6.30. Let Σ satisfy the finite cost condition and let [u;x; y] ∈ B
with [u; y] ∈ V (x0). Then (Fminxk)k≥0 is in l2(Z+,U ).

Proof. It follows from Proposition 6.29 that

∞∑
k=0

smin(Fminxk − uk) <∞.

We also have

∞∑
k=0

‖Fminxk − uk‖2 ≤
∞∑

k=0

‖(Smin)−1‖ smin(Fminxk − uk)

and so (Fminxk − uk) ∈ l2(Z+,U ). Since u ∈ l2(Z+,U ) we have (Fminxk) ∈
l2(Z+,U ).

The following proposition gives another alternative characterization of
control Riccati triples.

Proposition 6.31. The equation (6.9) is equivalent to the following triple
of equations.

q(w) = q((A+BF )w) + ‖(C +DF )w‖2Y + ‖Fw‖2U ,
‖u‖2U = ‖S−1/2u‖2U + ‖DS−1/2u‖2Y + q(BS−1/2u), (6.11)

0 = 〈(C +DF )w,DS−1/2u〉Y
+〈Fw, S−1/2u〉U + q((A+BF )w,BS−1/2u).

Proof. The second equation of (6.11) is easily seen to be equivalent to the
formula for S in (6.7). The third equation of (6.11) is then seen to be
equivalent to the formula for F in (6.7). Using this the first equation is seen
to be equivalent to the control algebraic Riccati equation.
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To investigate the connection between the control algebraic Riccati equa-
tion and output stabilizability we introduce the following concept.

Definition 6.32. The Riccati closed-loop system associated with a con-
trol Riccati triple (q, s, F ) is defined through its system operator A+BF BS−1/2

F S−1/2

C +DF DS−1/2

 . (6.12)

In the case that (q, s, F ) = (qmin, smin, Fmin) the Riccati closed-loop system
is called the optimal closed loop system.

Proposition 6.33. Let (q, s, F ) be a control Riccati triple. Then [S1/2F, I−
S1/2] is an admissible feedback pair and the corresponding closed-loop system
is the Riccati closed-loop system.

Proof. This is elementary.

Proposition 6.34. Let (q, s, F ) be a control Riccati triple for the system Σ.
Then the Riccati closed-loop system is energy preserving with storage operator
Q. Hence the Riccati closed-loop system is output stable and input-output
stable and Σ is output stabilizable.

Proof. The necessary and sufficient conditions for energy preservation from
Proposition 5.3 applied to the Riccati closed-loop system are exactly the
equations (6.11). It follows from Proposition 5.2 that the Riccati closed-loop
system is output stable and input-output stable. Since the Riccati closed-
loop system is obtained from Σ by an admissible feedback pair, it follows
that Σ is output stabilizable.

In the case of the optimal closed-loop system we can say a bit more.

Proposition 6.35. The observability gramian of the optimal closed loop sys-
tem is Qmin.

Proof. Let Cmin be the output map of the optimal closed-loop system. We
have

〈LCx0, x0〉 = ‖Cminx0‖2l2(Z+,U ×Y ) = ‖umin‖2l2(Z+,U )+‖ymin‖2l2(Z+,Y ) = qmin(x0).

It follows that LC = Qmin.

Proposition 6.36. The following are equivalent statements about a discrete-
time system Σ.
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1. Σ satisfies the finite cost condition.

2. Σ is output stabilizable.

3. The control algebraic Riccati equation of Σ has a bounded nonnegative
self-adjoint solution.

Proof. (1) implies (3) follows from Proposition 6.19 which shows that the
optimal cost operator is a solution of the control algebraic Riccati equa-
tion. (3) implies (2) is contained in Proposition 6.34. (2) implies (1) fol-
lows by choosing un := (I − G)−1Fxn where [F,G] is the output stabilizing
admissible feedback pair. Since the feedback pair is output stabilizing, it
follows that, for each x0 ∈ X , u ∈ l2(Z+,U ) and the corresponding output
y ∈ l2(Z+,Y ). Hence for each x0 ∈ X the set of stable input-output pairs
V (x0) is nonempty.

Definition 6.37. The triple (p, r, L) is called a filter Riccati triple of Σ
if it is a control Riccati triple for the dual system of Σ.

All the results obtained for control Riccati triples have obvious counter-
parts for filter Riccati triples. In particular, the existence of a filter Riccati
triple is equivalent to the following filter algebraic Riccati equation hav-
ing a nonnegative self-adjoint solution P ∈ L(X )

APA∗ − P +BB∗ (6.13)

−(APC∗ +BD∗)(I +DD∗ + CPC∗)−1(CPA∗ +DB∗) = 0.

In the proofs of the next few results (Proposition 6.38 up to Proposition
6.46) we need some algebraic calculations involving the control algebraic
Riccati equation and the filter algebraic Riccati equation that can be found
in Appendix B.

Proposition 6.38. Let Σ be an input and output stabilizable discrete-time
system. Assume there exists a control Riccati triple (q, s, F ) such that the
main operator of the corresponding Riccati closed-loop system is strongly sta-
ble. Then (q, s, F ) is the unique control Riccati triple of Σ.

Proof. For the proof we need the following algebraic relations, which are
proven in Appendix B (Lemmas B.4 and B.5). Lemma B.4 gives the following
relation between the main operator AQ of the Riccati closed-loop system
corresponding to an arbitrary control Riccati triple (q, s, F ) and AP := A−
(BD∗ + APC∗)(I + DD∗ + CPC∗)−1C, where P is a bounded nonnegative
self-adjoint solution of the filter algebraic Riccati equation:

(I + PQ)AQ = AP (I + PQ). (6.14)
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The following algebraic relation is also proven in Appendix B (Lemma B.5).
If Q1 and Q2 are bounded nonnegative self-adjoint solutions of the control
algebraic Riccati equation and AQ1 and AQ2 denote the main operators of
the corresponding Riccati closed-loop systems, then

Q1 −Q2 = A∗
Q2

(Q1 −Q2)AQ1 . (6.15)

By induction it follows that for all n ∈ Z+ we have

Q1 −Q2 = A∗n
Q2

(Q1 −Q2)A
n
Q1
. (6.16)

Using these facts we now prove the proposition. Since Σ is input stabilizable,
there exists a bounded nonnegative self-adjoint solution P of the filter alge-
braic Riccati equation. Since AQ is assumed to be strongly stable and (6.14)
shows that AP is similar to AQ, we have that AP is also strongly stable. Now
let Q̃ be an arbitrary bounded nonnegative self-adjoint solution of the control
algebraic Riccati equation. According to (6.14), AQ̃ is similar to the strongly
stable operator AP and hence is strongly stable. Since AQ̃ is strongly stable
there exists for every x ∈X a real number cx such that for every n ∈ Z+ we
have ‖An

Q̃
x‖ ≤ cx. By the uniform boundedness theorem this implies that

there exists a real number c such that for every n ∈ Z+ we have ‖An
Q̃
‖ ≤ c.

Using (6.16) with Q1 = Q and Q2 = Q̃ we have for all x ∈X and n ∈ Z+

‖(Q−Q̃)x‖ = ‖A∗n
Q̃

(Q−Q̃)An
Qx‖ ≤ ‖A∗n

Q̃
‖ ‖Q−Q̃‖ ‖An

Qx‖ ≤ c ‖Q−Q̃‖ ‖An
Qx‖.

Since AQ is strongly stable, the right-hand side converges to zero as n→∞.
This implies that the left-hand side is zero and so Q̃ = Q.

Proposition 6.39. Let Σ be a discrete-time system. Assume that its control
algebraic Riccati equation has a bounded nonnegative self-adjoint solution
Q and that its filter algebraic Riccati equation has a bounded nonnegative
self-adjoint solution P . Then the control Lyapunov equation of the Riccati
closed-loop system corresponding to Q has a solution Lb := (I + PQ)−1P =
P 1/2(I + P 1/2QP 1/2)−1P 1/2 ≥ 0.

Proof. This is proven in Appendix B on page 180.

Corollary 6.40. Let Σ be an input and output stabilizable discrete-time sys-
tem. Then the Riccati closed-loop system associated with any solution of the
control algebraic Riccati equation is input, output and input-output stable.

Proof. That the Riccati closed-loop system is input and input-output stable
follows from Proposition 6.34. From Proposition 6.39 we obtain that the
control Lyapunov equation of the Riccati closed-loop system has a bounded
nonnegative self-adjoint solution. It follows from Corollary 3.4 that the Ric-
cati closed-loop system is input stable.
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Corollary 6.41. Let Σ be an input and output stabilizable discrete-time sys-
tem. Then the Hankel map of the Riccati closed-loop system associated with
any solution of the control algebraic Riccati equation has norm strictly smaller
than one.

Proof. Using Propositions 6.34 and 6.39 we obtain solutions Lc = Q and
Lb := (I + PQ)−1P of the Lyapunov equations of the Riccati closed-loop
system. So we have LcLb = PQ(I + PQ)−1. We prove that the spectral
radius of LcLb is strictly smaller than one. Lemmas 3.18 and 3.19 then give
the result. We have r(LcLb) = r(Q1/2PQ1/2(I + Q1/2PQ1/2)−1). It is easily
seen that for any nonnegative self-adjoint operator T we have T (I+T )−1 < I.
Denote T := Q1/2PQ1/2. Then from the above we obtain r(LcLb) < 1.

The following lemma on square roots of operators is needed in the proof
of Proposition 6.43.

Lemma 6.42. Let P,Q ∈ L(H ) be nonnegative self-adjoint. Define L :=
(I + PQ)−1P . Then, for all h ∈H ,

‖L1/2h‖ ≤ ‖P 1/2h‖+
2

π
(2 + ‖L‖) ‖Q‖ ‖Ph‖.

Proof. According to Kato [42, Lemma V.3.43 page 284] we have the follow-
ing representation for the square root of a bounded nonnegative self-adjoint
operator T :

T 1/2h =
1

π

∫ ∞

0

λ−1/2(λI + T )−1Th dλ

and we have the following resolvent estimate [42, equation (V.3.38) page 279]

‖(λI + T )−1‖ ≤ 1

λ

for λ > 0. Applying this with L and P we obtain

L1/2h− P 1/2h =
1

π

∫ ∞

0

λ−1/2
[
(λI + L)−1L− (λI + P )−1P

]
h dλ

and some rewriting of the integrand shows that this equals

1

π

∫ ∞

0

λ1/2(λI + L)−1LQ(λI + P )−1Ph dλ.

Using the above resolvent estimate we obtain

‖λ1/2(λI + L)−1LQ(λI + P )−1Ph‖ ≤ λ−3/2 ‖L‖ ‖Q‖ ‖Ph‖
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and so

‖
∫ ∞

1

λ1/2(λI + L)−1LQ(λI + P )−1Ph dλ‖ ≤ 2‖L‖ ‖Q‖ ‖Ph‖.

Since (λI + L)−1L = I − λ(λI + L)−1 we obtain from the above resolvent
estimate ‖(λI + L)−1L‖ ≤ 2 and so

‖λ1/2(λI + L)−1LQ(λI + P )−1Ph‖ ≤ 2λ−1/2 ‖Q‖ ‖Ph‖,

which gives

‖
∫ 1

0

λ1/2(λI + L)−1LQ(λI + P )−1Ph dλ‖ ≤ 4 ‖Q‖ ‖Ph‖.

Combining the above two estimates we obtain

‖
∫ ∞

0

λ1/2(λI + L)−1LQ(λI + P )−1Ph dλ‖ ≤ 2 (2 + ‖L‖) ‖Q‖ ‖Ph‖

and so

‖L1/2h− P 1/2h‖ ≤ 2

π
(2 + ‖L‖) ‖Q‖ ‖Ph‖,

which gives

‖L1/2h‖ ≤ ‖P 1/2h‖+
2

π
(2 + ‖L‖) ‖Q‖ ‖Ph‖,

as desired.

Proposition 6.43. Let Σ be an input and output stabilizable discrete-time
system. Let Q be a solution of the control algebraic Riccati equation of Σ and
denote the optimal cost operator of the dual system of Σ by Pmin. Then the
controllability gramian of the Riccati closed-loop system associated with Q is
LB = (I + PminQ)−1Pmin.

Proof. Proposition 6.35 applied to the dual system Σdual of Σ shows that
Pmin is the observability gramian of the optimal closed-loop system of Σdual.
It follows from Lemma 3.7 that for all h ∈X we have (Pmin)1/2An

dh→ 0 as
n→∞, where Ad is the main operator of the optimal closed-loop system of
Σdual. The operator Ad is given explicitely by

Ad = A∗ − C∗(I +DD∗ + C∗PminC)−1(DB∗ + CPminA∗).
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Lemma B.4 gives

(I + PminQ)AQ = APmin(I + PminQ), (6.17)

where APmin = A∗
d and AQ is the main operator of the Riccati closed-loop

system of Σ associated with Q. Since Ad is the adjoint of APmin it follows
that (Pmin)1/2A∗n

Pminh→ 0. Using (6.17) we obtain that

(Pmin)1/2(I +QPmin)−1A∗n
Q (I +QPmin)h→ 0.

Using that (I + (Pmin)1/2Q(Pmin)1/2)−1(Pmin)1/2 = (Pmin)1/2(I + QPmin)−1

it follows that (Pmin)1/2A∗n
Q w → 0 for all w ∈X .

Define L := (I + PminQ)−1Pmin. It follows from Proposition 6.39 that
L is a solution of the control Lyapunov equation of the Riccati closed-loop
system. Lemma 6.42 gives

‖L1/2h‖ ≤ ‖(Pmin)1/2h‖+
2

π
(2 + ‖L‖) ‖Q‖ ‖Pminh‖.

With h = A∗n
Q w we obtain from this that L1/2A∗n

Q w → 0 for all w ∈ X . By
Lemma 3.13 we obtain that L is the controllability gramian.

Proposition 6.44. Let Σ be an input and output stabilizable discrete-time
system. Let Qmin be the optimal cost operator of Σ and denote the optimal cost
operator of the dual system of Σ by Pmin. Denote the Hankel map of the op-
timal closed-loop system by H. Then ‖H‖2 = r((I + PminQmin)−1PminQmin).

Proof. By Lemma 3.18 we have ‖H‖2 = r(LBLC), where LB is the control-
lability gramian and LC the observability gramian of the optimal closed-loop
system. Proposition 6.35 shows that LB = Qmin and Proposition 6.43 shows
that LC = (I + PminQmin)−1Pmin. The desired result follows.

Proposition 6.45. Let Σ̌ be an energy preserving discrete-time system with
input space U and output space U × Y . Assume that Ď1 has a bounded
inverse and that the storage operator L is nonnegative self-adjoint. Define
the system Σ as in Proposition 2.23. Then L is a solution of the control
algebraic Riccati equation of Σ.

Proof. Define Q := L, S := Ď−∗
1 Ď−1

1 , F := Č1. One easily checks the
equations (6.11) using the equations from Proposition 5.3 applied to Σ̌.

Proposition 6.46. Let Σ̌ be an energy preserving discrete-time system with
input space U and output space U × Y . Assume that Ď1 has a bounded
inverse and that the storage operator Lc is nonnegative self-adjoint. Further
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assume that Σ̌ is input stable. Define the system Σ as in Proposition 2.23.
Let Lb be a solution of the control Lyapunov equation of Σ̌ and assume that
1 /∈ σ(LbLc). Then P := (I − LbLc)

−1Lb is a solution of the filter algebraic
Riccati equation of Σ.

Proof. This is proven in Appendix B on page 183.

In the following four Propositions 6.47-6.50, we compare the closed-loop
systems associated with different control Riccati triples. These propositions
are used in the chapter on coprime factorization (Chapter 7) to show that
all Riccati closed-loop systems provide a strongly right-coprime factorization
using the the optimal closed-loop system does.

The first of these propositions shows the relation between the transfer
functions.

Proposition 6.47. Let Σ be an output stabilizable discrete-time system. Let
Σi (i = 1, 2) be the Riccati closed-loop system associated with the control
Riccati triple (qi, si, Fi). Let Si and Qi be the operators corresponding to the
sesquilinear forms si and qi, respectively. Let Σs be the discrete-time system
with system operator[

A+BF1 BS
−1/2
1

S
1/2
2 (F1 − F2) S

1/2
2 S

−1/2
1

]
.

Then D1 = D2Ds in a neighbourhood of zero, where Di is the transfer function
of Σi and Ds is the transfer function of Σs.

Proof. Using Proposition 2.20 we see that once we prove that the transfer
function of the series interconnection of Σs and Σ2 equals the transfer function
of Σ1, then we are done.

We write down a realization of the transfer function of the series inter-
connection of Σs and Σ2 using Lemma 2.21:

A+BF1 0 BS
−1/2
1

0 A+BF2 0

F1 F2 S
−1/2
1

C +DF1 C +DF2 DS
−1/2
1

 .
Since the state operator is diagonal and the input operator has zero as its
second component, the transfer function is equal to the transfer function of A+BF1 BS

−1/2
1

F1 S
−1/2
1

C +DF1 DS
−1/2
1

 ,
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which is Σ1.

Proposition 6.48. Let Σ be an output stabilizable discrete-time system. The
system Σs from Proposition 6.47 is energy preserving with storage operator
∆ := Q1 −Q2.

Proof. It is straightforward to check the necessary and sufficient conditions
(5.2) using that Q1 and Q2 satisfy the control algebraic Riccati equation.

Proposition 6.49. Let Σ be an input and output stabilizable discrete-time
system. Then the system Σs from Proposition 6.47 is input stable and input-
output stable.

Proof. It follows from Proposition 6.39 that any Riccati closed-loop system
of Σ is input stable. Since the state operator and input operator of Σs are
equal to those of the Riccati closed-loop system associated with the control
Riccati triple (q1, s1, F1) it follows that Σs is input stable. Propositions 5.8
and 6.48 now show that Σs is input-output stable.

Proposition 6.50. Let Σ be an input and output stabilizable discrete-time
system. Then the transfer function of the system Σs from Proposition 6.47
has an inverse in H∞(D,U ).

Proof. Using Proposition 2.22 it is easily seen that a realization of the inverse
of the transfer function of Σs is a system of the same form as Σs, but with
the indices 1 and 2 interchanged. It follows from Proposition 6.49 that this
realization is input-output stable. Hence D−1

s is in H∞(D,U ).

Notes

The LQR problem for discrete-time systems was studied by Lee, Chow and
Barr [51] and Zabczyk [100], [101], [102]. Our approach to this problem,
based on the set of stable input-output pairs, follows Curtain and Zwart
[18]. The properties of the Riccati closed-loop system given in this chapter
are mainly taken from Opmeer and Curtain [71]. Proposition 6.43 is well-
known in the case of exponentially stabilizable and detectable systems, see
Curtain and Zwart [18, Lemma 9.4.10]. It was first proven in the generality
considered here in Curtain and Opmeer [16]. Propositions 6.47-6.50 were
also first proven in Curtain and Opmeer [16].



Chapter 7

Coprime factorization

In this chapter and the following two chapters we consider the following set
of holomorphic functions.

Definition 7.1. Let U and Y be Hilbert spaces. The set H0(U ,Y ) consists
of functions G : D(G) ⊂ C→ L(U ,Y ) that are holomorphic with 0 ∈ D(G).

Remark 7.2. Note the transfer function of a discrete-time system is always in
our set of holomorphic functions. Moreover, it follows from Proposition 2.12
that any function in this set is the transfer function of some discrete-time
system.

In this chapter we study coprime factorization over H∞. We study both a
strong and a weak form of coprimeness. Since we are dealing with operator-
valued functions, we have to distinguish between right coprimeness and left
coprimeness.

Definition 7.3. Let M ∈ H∞(D;L(H1,H2)) and N ∈ H∞(D;L(H1,H3)).
The functions M and N are called weakly right-coprime if for every

Z-transformable sequence h : Z+ → H1 with [Mĥ; Nĥ] ∈ H2(D,H2 ×H3)
we have h ∈ l2(Z+,H1).

The functions M and N are called strongly right-coprime if [M; N]
has a left-inverse in H∞(D;L(H2 × H3,H1)), meaning if there exist X̃ ∈
H∞(D;L(H2,H1)) and Ỹ ∈ H∞(D;L(H3,H1)) such that

X̃(z)M(z)− Ỹ(z)N(z) = IH1 ∀z ∈ D. (7.1)

The functions X̃ and Ỹ are called right Bezout factors for the pair (M,N).
Let M̃ ∈ H∞(D;L(H1,H2)) and Ñ ∈ H∞(D;L(H3,H2)).
The functions M̃ and Ñ are called strongly left-coprime if [M̃, Ñ] has

a right-inverse in H∞(D;L(H2,H1 ×H3)), that is to say, if there exist X ∈

61
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H∞(D;L(H2,H1)) and Y ∈ H∞(D;L(H2,H3)) such that

M̃(z)X(z)− Ñ(z)Y(z) = IH2 ∀z ∈ D. (7.2)

The functions X and Y are called left Bezout factors for the pair (M̃, Ñ).

Definition 7.4. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G).

G has a right factorization if there exist M ∈ H∞(D;L(U )) and N ∈
H∞(D;L(U ,Y )) such that M(z) is invertible for z in a neighbourhood of zero
and G(z) = N(z)M(z)−1 for z in a neighbourhood of zero. The factor [M; N]
provides a weakly right-coprime factorization if M and N are weakly
right-coprime and a strongly right-coprime factorization if M and N are
strongly right-coprime. The right factor [M; N] is called normalized when
multiplication with [M; N] is an isometry from H2(D,U ) into H2(D,U ×Y ).

G has a left factorization if there exist M̃ ∈ H∞(D;L(Y )) and Ñ ∈
H∞(D;L(U ,Y )) such that M̃(z) is invertible for z in a neighbourhood of
zero and G(z) = M̃(z)−1Ñ(z) for z in a neighbourhood of zero. [M̃, Ñ] is a
strongly left-coprime factor if M̃ and Ñ are strongly left-coprime. The
left factor [M̃, Ñ] is called normalized when multiplication with [M̃, Ñ] is a
co-isometry from H2(D,Y ×U ) into H2(D,Y ).

G has a doubly coprime factorization if it has a left factorization and a
right factorization and there exist X̃ ∈ H∞(D;L(U )), Ỹ ∈ H∞(D;L(Y ,U )),
X ∈ H∞(D;L(Y )) and Y ∈ H∞(D;L(Y ,U )) such that[

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I =

[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
. (7.3)

The doubly coprime factorization is called normalized when both the right
factor [M; N] and the left factor [M̃, Ñ] are normalized.

Remark 7.5. In this chapter we will prove results for right factorizations.
However, all results translate to left factorizations by considering G†.

The next proposition is a first step towards relating state space closed-
loop systems (see Definition 4.1) and factorizations.

Proposition 7.6. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Let Σ be a realization of G and let [F,G] be an admissible feedback pair
for Σ. Denote the transfer function of the closed-loop system by [M; N]. Then
M(z) is invertible for z in a neighbourhood of zero and G(z) = N(z)M(z)−1

in a neighbourhood of zero.

Proof. This follows from Proposition 2.23.
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The following proposition provides a fundamental property of weakly
right-coprime functions.

Proposition 7.7. Assume that the functions M ∈ H∞(D;L(H1,H2)) and
N ∈ H∞(D;L(H1,H3)) are weakly right-coprime. If for a holomorphic R :
D(R)→ L(H4,H1) with 0 ∈ D(R) we have [MR; NR] ∈ H∞(D,L(H4,H2 ×
H3)), then R ∈ H∞(D,L(H4,H1)).

Proof. Let h ∈ H2(D,H4). Then since [MR; NR] ∈ H∞(D,L(H4,H2 ×H3))
we have [MRh; NRh] ∈ H2(D,H2×H3). Since [M; N] is weakly right-coprime
it follows that Rh ∈ H2(D,H1). So multiplication by R maps H2(D,H4) into
H2(D,H1). It is easily shown that a multiplication operator is closed from
H2 to H2. By the closed graph theorem it follows that multiplication with
R is a continuous operator from H2(D,H4) to H2(D,H1). By Lemma A.4 it
follows that R ∈ H∞(D,L(H4,H1)).

The following lemma gives additional conditions under which a weakly
right-coprime factor is strongly right coprime (see Corollary 7.9). This will
be useful in Chapter 8.

Lemma 7.8. Let G : D(G) ⊂ C→ L(U ) be holomorphic with 0 ∈ D(G). If
[M; N] is a weakly right-coprime factor of G, I − G(0) has a bounded inverse
and (I −G)−1 ∈ H∞(D,L(U )), then M(0)−N(0) has a bounded inverse and
(M− N)−1 ∈ H∞(D,L(U )).

Proof. We have M − N = (I − G)M, which shows that M(0) − N(0) has a
bounded inverse. We have M(M − N)−1 = (I − G)−1 and N(M − N)−1 =
G(I − G)−1 = (I − G)−1 − I. Proposition 7.7 now shows that (M − N)−1 ∈
H∞(D,L(U )).

Corollary 7.9. Under the assumptions of Lemma 7.8 we have that [M; N] is
strongly right-coprime.

Proof. We can choose the Bezout factors X̃ = Ỹ = (M− N)−1.

Weak right-coprimeness is connected to the linear quadratic optimal con-
trol problem as the following proposition shows. The set V̂ (x0) is defined as
the set of Z-transforms of sequences in V (x0), which was defined in (6.2).

Proposition 7.10. Let D be the transfer function of the discrete-time system
Σ and let [M; N] be a right factor. Then multiplication by [M; N] is an injection

from H2(D,U ) into V̂ (0). The factorization is weakly right-coprime if and

only if multiplication by [M; N] is a bijection from H2(D,U ) onto V̂ (0).
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Proof. That multiplication with [M; N] maps H2(D,U ) into H2(D,U × Y )
follows from the fact that [M; N] ∈ H∞(D,L(U ,U ×Y )). Let r ∈ l2(Z+,U ),

we show that [M; N]r̂ ∈ V̂ (0). Define û := Mr̂. We have to show that
Nr̂ = DMr̂. This follows since DMr̂ = NM−1Mr̂ = Nr̂. It follows that
multiplication by [M; N] maps H2(D,U ) into V̂ (0).

We show that multiplication with [M; N] is injective. Suppose that there
are two Z-transformable sequences ri : Z+ → U (i = 1, 2) with [M; N]r̂1 =
[M; N]r̂2. Then M(z)r̂1(z) = M(z)r̂2(z) in a neighbourhood of zero and since
M(z) is invertible for z in a neighbourhood of zero we have r̂1(z) = r̂2(z) in a
neighbourhood of zero. This shows that r1 = r2. Hence multiplication with
[M; N] is injective.

Multiplication with [M; N] is onto if and only if for every [u; y] ∈ V (0)
there exists an r ∈ l2(Z+,U ) such that [û; ŷ] = [M; N]r̂. Suppose that mul-
tiplication with [M; N] is onto, and let h : Z+ → U be a Z-transformable

sequence with [M; N]ĥ ∈ H2(D,U × Y ). Then [M; N]ĥ ∈ V̂ (0) and since

multiplication by [M; N] maps H2(D,U ) onto V̂ (0) there exists an r ∈
l2(Z+,U ) such that [M; N]ĥ = [M; N]r̂. Since multiplication by [M; N] is
injective as proven above it follows that h = r. Hence h ∈ l2(Z+,U )
and so [M; N] is weakly right-coprime. Suppose that [M; N] is weakly right-
coprime. Let [u; y] ∈ V (0). Define r : Z+ → U through its Z-transform:
r̂(z) := M(z)−1û(z) for z in a neighbourhood of zero. We then have [M; N]r̂ =
[û; ŷ]. So [M; N]r̂ ∈ H2(D,U × Y ). By weak right-coprimeness we have
r ∈ l2(Z+,U ). This shows that muliplication by [M; N] maps H2(D,U ) onto

V̂ (0).

The following result connects the existence of normalized weakly right-
coprime factorizations to the linear quadratic optimal control problem.

Proposition 7.11. Let Σ be an output stabilizable discrete-time system.
Then the transfer function of its optimal closed-loop system provides a nor-
malized weakly right-coprime factorization of the transfer function of Σ.

Proof. That the transfer function [M; N] of the optimal closed-loop system
satisfies D(z) = N(z)M(z)−1 in a neighbourhood of zero follows from Propo-
sition 7.6. Combining Propositions 6.34 and 6.35 we see that optimal closed-
loop system is energy-preserving with as storage operator the observability
gramian. By Proposition 5.2 the optimal closed-loop system is input-output
stable, so [M; N] ∈ H∞(D,L(U ,U ×Y )). Proposition 5.4, and the fact that
l2(Z+,U ) and H2(D,U ) are isometrically isomorphic under the Z-transform,
shows that the factorization is normalized. We show that it is weakly right-
coprime. Let [u; y] ∈ V (0). Let x be the corresponding state for initial state
zero and define rk := −(Smin)1/2Fminxk + (Smin)1/2uk. Then by Proposition
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6.30 we have r ∈ l2(Z+,U ). The sequence r is the output for input u of the
system Σ− defined by its system operator [A,B;−(Smin)1/2Fmin, (Smin)1/2].
Using Proposition 2.22 we see that the inverse of the transfer function of
Σ− has a realization [A + BFmin, B(Smin)−1/2;F, (Smin)−1/2]. But this is a
realization of M and so we conclude that Σ− has M−1 as its transfer function.
So r̂(z) = M(z)−1û(z). It follows that [û(z); ŷ(z)] = [M(z); N(z)]r̂(z). Hence
each element of V (0) is in the range of the operator of multiplication by
[M; N]. By Proposition 7.10 the pair (M,N) is weakly right-coprime.

The existence of a right factorization and of an output stabilizable real-
ization are equivalent as the following proposition shows.

Proposition 7.12. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Then the following are equivalent:

1. G has a right factorization.

2. G has an output stabilizable realization.

Proof. If G has an output stabilizable realization, then by Proposition 7.11 it
has a right factorization. Assume that G has a right factor [M; N]. This right
factor has a realization Σ̌ that is output stable (for example the backward
shift realization from Remark 2.13 which is output stable by Example 3.3).
Since M(0) has a bounded inverse, we can use Proposition 2.23 to obtain a
realization Σ of G. It follows from Corollary 4.15 that Σ is output stabilizable.

The following proposition shows that existence of a right factorization
implies the existence of a normalized weakly right-coprime factorization.

Proposition 7.13. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). If G has a right factorization, then it has a normalized weakly
right-coprime factorization.

Proof. From Proposition 7.12 we see that G has an output stabilizable real-
ization Σ. Proposition 7.10 shows that the optimal closed-loop system of Σ
provides a normalized weakly right-coprime factorization of G.

The following proposition gives a parametrization of all right factoriza-
tions.

Proposition 7.14. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G) and assume that G has a right factorization. Let [M0,N0] be a weakly
right-coprime factor. Then all right factors are parametrized as follows:

M = M0V, N = N0V,
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where V runs through the set of H∞(D,L(U )) functions that have a bounded
inverse in zero. The weakly right-coprime factors are exactly those for which
V−1 is in H∞(D,L(U )) as well.

Proof. The above M and N obviously provide a factorization. Assume that
[M1; N1] is a right factor. Define V := M−1

0 M1. Then M1 = M0V and N1 =
GM1 = GM0V = N0V. By Proposition 7.7 we have that V ∈ H∞(D,L(U )).

If V has an inverse in H∞(D,L(U )), then from [M; N]h = [M0; N0]Vh ∈
H2(D,U × Y ) we obtain h = V−1Vh ∈ H2(D,U ). This shows that in
this case [M; N] is weakly right-coprime. If [M; N] is weakly right-coprime,
then it follows from symmetry considerations that V must have an inverse in
H∞(D,L(U )).

Proposition 7.15. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G) and assume that G has a right factorization. Let [M0,N0] be a
normalized weakly right-coprime factor. Then all normalized weakly right-
coprime factors are parametrized as follows:

M = M0V, N = N0V,

where V ∈ L(U ) is unitary.

Proof. That the above M and N provide a normalized weakly right-coprime
factorization is obvious. Assume that the pair [M; N] is a normalized weakly
right-coprime factor. From Proposition 7.14 we obtain that a normalized
weakly right-coprime factor must be of the indicated form, but we only know
that V and its inverse are in H∞(D,L(U )). So we still need to show that this
function is constant and that this constant is a unitary operator. Since the
factorizations are normalized we have M∗M + N∗N = I and M∗

0M0 + N∗
0N0 =

I almost everywhere on the unit circle by Lemmas A.18 and A.20. Since
M = M0V (on the open unit disc, but this extends to almost everywhere on
the unit circle) it follows that V∗V = I almost everywhere on the unit circle.
Since V has an inverse in H∞(D,L(U )) its boundary function has an inverse
in L∞(T,L(U )) and since V∗V = I, this inverse must equal V∗. Hence V∗ is
the boundary function of a function in H∞(D,L(U )), namely of V−1. Define
V− : D+ → L(U ) by V−(z) = V(1/z̄)∗. Then V− ∈ H∞(D+,L(U )) since it
is obviously holomorphic and

sup
z∈D+

‖V−(z)‖ = sup
z∈D+

‖V(1/z̄)∗‖ = sup
z∈D+

‖V(1/z̄)‖ = sup
s∈D
‖V(s)‖ = ‖V‖∞.

The boundary function of V− equals V∗. Hence V∗ is the boundary function of
a function in H∞(D+,L(U )), namely of V−. So V∗ is the boundary function
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of both a H∞(D,L(U )) function and a H∞(D+,L(U )) function. It follows
from Corollary A.14 that V∗ is constant. Hence V is constant. It follows from
the earlier established V∗V = I almost everywhere on the unit circle and the
fact that V has an inverse that V is unitary.

Proposition 7.16. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). If G has a strongly right-coprime factorization, then all weakly
right-coprime factorizations are strongly right-coprime.

Proof. Assume that [M0; N0] is a strongly right-coprime factor. Let X̃ and
Ỹ be right Bezout factors. According to Proposition 7.14 all weakly right-
coprime factors are of the form [M0; N0]V with both V and its inverse in
H∞(D,L(U )). It is easily seen that V−1X̃ and V−1Ỹ are right Bezout factors
for [M0; N0]V. It follows that M0V and N0V are strongly right-coprime.

In the following proposition we need the Hankel operator which is
defined in Definition A.24. We further note that a H∞ function is called
inner if the corresponding multiplication operator is an isometry (Definition
A.19, see also Lemma A.20).

Proposition 7.17. Let G ∈ H∞(D,L(H1,H2)). Assume that G is inner
and that it has a left inverse in H∞(D,L(H2,H1)). Then the norm of the
associated Hankel operator is strictly less than one.

Proof. We have that the Hankel operator has norm less than or equal to one,
since it is the composition of an isometric operator with two projections, each
of which have norm smaller than or equal to one.

We show that the norm of the Hankel operator cannot be one. Suppose
it is. Then there exists a sequence hn ∈ L2(T,H1) with norm one such
that ‖P+LGP−hn‖ → 1. Here P− is the projection from L2(T,H1) onto
the subspace of functions whose nonnegative Fourier coefficients are zero,
P+ is the projection from L2(T,H2) onto the subspace of functions whose
negative Fourier coefficients are zero and LG is the operator multiplication
with G (see Definition A.15). We can assume without loss of generality that
the hn have zero nonnegative Fourier coefficients. Define fn := LGP−hn,
fn

+ := P+f
n, fn

− := P−f
n. Then since G is inner we have ‖fn‖ = 1 and we

have ‖fn‖2 = ‖fn
+‖2 + ‖fn

−‖2. Since by assumption ‖fn
+‖ → 1 it follows that

‖fn
−‖ → 0. By assumption there exists a H ∈ H∞(D,L(H2,H1)) such that

HG = I. We then have hn = LHLGh
n = LHf

n = LHf
n
+ + LHf

n
−. Since LHf

n
+

has zero negative Fourier coefficients and hn has zero nonnegative Fourier
coefficients we have 〈hn, LHf

n
+〉 = 0. So

0 = 〈hn, LHf
n
+〉 = 〈hn, hn〉 − 〈hn, LHf

n
−〉 → 1.
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This contradiction shows that the Hankel operator must have norm strictly
smaller than one.

The following proposition complements the previous one.

Proposition 7.18. Let G ∈ H∞(D,L(H1,H2)). Assume that G is inner
and that the norm of the associated Hankel operator is strictly less than one.
Then G has a left inverse in H∞(D,L(H2,H1)).

Proof. We apply Proposition A.27 (the Nehari theorem) to G∗. Since ‖HG‖ <
1, this gives the existence of a K ∈ H∞(D,L(H2,H1)) such that

‖G∗ + K‖L∞(T,L(H2,H1)) < 1.

Since G is inner we have G∗G = I almost everywhere on the unit circle from
Proposition A.18. From this we obtain I + KG = G∗G + KG = (G∗ + K)G
almost everywhere on the unit circle, which gives

‖I + KG‖L∞(T,L(H1)) ≤ ‖G∗ + K‖L∞(T,L(H2,H1)) ‖G‖L∞(T,L(H1,H2)) < 1.

Since KG ∈ H∞(D,L(H1)), which is a Banach algebra, we obtain that KG
has an inverse R in H∞(D,L(H1)) from the geometric series theorem. In
particular RKG = I, which implies that RK is a left inverse of G.

Combining Propositions 7.17 and 7.18 we obtain the following.

Corollary 7.19. Assume G ∈ H∞(D,L(H1,H2)) is inner. Then G has
a left inverse in H∞(D,L(H2,H1)) if and only if the norm of the Hankel
operator of G is strictly less than one.

The following result connects the existence of normalized strongly right-
coprime factorizations to the linear quadratic optimal control problem.

Proposition 7.20. Let Σ be an input and output stabilizable discrete-time
system. Then the transfer function of the optimal closed-loop system of Σ is
a normalized strongly right-coprime factor of the transfer function of Σ.

Proof. From Proposition 7.11 we obtain that the transfer function of the
optimal closed-loop system of Σ is a normalized right factor. Corollary 6.41
shows that the Hankel map of this system has norm strictly smaller than
one. Since the Hankel map and the Hankel operator have the same norm by
Lemma A.26, Proposition 7.18 then gives the result.

The following proposition shows that not only the optimal closed-loop
system provides a strongly right-coprime factorization, but that every Ric-
cati closed-loop system does. Note that we may not obtain a normalized
factorization in this case.
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Proposition 7.21. Let Σ be an input and output stabilizable discrete-time
system. Then the transfer function of any Riccati closed-loop system of Σ is
a strongly right-coprime factor of the transfer function of Σ.

Proof. That we obtain a factorization follows from Propositions 6.34 and
7.6. Application of Propositions 6.47, 6.49 and 6.50 shows that the transfer
function of an arbitrary Riccati closed-loop system of Σ can be obtained by
multiplying the transfer function of the optimal closed-loop system from the
right with a function that is in H∞ and whose inverse is H∞. Using that by
Proposition 7.20 the transfer function of the optimal closed-loop system is
strongly right-coprime it then easily follows that the transfer function of any
Riccati closed-loop system of Σ is a strongly right-coprime.

The following proposition shows that existence of a strongly right-coprime
factorization and the existence of an input and output stabilizable realization
are equivalent.

Proposition 7.22. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Then the following are equivalent:

1. G has an input and output stabilizable realization.

2. G has a normalized strongly right-coprime factorization.

3. G has a strongly right-coprime factorization.

Proof. If G has an input and output stabilizable realization, then by Propo-
sition 7.20 it has a normalized strongly right-coprime factorization. Assume
that G has a strongly right-coprime factorization. It follows from Proposi-
tions 7.13 and 7.16 that G has a normalized strongly right-coprime factor
[M; N]. By Proposition 7.17 the norm of the Hankel operator associated to
[M; N] is strictly smaller than one. The function [M; N] has an approximately
controllable input and output stable realization Σ̌ (for example the restricted
backward shift realization from Remark 2.13 which is output stable by Ex-
ample 3.3 and input stable by Example 3.25). From Proposition 5.7 we
obtain that Σ̌ is energy preserving with the observability gramian as storage
operator (note that the condition on the equality of the norm of the input
and output in Proposition 5.7 is satisfied since the factorization is normal-
ized). We use Proposition 2.23 to obtain the corresponding realization Σ of
G. It follows from Corollary 4.15 that Σ is output stabilizable. It follows
from Lemma 3.18 combined with Lemma A.26 that the spectral radius of
LBLC , the product of the controllability and the observability gramian of Σ̌,
is strictly smaller than one. This implies that the operator I − LBLC has a
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bounded inverse. Proposition 6.46 now shows that P := (I − LBLC)−1LB

provides a solution of the filter algebraic Riccati equation of Σ. The dual
version of Proposition 6.36 now shows that Σ is input stabilizable.

The following lemma shows that we can always pick right Bezout factors
with a nice property.

Lemma 7.23. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈ D(G)
and assume that G has a strongly right-coprime factorization. For every
strongly right-coprime factor [M; N] there exists a pair of right Bezout factors
with Ỹ(0) = 0 and X̃(0) = M(0)−1.

Proof. Let [X̃1, Ỹ1] be an arbitrary pair of Bezout factors. Define Ỹ(z) :=
(I −M(0)−1M(z))Ỹ1(z) and X̃(z) = M(0)−1 + (I −M(0)−1M(z))X̃1(z). Then
obviously Ỹ(0) = 0 and X̃(0) = M(0)−1 and it is not hard to see that X̃, Ỹ is
a right Bezout pair.

The following proposition shows that the existence of a doubly coprime
factorization follows from the existence of a strongly right-coprime factoriza-
tion.

Proposition 7.24. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). The following are equivalent:

1. G has a normalized strongly right-coprime factorization.

2. G has a normalized strongly left-coprime factorization.

3. G has a normalized doubly coprime factorization.

Moreover, any given normalized strongly right-coprime factorization and nor-
malized strongly left-coprime factorization can be embedded in a normalized
doubly coprime factorization.

Proof. That (1) and (2) are equivalent follows from Proposition 7.22 noting
that the second condition in that proposition holds for G if and only if it holds
for G†. It is clear that (3) implies (1) and (2). We show that (1) implies (3).

Now assume that G has the normalized strongly right-coprime factor
[M; N] with corresponding right Bezout factors [X̃, Ỹ] and the normalized
strongly left-coprime factor [M̃, Ñ] with the corresponding left Bezout fac-
tors [X1; Y1]. By Propostition 7.23 we can assume that Ỹ(0) = 0 and
X̃(0) = M(0)−1. Define ∆ := X̃Y1−ỸX1 and Y := −M∆+Y1, X := −N∆+X1.
It is now easily verified that with this X and Y we have[

X̃ −Ỹ

−Ñ M̃

] [
M Y
N X

]
= I. (7.4)
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Next we show that[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
= I.

Since Ỹ(0) = 0 and X̃(0) = M(0)−1 we have that[
X̃(0) −Ỹ(0)

−Ñ(0) M̃(0)

]
has the bounded inverse[

M̃(0) 0

M̃(0)−1Ñ(0)M̃(0) M̃(0)−1

]
.

The function [X̃,−Ỹ;−Ñ, M̃] is holomorphic at zero which implies that it has
a realization Σ. Since the function value at zero has a bounded inverse op-
erator, it follows from Proposition 2.22 that [X̃,−Ỹ;−Ñ, M̃] is invertible in
a neighbourhood of zero. It follows from (7.4) that [M,Y; N,X] equals this
inverse. By the identity theorem for holomorphic functions we have that
(7.3) holds on D. Hence G has a doubly coprime factorization. This dou-
bly coprime factorization is obviously normalized. By construction both the
given normalized strongly right-coprime factor [M; N] and the given normal-
ized strongly left-coprime factor [M̃, Ñ] are embedded in the doubly coprime
factor.

The following result gives a parametrization of all right Bezout factors.

Proposition 7.25. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a strongly right-coprime factor [M; N]. Then it
has a strongly left-coprime factor [M̃, Ñ]. Let X̃0, Ỹ0 be right Bezout factors
for [M; N] and let V ∈ H∞(D,L(Y ,U )). Then X̃ := X̃0 + VÑ, Ỹ := Ỹ0 + VM̃
are right Bezout factors for [M; N]. Moreover, all right Bezout factors for
[M; N] are of this form.

Proof. That G has a strongly left-coprime factorization follows from (the
proof of) Proposition 7.24. That the indicated functions are right Bezout
factors is easily checked. We show that all right Bezout factors are of this
form. Let X̃0, Ỹ0 be arbitrarty right Bezout factors for [M; N]. Define V in a
neighbourhood of zero by V = (Ỹ− Ỹ0)M̃

−1. It follows that Ỹ = Ỹ0 +VM̃ in a
neighbourhood of zero. Using the Bezout equation (7.1) we have (X̃−X̃0)M =
(Ỹ − Ỹ0)N. Using the above equation for Ỹ we see that this equals VM̃N in
a neighbourhood of zero. Since M̃N = ÑM we obtain (X̃ − X̃0)M = VÑM in
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a neighbourhood of zero. It follows that X̃ = X̃0 + VÑ in a neighbourhood of
zero. The only thing left to show is that V ∈ H∞(D,L(Y ,U )). This follows
since

V = V(M̃X− ÑY) = (Ỹ − Ỹ0)X− (X̃0 − X̃)Y,

where X, Y are left Bezout factors for [M̃, Ñ].

The set of all strongly right-coprime pairs is open as the following propo-
sition shows.

Proposition 7.26. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a strongly right-coprime factor [M; N]. Then
there exists a ε > 0 such that for all ∆ = [∆M; ∆N] ∈ H∞(D,L(U ,U ×Y ))
with ‖∆‖∞ < ε the functions M+∆M and N+∆N are strongly right-coprime.

Proof. From Proposition 7.24 we obtain the existence of X ∈ H∞(D,L(Y ))
and Y ∈ H∞(D,L(Y ,U )) such that [M,Y; N,X] is invertible inH∞(D,L(U ×
Y )). The result follows using that the invertible elements in H∞(D,L(U ×
Y )) form an open set.

In Proposition 7.32 we give an explicit ε under which the result of Propo-
sition 7.26 holds under the assumption that U is finite-dimensional. The
following results (Lemma 7.27 up to Proposition 7.31) are used in the proof
of Proposition 7.32.

Lemma 7.27. Let H1,H2 be Hilbert spaces, T ∈ L(H1,H2) and S ∈
L(H2,H1). Assume that TS = IH2 and ST = IH1. Then

inf
h∈H2:‖h‖=1

‖Sh‖ =
1

‖T‖
.

Proof. We have for each h ∈ H2 that ‖h‖ = ‖TSh‖ ≤ ‖T‖ ‖Sh‖. This
implies

inf
h∈H2:‖h‖=1

‖Sh‖ ≥ 1

‖T‖
.

There exist fn ∈ H1 with norm one such that ‖Tfn‖ → ‖T‖. Define hn :=
Tfn/‖Tfn‖. Then ‖hn‖ = 1 and Shn = fn/‖Tfn‖. So ‖Shn‖ = 1/‖Tfn‖.
For n→∞ we have ‖Shn‖ → 1/‖T‖. This implies that 1/‖T‖ is not only a
lower bound, but the largest lower bound, i.e. it is the desired infimum.



73

Lemma 7.28. Let H1 and H2 be Hilbert spaces and T ∈ L(H1,H2). Then

inf
‖x‖=1

‖Tx‖ = inf
‖y‖=1

‖T ∗y‖,

provided that both are positive.

Proof. We have

inf
‖x‖=1

‖Tx‖2 = inf
‖x‖=1

〈T ∗Tx, x〉.

It is well-known (see for example Kreyzsig [47, p467]) that the number
on the right-hand side is the smallest spectral value of T ∗T . Similarly,
inf‖y‖=1 ‖T ∗y‖2 is the smallest spectral value of TT ∗. It follows from Lemma
3.16 that the spectra of T ∗T and TT ∗ are equal, with the possible exception
of zero. The result follows.

Lemma 7.29. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈ D(G).
Assume that G that has a normalized doubly coprime factorization. Denote
the normalized strongly left-coprime factor by [M̃, Ñ], the normalized strongly
right-coprime factor by [M; N] and the left Bezout factor by [X; Y]. Denote
the Hankel operator of [M̃, Ñ] by H[M̃,Ñ]. Then

inf
V∈H∞(D,L(Y ,U ))

∥∥∥∥[
Y
X

]
−

[
M
N

]
V

∥∥∥∥ =
1√

1− ‖H[M̃,Ñ]‖2
. (7.5)

Proof. Let T[M;N] : H2(D,U )→ H2(D,U × Y ) be the operator of multipli-
cation by [M; N]. Since T[M;N] is an isometry its range is closed and we have
the orthogonal decomposition

H2(D,U × Y ) = Im(T[M;N])⊕ Im(T[M;N])
⊥. (7.6)

Denote by PIm(T[M;N])
⊥ the orthogonal projection onto the second component in

this decomposition. Define T[Y;X] similarly to T[M;N]. Define T : H2(D,Y )→
H2(D,U × Y ) by

T := PIm(T[M;N])
⊥T[Y;X]. (7.7)

We obtain from Corollary A.23 that the infimum on the left-hand side of
(7.5) equals ‖T‖. Define S : Im(T[M;N])

⊥ ⊂ H2(D,U × Y ) → H2(D,Y ) as

the restriction to Im(T[M;N])
⊥ of multiplication by [−Ñ, M̃], i.e.

S = T[−Ñ,M̃]|Im(T[M;N])
⊥ .
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We show that S is the inverse of T . First note that for any y ∈ H2(Y ) there
exists a u ∈ H2(U ) such that

Ty =

[
Y
X

]
y +

[
M
N

]
u.

It follows using (7.3) that STy = y for all y ∈ H2(Y ). From (7.3) we also
obtain[

Y
X

]
[−Ñ, M̃] +

[
M
N

]
[X̃,−Ỹ] = I.

Restricting to Im(T[M;N])
⊥ and projecting onto Im(T[M;N])

⊥ shows that TS
equals the identity operator on Im(T[M;N])

⊥.
Using Lemma 7.27 we obtain

inf
w∈Im(T[M;N])

⊥:‖w‖=1
‖Sw‖H2(D,Y ) =

1

‖T‖
.

Let T[−Ñ,M̃] : H2(D,U × Y ) → H2(D,Y ) be the Toeplitz operator of

[−Ñ, M̃]. From (7.3) we obtain that T[−Ñ,M̃]T[M;N] = 0. So T[−Ñ,M̃] is zero on
Im(T[M;N]). It follows that T[−Ñ,M̃] splits with respect to the decomposition
(7.6) as

T[−Ñ,M̃] = [0, S].

Since T ∗
[−Ñ,M̃]

= T[−Ñ∗;M̃∗] we have, with respect to the decomposition (7.6),

T[−Ñ∗;M̃∗] =

[
0
S∗

]
.

It follows that

inf
y∈H2(D,Y ):‖y‖=1

‖T[−Ñ∗;M̃∗]y‖H2(D,U ×Y ) = inf
y∈H2(D,Y ):‖y‖=1

‖S∗y‖H2(D,U ×Y ). (7.8)

Let y ∈ H2(Y ). Since [−Ñ∗; M̃∗] is inner we have

‖y‖2H2(D,U ) =

∥∥∥∥[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

=

∥∥∥∥PH2(U ×Y )

[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

+

∥∥∥∥PH2(U ×Y )⊥

[
−Ñ∗

M̃∗

]
y

∥∥∥∥2

L2(T,U ×Y )

= ‖T[−Ñ∗;M̃∗]y‖
2 + ‖H∗

[−Ñ,M̃]
y‖2,
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where

H[−Ñ,M̃] := PH2(D,Y )L[−Ñ,M̃]PH2(D,U ×Y )⊥ : L2(T,U × Y )→ L2(T,Y )

is the Hankel operator of [−Ñ, M̃]. It follows that

inf
y∈H2(D,Y ):‖y‖=1

‖T[−Ñ∗;M̃∗]y‖
2
H2(D,U ×Y ) = 1− ‖H[−Ñ,M̃]‖

2. (7.9)

Combining (7.8) and (7.9) we obtain

inf
y∈H2(D,Y ):‖y‖=1

‖S∗y‖2H2(D,U ×Y ) = 1− ‖H[−Ñ,M̃]‖
2. (7.10)

Using the dual version of Proposition 7.17 we conclude from the fact that Ñ
and M̃ are strongly left-coprime that ‖H[−Ñ,M̃]‖ < 1, so that the number in
(7.10) is positive. We use Lemma 7.28 to conclude that

inf
w∈Im(T[M;N])

⊥:‖w‖=1
‖Sw‖H2(D,Y ) = inf

y∈H2(D,Y ):‖y‖=1
‖S∗y‖H2(D,U ×Y ) (7.11)

Note that we have already established that both sides of (7.11) are positive
so that Lemma 7.28 is indeed applicable. We earlier established that the left-
hand side of (7.11) equals 1/‖T‖ and that this equals one over the infimum
in the statement of the lemma. The right-hand side of (7.11) we have shown

to be equal to
√

1− ‖H[−Ñ,M̃]‖2. Noting that ‖H[−Ñ,M̃]‖ = ‖H[M̃,Ñ]‖ gives the

desired result.

Applying Lemma 7.29 to G† we obtain the following.

Corollary 7.30. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized doubly coprime factorization. Denote
the normalized strongly left-coprime factor by [M̃, Ñ], the normalized strongly
right-coprime factor by [M; N] and the right Bezout factor by [X̃; Ỹ]. Denote
the Hankel operator of [M,N] by H[M,N]. Then

inf
V∈H∞(D,L(Y ,U ))

∥∥∥∥[
Ỹ

X̃

]
− V

[
M̃

Ñ

]∥∥∥∥
H∞(D,L(Y ×U ,U ))

=
1√

1− ‖H[M,N]‖2
.

Proof. This follows from applying Lemma 7.29 to G†.

Proposition 7.31. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a normalized doubly coprime factorization.
Denote the Hankel operator of a normalized strongly right-coprime factor
[M; N] by H[M;N]. Then for all z ∈ D and u ∈ U∥∥∥∥[

M(z)
N(z)

]
u

∥∥∥∥2

≥ (1− ‖H[M;N]‖2) ‖u‖2.
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Proof. Denote η :=
√

1− ‖H[M;N]‖2. We have η ∈ (0, 1] by Proposition 7.17.
Let δ ∈ (0, η2). Define

ε :=
1√
η2 − δ

− 1

η
.

It easily follows that ε > 0.
Denote a Bezout factor of [M; N] by [X̃1, Ỹ1]. We have for z ∈ D and

u ∈ U

‖u‖ = ‖[X̃1(z), Ỹ1(z)][M(z); N(z)]u‖ ≤ ‖[X̃1, Ỹ1]‖∞ ‖[M(z); N(z)]u‖.

From this we obtain∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥2

≥ 1

‖[X̃1, Ỹ1]‖2∞
‖u‖2. (7.12)

It is easily computed that if [X̃, Ỹ] is a Bezout factor, then so is [X̃−VÑ, Ỹ−
VM̃] for any V ∈ H∞. Using this we obtain from Corollary 7.30 that for each
ε̃ > 0 there exists a right Bezout factor [X̃1, Ỹ1] with

‖X̃1, Ỹ1]‖∞ ≤
1

η
+ ε̃. (7.13)

In particular we can choose ε̃ = ε, where ε is as above. With that choice the
right-hand side of (7.13) equals 1/

√
η2 − δ. It follows that

1

‖[X̃1, Ỹ1]‖2∞
≥ η2 − δ. (7.14)

Combining (7.12) and (7.14) we obtain∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥2

≥
(
1− ‖H[M;N]‖2 − δ

)
‖u‖2.

Since this holds for every δ ∈ (0, η2) we obtain the desired result.

The following proposition provides an explicit ball around a strongly
right-coprime factor that only contains strongly right-coprime pairs.

Proposition 7.32. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a strongly right-coprime factor [M; N] and that U is
finite-dimensional. Denote the Hankel operator of [M; N] by H[M;N]. If ∆ =

[∆M; ∆N] ∈ H∞(D,L(U ,U × Y )) is such that ‖∆‖∞ <
√

1− ‖H[M;N]‖2,
then the functions M + ∆M and N + ∆N are strongly right-coprime.
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Proof. Define ε :=
√

1− ‖H[M;N]‖2 − ‖∆‖∞ > 0. Using that∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥ ≤
∥∥∥∥[

M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ + ‖∆(z)u‖

≤
∥∥∥∥[

M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ + ‖∆‖∞‖u‖,

we have∥∥∥∥[
M(z) + ∆M(z)
N(z) + ∆N(z)

]
u

∥∥∥∥ ≥ ∥∥∥∥[
M(z)
N(z)

]
u

∥∥∥∥− ‖∆‖∞ ‖u‖ ≥ ε ‖u‖,

where we have also used Proposition 7.31. The Corona Theorem (Proposition
A.29) then shows that M + ∆M and N + ∆N are strongly right-coprime.

The following proposition will be useful in the next two chapters.

Proposition 7.33. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a normalized doubly coprime factorization.
Define W : T→ L(U × Y ) (almost everywhere) by

W(z) =

[
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
.

Then W(z) is unitary for almost all z ∈ T.

Proof. We first show that W(z) is an isometry, i.e. that W(z)∗W(z) = I for
almost all z ∈ T. We have

W(z)∗W(z) =

[
M(z)∗ N(z)∗

−Ñ(z) M̃(z)

] [
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
=

[
M(z)∗M(z) + N(z)∗N(z) Ñ(z)∗M̃(z)∗ −M(z)∗Ñ(z)∗

M̃(z)N(z)− Ñ(z)M(z) M̃(z)M̃(z)∗ + Ñ(z)Ñ(z)∗

]
.

The diagonal entries equal the identity since both the right and the left
factorization is normalized. The off-diagonal entries are zero by (7.3). We
show that W(z) is surjective. Since a surjective isometry is unitary this
proves the proposition. We use that W(z) is surjective if and only if its range
is closed and W(z)∗ is injective. We first show that the range of any isometry
T is closed. Let yn ∈ Im(T ) and assume that yn converges to y. Let xn be
such that yn = Txn and define x = T ∗y. Then

y ← Txn = TT ∗Txn → TT ∗y = Tx.
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So y ∈ Im(T ) from which it follows that the range of T is closed. We now
show that W(z)∗ is injective. We use (7.3) and the normalization property
to obtain

[M∗,N∗] = [M∗,N∗]

[
M Y
N X

] [
X̃ −Ỹ

−Ñ M̃

]
= [X̃−M∗YÑ− N∗XÑ, −Ỹ + M∗YM̃ + N∗XM̃],

on the unit circle. Assume [u; y] ∈ ker W(z)∗. Then M∗u + N∗y = 0 and
−Ñu + M̃y = 0. We obtain from the above 0 = X̃u − Ỹy. Using (7.3) we
obtain from −Ñu+ M̃y = 0 and X̃u− Ỹy = 0 that [u; y] = 0. It follows that
W(z)∗ is injective. This completes the proof.

Notes

An excellent account of the use of coprime factorizations in systems and
control theory is Vidyasagar [94]. The relation with state space systems was
made by Khargonekar and Sontag [43] and Nett, Jacobson and Balas [58]
in the case of rational functions. The relation between state space systems
and normalized coprime factorizations of rational functions was established
in Meyer and Franklin [55].

The concept of weak coprimeness as used here is due to Mikkola [56].
The results presented here on weakly coprime factorizations are also due to
Mikkola [56]. Our proofs differ only slightly from his. Proposition 7.17 is due
to Glover and McFarlane [36] in the rational case. Earlier generalizations to
the general, not necessarily rational, case can be found in Curtain and Zwart
[18, Lemma 9.4.7] and Oostveen [64, Lemma 7.2.4].

Propositions 7.18 to 7.22 were first given by Curtain and Opmeer [16] for
continuous-time systems. This sequence of propositions constitutes our main
original contribution on coprime factorizations. The sequence of propositions
establishes a long sought after necessary and sufficient state space condition
for existence of strongly coprime factorizations over H∞. Partial result in this
direction were obtained in, among others, Curtain and Zwart [19], Curtain,
Weiss and Weiss [10], Curtain and Oostveen [12] and Staffans [90]. We note
that in [16] also state space formulas for the Bezout factors are given for
the continuous-time case. These are based on state space formulas for the
continuous-time suboptimal Nehari problem obtained in Curtain and Opmeer
[15]. Similar state space formulas can be obtained in discrete-time using the
same approach.

Lemma 7.29 is due to Glover and McFarlane [36] for rational functions.
The nonrational case was proven by Georgiou and Smith [34] for U and Y
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finite-dimensional. Our proof, also valid for U and Y infinite-dimensional,
does not significantly differ from the one given by Georgiou and Smith.

Proposition 7.33 is due to Glover and McFarlane [36] for the rational case
and to Curtain [11] for the general case considered here.

For a different viewpoint on coprime factorizations for not necessarily
rational functions we refer to Quadrat [78], [79], [80], [81], [82], [83].
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Chapter 8

Robust stabilization

In this chapter we consider so-called frequency domain feedback controller
design. We are mainly interested in feedback controllers that provide a cer-
tain type of robustness. The following definition is basic for this chapter.

Definition 8.1. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). We say that K is an admissible feedback function for G if K :
D(K) ⊂ C → L(Y ,U ) is holomorphic with 0 ∈ D(K) and I − KG has a
bounded inverse in zero.

Lemma 8.2. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈ D(G)
and let K be an admissible feedback function for G. Then I − GK has a
bounded inverse in zero.

Proof. This follows from Lemma 3.16 with Z = G(0), T = K(0) and λ =
1.

Remark 8.3. Note that it follows from Lemma 8.2 that K is an admissible
feedback function for G if and only if G is an admissible feedback function
for K.

Definition 8.4. An admissible feedback function K for G is called stabiliz-
ing if[

(I − KG)−1 K(I − GK)−1

G(I − KG)−1 (I − GK)−1

]
∈ H∞(D,L(U × Y ,U × Y )). (8.1)

Remark 8.5. Note that the function in (8.1) is the inverse of[
I −K
−G I

]
.

81
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The intuition behind the above definitions is that G is the transfer function
of the plant and that K is the transfer function of the controller. The inter-
connection shown in figure 8.1 of the two systems is well-defined when K is
an admissible feedback function for G. The condition (8.1) is equivalent to
the transfer function from [u1;u2] to [e1; e2] being in H∞.

6+

g-
+

- G

� �gK
u2e2

u1 e1

+

+

Figure 8.1: Feedback interconnection of G and K.

The following proposition, and most of the other propositions in this
chapter, are formulated for right factorizations. By applying them to G† one
obtains the obvious left versions of the results.

Proposition 8.6. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a strongly right-coprime factor [M; N]. Let
[X̃, Ỹ] be a right Bezout pair for this factorization and assume that X̃ has a
bounded inverse in zero. Define K := X̃−1Ỹ. Then K is a stabilizing admissi-
ble feedback function for G.

Proof. We have

I − KG = I − X̃−1ỸNM−1 = X̃−1
(
X̃M− ỸN

)
M−1 = X̃−1M−1,

which shows that I − KG has a bounded inverse in zero. Furthermore, we
have [

(I − KG)−1 K(I − GK)−1

G(I − KG)−1 (I − GK)−1

]
=

[
MX̃ MỸ

NX̃ I + NỸ

]
,

which is in H∞(D,L(U ×Y ,U ×Y )). To obtain the formula for (I−GK)−1

we have used that

(I − GK)−1 = I + G(I − KG)−1K,

which is easily checked.
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Proposition 8.7. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that there exists a stabilizing admissible feedback function
K for G. Then G has a strongly right-coprime factorization.

Proof. Define M1 := (I − KG)−1 and N1 := G(I − KG)−1. Since the feedback
function is stabilizing we have M1,N1 ∈ H∞ and obviously G = N1M

−1
1 . So G

has a right factorization. By Proposition 7.13 G has a weakly right-coprime
factorization [M; N]. Similarly K has a weakly right-coprime factorization:
K = YX−1. Clearly,

N2 :=

[
0 Y
N 0

]
, M2 :=

[
M 0
0 X

]
provides a weakly right-coprime factorization of G2 := [0,K; G, 0]. Since the
feedback function is stabilizing we have (I − G2)

−1 ∈ H∞. It follows from
Lemma 7.8 that (M2−N2)

−1 ∈ H∞. Denote the upper row of (M2−N2)
−1 by

[X̃, Ỹ], then X̃M−ỸN = I. Hence [M; N] is a strongly right-coprime factor.

Corollary 8.8. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Any stabilizing feedback function for G has a strongly right-coprime
factorization.

Proof. The symmetry mentioned in remark 8.3 and Proposition 8.7 give the
result.

Proposition 8.9. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Then the following are equivalent:

1. G has a strongly right-coprime factorization.

2. There exists a stabilizing admissible feedback function for G.

Proof. (2) implies (1) is Proposition 8.7. (1) implies (2) follows from Propo-
sition 8.6 using Lemma 7.23.

Proposition 8.10. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a doubly coprime factorization. Then all
stabilizing admissible feedback functions are given by

K = (Y + MV)(X + NV)−1, (8.2)

where V ∈ H∞(D,L(Y ,U )) is such that X + NV has a bounded inverse in
zero, but is otherwise arbitrary.
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Proof. We first show that the function defined by (8.2) is a stabilizing ad-
missible feedback function. Define Y := Y + MV, X := X + NV. Then[

M Y
N X

]
=

[
M Y
N X

] [
I V
0 I

]
,

from which it easily follows that with X̃ := X̃ + VÑ and Ỹ := Ỹ + VM̃ we
obtain (7.3) with the Bezout factors replaced by the underlined versions. It
follows from the left version of Proposition 8.6 that if X is invertible at zero,
then YX−1 is a stabilizing admissible feedback function.

Assume that K is a stabilizing admissible feedback function. We will
show that it is of the form (8.2). Since there exists a stabilizing admissible
feedback function, G has a doubly coprime factorization by Propositions 7.24
and 8.7. From Proposition 7.24 and Corollary 8.8 we obtain that K has a
strongly left-coprime factorization: K = W̃−1Z̃ and W̃S − Z̃R = I. Define
∆ := Z̃N − W̃M. Since ∆ = W̃(KG − I)M we have that ∆ is invertible in
zero. It is easily calculated that the matrix in (8.1) can be written as[

(I − KG)−1 K(I − GK)−1

G(I − KG)−1 (I − GK)−1

]
=

[
−M∆−1W̃ −M∆−1Z̃

−N∆−1W̃ I − N∆−1Z̃

]
. (8.3)

Using the above Bezout equation for the strongly left-coprime factorization
of K we obtain M∆−1 = M∆−1W̃S−M∆−1Z̃R, which is in H∞. Similarly we
obtain N∆−1 ∈ H∞. Using Proposition 7.7 we see that ∆−1 ∈ H∞. Define
V := ∆−1(W̃Y − Z̃X) ∈ H∞. We show that K(X + NV) = Y + MV. Using
(8.3) we obtain

Y + MV = Y + M∆−1(W̃Y − Z̃X) = (I + M∆−1W̃)Y −M∆−1Z̃X

= (I − (I − KG)−1))Y + K(I − GK)−1X,

and

X + NV = X + N∆−1(W̃Y − Z̃X) = N∆−1W̃Y + (I − N∆−1Z̃)X

= −G(I − KG)−1Y + (I − GK)−1X. (8.4)

From this it easily follows that K(X + NV) = Y + MV. So the only thing left
to show is that X + NV has a bounded inverse in zero. Using (8.4) we obtain

M̃(I − GK)(X + NV) = −ÑY + M̃X = I,

where the last identity follows from (7.3). Since M̃(I − GK) has a bounded
inverse in zero it follows that X + NV does and that this inverse equals
M̃(I − GK).
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Lemma 8.11. If in a Banach algebra we have ‖x‖2 + ‖y‖2 ≤ α2 < 1, then
I − y is invertible and ‖(I − y)−1x‖2 ≤ α2/(1− α2).

Proof. That I − y has a bounded inverse follows from the Neumann series
theorem. From this theorem we also obtain ‖(I − y)−1‖ ≤ 1/(1 − ‖y‖).
It follows that ‖(I − y)−1x‖2 ≤ ‖x‖2/(1 − ‖y‖)2. Denote x1 := ‖x‖ and
y1 := ‖y‖. Using elementary vector calculus one sees that the function
x2

1/(1 − y1)
2 under the constraint x2

1 + y2
1 ≤ α2 < 1 has the maximum

α2/(1− α2). The desired result follows.

We now focus our attention on feedback functions that provide a certain
robustness.

Definition 8.12. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Suppose that G has a normalized weakly right-coprime factor [M; N].
Let ε > 0. The function G∆ is called a ε-right factor admissible pertur-
bation of G if G∆ has a right factor [M∆; N∆] with ‖[M∆; N∆]− [M; N]‖∞ < ε.

Note that, due to Proposition 7.15, the set of ε-right factor admissible per-
turbations does not depend on the specific normalized weakly right-coprime
factor chosen to define it.

Definition 8.13. Suppose that G has a normalized weakly right-coprime
factor [M; N]. Let ε > 0. An admissible feedback function K for G is called
ε-robust right factor stabilizing if it is a stabilizing admissible feedback
function for all ε-right factor admissible perturbations of G.

Proposition 8.14. Suppose that G has a normalized doubly coprime factor-
ization. Let ε ∈ (0, 1). Suppose that [Ṽ, Ũ] ∈ H∞(D,L(U ×Y ,U )) satisfies∥∥∥[M∗,N∗]− [Ṽ,−Ũ]

∥∥∥ ≤ √1− ε2,

and that Ṽ has a bounded inverse in zero. Then K := Ṽ−1Ũ is a ε-robust
right factor stabilizing admissible feedback function for G.

Proof. Let W : T→ L(U × Y ) be the function from Proposition 7.33, i.e.

W(z) =

[
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
.

Define F ∈ L∞(T,L(U × Y ,U )) by

F :=
(

[M∗,N∗]− [Ṽ,−Ũ]
)

W = [I − ṼM + ŨN, ṼÑ∗ + ŨM̃∗], (8.5)
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where we have used (7.3). Since W(z) is unitary we have

‖F‖∞ ≤
√

1− ε2.

It follows that ‖I − ṼM + ŨN‖∞ < 1. Since H∞(D,L(U )) is a Banach
algebra it follows that ṼM − ŨN has an inverse in H∞(D,L(U )). Denote
an arbitrary ε-right factor admissible perturbation of G by G∆. Denote a
right factor of G∆ as in Definition 8.12 by [M∆; N∆]. Further denote ∆ =
[∆M; ∆N] = [M∆; N∆]− [M; N]. We have

I − KG∆ = I − Ṽ−1Ũ(N + ∆N)(M + ∆M)−1

= Ṽ−1
(
ṼM + Ṽ∆M − ŨN− Ũ∆N

)
(M + ∆M)−1

= Ṽ−1

(
ṼM− ŨN + [Ṽ,−Ũ]

[
∆M

∆N

])
(M + ∆M)−1

= Ṽ−1(ṼM− ŨN) (I + S∆) (M + ∆M)−1,

where

S := (ṼM− ŨN)−1[Ṽ,−Ũ].

It follows that I−KG∆ has an inverse in H∞(D,L(U )) if and only if I + S∆
does. The latter is true if ‖S‖∞ < 1/ε. We have

‖S‖2∞ = ‖SW‖2∞ = ‖[I,−(ṼM− ŨN)−1(ṼÑ∗ + ŨM̃∗)]‖2

= 1 + ‖(ṼM− ŨN)−1(ṼÑ∗ + ŨM̃∗)]‖2 = 1 + ‖(I − F1)
−1F2‖2,

where F = [F1,F2] is the function from (8.5). From Lemma 8.11 we obtain

‖S‖2∞ ≤
1

ε2
,

as desired.
To check that K stabilizes G∆ we have to show that[

(I − KG∆)−1 K(I − G∆K)−1

G∆(I − KG∆)−1 (I − G∆K)−1

]
∈ H∞(D,L(U × Y )).

We already saw that (I − KG∆)−1 ∈ H∞. We compute

G∆(I − KG∆)−1 = (N + ∆N)(I + S∆)−1(ṼM− ŨN)−1Ṽ,

which is clearly in H∞. Similarly we have

K(I − G∆K)−1 = (I −KG∆)−1K = (M + ∆M)(I + S∆)−1(ṼM− ŨN)−1Ũ,

and

(I−G∆K)−1 = I+G∆(I−KG∆)−1K = I+(N+∆N)(I+S∆)−1(ṼM−ŨN)−1Ũ,

which are both in H∞.
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Proposition 8.15. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Suppose that G has a normalized doubly coprime factoriza-
tion. Let H[M;N] denote the Hankel operator of the normalized strongly right-

coprime factor [M; N]. Let ε <
√

1− ‖H[M;N]‖2. Then there exists a [Ṽ, Ũ] ∈
H∞(D,L(U × Y ,U )) such that∥∥∥[M∗,N∗]− [Ṽ,−Ũ]

∥∥∥ ≤ √1− ε2.

If the input space U is finite-dimensional, then [Ṽ, Ũ] can be chosen such
that Ṽ has a bounded inverse in zero.

Proof. The existence of [Ṽ, Ũ] such that the desired inequality is satisfied
follows easily from Nehari’s theorem (Lemma A.27). We now show that if
U is finite-dimensional we can choose Ṽ such that it has a bounded inverse
in zero. First choose a ε̃ ∈ (ε,

√
1− ‖H[M;N]‖2) and find a [Ṽ1, Ũ1] such that

the desired inequality is satisfied with ε̃ instead of ε. Define [Ṽδ, Ũδ] :=
[Ṽ1, Ũ1]− δ[I, 0]. Then this satisfies∥∥∥[M∗,N∗]− [Ṽδ,−Ũδ]

∥∥∥ ≤ √1− ε̃2 + δ.

It follows that for δ ∈ (0,
√

1− ε2 −
√

1− ε̃2) the desired inequality is satis-
fied. Since U is finite-dimensional, this interval must contain a point in the
resolvent set of Ṽ1(0). For such a δ we have that Ṽδ has a bounded inverse
in zero.

Remark 8.16. If G(0) = 0, then the conclusion of Proposition 8.15 is also true
without the assumption that the input space U is finite-dimensional. We
indicate why this is true. From the proof of Proposition 8.14 we obtain that
ṼM− ŨN has an inverse in H∞. It follows that (ṼM− ŨN)(0) has a bounded
inverse. We have N(0) = G(0)M(0) = 0 and so Ṽ(0)M(0) = (ṼM − ŨN)(0)
has a bounded inverse. Since M(0) has a bounded inverse it follows that Ṽ
has a bounded inverse in zero as desired.

Proposition 8.17. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Suppose that G has a normalized doubly coprime factorization and
that U is finite-dimensional. Let H[M;N] denote the Hankel operator of the

normalized strongly right-coprime factor [M; N]. Let ε ∈ (0,
√

1− ‖H[M;N]‖2).
Then there exists an ε-robust right factor stabilizing admissible feedback func-
tion for G.

Proof. This follows from combining Propositions 8.14 and 8.15.
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Remark 8.18. The assumption in Proposition 8.17 that U is finite-dimensional
is made because that assumption had to be made in Proposition 8.15 to
obtain invertiblity of Ṽ in zero. We can avoid making this assumption in
Proposition 8.17 by considering controllers with internal loop as in Curtain,
Weiss and Weiss [17].

Corollary 8.19. Suppose that G : D(G) ⊂ C→ L(U ,Y ) with 0 ∈ D(G) is
a matrix-valued rational function. Let H[M;N] denote the Hankel operator of a

normalized strongly right-coprime factor [M; N]. Let ε ∈ (0,
√

1− ‖H[M;N]‖2).
Then there exists a rational ε-robust right factor stabilizing admissible feed-
back function for G.

Proof. This follows from the proof of Proposition 8.17, using that in the proof
of Proposition 8.15 we can choose [Ṽ,−Ũ] rational by Lemma A.28.

Notes

We refer to Vidyagagar [94], Zhou, Doyle and Glover [103], Doyle, Francis
and Tannenbaum [22] and Francis [28] for general information on stabilizing
feedback functions for rational functions.

For finite-dimensional input and output spaces Proposition 8.9 is origi-
nally due to Inouye [40]. An independent proof was given by Smith [88]. The
general case, also valid for infinite-dimensional input and output spaces, was
first proven by Mikkola [56], whose proof we followed. Proposition 8.10 is due
to Youla, Jabr and Bongiorno [98] in the case of rational functions. Using
controllers with internal loop this result in the general case is due to Cur-
tain, Weiss and Weiss [17]. The results presented here on robust right factor
stabilizing feedback functions are due to McFarlane and Glover [36], [54] in
the rational case. Continuous-time versions of the general case are given in
Curtain and Zwart [18, Section 9.4], Oostveen [64, Section 7.2] and Curtain
[11]. All of these references closely follow the arguments in McFarlane and
Glover as do we.



Chapter 9

The gap metric

In this chapter we provide an alternative view towards ε-admissible right
factor perturbations. This is done in terms of the gap metric.

We first consider the gap metric as a metric on the set of closed subspaces
of a given Hilbert space. The relevant definition is as follows.

Definition 9.1. Let Ki (i = 1, 2) be closed subspaces of the Hilbert space
H . Denote by Pi the orthogonal projection onto Ki. Define

δ(K1,K2) = ‖P1 − P2‖.

The function δ is called the gap metric.

Lemmas 9.2 through 9.7 give some basic properties of the gap metric.

Lemma 9.2. The gap metric is a metric on the set of closed subspaces of a
given Hilbert space.

Proof. Symmetry is obvious. It is also obvious that δ(K1,K2) = 0 implies
K1 = K2. The triangle inequality follows from the triangle inequality in
L(H ).

Definition 9.3. Let Ki (i = 1, 2) be closed subspaces of the Hilbert space
H . Denote by Pi the orthogonal projection onto Ki. Define

~δ(K1,K2) = ‖(I − P2)P1‖.

The function ~δ is called the directed gap.

Lemma 9.4. We have

δ(K1,K2) = max{~δ(K1,K2), ~δ(K2,K1)}.

89
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Proof. We have

(P1−P2)x = P1(I −P2)x− (I −P1)P2x = P1(I −P2)
2x− (I −P1)P

2
2 x.

Using that P1(I −P2)
2x and (I −P1)P

2
2 x are orthogonal we obtain from this

that

‖(P1 − P2)x‖2 = ‖P1(I − P2)
2x− (I − P1)P

2
2 x‖2

= ‖P1(I − P2)
2x‖2 + ‖(I − P1)P

2
2 x‖2

≤ ‖P1(I − P2)‖2‖(I − P2)x‖2 + ‖(I − P1)P2‖2 ‖P2x‖2.

Since ‖(I − P2)x‖2 + ‖P2x‖2 = ‖x‖2 we obtain from this

‖(P1 − P2)x‖2 ≤ max{‖P1(I − P2)‖2, ‖(I − P1)P2‖2} ‖x‖2.

Since the adjoint of (I − P1)P2 equals P2(I − P1) we have

‖(P1 − P2)x‖2 ≤ max{‖P1(I − P2)‖2, ‖P2(I − P1)‖2} ‖x‖2.

It follows that δ(K1,K2) ≤ max{~δ(K1,K2), ~δ(K2,K1)}. The converse in-
equality follows from

‖(I − P2)P1‖ = ‖(P1 − P2)P1‖ ≤ ‖P1 − P2‖

and the similar inequality with the roles of P1 and P2 reversed.

Lemma 9.5. We have δ(K1,K2) < 1 if and only if P1 restricts to a bijection

from K2 onto K1. In this case we have δ(K1,K2) = ~δ(K1,K2) = ~δ(K2,K1).

Proof. Assume that δ(K1,K2) < 1. This implies that ‖P1 − P2‖ < 1, from
which it follows that T := I − P1 + P2 has a bounded inverse. We have
P1T = P1P2. Since T maps H onto H and P1 maps H onto K1, it follows
that P1P2 maps H onto K1. Obviously it then follows that P1 maps K2

onto K1. If h ∈ K2 is such that P1h = 0, then ‖h‖ = ‖(I − P1)h‖, since
[P1; I − P1] is an isometry. Since h ∈ K2 we have P2h = h and so we obtain
‖h‖ = ‖(I − P1)P2h‖ ≤ ‖P2 − P1‖ ‖h‖. Since by assumption ‖P2 − P1‖ < 1,
this can only hold if h = 0. It follows that P1 restricted to K2 is injective.

Now assume that P1 restricts to a bijection from K2 onto K1. Denote
this restriction by P r

1 . Define

τ1 := inf
h∈K2,‖h‖=1

‖P r
1h‖.

Since P r
1 has a bounded inverse, we have τ1 > 0. Using that ‖(I−P1)P2h‖2 =

‖P2h‖2−‖P1P2h‖2 (which follows from the Pythagorean Theorem), we have

sup
h∈K2,‖h‖=1

‖(I − P1)P2h‖2 = 1− inf
h∈K2,‖h‖=1

‖P1h‖2 = 1− τ 2
1 .
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From this we obtain ‖(I −P1)P2‖2 = 1− τ 2
1 . By interchanging the role of P1

and P2 we obtain ‖(I − P2)P1‖2 = 1 − τ 2
2 , where τ2 := infh∈K1,‖h‖=1 ‖P r

2h‖
and P r

2 is the restriction of P2 to K1. We now show that the adjoint of P r
1

equals P r
2 . Let h1 ∈ K1 and h2 ∈ K2, then

〈P r
1h2, h1〉K1 = 〈P1h2, h1〉H = 〈h2, P1h1〉H = 〈h2, h1〉H .

Similarly we obtain 〈h2, h1〉H = 〈h2, P
r
2h1〉K2 . We conclude that the adjoint

of P r
1 ∈ L(K2,K1) is P r

2 ∈ L(K1,K2). From Lemma 7.28 we obtain τ1 = τ2.

So we obtain ~δ(K1,K2) = ~δ(K2,K1) < 1.

Lemma 9.6. Let H1 and H2 be Hilbert spaces and T ∈ L(H1,H2). Assume
that T is an isometry. Then the orthogonal projection onto the range of T is
given by P := TT ∗.

Proof. For this we have to show three things:

1. P is a projection, i.e. P = P 2.

2. The projection is orthogonal, i.e. P = P ∗.

3. P maps onto the image of T .

P 2 = TT ∗TT ∗ = TT ∗ = P , where we have used that T ∗T = I since T is an
isometry. That P is self-adjoint is obvious, so the projection is orthogonal.
We have

Im(P ) = Im(TT ∗) ⊂ Im(T ) = Im(TT ∗T ) ⊂ Im(TT ∗) = Im(P ),

where we have again used that T ∗T = I. So Im(P ) = Im(T ).

Lemma 9.7. Let T1 ∈ L(H1,H2) be an isometry and K2 a closed subspace
of H2. Define K1 := Im(T1). Then K1 is a closed subspace of H2 and

~δ(K1,K2) = ‖(I − P2)T1‖.

Proof. That the image of an isometry is closed is easily proven. Using Lemma
9.6 we obtain P1 = T1T

∗
1 , so

~δ(K1,K2) = ‖(I − P2)T1T
∗
1 ‖.

So we need to show that ‖(I − P2)T1T
∗
1 ‖ = ‖(I − P2)T1‖. We show that in

general for S ∈ L(H2) we have ‖ST1T
∗
1 ‖ = ‖ST1‖. We have

‖ST1T
∗
1 ‖ ≤ ‖ST1‖ ‖T1‖ = ‖ST1‖ = ‖ST1T

∗
1 T1‖ ≤ ‖ST1T

∗
1 ‖ ‖T1‖ = ‖ST1T

∗
1 ‖.
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We use the space V (0) of stable input-output pairs for initial condition
zero (see (6.2)) to define a distance between discrete-time systems.

Definition 9.8. Let Σi (i = 1, 2) be discrete-time systems with the same
input and output spaces. The gap δ(Σ1,Σ2) is defined as δ(V1(0),V2(0)).

The directed gap ~δ(Σ1,Σ2) is defined as ~δ(V1(0),V2(0)).

Remark 9.9. Note that discrete-time systems with the same transfer function
have gap zero. So the gap is not a metric on the set of discrete-time systems.
Let U = Y = C and G(z) =

√
z − α. For α 6= 0 this function is holomorphic

at zero (with an appropriate choice of the branch cut). This implies that G
can be realized as the transfer function of a discrete-time system. If û ∈ H2,
then ŷ := Gû can never be in H2 unless û = 0 since otherwise G = ŷ/û would
be meromorphic in D, which it clearly is not if |α| < 1. This implies that for
all realizations of G we have V (0) = {0}. Since this is true for all α 6= 0 with
|α| < 1 it is not even true that the gap is a distance on equivalence classes
of discrete-time systems with the same transfer function.

Definition 9.10. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a right factor [M; N]. Define the space Z[M;N] ⊂
H2(D,U × Y ) by Z[M;N] = {(Miv; Niv) : v ∈ H2(D,U )}.

Proposition 9.11. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a right factorization. The space Z[M;N] equals

V̂ (0) for all weakly right-coprime factors.

Proof. This follows from Proposition 7.10.

The following shows that the gap metric gives a metric on the space of
holomorphic functions defined in a neighbourhood of zero that have a right
factorization.

Proposition 9.12. Let Gi : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(Gi) (i = 1, 2). Assume that Gi has a right factorization. Then δ(G1,G2) =
0 implies that G1 = G2 in a neighbourhood of zero.

Proof. It follows from Proposition 7.13 that Gi has a weakly right-coprime
factor [Mi; Ni]. Since δ(G1,G2) = 0 it follows that V1(0) = V2(0). It follows
from Proposition 9.11 that the spaces Z[Mi;Ni] for i = 1, 2 are equal. In
particular [M1(z); N1(z)]u = [M2(z); N2(z)]u for all u ∈ U and z ∈ D. It
follows that [M1(z); N1(z)] = [M2(z); N2(z)] for all z ∈ D. From this we
obtain G1(z) = N1(z)M−1

1 (z) = N2(z)M−1
2 (z) = G2(z) in a neighbourhood of

zero.
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The next two propositions give alternative characterizations of the di-
rected gap.

Proposition 9.13. Let Gi : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(Gi) (i = 1, 2). Assume that G1 and G2 have normalized weakly right-
coprime factors [M1; N1] and [M2; N2], respectively. Denote by T[M1;N1] the
multiplication operator and by PZ⊥

[M2;N2]
the orthogonal projection. The di-

rected gap equals

~δg(G1,G2) =
∥∥∥PZ⊥

[M2;N2]
T[M1;N1]

∥∥∥ .
Proof. This follows from Lemma 9.7 and Proposition 9.11.

Proposition 9.14. Let Gi : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(Gi) (i = 1, 2). Assume that G1 and G2 have normalized weakly right-
coprime factors [M1; N1] and [M2; N2], respectively. Then

~δg(G1,G2) = inf
V∈H∞(D,L(U ))

∥∥∥∥[
M1

N1

]
−

[
M2

N2

]
V

∥∥∥∥ .
Proof. This follows from Proposition 9.13 and Corollary A.22.

Proposition 9.15. Let Gi : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(Gi) (i = 1, 2). Assume that G1 has a normalized weakly right-coprime
factor [M1; N1] and that G2 has a right factorization. Then

~δg(G1,G2) ≤
∥∥∥∥[

M1

N1

]
−

[
M2

N2

]∥∥∥∥ ,
where [M2; N2] is any right factor of G2.

Proof. This follows from Propositions 7.14 and 9.14.

The following corollary deals with ε-right factor admissible perturbations
(see Definition 8.12).

Corollary 9.16. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized weakly right-coprime factorization.

Let G∆ be a ε-right factor admissible perturbation of G. Then ~δ(G,G∆) < ε.

Proof. This follows immediately from Proposition 9.15.
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Corollary 9.17. Let Gi : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(Gi) (i = 1, 2). Assume that G1 has a normalized weakly right-coprime
factor [M1; N1] and G2 has a right factorization. If U is finite-dimensional,
then

~δg(G1,G2) = inf
[M2;N2]

∥∥∥∥[
M1

N1

]
−

[
M2

N2

]∥∥∥∥ ,
where [M2; N2] is any right factor of G2.

Proof. Let [M0
2; N

0
2] be a normalized weakly right-coprime factor of G2. For

each ε > 0 we will construct a Ṽ ∈ H∞(D,L(U )) which has a bounded
inverse in zero and is such that∥∥∥∥[

M1

N1

]
−

[
M0

2

N0
2

]
Ṽ

∥∥∥∥− ~δg(G1,G2) < ε. (9.1)

The desired equality then immediately follows using Proposition 7.14 (and
Proposition 9.15). By Proposition 9.14 there exists a V ∈ H∞(D,L(U ))
such that∥∥∥∥[

M1

N1

]
−

[
M0

2

N0
2

]
V

∥∥∥∥− ~δg(G1,G2) < ε/2.

Define Ṽ := V + δI. It is then easily computed that∥∥∥∥[
M1

N1

]
−

[
M0

2

N0
2

]
Ṽ

∥∥∥∥− ~δg(G1,G2) < ε/2 +

∥∥∥∥[
M0

2

N0
2

]∥∥∥∥ δ.
Define η := ε/(2‖[M0

2; N
0
2]‖). If we choose δ ∈ (0, η), then (9.1) is satisfied.

Since U is finite-dimensional the interval (−η, 0) must contain points that
are in the resolvent set of V(0) ∈ L(U ). This implies that there exists a
δ ∈ (0, η) such that Ṽ(0) has a bounded inverse.

Proposition 9.18. Let Gi : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(Gi) (i = 1, 2). Assume that G1 and G2 have weakly right-coprime factors
[M1; N1] and [M2; N2], respectively. Assume further that [M1; N1] is normalized
and that ‖∆‖∞ < 1, where ∆ := [M2; N2] − [M1; N1]. Then δ(G1,G2) =
~δ(G1,G2) = ~δ(G2,G1) < 1.

Proof. Let h ∈ H2(U ), we consider the projection of [M2; N2]h onto Z[M1;N1].
Since [M1; N1] is inner we have, using Lemma 9.6,

PZ[M1;N1]

[
M2

N2

]
h =

[
M1

N1

]
[M∗

1,N
∗
1]

([
M1

N1

]
+ ∆

)
h

=

[
M1

N1

]
(I + [M∗

1,N
∗
1]∆)h.
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We have ‖[M∗
1,N

∗
1]∆‖∞ < 1, which implies that I + [M∗

1,N
∗
1]∆ is invert-

ible in H∞(L(U )). It follows that PZ[M1;N1]
maps Z[M2;N2] onto Z[M1;N1] and

since [M1; N1] is injective, this mapping is injective. Since both [M1; N1] and

[M2; N2] are weakly right-coprime, we have Z[Mi;Ni] = V̂i(0) (i = 1, 2) by
Proposition 9.11. Lemma 9.5 now gives the result.

Definition 9.19. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Assume that G has a right factorization. Let ε > 0. The directed
gap ball with center G of radius ε is defined as

~B(G, ε) := {G∆ : G∆ has a right factorization, ~δg(G,G∆) < ε}.

The gap ball with center G of radius ε is defined as

B(G, ε) := {G∆ : G∆ has a right factorization, δg(G,G∆) < ε}.

Proposition 9.20. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized weakly right-coprime factorization

and let G∆ ∈ ~B(G, ε). Assume that U is finite-dimensional. Then G∆ is an
ε-right factor admissible perturbation of G.

Proof. This is immediate from Corollary 9.17.

Combining Corollary 9.16 and Proposition 9.20 we obtain the following.

Corollary 9.21. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized weakly right-coprime factorization

and that U is finite-dimensional. Then G∆ ∈ ~B(G, ε) if and only if G∆ is an
ε-right factor admissible perturbation of G.

Proof. This follows by combining Corollary 9.16 and Proposition 9.20.

Proposition 9.22. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized strongly right-coprime factorization.

Then there exists an η > 0 such that for all ε < η we have ~B(G, ε) = B(G, ε).

Proof. This follows from Propositions 7.26 and 9.18.

Corollary 9.23. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized strongly right-coprime factor [M; N]
and that U is finite-dimensional. Denote the Hankel operator of [M; N] by
H[M;N]. Then η in Proposition 9.22 can be taken equal to

√
1− ‖H[M;N]‖2.

Proof. This follows as the proof of Proposition 9.22 but using Proposition
7.32 instead of Proposition 7.26.
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The following result relates ε-right factor admissible perturbations and
the gap metric.

Corollary 9.24. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with 0 ∈
D(G). Assume that G has a normalized weakly right-coprime factorization,
that U is finite-dimensional and that ε <

√
1− ‖H[M;N]‖2. Then G∆ ∈

B(G, ε) if and only if G∆ is an ε-right factor admissible perturbation of G.

Proof. This follows from Corollaries 9.21 and 9.23.

Proposition 9.25. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G). Suppose that G has a normalized doubly coprime factorization and
that U is finite-dimensional. Let H[M;N] denote the Hankel operator of the

normalized strongly right-coprime factor [M; N]. Let ε ∈ (0,
√

1− ‖H[M;N]‖2).
Then there exists a ε-robust right factor stabilizing feedback function for G
that stabilizes all G∆ ∈ B(G, ε).

Proof. This follows from Proposition 8.17 and Corollary 9.24.

Corollary 9.26. Suppose that G : D(G) ⊂ C→ L(U ,Y ) with 0 ∈ D(G) is
a matrix-valued rational function. Let H[M;N] denote the Hankel operator of a

normalized strongly right-coprime factor [M; N]. Let ε ∈ (0,
√

1− ‖H[M;N]‖2).
Then there exists a rational ε-robust right factor stabilizing admissible feed-
back function for G that stabilizes all G∆ with δ(G,G∆) < ε.

Proof. This follows from the proof of Proposition 9.25 using Corollary 8.19.

Notes

The gap metric as a distance between closed subspaces of a Hilbert space was
first introduced in Krĕın and Krasnosel′skĭı [46] under the name aperture
(see Krasnosel′skĭı et. al. [45]). Proposition 9.14 was first proven by Georgiou
[33] for rational functions. The relation between the gap metric and right
factor admissible perturbation was investigated by, among others, Georgiou
and Smith [34] and Sefton and Ober [87].



Chapter 10

Balanced realizations

10.1 Lyapunov-balanced realizations

In this section we collect some results on Lyapunov-balanced realizations
which are available in the literature.

Definition 10.1. A discrete-time system is called Lyapunov-balanced if
it is input and output stable and its observability and controllability gramian
are equal.

The following result shows the existence and uniqueness of Lyapunov-
balanced realizations.

Proposition 10.2. Any H∞(D,L(U ,Y )) function has a minimal Lyapunov-
balanced realization. Minimal Lyapunov-balanced realizations are unique up
to a unitary similarity transformation in the state space. Their state opera-
tor is a contraction. Both the minimal Lyapunov-balanced realization and its
dual system are strongly stable.

Proof. See Young [99] or Theorems 11.2.5 and 11.2.9 in Peller [75] for all
the above statements except the ones about strong stability. The statements
about strong stability can be found in Ober and Wu [63]. The complete
theorem as stated above is contained in Theorem 9.5.6 of Staffans [89] (in
the continuous-time version).

Definition 10.3. A discrete-time system is called compact Lyapunov-
balanced if it is Lyapunov-balanced and its gramian is compact.

We note that any H∞(D,L(U ,Y )) function has a bounded Hankel op-
erator (see Definition A.24). It follows from Lemma A.26 that this Hankel

97
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operator is similar, through the Z-transform, to the Hankel map of any real-
ization of the given function. We will call this the Hankel map of the given
H∞(D,L(U ,Y )) function.

Proposition 10.4. Any H∞(D,L(U ,Y )) function with a compact Hankel
map has a minimal compact Lyapunov-balanced realization.

Proof. By Proposition 10.2 the given function has a minimal Lyapunov-
balanced realization. Since the Hankel map is independent of the realization
this Lyapunov-balanced realization has a compact Hankel map. Denote the
gramian by L. It follows, using Lemma 2.4 that L2 = C∗CBB∗ = C∗HB∗ is
compact. From this we conclude that L is compact.

Remark 10.5. From the proof of Propositions 10.2 and 10.4 one can obtain
the following explicit form of a compact Lyapunov-balanced realization.

Assume that we are given a H∞(D,L(U ,Y )) function with a compact
Hankel map H. Recall the backward shift realization Σrs from Remark 2.13.
Let X be the closure of the range of the Hankel map. Since H is compact
there exist a nonincreasing positive sequence (σi) and orthonormal bases (vi)
of the closure of the range of H∗ and (wi) of X such that

Hvi = σiwi, H∗wi = σivi

(this is known as the structure theorem for compact operators, note that the
σi are positive since we only want the (wi) to be a basis for X , not for the
whole of l2(Z+,Y )). The σi are called the Hankel singular values of the
system and the (vi, wi) the Schmidt pairs. We have

〈Abalwj, wi〉l2(Z+,Y ) =

√
σj

σi

〈Abswj, wi〉l2(Z+,Y ).

Pick an orthonormal basis (ui) in U , then

〈Bbaluj, wi〉l2(Z+,Y ) =
1
√
σi

〈Bbsuj, wi〉l2(Z+,Y ).

Note that since Bbsu = Hu, where u : Z− → U is defined by u−1 = u and
u−i = 0 if i > 1, we have

〈Bbaluj, wi〉l2(Z+,Y ) =
√
σi〈uj, vi〉l2(Z−,U ).

Choose an orthonormal basis (yi) in Y , then

〈Cbalwj, yi〉Y =
√
σj〈Cbswj, yi〉Y .
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Of course Dbal equals the value of the given H∞(D,L(U ,Y )) function at
zero, as is the case with any realization. The gramians are both equal to
Lbal :=

√
HH∗. So with respect to the orthonormal basis (wi) the gramian

is diagonal, we have

〈Lbalwj, wi〉 = σiδij,

with δij the Kronecker delta.

Definition 10.6. Let G ∈ H∞(D,L(U ,Y )) have a compact Hankel map H.
The realization from Remark 10.5 is called the compact Lyapunov-balanced
realization of G with respect to the sequence of eigenvectors (wi) and is
denoted by Σbal

(wi)
.

Note that Σbal
(wi)

is always approximately controllable and observable since
the gramian is positive.

Definition 10.7. Let G ∈ H∞(D,L(U ,Y )) have a compact Hankel map
H. Let (wi) be an ordered sequence of eigenvectors of HH∗ (the ordering is
such that the corresponding eigenvalues σ2

i form a nonincreasing sequence).
Let n ∈ Z+ be such that σn > σn+1. The truncated Lyapunov-balanced
realization of dimension n of G with respect to the sequence of eigenvectors
(wi) is defined as the restriction/projection of Σbal

(wi)
onto Xn := {wi : i =

1, . . . , n}.

Remark 10.8. Note that we used the term ‘an ordered sequence of eigen-
vectors of HH∗’ since such a sequence is not unique if HH∗ has repeated
eigenvalues. As we will show in the next lemma the condition σn > σn+1 en-
sures that the choice of ordered sequence of eigenvectors is to a large extent
unimportant. Also note that in the case that HH∗ has repeated eigenvalues
the truncated Lyapunov-balanced realization of dimension n is not defined
for every n ∈ Z+.

Proposition 10.9. Let G ∈ H∞(D,L(U ,Y )) have a compact Hankel map
H. Let (wi) and (w̃i) be ordered bases of eigenvectors of HH∗. The trun-
cated Lyapunov-balanced realization of dimension n of G with respect to the
sequence of eigenvectors (wi) and that with respect to the the sequence of
eigenvectors (w̃i) are related by a unitary similarity transformation. In par-
ticular, the transfer functions are the same.

Proof. Since σn > σn+1 we have that Xn is the direct sum of eigenspaces.
It follows that both (wi)i=1,...,n and (w̃i)i=1,...,n are bases for Xn. Define the
unitary operator U ∈ L(Xn) by Uwi = w̃i with i = 1, . . . , n. It is easily seen
that this is the desired unitary similarity transformation.
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We now consider the distance between a discrete-time system and its
truncated Lyapunov-balanced realizations. We measure this distance by the
supremum norm of the difference of the transfer functions. To formulate the
conditions needed we need the concept of a nuclear operator.

Remark 10.10. The singular values of an operator T ∈ L(H1,H2) are
defined as follows. The k-th singular value of T is the distance, with respect
to the norm in L(H1,H2), of T from the set of operators in L(H1,H2) of
rank at most k− 1. If T is compact, then the singular values are exactly the
square roots of the eigenvalues of TT ∗.

Remember that an operator T ∈ L(H1,H2) is nuclear if its singular
values si satisfy

∑∞
i=1 si < ∞. The sum of the singular values is called the

nuclear norm. The set of nuclear operators is a linear subspace of L(H1,H2)
and the nuclear norm is a norm on this subspace. Nuclear operators are com-
pact. The operator T is called Hilbert-Schmidt if

∑∞
i=1 s

2
i < ∞. Equiva-

lently, T ∈ L(H1,H2) is Hilbert-Schmidt if for all orthonormal bases (ei) of
H1 we have

∑
i ‖Tei‖2 <∞. Hilbert-Schmidt operators are compact.

Proposition 10.11. Assume that G ∈ H∞(D,L(U ,Y )), with U and Y
finite-dimensional, has a nuclear Hankel map H. Define Gn as the transfer
function of a truncated Lyapunov-balanced realization of dimension n of G.
Then we have

‖G− Gn‖∞ ≤ 2
∞∑

i=n+1

σi.

In particular Gn → G in the H∞ norm as n→∞.

Proof. The proof of this proposition is on page 110.

Remark 10.12. Note that the error-bound does not depend on the choice
made in the eigenvectors wi used to define the truncated balanced realization
of dimension n. This is due to the fact that by Proposition 10.9 the transfer
function Gn does not depend on the choice of eigenvectors wi.

Remark 10.13. Note that it follows from Proposition 10.11 that, under the
conditions stated in that proposition, the Hankel operator of Gn converges
to the Hankel operator of G in the nuclear norm.

The following proposition identifies a fundamental limitation to approxi-
mating a system by a system with a finite-dimensional state space.

Proposition 10.14. Assume that G ∈ H∞(D,L(U ,Y )) with U finite-
dimensional. Let Gn be the transfer function of a discrete-time system with
state space dimension n, input space U and output space Y . Then Gn → G
in the H∞ norm as n→∞ only if G has a compact Hankel map.
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Proof. By assumption Gn → G in the H∞ norm as n→∞. It follows that the
Hankel operator of Gn converges to the Hankel operator of G in the operator
norm. Since Gn is the transfer function of a discrete-time system with state
space dimension n and input space dimension m its Hankel operator has rank
at most mn. Since the Hankel operator of G is in the closure in the operator
norm of the space of finite-rank operators it must be compact.

Most of the remainder of this section on Lyapunov-balanced realizations is
devoted to a proof of Proposition 10.11. Lemmas 10.15 and 10.16 however are
included for the proof of Proposition 10.17, which gives a sufficient condition
for nuclearity of the Hankel map.

Lemma 10.15. Let Σ be a discrete-time system that is exponentially stable
and has a finite-dimensional output space. Then its output map is Hilbert-
Schmidt.

Proof. Since the system is exponentially stable, there exist M ≥ 0 and r ∈
[0, 1) such that for all x ∈X we have ‖Anx‖ ≤Mrn‖x‖ by Proposition 3.26.

Define p := dim Y and let (yi)i∈{1,...p} be a basis for the output space.
Define Ci : X → l2(Z+) by (Cix)n = 〈(Cx)n , yi〉Y , where C is the output
map of the system. We first prove that Ci is Hilbert-Schmidt.

For n ∈ Z+ define Cn
i : X → C by Cn

i x = (Cix)n. This mapping is
a continuous linear functional. By the Riesz representation theorem there
exists, for each n ∈ Z+, a wn ∈X such that Cn

i x = 〈x,wn〉X and

‖wn‖ = ‖Cn
i ‖ = sup

‖x‖=1

|Cn
i x|.

We have

|Cn
i x| = |〈(Cx)n, yi〉Y | = |〈CAnx, yi〉Y | ≤ ‖C‖ M rn ‖x‖,

where in the last step we have used exponential stability. Thus we have
∞∑

n=0

‖Cn
i ‖2 =

∞∑
n=0

sup
‖x‖=1

|Cn
i x|2 ≤

∞∑
n=0

sup
‖x‖=1

‖C‖2 M2 r2n ‖x‖2

= ‖C‖2 M2

∞∑
n=0

r2n =
‖C‖2 M2

1− r2
<∞.

Let (xj)j∈Z+ be an orthonormal basis for X . We compute

∞∑
j=0

‖Cixj‖2 =
∞∑

j=0

∞∑
n=0

|Cn
i xj|2 =

∞∑
j=0

∞∑
n=0

|〈xj, wn〉|2 =
∞∑

n=0

∞∑
j=0

|〈xj, wn〉|2.
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From the Parseval relation we obtain that this is equal to

∞∑
n=0

‖wn‖2 =
∞∑

n=0

‖Cn
i ‖2.

We already saw that the right-hand side of this equation is finite. It follows
that

∞∑
j=0

‖Cixj‖2 <∞,

for all orthonormal sequences (xj)j∈Z+ . This shows that Ci is Hilbert-Schmidt.
We use the fact that Ci is Hilbert-Schmidt to show that C is. We have

∞∑
j=0

‖Cxj‖2 =
∞∑

j=0

p∑
i=1

‖Cixj‖2 =

p∑
i=1

∞∑
j=0

‖Cixj‖2 <∞.

This shows that C is Hilbert-Schmidt.

Lemma 10.16. Let Σ be a discrete-time system that is exponentially stable
and has a finite-dimensional input space. Then its input map is Hilbert-
Schmidt.

Proof. This follows from Lemma 10.15 applied to the dual system of Σ using
that the adjoint of a Hilbert-Schmidt operator is Hilbert-Schmidt.

Proposition 10.17. Let Σ be a discrete-time system that is exponentially
stable and has finite-dimensional input and output spaces. Then its Hankel
map is nuclear.

Proof. It follows from Lemmas 10.15 and 10.16 that the input and output
maps are Hilbert-Schmidt. Using that the Hankel map is the product of
these two maps (Lemma 2.4) and that the product of two Hilbert-Schmidt
operators is nuclear we obtain the desired result.

All results from the next proposition to the end of this section are in-
cluded as building blocks for the proof of Proposition 10.11. We first prove
a property of truncated Lyapunov-balanced realizations.

Proposition 10.18. Let G ∈ H∞(D,L(U ,Y )) have a compact Hankel map
with at least n nonzero singular values. Then a n-dimensional truncated
Lyapunov-balanced realization is exponentially stable.
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Proof. We decompose the state space X = X1⊕X2, where X1 corresponds
to the first n terms in the sequence (wi). The system operator and the
gramian are decomposed accordingly. The observation Lyapunov equation
of Σbal

(wi)
gives

A∗
11L1A11 + A∗

21L2A21 − L1 + C∗
1C1 = 0.

Assume that A11v = λv. Using the above identity we obtain

(1− |λ|2) ‖L1/2
1 v‖2 = ‖L1/2

2 A21v‖2 + ‖C1v‖2.

Since this is nonnegative, we obtain |λ| ≤ 1. If |λ| = 1 then C1v = 0 and

L
1/2
2 A21v = 0. Since L2 > 0 (since the gramian of Σbal

(wi)
is positive), it follows

that A21v = 0. Define V = [v; 0]. Then (using A21v = 0) AV = λV , so
CAkV = λkC1v = 0. From the approximate observability of Σbal

(wi)
we obtain

V = 0. We conclude that all eigenvalues of A11 are in the open unit disc.
Since the state space is finite-dimensional, it follows that the n-dimensional
truncated Lyapunov-balanced realization is exponentially stable.

The following lemma shows continuous dependence of the eigenvalues and
eigenvectors. Note that for continuity of the eigenvectors we might have to
resort to a subsequence.

Lemma 10.19. Let Tm, T ∈ L(H ) be compact and nonnegative self-adjoint
and such that ‖Tm−T‖ → 0 as m→∞. Denote the eigenvalues of T by λi.
Assume that the eigenvalues are ordered in decreasing magnitude and repeated
according to their multiplicity. Then for the eigenvalues λm

i of Tm, also
ordered in decreasing magnitude and repeated according to their multiplicity,
we have λm

i → λi. Let vm
i be a basis of eigenvectors for Tm. There exists

a subsequence Tmk
of Tm and a basis of eigenvectors (vi) for T such that

‖vmk
i − vi‖ → 0 as k →∞.

Proof. We recall Weyl’s theorem on eigenvalues: if A,B ∈ L(H ) are com-
pact nonnegative self-adjoint operators, then their eigenvalues (ordered in
decreasing magnitude) satisfy λi+j−1(A+B) ≤ λi(A) + λj(B). Taking j = 1
we obtain λi(A+B) ≤ λi(A) + ‖B‖.

From Weyl’s theorem on eigenvalues we obtain for the given situation
λm

i ≤ λi + ‖T − Tm‖ and λi ≤ λm
i + ‖T − Tm‖. This shows that λm

i → λi as
m→∞.

We first show the statement on the eigenvectors for the set of leading
eigenvectors (i.e. the ones corresponding to the largest eigenvalue). Denote
the multiplicity of the largest eigenvalue of T by N . Further denote vm :=
[vm

1 , . . . v
m
N ] and v := [v1, . . . vN ], where the vi are orthonormal eigenvectors
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of T corresponding to λ1 and the vm
i are orthonormal eigenvectors of Tm

for the largest N eigenvalues (counted according to their multiplicity) λm
i .

Decompose vm = Rmv + xm with Rm a N × N matrix of complex numbers
and 〈xm

i , vj〉 = 0 for all i = 1, . . . , N and j = 1, . . . , N . Denote the rows of
R by Ri. Then we have vm

i = Rm
i v + xm

i . Note that by the Pythagorean
Theorem ‖xm

i ‖2 = 1− ‖Rm
i ‖2CN . We have

λm
i = ‖Tmv

m
i ‖ ≤ ‖Tvm

i ‖+ ‖T − Tm‖ = ‖λ1R
m
i v + Txm

i ‖+ ‖T − Tm‖.

Note that the vi are orthonormal and 〈Txm
i , vj〉 = 〈xm

i , T vj〉 = 0 since
〈xm

i , vj〉 = 0. By the Pythagorean Theorem we then have

‖λ1R
m
i v + Txm

i ‖2 = λ2
1‖Rm

i ‖2CN + ‖Txm
i ‖2.

Denote the restriction of T to the orthogonal complement of the eigenspace
corresponding to λ1 by Ť . Then Ť is a compact nonnegative self-adjoint
operator with eigenvalues (λi)i≥N+1 and so its norm is λN+1. Since xm

i is
in the domain of Ť we have ‖Txm

i ‖ ≤ λN+1‖xm
i ‖. Combining the above we

obtain

λm
i ≤

√
λ2

1‖Rm
i ‖2CN + λ2

N+1

(
1− ‖Rm

i ‖2CN

)
+ ‖T − Tm‖.

This gives

(λm
i − ‖T − Tm‖)2 − λ2

N+1

λ2
1 − λ2

N+1

≤ ‖Rm
i ‖2CN .

Since we have convergence of the eigenvalues, the left-hand side converges
to 1. Since we have ‖Rm

i ‖2CN ≤ 1, we must have ‖Rm
i ‖2CN → 1. This im-

plies that ‖xm
i ‖ → 0. Hence ‖xm‖ → 0. The sequence of matrices (Rm) is

bounded, which implies that it has a convergent subsequence. Denote the
limit of such a subsequence by R∞. Since ‖xm‖ → 0, we then have that
the corresponding subsequence of (vm) converges to v∞ := R∞v. Since the
components of (vm) have norm one and are orthogonal to each other, the
same holds for the components of v∞. We now replace the set of orthonor-
mal eigenvectors (vi)i=1,...,N by the components of v∞. This gives another
sequence of orthonormal eigenvectors of T . For the leading eigenvalue this
sequence has the desired properties.

The general result follows by induction. Assume that we have proven the
assertion for the first n eigenvalues (not counting multiplicity) with respec-
tive multiplicies Nn. Denote N :=

∑n
k=1Nn. We can apply the above to

the operators T̃ and T̃m, defined as the restriction of T respectively Tm, to
the orthogonal complement of the eigenspaces corresponding to the first N
eigenvalues (counting multiplicity). This gives the result for the first n + 1
eigenvalues (not counting multiplicity).
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Note that in Lemma 10.19 the eigenvectors vi of T depend on the approx-
imating sequence Tm: a different choice of approximating sequence may lead
to a different orthonormal set of eigenvectors for T . The following lemma
shows that we can obtain any desired orthonormal basis of eigenvectors for
T by properly adjusting the approximating sequence. Lemma 10.20 is not
needed for the proof of Proposition 10.11, but we give it for completeness.

Lemma 10.20. Let Tm, T ∈ L(H ) be compact and nonnegative self-adjoint
and such that ‖Tm − T‖ → 0 as m → ∞. Let (vi) be an orthonormal
basis of eigenvectors of T , ordered according to decreasing magnitude of the
corresponding eigenvalues. Then there exists a unitary operator U ∈ L(H )
such that U∗TU = T and there exists an orthonormal basis of eigenvectors
of a subsequence of T̃m := U∗TmU that converges to the given eigenvectors
(vi) as m→∞.

Proof. From Lemma 10.19 we obtain an orthonormal basis of eigenvectors
(wi) of T and eigenvectors vm

i of a subsequence of Tm such that vm
i → wi.

We define the unitary operator U by Uvi = wi. Note that since (wi) and (vi)
are orthonormal bases this operator is indeed well-defined and unitary. Since
both (wi) and (vi) are ordered the eigenvalues corresponding to the same
index are equal. This gives U∗TUvi = Tvi, from which we obtain U∗TU = T
since (vi) is a basis. Define ṽm

i := U∗vm
i . Then ṽm

i is an eigenvector of T̃m

with eigenvalue λm
i . Since U is unitary the ṽm

i are orthonormal. We have
ṽm

i → U∗wi = vi, since by assumption vm
i → wi and by definition of U we

have vi = U∗wi.

Using Lemma 10.19 we show the continuity of singular values and Schmidt
pairs.

Lemma 10.21. Let Tm, T ∈ L(H ) be compact and such that ‖Tm−T‖ → 0
as m→∞. Denote the singular values of T by σi. Assume that the singular
values are ordered in decreasing magnitude and repeated according to their
multiplicity. Then for the singular values σm

i of Tm, also ordered in decreasing
magnitude and repeated according to their multiplicity, we have σm

i → σi as
m → ∞. Let (vm

i , w
m
i ) be Schmidt pairs for Tm. There exists a subsequence

Tmk
of Tm and Schmidt pairs (vi, wi) for T such that ‖vmk

i − vi‖ → 0 and
‖wmk

i −wi‖ → 0 as k →∞. The wi form an orthonormal basis of eigenvectors
for TT ∗ and the vi for T ∗T .

Proof. We first show that Tm → T implies T ∗
mTm → T ∗T . We have

‖T ∗T − T ∗
mTm‖ = ‖T ∗T − T ∗Tm + T ∗Tm − T ∗

mTm‖
≤ ‖T‖ ‖T − Tm‖+ ‖Tm‖ ‖T − Tm‖.



106 CHAPTER 10. BALANCED REALIZATIONS

Since Tm → T we have ‖Tm‖ ≤ 2‖T‖ for m large enough, which together
with the above inequality gives the desired convergence. So we can apply
Lemma 10.19 to obtain the convergence of the singular values. This lemma
also gives a basis (vi) of eigenvectors for T ∗T and a basis (wi) of eigenvectors
for TT ∗ with the desired convergence properties. We only need to show that
(vi, wi) is a Schmidt pair for T , i.e. Tvi = σiwi and T ∗wi = σivi. We show
this using that (vm

i , w
m
i ) is a Schmidt pair for Tm, i.e. Tmv

m
i = σm

i w
m
i and

T ∗
mw

m
i = σm

i v
m
i . We have

‖Tvi− σiwi‖ ≤ ‖T −Tm‖+ ‖Tm‖ ‖vi− vm
i ‖+ |σm

i − σi|+ |σi|‖wm
i −wi‖,

which implies that Tvi = σiwi. The other equality is proven similarly.

Similarly to Lemma 10.20 we can obtain any desired sequence of Schmidt
pairs by changing the approximating sequence. Lemma 10.22 is not needed
for the proof of Proposition 10.11, it is given for sake of completeness.

Lemma 10.22. Let Tm, T ∈ L(H1,H2) be compact and such that ‖Tm −
T‖ → 0 as m→∞. Denote the singular values of T by σi and corresponding
Schmidt pairs by (vi, wi). Then for the singular values σm

i of Tm we have
σm

i → σi. Furthermore, there exist unitary operators V ∈ L(H1) and W ∈
L(H2) such that TV = WT and there exist Schmidt pairs (vmk

i , wmk
i ) for a

subsequence of T̃m := WTmV
∗ such that ‖vmk

i −vi‖ → 0 and ‖wmk
i −wi‖ → 0

as k →∞.

Proof. Convergence of the singular values follows immediately from Lemma
10.19. Let (ṽm

i , w̃
m
i ) be a given sequence of Schmidt pairs of Tm. By Lemma

10.19 applied to T ∗T with approximating sequence T ∗
mTm there exist a basis

of eigenvectors (ṽi) of T ∗T such that ṽm
i → ṽi. Similarly, there exist a basis

of eigenvectors (w̃i) of TT ∗ such that w̃m
i → w̃i. Since (ṽm

i , w̃
m
i ) is a Schmidt

pair we have Tmṽ
m
i = σm

i w̃
m
i and T ∗

mw̃
m
i = σm

i ṽ
m
i . Taking limits we obtain

T ṽi = σiw̃i and T ∗w̃i = σiṽi, which shows that (ṽi, w̃i) is a Schmidt pair of T .
Define V ∈ L(H1) and W ∈ L(H2) by V ṽi = vi and Ww̃i = wi, respectively.
Since (ṽi), (vi), (w̃i), (wi) are orthonormal bases V and W are unitary. Define
T̃m := WTmV

∗ and vm
i := V ṽm

i , wm
i := Ww̃m

i . Then (vm
i , w

m
i ) is a Schmidt

pair of T̃m since

T̃mv
m
i = WTmV

∗vm
i = WTmṽ

m
i = σm

i Ww̃m
i = σm

i w
m
i ,

T̃ ∗
mw

m
i = V T ∗

mW
∗wm

i = V T ∗
mw̃

m
i = σm

i V ṽ
m
i = σm

i v
m
i .

We have vm
i = V ṽm

i → V ṽi = vi and wm
i = Ww̃m

i → Ww̃i = wi. We have
TV = WT since W ∗TV ṽi = W ∗Tvi = σiW

∗wi = σiw̃i = T ṽi.
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The following lemma gives a series expansion of a function that has a
nuclear Hankel map.

Lemma 10.23. Assume that G ∈ H∞(D,L(U ,Y )), with U and Y finite-
dimensional, has a nuclear Hankel map. Then there exist cn ∈ L(U ,Y ),
λn ∈ D such that

G(z) =
∞∑

n=1

cn
1

1− λnz
.

If U = Y = C then we have

∞∑
n=1

|cn|
1− |λn|

<∞. (10.1)

Proof. The scalar statement can be found in Peller [75, page 238]. The matrix
statement follows from applying the scalar statement to components.

Definition 10.24. Assume that G ∈ H∞(D,L(U ,Y )), with U and Y
finite-dimensional, has a nuclear Hankel map. Let cn and λn be as in Lemma
10.23. For m ∈ Z+ define

Gm(z) :=
m∑

n=1

cn
1

1− λnz
.

This is called the (m, c, λ) nuclear approximant of G.

Lemma 10.25. With the assumptions and the notation as in Definition
10.24 we have

‖G− Gm‖∞ → 0, ‖H −Hm‖N → 0,

where H is the Hankel map of G, Hm is the Hankel map of Gm and ‖ · ‖N is
the nuclear norm.

Proof. We first compute the minimum of the absolute value of z 7→ 1− λnz
on the unit disc. Using the triangle inequality we have |1− λnz| ≥ 1− |λn|.
For z = λ̄n/|λn| we have equality, so the minimum is 1−|λn|. It follows that∥∥∥∥ 1

1− λn·

∥∥∥∥
∞

=
1

1− |λn|
.

We show convergence in the H∞ norm for the scalar case. We have

‖G−Gm‖∞ ≤
∞∑

n=m+1

|cn|
∥∥∥∥ 1

1− λn·

∥∥∥∥
∞

=
∞∑

n=m+1

|cn|
1

1− |λn|
→ 0, as m→∞
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using Lemma 10.23. The matrix case follows from applying the above to
each component of the matrix. We now turn to the case of the nuclear
norm. It is easily seen that [λn, 1;λn, 1] is a realization of z 7→ 1

1−λnz
. The

observation Lyapunov equation is |λn|2LC −LC + |λn|2, which has as unique

solution LC := |λn|2
1−|λn|2 . The control Lyapunov equation, |λn|2LB − LB + 1,

has as unique solution LB := 1
1−|λn|2 . It follows that the unique positive

Hankel singular value is |λn|
1−|λn|2 . So this is the nuclear norm of 1

1−λn· . Since

|λn| < 1 we have that this nuclear norm is smaller than 1
1−|λn| . Convergence

in the nuclear norm is shown, using this, similarly to convergence in the H∞

norm.

The earlier proven continuity of singular values and Schmidt pairs applied
to the nuclear approximants gives the following.

Lemma 10.26. Assume that G ∈ H∞(D,L(U ,Y )), with U and Y finite-
dimensional, has a nuclear Hankel map. Denote its (m, c, λ) nuclear ap-
proximant by Gm. Denote the singular values of the Hankel map of G by
σi. Assume that the singular values are ordered in decreasing magnitude and
repeated according to their multiplicity. Then for the singular values σm

i of
the Hankel map of Gm, also ordered in decreasing magnitude and repeated
according to their multiplicity, we have σm

i → σi. Let (vm
i , w

m
i ) be Schmidt

pairs for the Hankel map of Gm. There exists a subsequence Gmk
of Gm and

Schmidt pairs (vi, wi) for the Hankel map of G such that ‖vmk
i − vi‖ → 0 and

‖wmk
i − wi‖ → 0 as k →∞.

Proof. Lemma 10.25 show that Gm converges to G in the infinity norm. This
implies that the Hankel map of Gm converges to the Hankel map of G in the
operator norm. The result then follows from Lemma 10.21.

Remark 10.27. Lemma 10.26 implies that, for m large enough and n such that
σn > σn+1, we have σm

n > σm
n+1. So if the n-dimensional Lyapunov-balanced

trucation of G is well-defined, then so is the n-dimensional Lyapunov-balanced
trucation of Gm for m large enough. By Lemma 10.9 the transfer function of
this n-dimensional Lyapunov-balanced trucation of Gm does not depend on
the sequence of eigenvectors chosen. Denote this transfer function by Gn

m.

Lemma 10.28. With the assumptions and the notation as in Definition
10.24 and Remark 10.27 we have (if G has at least n nonzero Hankel singular
values)

‖Gn − Gn
mk
‖∞ → 0 as k →∞.
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Proof. For notational convenience we will assume that Gn
m has been replaced

by the subsequence Gn
mk

. By Lemma 10.26 we have convergence of the sin-
gular values as m → ∞. Given Schmidt pairs (vm

i , w
m
i ) of the Hankel map

of Gm converge to certain Schmidt pairs (vi, wi) of the Hankel map of G by
the same lemma. Denote by Σm the Lyapunov-balanced realization of Gm

with respect to the eigenvectors (wm
i ) and by Σn

m its n-dimensional Lyapunov-
balanced truncation. It follows from Remark 10.27 that the transfer function
of Σn

m equals Gn
m. Denote by Σ the Lyapunov-balanced realization of G with

respect to the sequence of eigenvectors (wi) and by Σn its n-dimensional
Lyapunov-balanced truncation. Using Proposition 10.9 it follows that the
transfer function of Σn equals Gn. Note that we have

An
m = PX n

m
Am|X n

m
, An = PX nA|X n .

Let x ∈X . Then we have x =
∑∞

j=1〈x,wm
j 〉wm

j . It follows that

〈Amx,w
m
i 〉 =

∞∑
j=1

〈x,wm
j 〉〈Amw

m
j , w

m
i 〉.

Using the explicit description from Remark 10.5 we obtain

〈Amx,w
m
i 〉 =

∞∑
j=1

〈x,wm
j 〉

√
σm

j

σm
i

〈Abswm
j , w

m
i 〉.

Since we have An
mx =

∑n
i=1〈Amx,w

m
i 〉wm

i it follows that

An
mx =

n∑
i=1

∞∑
j=1

〈x,wm
j 〉

√
σm

j

σm
i

〈Abswm
j , w

m
i 〉wm

i .

Similarly we have

Anx =
n∑

i=1

∞∑
j=1

〈x,wj〉
√
σj

σi

〈Abswj, wi〉wi.

Along similar lines it follows that

Bn
mu =

n∑
k=1

〈Bn
m, w

m
k 〉wm

k =
n∑

k=1

√
σm

k 〈u, v
m
k 〉wm

k ,

Bnu =
n∑

k=1

〈Bn, wk〉wk =
n∑

k=1

√
σk〈u, vk〉wk,
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where u : Z− → U is defined by u−1 = u and otherwise zero. It also follows
that

Cn
mx =

p∑
i=1

∞∑
k=1

√
σm

k 〈x,w
m
k 〉〈Cbswm

k , yi〉yi,

Cn
mx =

p∑
i=1

∞∑
k=1

√
σk〈x,wk〉〈Cbswk, yi〉yi,

where p = dim Y . From the above we obtain that

Cn
mA

n
mB

n
mu =

p∑
k=1

n∑
i=1

n∑
j=1

σm
j 〈u, vm

j 〉〈Abswm
j , w

m
i 〉〈Cbswm

k , yk〉yk,

and

CnAnBnu =

p∑
k=1

n∑
i=1

n∑
j=1

σj〈u, vj〉〈Abswj, wi〉〈Cbswk, yk〉yk.

It follows that Cn
mA

n
mB

n
m → CnAnBn as m→∞. Similarly we obtain for all

k ∈ Z+ that Cn
m(An

m)kBn
m → Cn(An)kBn as m→∞. It follows that we have

convergence of the Taylor coefficients of Gn
m to those of Gn.

Proposition 10.18 shows that Σn
m (for m large enough) and Σn are expo-

nentially stable (note that since the Hankel singular values of Σm converge to
those of Σ it follows that Σm has at least n nonzero Hankel singular values for
m large enough). By dominated convergence it now follows that the trans-
fer function Gn

m converges to Gn pointwise in D. Since D is compact this is
equivalent to uniform convergence and so we have ‖Gn

m−Gn‖H∞(L(U ,Y )) → 0
as desired.

Proof of Proposition 10.11. We have

‖G− Gn‖∞ ≤ ‖G− Gm‖∞ + ‖Gm − Gn
m‖∞ + ‖Gn

m − Gn‖∞. (10.2)

Let ε > 0. From Lemma 10.25 we have ‖G − Gm‖∞ → 0 as m → ∞ and so
there exists a M1 such that if m ≥ M1 then ‖G− Gm‖∞ < ε. From Lemma
10.28 we have ‖Gn − Gn

m‖∞ → 0 as m → ∞. Hence there exists a M2 such
that if m ≥ M2 then ‖Gn

m − Gn‖∞ < ε. We now consider the second term
on the right-hand side of (10.2). From finite-dimensional theory (see Zhou,
Doyle and Glover [103, page 566]) we obtain

‖Gm − Gn
m‖∞ ≤ 2

m∑
i=n+1

σm
i .
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Since σm
i → σi by Lemma 10.26 there exists an M3 such that if m ≥ M3,

then |σm
i − σi| < ε/n from which it follows that

n∑
i=1

σm
i >

n∑
i=1

σi − ε.

By the convergence in the nuclear norm of Gm to G (Lemma 10.25) we have
‖Gm‖N → ‖G‖N , which implies the existence of a M4 such that if m ≥ M4,
then

m∑
i=1

σm
i ≤

∞∑
i=1

σi + ε.

Combining the above three inequalities we see that if m ≥M3 and m ≥M4,
then

‖Gm − Gn
m‖∞ ≤ 2

m∑
i=n+1

σm
i = 2

m∑
i=1

σm
i − 2

n∑
i=1

σm
i

≤ 2
∞∑
i=1

σi + 2ε− 2
n∑

i=1

σi + 2ε = 2
∞∑

i=n+1

σi + 4ε.

Define M = max{M1,M2,M3,M4}. Then for m ≥M

‖G− Gn‖∞ ≤ 2
∞∑

i=n+1

σi + 6ε.

Since this holds for all ε > 0 we obtain

‖G− Gn‖∞ ≤ 2
∞∑

i=n+1

σi.

�

10.2 LQG-balanced realizations

In this section we study LQG-balanced realizations. The optimal closed-loop
system from Definition 6.32 plays a crucial role in relating LQG-balanced
realizations and Lyapunov-balanced realizations.
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Proposition 10.29. Let Σ be an input and output stabilizable discrete-time
system. Let Qmin and Pmin denote the optimal cost operators of the system
and of its dual system, respectively, and let LB and LC denote the gramians
of the optimal closed-loop system. Then λ ∈ σ(PminQmin) if and only if
λ/(1 + λ) ∈ σ(LBLC).

Proof. From Propositions 6.35 and 6.43 we obtain the equality LBLC =
(I + PminQmin)−1PminQmin, from which it follows that I − LBLC = (I +
PminQmin)−1. So 1 ∈ ρ(LBLC), and PminQmin = (I − LBLC)−1LBLC . Let
λ ∈ C− {−1} and define µ := λ/(1 + λ), then λ = µ/(1− µ). We have

λI − PminQmin =
µ

1− µ
I − LBLC(I − LBLC)−1

=
1

1− µ
[
µI − (1− µ)LBLC(I − LBLC)−1

]
=

1

1− µ
[µ(I − LBLC)− (1− µ)LBLC ] (I − LBLC)−1

=
1

1− µ
(µI − LBLC)(I − LBLC)−1.

This shows that λ ∈ σ(PminQmin) if and only if µ = λ/(1+λ) ∈ σ(LBLC).

Proposition 10.30. Let Σi with i = 1, 2 be two input and output stabilizable
discrete-time systems. Let Qmin

i and Pmin
i denote the optimal cost operators

of the system and of its dual system, respectively. If the two systems have the
same transfer function then, with the possible exception of zero, the spectra
of Pmin

1 Qmin
1 and Pmin

2 Qmin
2 are equal.

Proof. Denote the gramians of the optimal closed-loop system of Σi by LBi

and LCi
. Then according to Proposition 10.29, the proposition would be

proved if the nonzero elements in the spectrum of LB1LC1 equal the nonzero
elements in the spectrum of LB2LC2 . Since the transfer function of both op-
timal closed-loop systems is a normalized weakly right-coprime factor of the
transfer function of both the Σi by Proposition 7.11, there exists by Proposi-
tion 7.15 a unitary V ∈ L(U ) such that [M2; N2] = [M1; N1]V . For the Hankel
maps of the optimal closed-loop systems this implies H2 = H1V , which im-
plies that H2H∗

2 = H1H∗
1. Since for arbitrary bounded operators S and T

we have that the nonzero elements in the spectrum of ST equal the nonzero
elements in the spectrum of TS (Lemma 3.16), we have that the nonzero
elements in the spectrum of LBLC = BB∗C∗C equal the nonzero elements
in the spectrum of HH∗ = CBB∗C∗. This shows that the nonzero elements
in the spectrum of LB1LC1 equal the nonzero elements in the spectrum of
LB2LC2 .
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Definition 10.31. Let Σ be an input and output stabilizable system. Denote
the optimal cost operator by Qmin and the optimal cost operator of the dual
system by Pmin. The square roots of the points in the spectrum of PminQmin,
with the exception of zero, are called the LQG-characteristic values of Σ.

Note that Proposition 10.30 shows that the LQG-characteristic values
only depend on the transfer function, not on the particular realization.

Corollary 10.32. Let Σ be an input and output stabilizable system. Denote
the Hankel map of a realization of a normalized weakly right-coprime factor
of the transfer function of Σ by H. Then µ is a LQG-characteristic value of
Σ if and only if µ 6= 0 and µ2/(1 + µ2) ∈ σ(HH∗). In particular we have
µ2

1/(1 + µ2
1) = ‖H‖2 for the largest LQG-characteristic value µ1.

Proof. The relationship between the LQG-characteristic values and the spec-
trum of H∗H was proven in the proof of Proposition 10.30. The formula for
the largest LQG-characteristic value follows using that since HH∗ is non-
negative self-adjoint its norm equals the largest eigenvalue and also equals
‖H‖2.

Definition 10.33. A discrete-time system is called LQG-balanced if it is
input and output stabilizable and the optimal cost operator of the system
and that of its dual system are equal.

The following result shows the existence and uniqueness of LQG-balanced
realizations.

Proposition 10.34. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic with
0 ∈ D(G) and assume that G has a strongly right-coprime factorization. Then
G has a minimal LQG-balanced realization. Conversely, the transfer func-
tion of a LQG-balanced realization has a strongly right coprime-factorization.
Minimal LQG-balanced realizations are unique up to a unitary similarity
transformation in the state space.

Proof. Using Proposition 7.24 it follows from the assumption that G has a
strongly right-coprime factorization that G has a normalized strongly right-
coprime factorization. Denote a normalized strongly right-coprime factor by
[M; N]. From Proposition 10.2 we obtain that [M; N] has a minimal Lyapunov-
balanced realization Σ̌. It follows from Proposition 5.7 that Σ̌ is energy
preserving with storage operator L equal to the gramian. Define the discrete-
time system Σ as in Proposition 2.23. Propositions 6.45 and 6.46 show that
L is a solution of the control algebraic Riccati equation and (I − L2)−1L is
a solution of the filter algebraic Riccati equation of Σ. Obviously Σ̌ is the



114 CHAPTER 10. BALANCED REALIZATIONS

Riccati closed-loop system of Σ corresponding to the solution Q = L. Since
Σ̌ is strongly stable by Proposition 10.2 it follows from Proposition 6.38 that
L is the unique solution of the control algebraic Riccati equation of Σ. We
will show that (I−L2)−1L is the unique solution of the filter algebraic Riccati
equation of Σ. Suppose that there are two solutions P1 and P2. Then, by
Proposition 6.39, (I + PiL)−1Pi, i = 1, 2, are both solutions of the control
Lypunov equation of Σ̌. Since the dual system of the Lyapunov-balanced
realization Σ̌ is strongly stable by Proposition 10.2 it follows from Proposition
3.14 that the control Lypunov equation of Σ̌ has a unique solution. This
implies that (I + P1L)−1P1 = (I + P2L)−1P2, from which P1 = P2 easily
follows. Now apply the similarity transformation (I−L2)1/4 to Σ to obtain a
system ΣLQG. It is easily seen that this system has L(I−L2)1/2 as the unique
solution to both its control and filter algebraic Riccati equation. Hence ΣLQG

is LQG-balanced.

We now show that since Σ̌ is minimal, so is ΣLQG. Since Σ̌ is minimal
its gramian L is positive by Proposition 3.11. This implies that the optimal
cost operator L(I − L2)1/2 of ΣLQG is positive. It follows using Proposition
6.12 that ΣLQG is approximately observable. Since the optimal cost operator
of the dual system of ΣLQG is positive it follows that ΣLQG is approximately
controllable.

We now show the uniqueness of minimal LQG-balanced realizations. As-
sume that Σi, i = 1, 2 are both minimal LQG-balanced realizations of the
same transfer function. Denote the optimal cost operator of Σi by Qmin

i .
First apply the similarity transformation (I + (Qmin

i )2)1/4 to Σi and then
construct the optimal closed-loop systems Σ̌i. Using Propositions 6.35 and
6.43 it follows that Σ̌i is Lyapunov-balanced. The optimal control operator of
Σi is positive by minimality (using Proposition 6.12), which implies that the
gramian of Σ̌i is positive, which implies that Σ̌i is minimal using Propositions
3.11 and 3.15. Denote the transfer function of Σ̌i by [Mi; Ni]. It follows from
Proposition 7.11 that these are normalized weakly right-coprime factors of
the transfer function of the Σi. From Proposition 7.15 it follows that there
exists a unitary V ∈ L(U ) such that [M1; N1] = [M2; N2]V . It is easily seen
that if we apply the input-space transformation V to Σ̌2, then we obtain a
minimal Lyapunov-balanced realization of [M1; N1]. Since Σ̌1 is also a mini-
mal Lyapunov-balanced realization of [M1; N1] they are related by a unitary
similarity transformation U ∈ L(X ) by Proposition 10.2. From this it fol-
lows, using (2.5) which gives the system operator of Σi in terms of that of Σ̌i,
that Σ1 and Σ2 are related by the same unitary similarity transformation.
Note that the operator V cancels when we apply (2.5).

Corollary 10.35. Let Σ be LQG-balanced with optimal cost operator Qmin.
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Apply the similarity transformation (I + (Qmin)2)1/4 to Σ. Denote by ΣLYAP

the optimal closed-loop system of this transformed system. Then ΣLYAP is
Lyapunov-balanced and its transfer function is a normalized strongly right-
coprime factor of the transfer function of Σ.

Proof. This follows from the proof of Proposition 10.34.

Definition 10.36. The discrete-time system ΣLYAP is called the Lyapunov-
balanced system corresponding to the LQG-balanced discrete-time system
Σ.

Definition 10.37. A discrete-time system is called compact LQG-balanced
if it is LQG-balanced and its optimal cost operator is compact.

Definition 10.38. Given a compact LQG-balanced realization Σ, let (wi)
be an ordered sequence of eigenvectors of the optimal cost operator Qmin

(the ordering is such that the corresponding eigenvalues µi form a non-
increasing sequence). Let n ∈ Z+ be such that µn > µn+1. The trun-
cated LQG-balanced realization of dimension n with respect to the se-
quence of eigenvectors (wi) is defined as the restriction/projection of Σ onto
Xn := {wi : i = 1, . . . , n}.

Remark 10.39. The sequence (wi) from Definition 10.38 is also an ordered ba-
sis of eigenvectors for the gramian L of the corresponding compact Lyapunov-
balanced realization ΣLYAP. Indeed, since L = (I+(Qmin)2)−1/2Qmin we have
σi = µi/

√
1 + µ2

i for the corresponding eigenvalues.

Lemma 10.40. Let Σ be a discrete-time system, let [F,G] be an admissible
feedback pair and denote by Σ[F,G] the corresponding closed-loop system. Let

X̃ ⊂ X be a subspace. Let Σ̃ be the projection/restriction of Σ onto X̃ .
Then [F |X̃ , G] is an admissible feedback pair for Σ̃ and the corresponding

closed-loop system equals the projection/restriction of Σ[F,G] onto X̃ .

Proof. This is easily seen from the definitions.

Lemma 10.41. Let Σ be a discrete-time system and X̃ ⊂ X a subspace.
Let Σ̃ be the projection/restriction of Σ onto X̃ . Let T ∈ L(X ) have a
bounded inverse and map X̃ onto itself. Denote the discrete-time system
obtained from Σ by applying the similarity transformation T by ΣT . Denote
the discrete-time system obtained from Σ̃ by applying the similarity transfor-
mation T |X̃ by Σ̃T . Then Σ̃T is the projection/restriction of ΣT onto X̃ .

Proof. This follows easily.
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Proposition 10.42. Let Σ be a compact LQG-balanced realization. Let (wi)
be an ordered sequence of eigenvectors of the optimal cost operator Qmin (the
ordering is such that the corresponding eigenvalues µi form a nonincreasing
sequence). Denote the optimal feedback pair for Σ as given in Proposition
6.33 by [Fmin, Gmin]. Denote the truncated LQG-balanced realization with re-
spect to the sequence (wi) by Σn. Define Σcl

n as the closed-loop system of
Σn with the feedback pair [Fmin|Xn , G

min]. Apply the similarity transforma-
tion T := (I + Qmin|2Xn

)1/4 to Σcl
n to obtain Σn,LYAP. Define ΣLYAP,n as the

truncation of the Lyapunov-balanced realization ΣLYAP corresponding to the
LQG-balanced discrete-time system Σ. Then Σn,LYAP = ΣLYAP,n.

Proof. This follows using Lemmas 10.40 and 10.41.

Corollary 10.43. Using the assumptions and notation of Proposition 10.42
we have that the transfer function of ΣLYAP,n is a right factor of the transfer
function of Σn.

Proof. The discrete-time system ΣLYAP,n is input-output stable by Proposi-
tion 10.18 combined with Proposition 3.28. Since Σn,LYAP is obtained from
Σn by feedback and a similarity transformation we have the relation in (2.5)
(up to the similarity transformation) between their system operators. The
relationship between their transfer functions as in Proposition 2.23 follows.
Since Σn,L = ΣL,n by Proposition 10.42 we obtain the desired result.

Remark 10.44. We use the notation of Proposition 10.42. The feedback pair
[Fmin|Xn , G

min] is in general not the optimal feedback pair for Σn. It follows
from Proposition 10.42 that Σcl

n is input stable, output stable and input-
output stable. It follows that Σn is output stabilizable. Hence it has an
optimal cost operator Qmin

n . We have for every x0 ∈Xn that 〈Qmin
n x0, x0〉 ≤

〈Qmin|Xnx0, x0〉, where Qmin is the optimal cost operator of Σ. Since µ1 =
‖Qmin‖ = ‖Qmin|Xn‖ and for µn

1 , the largest LQG characteristic value of Σn,
we have µn

1 = ‖Qmin
n ‖ we obtain µn

1 ≤ µ1.

Proposition 10.45. Let Σ be a compact LQG-balanced realization with U
and Y finite-dimensional. Assume that the LQG-characteristic values (µi)
form a summable sequence. Define Gn as the transfer function of a truncated
LQG-balanced realization of dimension n of Σ. Then we have

~δg(G,Gn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

.

Proof. Denote, as in Proposition 10.42, by ΣLYAP the Lyapunov-balanced
realization corresponding to the LQG-balanced realization Σ and by ΣLYAP,n
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its truncation. It follows from Corollary 10.43 that the transfer function
[Mn; Nn] of ΣLYAP,n is a right factor of Gn. Let [M; N] denote the transfer
function of ΣLYAP. It follows from Corollary 10.35 that [M; N] is a normalized
strongly right-coprime factor of G. Proposition 9.15 shows that

~δg(G,Gn) ≤
∥∥∥∥[

M
N

]
−

[
Mn

Nn

]∥∥∥∥ .
Using the relation between the LQG-characteristic values of Σ and the Hankel
singular values of ΣLYAP from Remark 10.39 we see that ΣLYAP has a nuclear
Hankel map. Proposition 10.11 shows that∥∥∥∥[

M
N

]
−

[
Mn

Nn

]∥∥∥∥ ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

.

The desired result follows.

Proposition 10.46. Let Σ be a compact LQG-balanced realization with U
and Y finite-dimensional. Assume that the LQG-characteristic values (µi)
form a summable sequence. Define Gn as the transfer function of a truncated
LQG-balanced realization of dimension n of Σ. Then there exists a N ∈ Z+

such that

2
∞∑

i=N+1

µi√
1 + µ2

i

<
1√

1 + µ2
1

. (10.3)

For n ≥ N we have

δg(G,Gn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

.

Proof. The existence of N such that (10.3) holds follows from the assumption
that (µi) is a summable sequence.

From the proof of Proposition 10.45 we obtain that the function G has
a normalized strongly right-coprime factor [M; N] and Gn has a right factor
[Mn; Nn] such that∥∥∥∥[

M−Mn

N− Nn

]∥∥∥∥ ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

.

It follows from Proposition 7.32 that since n ≥ N we have that [Mn; Nn]
is strongly right-coprime. Here we have used that the right-hand side of
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(10.3) is exactly
√

1− ‖H‖2, where H is the Hankel map corresponding to
[M; N], a formula that follows from the one given in Corollary 10.32 for the
largest LQG-characteristic value. It follows using Proposition 9.18 that for
all n ≥ N we have δ(G,Gn) = ~δ(G,Gn) = ~δ(Gn,G). The result now follows
using Proposition 10.45.

Proposition 10.47. Let Σ be a compact LQG-balanced realization with U
and Y finite-dimensional. Assume that the LQG-characteristic values (µi)
form a summable sequence. Define Gn as the transfer function of a truncated
LQG-balanced realization of dimension n of Σ. Then there exists a N ∈ Z+

such that for all n ≥ N

2
∞∑

i=n+1

µi√
1 + µ2

i

<
1√

1 + (µn
1 )2

, (10.4)

where µn
1 is the largest LQG-characteristic value of Gn. For given n ≥ N

choose εn such that

2
∞∑

i=n+1

µi√
1 + µ2

i

< εn <
1√

1 + (µn
1 )2

.

Then the εn-robust right factor stabilizing feedback function for Gn stabilizes
G.

Proof. We have µn
1 ≤ µ1 by Remark 10.44. This implies that the right

hand side of (10.4) is bounded from below by 1/
√

1 + µ2
1. Formula (10.4)

then follows from the fact that (µi) forms a summable sequence. With the
indicated choice of εn we obtain from Proposition 10.46 that δg(G,Gn) < εn.
The result then follows from Proposition 9.25 using that the right hand side
of (10.4) equals

√
1− ‖Hn‖2, where Hn is the Hankel map of a normalized

strongly right-coprime factor of Gn.

Remark 10.48. Note that since Gn is rational it has a finite-dimensional state
space realization. Consequently, Corollary 8.19 implies that the εn-robust
right factor stabilizing feedback function mentioned in Proposition 10.47 can
be chosen to be rational.

Remark 10.49. Consider the situation as in Proposition 10.47. Let G∆ be such
that δg(G,G∆) < 1/

√
1 + µ2

1, where µ1 is the largest LQG-characteristic value
of G. Then there exists a N ∈ Z+ such that for n ≥ N the εn-robust right
factor stabilizing feedback function for Gn, with εn chosen sufficiently close
to 1/

√
1 + (µn

1 )2, stabilizes G∆. This follows using the triangle inequality.
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We give a sufficient condition for the LQG-characteristic values (µi) to
form a summable sequence.

Proposition 10.50. Let Σ be an exponentially stabilizable and detectable
system with finite-dimensional input and output spaces. Then its LQG-
characteristic values (µi) form a summable sequence.

Proof. It follows from Corollary 4.13 that the optimal closed-loop system
Σopt of Σ is exponentially stable. Proposition 10.17 then shows that Σopt

has a nuclear Hankel map. It follows from Remark 10.39 that the Hankel
singular values of Σopt equal µi/

√
1 + µi. So (µi/

√
1 + µi) forms a summable

sequence. It is easily seen that this is equivalent to (µi) being a summable
sequence.

Notes

Lyapunov-balanced realization were introduced by Moore [57] for finite di-
mensional systems. LQG-balanced realizations were introduced by Verriest
[93], also in the context of finite dimensional systems. See also Jonckheere
and Silverman [41] for LQG-balanced realizations for finite-dimensional sys-
tems. Propositions 10.2 and 10.4 are due to Young [99], except for the
statement on strong stability in Proposition 10.2, which is due to Ober and
Wu [63]. Proposition 10.11 is due to Glover, Curtain and Partington [35]
in the continuous-time case and based on these ideas by Bonnet [5] in the
discrete-time case. Both references treat only the case with nonrepeating
eigenvalues, but the general case considered here follows along the same lines
as was already indicated in [35]. Proposition 10.17 is based on Curtain and
Sasane [9]. The results on LQG-balanced realizations are based on Opmeer
and Curtain [71] and Opmeer [68].
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Part II

Continuous-time systems
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Chapter 11

Basic objects

In this chapter we provide a new framework for continuous-time systems.

11.1 Resolvent linear systems

A finite-dimensional linear system is usually described by specifying four
matrices A, B, C, D and defining for a given initial state x0 and an input
function u ∈ L2

loc(0,∞; Cu) the state x ∈ C(0,∞; Cx) and the output y ∈
L2

loc(0,∞; Cy) as the unique solutions of

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, y(t) = Cx(t) +Du(t). (11.1)

As is well-known, these unique solutions are given explicitly by

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s) ds, (11.2)

y(t) = CeAtx0 +

∫ t

0

CeA(t−s)Bu(s) ds+Du(t).

If we Laplace transform the equations (11.1) and solve for x and y we obtain

x̂(s) = (sI − A)−1x0 + (sI − A)−1Bû(s) (11.3)

ŷ(s) = C(sI − A)−1x0 +
(
C(sI − A)−1B +D

)
û(s).

Our approach to continuous-time infinite-dimensional systems will be to gen-
eralize the situation (11.3) rather than the situation (11.1) or (11.2).

In this section we study the generalizations of the matrix-valued func-
tions (sI − A)−1, (sI − A)−1B, C(sI − A)−1 and C(sI − A)−1B + D. The
generalization of the dynamical system (11.3) will be considered in Section
11.2. We first consider the generalization of the resolvent.

123
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Definition 11.1. Let X be a Hilbert space and Λ a nonempty subset of
the complex plane. A function a : Λ → L(X ) that satisfies the following
resolvent equation

a(β)− a(α) = (α− β)a(β)a(α) for all α, β ∈ Λ

is called a pseudoresolvent. A pseudoresolvent amax is called a maximal
pseudoresolvent if there is no pseudoresolvent that is a proper extension
of amax.

Lemma 11.2. Every pseudoresolvent has a unique extension to a maximal
pseudoresolvent amax : Λmax → L(X ). The set Λmax is open and amax is
holomorphic.

Proof. This is contained in Hille and Phillips [38, Chapter 5.2].

We now consider the generalization of all the indicated matrix-valued
functions.

Definition 11.3. A resolvent linear system on a triple of Hilbert spaces
(U ,X ,Y ) consists of a nonempty subset Λ of the complex plane and four
operator valued function a, b, c, d satisfying
a : Λ→ L(X ) satisfies

a(β)− a(α) = (α− β)a(β)a(α) for all α, β ∈ Λ. (11.4)

b : Λ→ L(U ,X ) satisfies

b(β)− b(α) = (α− β)a(β)b(α) for all α, β ∈ Λ. (11.5)

c : Λ→ L(X ,Y ) satisfies

c(β)− c(α) = (α− β)c(α)a(β) for all α, β ∈ Λ. (11.6)

d : Λ→ L(U ,Y ) satisfies

d(β)− d(α) = (α− β)c(β)b(α) for all α, β ∈ Λ. (11.7)

The function a is called the pseudoresolvent, b the incoming wave func-
tion, c the outgoing wave function and d the characteristic function of
the resolvent linear system. The pseudoresolvent is assumed to be maximal.

Proposition 11.4. The pseudoresolvent, the wave functions and the char-
acteristic function of a resolvent linear system are holomorphic.
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Proof. For the pseudoresolvent this was already stated in Lemma 11.2. For
the other three functions it follows from the functional equations using that
the pseudoresolvent is holomorphic. For example to prove that b is holomor-
phic in a point β first fix a point α and note that the term on the right-hand
side of (11.5) is holomorphic in β. It follows that the term on the left-hand
side of the equation is and since b(α) is constant it follows that b is holomor-
phic in β.

A resolvent linear system is completely determined by the values of the
pseudoresolvent, the wave functions and the characteristic function at one
point in the following sense.

Proposition 11.5. For a ∈ L(X ), b ∈ L(U ,X ), c ∈ L(X ,Y ), d ∈
L(U ,Y ) and α ∈ C there exists a unique resolvent linear system with α ∈ Λ
and a(α) = a, b(α) = b, c(α) = c, d(α) = d.

Proof. The function ã : {α} → L(X ) defined by ã(α) = a defines a pseu-
doresolvent. By Lemma 11.2 it has a maximal extension which we denote
by a and whose domain we denote by Λ. Define the operator-valued func-
tions b : Λ → L(U ,X ), c : Λ → L(X ,Y ), d : Λ → L(U ,Y ) by
b(s) := b+ (α− s)a(s)b, c(s) := c+ (α− s)ca(s), d(s) := d+ (α− s)c(s)b. It
is easily seen that his gives a resolvent linear system. The desired uniqueness
follows from the uniqueness of the maximal pseudoresolvent.

We now show how unbounded operators A,B,C can be constructed that
generalize the matrices considered earlier in this section. Assume that a is the
resolvent of a densely defined closed operator A with nonempty resolvent set.
A necessary and sufficient condition for such an A to exist is that there exists
an α ∈ Λ such that a(α) is one-to-one and has dense range. We now introduce
two spaces. Let X1 be D(A) with the norm ‖x‖1 := ‖(α − A)x‖. For every
α ∈ ρ(A) this is a Hilbert space with norm equivalent to the graph norm. Let
X−1 be the completion of X with respect to the norm ‖x‖−1 := ‖a(α)x‖.
The operator A has an extension AX : X → X−1. Define B : U → X−1

by B := (α−AX )b(α), it follows from the functional equation (11.5) that B
does not depend on α. Define the operator C : X1 → Y by C := c(α)(α−A),
it follows from the functional equation (11.6) that C does not depend on α.
A meaningful generalization of the matrix D is not always possible.

We make the following definition.

Definition 11.6. An operator node is a resolvent linear system for which
the pseudoresolvent is the resolvent of a densely defined closed operator with
nonempty resolvent set.
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Remark 11.7. One can define an operator node through four generating op-
erators. An operator A on the state space X which is densely defined and
has nonempty resolvent set. An operator B ∈ L(U ,X−1), an operator
C ∈ L(X1,Y ) and an operator D ∈ L(U ,Y ). The corresponding resolvent
linear system is then defined as follows. The pseudoresolvent is the resolvent
of A. The incoming wave function is defined as b(s) := (sI − AX )−1B, the
outgoing wave function by c(s) := C(sI−A)−1 and the charcteristic function
by fixing α ∈ ρ(A), defining d(α) = D and extending this to the whole of
ρ(A) by using (11.7).

11.2 Distributional resolvent linear systems

In this section we define a subclass of the set of resolvent linear systems for
which the dynamical system (11.3) has a meaningful generalization.

Definition 11.8. A distributional resolvent linear system is a resolvent
linear system with the additional propery that there exist constants α >
0, β ∈ R and a polynomial p such that

ΛE(α, β) := {s ∈ C : Re s ≥ β, |Im s| ≤ eαRe s} ⊂ Λ (11.8)

and

‖a(s)‖ ≤ p(|s|) ∀ s ∈ ΛE. (11.9)

A region ΛE as above is called an exponential region (see Arendt, El-
Mennaoui and Kéyantuo [2]). Note that the wave functions and characteristic
function of a distributional resolvent linear system are also polynomially
bounded on ΛE (this follows from the functional equations in Definition 11.3).

Equivalently we could assume that the pseudoresolvent is polynomially
bounded on a logarithmic region. A logarithmic region is a region of the form

ΛL(a, b, c) := {s ∈ C : Re s ≥ c,Re s ≥ 1

a
log |s|+ b} (11.10)

with a > 0 and b, c ∈ R. This is true since one can show that an exponential
region is contained in a logarithmic region is contained in an exponential
region (see Arendt, El-Mennaoui and Kéyantuo [2]).

We also define the following subclass of distributional resolvent linear
systems where we do not work on an exponential region, but on a half-plane.

Definition 11.9. A distributional resolvent linear system is called expo-
nentially bounded if there exists a γ ∈ R and a polynomial p such that

ΛH(γ) := {s ∈ C : Re s ≥ γ} ⊂ Λ (11.11)
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and

‖a(s)‖ ≤ p(|s|) ∀ s ∈ ΛH . (11.12)

Remark 11.10. In the sequel we will need the following well-known char-
acterization of Laplace transformable Banach space valued distributions by
Schwartz. The image of the Schwartz-Laplace transformable Banach-space
valued distributions is exactly the set of polynomially bounded holomorphic
functions defined on some right half-plane. For details see Schwartz [86]. A
generalization of this characterization is due to Kunstmann [49]. He defined a
space of Banach space valued distributions that can be Laplace transformed
and whose image under the Laplace transform is exactly the set of polyno-
mially bounded holomorphic functions defined on some exponential region.

Using Remark 11.10 we are now in a position to generalize the dy-
namical system (11.3). Let u be a U -valued Kunstmann-Laplace trans-
formable distribution. For a distributional resolvent linear system a(s)x0 +
b(s)û(s) is holomorphic and polynomially bounded on some exponential re-
gion and therefore it is the Kunstmann-Laplace transform of some X -valued
Kunstmann-Laplace transformable distribution. Similar arguments apply to
c(s)x0 + d(s)û(s). This leads to the following definition.

Definition 11.11. The state x and output y of a distributional resolvent
linear system corresponding to the initial state x0 ∈X and the input u (a U -
valued Kunstmann-Laplace transformable distribution) are defined through
their Kunstmann-Laplace transforms by

x̂(s) := a(s)x0 + b(s)û(s), ŷ(s) := c(s)x0 + d(s)û(s), (11.13)

where s is restricted to the intersection of ΛE and the exponential region on
which û is holomorphic and polynomially bounded.

Remark 11.12. If the distributional resolvent linear system in Definition 11.11
is assumed to be exponentially bounded and the input u is assumed to be
a Schwartz-Laplace transformable distribution, then the state and output of
the system are Schwartz-Laplace transformable distributions.

We recall the concept of a system node. See Staffans [89, Section 4.7].

Definition 11.13. A system node is an operator node for which A is the
generator of a strongly continuous semigroup.

Remark 11.14. Since the resolvent of the generator of a strongly continuous
semigroup is uniformly bounded on a right half-plane by the Hille-Yosida
conditions, a system node defines an exponentially bounded distributional
resolvent linear system.
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The concept of a well-posed system as given below is equivalent to the
usual one as can be found in Staffans [89].

Definition 11.15. A distributional resolvent linear system is called well-
posed if there exists a σ ∈ R such that

• the pseudoresolvent is the resolvent of the generator of a strongly con-
tinuous semigroup,

• the restriction of b(·)†x0 to the right half-plane C+
σ is an element of

H2(C+
σ ,U ) for all x0 ∈X ,

• the restriction of c(·)x0 to the right half-plane C+
σ is an element of

H2(C+
σ ,Y ) for all x0 ∈X ,

• the restriction of the characteristic function to the right half-plane C+
σ

is an element of H∞(C+
σ ,L(U ,Y )).

Figure 11.1 gives a picture of the inclusion relationships between the
different classes of systems we have encountered.

WPON

SN

EBDRLS

DRLS

RLS

Figure 11.1: Classes of systems. WP=well-posed, SN=system nodes,
EBDRLS=exponentially bounded distributional resolvent linear systems,
DRLS=distributional resolvent linear systems, ON=operator nodes, RLS=
resolvent linear systems.
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Notes

The definition of resolvent linear system is taken from Opmeer [66], where
also the subclasses of distributional resolvent linear systems and exponen-
tially bounded distributional resolvent linear systems were introduced (the
last class under the name integrated resolvent linear systems). See Opmeer
[67] for the corresponding time-domain definitions.

The set of operator nodes is implicitly present in Salamon [85]. It is
the set of systems that satisfy his assumption (S0) on page 385, but not
necessarily his assumptions (S1) to (S4). We refer to Staffans [89, Section
4.7] for alternative characterizations of operator nodes and historical remarks.

Our assumption on the pseudoresolvent in the case of distributional re-
solvent linear systems (exponentially bounded or not) is much weaker than
assumption (S1) of Salamon [85] (the system node assumption). Moreover,
we drop assumptions (S2-S4) of Salamon. Hence we obtain a much larger
class of systems than the well-posed linear systems introduced by Salamon
in [85]. This class of well-posed linear systems has been the state-of-the-art
for the last two decades (see Staffans [89]).

The concept of a distributional resolvent linear system is the natural
generalization of the concept of distribution semigroup from systems with
only a state to input/state/output systems. Distribution semigroups were
introduced by Lions [52]. Important contributions were made by Chazarain
[7]. The case of not necessarily densely defined generators A is treated in
Kunstmann [48] and Wang [95]. The general case (including the degenerate
case where the pseudoresolvent is not a resolvent) is treated in Kisyński [44].
See Fattorini [26] for further information on distribution semigroups.
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Chapter 12

Partial differential equations

In this chapter we illustrate how partial differential equations with boundary
control and observation fit into the framework presented in Chapter 11. We
emphasize that the examples given in this chapter are certainly not the only
ones that can be formulated in that framework.

In Section 12.1 we recall the concept of an abstract boundary control sys-
tems as studied in Salamon [85, Section 2.2] and show that in this setting our
wave functions and characteristic function are solution operators of certain
elliptic problems. In Section 12.2 we review some results on elliptic differen-
tial operators. In Section 12.3 we study partial differential equations which
are first order in time (in particular the heat equation) and in Section 12.4
partial differential equations which are second order in time (in particular
the wave equation).

12.1 Abstract boundary control systems

We review the concept of an abstract boundary control system.

Definition 12.1. An abstract boundary control system on a quadruple of
Hilbert spaces (U ,K ,X ,Y ) where K ⊂ X with a continuous and dense
injection consists of three operators: ∆ ∈ L(K ,X ), Γ ∈ L(K ,U ), K ∈
L(K ,Y ) that satisfy: Γ is onto, ker Γ is dense in X , there exists a µ ∈ R
such that kerµI −∆ ∩ ker Γ = {0} and µI −∆ is onto.

Let A be the restriction of ∆ to ker Γ, let C be the restriction of K to
ker Γ, and given u ∈ U , choose x ∈ K such that Γx = u and define

Bu = ∆x− Ax, d(µ) = Kx− C(µI − A)−1(µx−∆x).

(note that the A in the definition of B and d above is the extension to an
operator in L(X ,X−1) as studied in Section 11.1 and that the definitions
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are independent of the particular x that is chosen). Then it follows as in
Salamon [85, Proposition 2.8] that A,B,C, d(µ) determine an operator node
(and hence a resolvent linear system).

It is interesting to note (see Salamon [85, p 391]) that for µ ∈ ρ(A) the
operator b(µ) is the solution operator for the abstract elliptic problem

(µ−∆)x = 0, Γx = u, (12.1)

in the sense that for u ∈ U the solution is given by x = b(µ)u. Similarly,
a(µ) is the solution operator of the abstract elliptic problem

(µ−∆)x = x0, Γx = 0, (12.2)

c(µ) is the solution operator of the abstract elliptic problem

(µ−∆)x = x0, Γx = 0, Kx = y, (12.3)

and d(µ) is the solution operator of the abstract elliptic problem

(µ−∆)x = 0, Γx = u, Kx = y. (12.4)

Since it is not always easy to see what the space K should be, we will work
with the abstract elliptic problems (12.1-12.4) and not directly with abstract
boundary control systems.

With an abstract boundary control system the following dynamical sys-
tem is associated

ẋ(t) = ∆x(t), x(0) = x0,

Γx(t) = u(t),

y(t) = Kx(t).

We refer to Salamon [85, Section 2.2] and Staffans [89, Section 5.2] for more
on abstract boundary control systems.

12.2 An elliptic differential operator

In this section we review some results from the literature on elliptic differ-
ential operators. In this section Ω ⊂ Rn is a bounded open domain whose
boundary ∂Ω is a compact orientable C∞-manifold. We denote the standard
Sobolev spaces by Hs(Ω). The space of infinitely differentiable functions
with compact support in Ω is denoted by C∞

0 (Ω). The space Hs
0(Ω) is the

completion of C∞
0 (Ω) in the Hs(Ω) norm.
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An n-tuple of nonnegative integers α = (α1, . . . , αn) is called a multi-
index. We define

ζα = ζα1
1 · · · ζαn

n , |α| =
n∑

i=1

αi, Dα =
∂α1

∂xα1
. . .

∂αn

∂xαn
.

We consider the differential operator L from H2m(Ω) to L2(Ω) defined by

Lϕ :=
∑

|α|≤2m

aαD
αϕ,

with complex-valued coefficients aα in C∞(Ω). The operator L is called
strongly elliptic if there exists a constant c > 0 such that

Re (−1)m
∑

|α|=2m

aα(ξ)ζα ≥ c|ζ|2m ξ ∈ Ω, ζ ∈ Rn.

The formal adjoint of L is the differential operator

L∗ψ :=
∑

|α|≤2m

(−1)|α|Dα (aαψ) ,

which is strongly elliptic if and only if L is.
A Dirichlet form is a sesquilinear form d on Hm(Ω) defined by

d(ϕ, ψ) :=
∑

|ρ|,|σ|≤m

〈Dρϕ, aρσD
σψ〉L2(Ω),

here aρσ are complex-valued functions in C∞(Ω). A Dirichlet form is called
strongly elliptic if∑

|ρ|,|σ|=m

aρσ(ξ)ζρζσ ≥ c|ζ|2m ξ ∈ Ω, ζ ∈ Rn,

for some constant c > 0. The adjoint of the Dirichlet form d is the Dirichlet
form d∗ defined by d∗(ψ, ϕ) = d(ϕ, ψ). A Dirichlet form d is a Dirichlet form
for the operator L if

d(ϕ, ψ) = 〈ϕ,Lψ〉L2(Ω) for all ϕ, ψ ∈ C∞
0 (Ω).

Every differential operator as above has an associated Dirichlet form (this
follows from integration by parts), however different Dirichlet forms can cor-
respond to the same operator. This nonuniqueness will not be a problem
for us. The differential operator L is strongly elliptic if and only if every
Dirichlet form for L is strongly elliptic. If d = d∗, then L = L∗ and if L = L∗

then we can choose an associated Dirichlet form such that d = d∗.
The above can be found in Folland [27]. See also Agmon [1], Friedman

[29] and Bers at al. [4].
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12.3 First order equations

We consider the first order (in time) PDE with Dirichlet boundary control
described by the equations

∂x

∂t
(ξ, t) + Lx(ξ, t) = 0, ξ ∈ Ω, t > 0, (12.5)

Dj
νx(ξ, t) = uj(ξ, t), ξ ∈ ∂Ω, t > 0, j = 0, . . .m− 1, (12.6)

where Ω ⊂ Rn is a bounded open domain whose boundary ∂Ω is a compact
orientable C∞-manifold, L is a strongly elliptic differential operator of order
2m (as defined in Section 12.2) and Dν the normal derivative at ∂Ω directed
towards the exterior of Ω.

We define the observation

yj(ξ, t) = Dj
νx(ξ, t), ξ ∈ ∂Ω, t > 0, j = m, . . . 2m− 1. (12.7)

This system can be written as an abstract boundary control system with the
formal operators

∆ = −L

Γx =

 D0
νx|∂Ω

...
Dm−1

ν x|∂Ω

 , Kx =

 Dm
ν x|∂Ω

...
D2m−1

ν x|∂Ω

 .
However, the spaces U , K , X , Y on which these formal operators have
the desired properties are not obvious. To obtain these spaces we study the
elliptic problems (12.1)-(12.4) with the operators ∆, Γ, K as above.

The pseudoresolvent

We first study the partial differential equation (12.5) with zero Dirichlet
boundary conditions. This is a well-studied problem and we recall its solu-
tion. Define Aϕ = −Lϕ on D(A) := H2m(Ω)∩Hm

0 (Ω). It follows as in Pazy
[74, Section 7.2] that A generates an analytic semigroup on L2(Ω).

Some spaces

We introduce some spaces needed in the sequel. The Hilbert space Ξr(Ω) for
r ∈ R is defined as in Lions and Magenes [53, Section 2.6.3 p170]. We need
these spaces for r ∈ [−2m, 0]. The only properties of these spaces that we
need are

Ξ0(Ω) = L2(Ω), L2(Ω) ⊂ Ξr(Ω),
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with a continuous injection for r ≤ 0. Fix µ ∈ ρ(A)∩R and define the space
Dr

L+µ(Ω) for r ∈ [0, 2m] as in [53, Section 2.7.2 p 186]

Dr
L+µ(Ω) := {x ∈ Hr(Ω) : (L+ µ)x ∈ Ξr−2m(Ω)},

provided with the graph norm

‖x‖Dr
L+µ(Ω) :=

√
‖x‖2Hr(Ω) + ‖(L+ µ)x‖2Ξr−2m(Ω),

which makes Dr
L+µ(Ω) a Hilbert space. Note that for r ∈ [0, 2m] we have

Dr
L+µ(Ω) ⊂ L2(Ω) with a continuous injection.

The incoming wave function

We study the incoming wave function. That is, we study the solution oper-
ator of the elliptic problem

(L+ µ)x = 0 on Ω,

Γx = u on ∂Ω,

where µ ∈ ρ(A) and L,Γ as above.
Define for r ∈ [0, 2m] the space

U r := Πm−1
j=0 H

r−j−1/2(∂Ω).

It follows from [53, Theorem 7.4 p 188] that for all r ∈ [0, 2m] the map u 7→ x
from U r to Dr

L+µ(Ω) is bounded. It follows that the map u 7→ x from U r

to L2(Ω) is bounded for all r ∈ [0, 2m]. Hence b(µ) ∈ L(U r, L2(Ω)).

The outgoing wave function

We study the outgoing wave function. We consider the problem

(L+ µ)x = x0 on Ω,

Γx = 0 on ∂Ω, (12.8)

y = Kx on ∂Ω,

where µ ∈ ρ(A) and L, Γ, K are as above.
Define for r ∈ [0, 2m] the space

Y r := Πm−1
j=0 H

r−m−j−1/2.

It follows from [53, Theorem 7.4 p 188] that for all r ∈ [0, 2m] the map
x0 7→ x, defined by the first two equations of (12.8), from Ξr−2m(Ω) to
Dr

L+µ(Ω) is bounded. It follows from [53, Theorem 7.3 p 187] that for all
r ∈ [0, 2m] the operator K : Dr

L+µ → Y r is bounded. It follows that
the map x0 7→ y from L2(Ω) to Y r is bounded for all r ∈ [0, 2m]. Hence
c(µ) ∈ L(L2(Ω),Y r).
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The characteristic function

We study the characteristic function. In order to do so we consider the elliptic
problem

(L+ µ)x = 0 on Ω,

Γx = u on ∂Ω, (12.9)

y = Kx on ∂Ω,

where µ ∈ ρ(A) and L, Γ, K are as above.
It follows as in the case of the incoming wave function that for all r ∈

[0, 2m] the map u 7→ x, defined by the first two equations of (12.9), from U r

to Dr
L+µ(Ω) is bounded. Combined with the result mentioned above on the

operator K we obtain that for all r ∈ [0, 2m] the map u 7→ y from U r to Y r

is bounded.

First order equations: conclusion

The results obtained show that the PDE (12.5-12.7) can be formulated as a
distributional resolvent linear system (even as a system node) on the state
space X = L2(Ω) with possible choices of input and output spaces

U r := Πm−1
j=0 H

r−j−1/2(∂Ω), Y r := Πm−1
j=0 H

r−m−j−1/2,

for r ∈ [0, 2m].

12.4 Second order equations

We consider the following second order (in time) PDE with Dirichlet bound-
ary control and boundary observation

∂2x

∂t2
(ξ, t) + Lx(ξ, t) = 0 ξ ∈ Ω, t > 0, (12.10)

Dj
νx(ξ, t) = uj(ξ, t), ξ ∈ ∂Ω, t > 0, j = 0, . . .m− 1, (12.11)

yj(ξ, t) = Dj
νx(ξ, t), ξ ∈ ∂Ω, t > 0, j = m, . . . 2m− 1. (12.12)

Here Ω ⊂ Rn is a bounded open domain whose boundary ∂Ω is a compact ori-
entable C∞-manifold and L = L∗ is a self-adjoint strongly elliptic differential
operator (see Section 12.2).

As in section 12.3 the formal differential operator, formal boundary con-
trol operator and formal boundary observation operator are obvious:

∆̃ =

[
0 I
−L 0

]
, Γ̃ := [Γ 0], K̃ := [K 0],
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where Γ and K are as in Section 12.3. We use the theory of cosine functions
and that of elliptic problems to determine the spaces U , K , X , Y on which
these formal operators have the desired properties.

The pseudoresolvent

We first study the operator A as defined in Section 12.3 further for the case
L = L∗ as considered here. It follows as in Fattorini [25, Section IV.8] that
A generates a cosine function on L2(Ω) (note that the arguments in [25] only
make use of the fact that d = d∗). This implies that

Ã :=

[
0 I
A 0

]
with domainH2m(Ω)∩Hm

0 (Ω)×L2(Ω) generates an exponentially bounded in-
tegrated semigroup on L2(Ω)×L2(Ω) (see Arendt et al. [3, Theorem 3.14.7]).

The incoming wave function

We see that the elliptic problem (12.1) is equivalent to

(L+ µ2)x1 = 0, Γx1 = u, x2 = µx1,

so it follows as in the case of the incoming wave function for first order
equations that the map u 7→ x = [x1;x2] is bounded from U r to Dr

L+µ2(Ω)×
H for any Hilbert space H such that Dr

L+µ2(Ω) ⊂ H continuously for all

r ∈ [0, 2m] for µ2 ∈ ρ(A). it follows that the map u 7→ x = [x1;x2] is
bounded from U r to L2(Ω)× L2(Ω) for all r ∈ [0, 2m] for µ2 ∈ ρ(A). Hence
b(µ) ∈ L(U r, L2(Ω)× L2(Ω)).

The outgoing wave function

We see that the elliptic problem (12.3) is equivalent to

(L+ µ2)x1 = x0
2 + µx0

1, x2 = µx1 − x0
1, Γx1 = 0, y = Kx1,

so it follows as in the case of the incoming wave function for first order
equations that the map x0 = [x0

1;x
0
2] 7→ y is bounded from Ξr−2m(Ω) ×

Ξr−2m(Ω) to Y r for all r ∈ [0, 2m] for µ2 ∈ ρ(A). Hence we obtain that
the map x0 = [x0

1;x
0
2] 7→ y is bounded from L2(Ω) × L2(Ω) to Y r for all

r ∈ [0, 2m]. Hence c(µ) ∈ L(L2(Ω)× L2(Ω),Y r).
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The characteristic function

We see that the elliptic problem (12.4) is equivalent to

(L+ µ2)x1 = 0, x2 = µx1 − x0
1, Γx1 = u, y = Kx1,

so it follows as in the case of the characteristic function for first order equa-
tions that the map u 7→ y is bounded from U r to Y r for all r ∈ [0, 2m] for
µ2 ∈ ρ(A). Hence d(µ) ∈ L(U r,Y r).

Second order equations: conclusion

The results obtained in this section show that the PDE (12.10-12.12) can
be formulated as a distributional resolvent linear system on the state space
X = L2(Ω)× L2(Ω) with possible choices of input and output spaces

U r := Πm−1
j=0 H

r−j−1/2(∂Ω), Y r := Πm−1
j=0 H

r−m−j−1/2,

for r ∈ [0, 2m]. Note that since Ã does not generate a strongly continuous
semigroup on L2(Ω) × L2(Ω), this distributional resolvent linear system is
not a system node.

Notes

The content of this chapter appeared before in Opmeer [67]. Virtually all
results depend on the study of non-homogeneous boundary value problems
performed in Lions and Magenes [53].



Chapter 13

The Cayley transform

In this section we investigate the relationship between the class of resolvent
linear systems and the class of discrete-time systems. This is the tool we
shall use to deduce many properties of resolvent linear systems from the
corresponding ones for discrete-time systems.

We first define the Cayley transforms of a resolvent linear system. Note
that in the literature usually the Cayley transform with parameter α = 1 is
used.

Definition 13.1. Let α > 0. The Cayley transform with parameter α of a
resolvent linear system with α ∈ Λ is the discrete-time system with generat-
ing operators

Ad := −I + 2α a(α), Bd :=
√

2α b(α), (13.1)

Cd :=
√

2α c(α), Dd := d(α).

Proposition 13.2. The Cayley transform with parameter α gives a one-to-
one correspondence between the set of resolvent linear systems with α ∈ Λ
and the set of discrete-time systems.

Proof. This follows from Proposition 11.5.

Remark 13.3. The pseudoresolvent of a resolvent linear system is a resolvent
if and only if −1 is not in the point spectrum of the state operator of its
Cayley transform. A resolvent linear system is an operator node if and only
if −1 is not in the point spectrum and not in the residual spectrum of the
state operator of its Cayley transform. These conditions are very often hard,
if not impossible to check. This was one of the reasons for introducing the
class of resolvent linear systems instead of working with the class of operator
nodes.

139
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In the following remark we recall some facts about linear fractional trans-
formations.

Remark 13.4. Let α ∈ C be nonzero. The map s 7→ z = (α−s)/(α+s), with
inverse z 7→ s = α(1−z)/(1+z), maps C−{−α} one-to-one onto C−{−1}.
The unit circle in the z-plane is the image of the line {s ∈ C : Imα Ims +
Reα Res = 0} in the s-plane. In particular, whenever α is real, the unit
circle is the image of the imaginary axis. If α > 0 the unit disc is the image
of the right half-plane. For α > 0 the map M : H2(C+

0 ,H ) → H2(D,H )
given by

(Mg)(z) =

√
2α

1 + z
g

(
α

1− z
1 + z

)
, (13.2)

is unitary with inverse

(M−1f)(s) =

√
2α

α + s
f

(
α− s
α + s

)
. (13.3)

The operator M is called the Möbius operator. With some abuse of nota-
tion we will denote the unitary operator L2(R+,H ) → l2(Z+,H ) induced
by M using the Z-transform and the Laplace transform by the same letter.

The above indicates that the above linear fractional transformation has
nice mapping properties between the unit disc and the right half-plane. The
situation is however drastically different when we look at arbitrary right
half-planes, exponential regions and arbitrary discs centered at zero.

The line Res = x in the s-plane is mapped onto the circle with center
−x/(α + x) and radius α/(α + x). Note that this circle contains the point
-1, which is the image of the point at infinity. If α is chosen in the right
half-plane Res > x, then the circle has zero in its interior.

An exponential region ΛE(a, b) := {s ∈ C : Re s ≥ b, |Im s| ≤ eaRe s}
that contains α in its interior is mapped onto a subset of the above indicated
disc (where x is replaced by b is the formulas) since it is contained in the
right half-plane Res ≥ b. Also here -1 is on the boundary of the image since
it is the image of the point at infinity.

A disc in the z-plane centered at zero with radius strictly smaller than one
can never be mapped onto an exponential region or a right half-plane. This
follows since the indicated disc does not have -1 on its boundary whereas the
images of exponential regions and right half-planes do. Actually, the image
of the indicated disc is a bounded region in the s-plane.

We have the following relation between a resolvent linear system and the
resolvent, the wave functions and the characteristic function of its Cayley
transform.
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Proposition 13.5. Let Σ be a resolvent linear system with α ∈ Λ where α >
0. Let Σd be its Cayley transform with parameter α as defined in Definition
13.1. Denote the resolvent of Σd by A, its incoming wave function by B, its
outgoing wave function by C and its characteristic function by D. Let s ∈ Λ
and define z := (α− s)/α + s). If z ∈ 1/ρ(Ad), then

a(s) = (1 + z)A(z)a(α), b(s) =
1 + z

z
√

2α
B(z), (13.4)

c(s) =
1 + z√

2α
C(z), d(s) = D(z).

Proof. We first show that the equation

(I − zAd)a(s) = (1 + z)a(α) (13.5)

is equivalent to the functional equation (11.4). Substituting for Ad from
(13.1) we see that (13.5) is equivalent to

(I − z [−I + 2α a(α)])a(s) = (1 + z)a(α).

Simplyfying the left-hand side shows that this is equivalent to

(1 + z)

[
I − 2α

1 + z
a(α)

]
a(s) = (1 + z)a(α).

Noting that 2αz/(1 + z) = α − s and cancelling 1 + z on both sides shows
that this is equivalent to

[I − (α− s)a(α)] a(s) = a(α),

and this is obviously equivalent to (11.4). Since s ∈ Λ we have that (11.4)
and therefore (13.5) holds. Since by assumption z ∈ 1/ρ(Ad) it follows from
(13.5) that a(s) = (1 + z)A(z)a(α).

We now turn to the equation relating the incoming wave functions. We
first note that the equation

(I − zAd)b(s) = (1 + z)b(α)

is equivalent to the functional equation (11.5). The proof is almost exactly
the same as the equivalence of (13.5) and (11.4) proven above and is left
to the reader. The given equation for the incoming wave function follows
easily. The argument for the equation relating the outgoing wave functions
is entirely similar.
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We prove the equation relating the characteristic functions. We have

D(z) = Dd + CdB(z).

Using the relation between the incoming wave functions and substituting for
Dd and Cd from (13.1) we obtain

D(z) = d(α) +
2αz

1 + z
c(α)b(s).

Since 2αz/(1 + z) = α− s this is equivalent to

D(z) = d(α) + (α− s)c(α)b(s).

Using the functional equation (11.7) it follows that D(z) = d(s) as desired.

Analogous to the discrete-time case for a distributional resolvent linear
system we define the set of stable input-output pairs

V (x0) :=

{[
u
y

]
∈

[
L2(R+; U )
L2(R+; Y )

]
: y satisfies (11.13)

}
.

The following theorem shows that, for a suitably chosen parameter α, there
is a one-to-one relationship between the stable input-output pairs of a dis-
tributional resolvent linear system and those of its Cayley transform.

Proposition 13.6. Let Σ be a distributional resolvent linear system and
α ∈ ΛE and α > 0. Let Σd be its Cayley transform with parameter α. Then
[u; y] ∈ V (x0) if and only if [Mu;My] ∈ Vd(x0).

Proof. Let [u; y] ∈ V (x0). From (11.13) we obtain

ŷ(s) := c(s)x0 + d(s)û(s). (13.6)

Since û ∈ H2(C+
0 ,U ) the above holds for s ∈ ΛE∩C+

0 . Define Λα := ΛE∩C+
0 .

Then Λα is an exponential region and it contains α. With z := (α−s)/α+s)
and using Proposition 13.5 we obtain from (13.6) that for s ∈ Λα

ŷ(s) =
1 + z√

2α
C(z)x0 + D(z)û(s).

It follows that for z in a neighbourhood of zero (we use here that α ∈ Λα is
mapped to zero)

√
2α

1 + z
ŷ

(
α

1− z
1 + z

)
= C(z)x0 + D(z)

√
2α

1 + z
û

(
α

1− z
1 + z

)
. (13.7)
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But the right-hand side of (13.7) is the Z-transform of the output of Σd for
initial state x0 and input Mû and the left-hand side equals Mŷ. Using the
identity theorem for holomorphic functions we obtain that the output of Σd

for initial state x0 and input Mû is Mŷ.
That [u; y] ∈ Vd(x0) implies [M−1u;M−1y] ∈ V (x0) follows in the same

way.

Proposition 13.6 is the key connection between continuous-time systems
and their Cayley transforms. It is this result that will allow us to translate
many results from discrete-time to continuous-time.

Notes

The definition of the Cayley transform presented here is inspired by and
generalizes the one in Staffans [89, Section 12.3]. The main idea presented in
this chapter, Proposition 13.6, was first put forward in Opmeer and Curtain
[70] for well-posed linear systems.
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Chapter 14

Basic results

In this chapter we translate the main results obtained in part I of this thesis to
continuous-time.

We first define the dual system of a resolvent linear system

Definition 14.1. The dual system of a resolvent linear system is the resol-
vent linear system on the set Λ of complex conjugates with pseudoresolvent
adual(s) := a(s̄)∗, incoming wave function bdual(s) := c(s̄)∗, outgoing wave
function cdual(s) := b(s̄)∗ and characteristic function ddual(s) := d(s̄)∗.

It is easily seen that the Cayley transform with parameter α of the dual
system is the dual system of the Cayley transform with parameter ᾱ.

Definition 14.2. A distributional resolvent linear system is called approx-
imately observable if for input zero the output is only zero if the initial
state is zero. It is called approximately controllable if its dual system is
approximately observable and it is called minimal if it is both approximately
controllable and approximately observable.

It is easily seen that approximate observability translates under the Cay-
ley transform. It follows that approximate controllability and minimality do
also.

14.1 Stability

Definition 14.3. A distributional resolvent linear system is called

• exponentially stable if for all x0 ∈X the state x defined by (11.13)
with u = 0 is in L2(R+,X ).
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• output stable if for all x0 ∈X the output y defined by (11.13) with
u = 0 is in L2(R+,Y ).

• input stable if the dual system is output stable.

• input-output stable if for all u ∈ L2(R+,U ) the output y defined by
(11.13) with x0 = 0 is in L2(R+,Y ).

Proposition 14.4. Let Σ be a distributional resolvent linear system and
α ∈ ΛE and α > 0. Let Σd be its Cayley transform with parameter α. Then
Σ is output stable if and only if Σd is, Σ is input stable if and only if Σd is,
Σ is input-output stable if and only if Σd is.

Proof. This follows easily using Proposition 13.6.

Remark 14.5. Note that exponential stability almost never translates under
the Cayley transform. It is easily seen that −1 is in the resolvent set of the
state operator of the Cayley transform if and only if a(α) has a bounded
inverse. It follows that if a(α) does not have a bounded inverse, then the
Cayley transform is not exponentially stable.

Definition 14.6. Let Σ be an output stable distributional resolvent linear
system. Let yw ∈ L2(R+,Y ) be the output for initial state w ∈X and zero
input. The observability gramian LC ∈ L(X ) is defined by 〈LCw,w〉 =
‖yw‖2L2(R+,Y ).

Proposition 14.7. Let Σ be an output stable distributional resolvent linear
system and α ∈ ΛE with α > 0. The observability gramian of Σ equals the
observability gramian of the Cayley transform with parameter α of Σ.

Proof. This is easily seen using that the Möbius operator, which relates the
output of the system and its Cayley transform, is unitary.

Definition 14.8. Let Σ be an input stable distributional resolvent linear
system. The controllability gramian LB ∈ L(X ) is defined as the ob-
servability gramian of the dual system.

Remark 14.9. In the special case that Σ is a system node one can show that
the observability gramian is the minimal nonnegative self-adjoint solution of
the observation Lyapunov equation

〈Lw,Aw〉+ 〈Aw,Lw〉 = ‖Cw‖2, w ∈ D(A).

A dual statement holds for the controllability gramian.
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14.2 Stabilizability

Definition 14.10. An admissible feedback pair for a resolvent linear
system is a pair [f, g] : Λ→ L(X ×U ,U ) that satisfies

f(β)− f(α) = (α− β)f(α)a(β), (14.1)

g(β)− g(α) = (α− β)f(α)b(β),

and such that I − g(s) has a bounded inverse for some s ∈ Λ.
The closed-loop system of a resolvent linear system with an admissible

feedback pair is the resolvent linear system

acl := a + b(I − g)−1f, bcl := b(I − g)−1,

ccl :=

[
(I − g)−1f

c + d(I − g)−1f

]
, dcl :=

[
(I − g)−1

d(I − g)−1

]
.

Remark 14.11. Note that Λcl, the domain of definition of the closed-loop
system, consists of those s ∈ Λ for which I − g(s) has a bounded inverse.

Lemma 14.12. Let Σ be a resolvent linear system and [f, g] and admissible
feedback pair. Assume that there exists an α ∈ Λ with α > 0 such that
I−g(α) has a bounded inverse. Denote the Cayley transform with parameter
α of Σ by Σd. Then [

√
2αf(α), g(α)] is an admissible feedback pair for Σd.

Moreover, the corresponding closed-loop system equals the Cayley transform
with parameter α of the closed-loop system of Σ with the admissible feedback
pair [f, g].

Proof. That [
√

2αf(α), g(α)] is an admissible feedback pair for Σd is imme-
diate. The indicated equality of systems also follows immediately from the
definitions.

Definition 14.13. An exponential region admissible feedback pair for
a distributional resolvent linear system is an admissible feedback pair [f, g]
such that I − g(s) has a bounded inverse for all s in some exponential region
and (I − g(s))−1 is polynomially bounded in this exponential region.

A half-plane admissible feedback pair for an exponentially bounded
distributional resolvent linear system is an admissible feedback pair [f, g] such
that I − g(s) has a bounded inverse for all s in some right half-plane and
(I − g(s))−1 is polynomially bounded in this right half-plane.

Proposition 14.14. The closed-loop system of a distributional resolvent lin-
ear system with an exponential region admissible feedback pair is a distribu-
tional resolvent linear system.
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The closed-loop system of an exponentially bounded distributional resol-
vent linear system with a half-plane admissible feedback pair is an exponen-
tially bounded distributional resolvent linear system.

Proof. This is easily checked.

Remark 14.15. If Σ is a system node and [f, g] is a half-plane admissible
feedback pair, then the closed-loop system will in general not be a system
node. A concept of feedback under which the closed-loop system is again
a system node is given in Staffans [89, Section 7.4]. This concept is very
complicated and seems to be impossible to check.

Remark 14.16. If Σ is well-posed and [f, g] is a half-plane admissible feedback
pair that is uniformly bounded on the indicated right half-plane, then the
closed-loop system is again a well-posed system.

Definition 14.17. A distributional resolvent linear system is called output
stabilizable if there exists an exponential region admissible feedback pair
such that the corresponding closed-loop system is output stable.

Remark 14.18. The other stabilizability notions introduced earlier for discrete-
time systems also have (now hopefully obvious) counterparts in continuous-
time.

Remark 14.19. It follows using Lemma 14.12 and Proposition 14.4 that, with
the right choice of α, output stabilizability translates under the Cayley trans-
form.

14.3 The LQ optimal control problem

Definition 14.20. We say that a distributional resolvent linear system satis-
fies the finite cost condition if for every x0 ∈X the set V (x0) is nonempty.

Proposition 14.21. Let Σ be a distributional resolvent linear system and
α ∈ ΛE and α > 0. Let Σd be its Cayley transform with parameter α. Σ
satisfies the finite cost condition if and only if Σd does. In this case the
optimal cost operators are equal.

Proof. This follows immediately from Proposition 13.6.

Proposition 14.22. Let Σ be a distributional resolvent linear system that
satisfies the finite cost condition and let α > 0 be such that α ∈ ΛE. Let Σd be
the Cayley transform of Σ with parameter α. Denote the admissible feedback
pair from Proposition 6.33 that gives the optimal closed-loop system of Σd
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by [Fd, Gd]. Define [f, g] by [f(α), g(α)] = [Fd/
√

2α,Gd] and extending to Λ
using the functional equations (14.1). Then [f, g] is an exponential region
admissible feedback pair for Σ. Denote the closed-loop system of Σ and this
admissible feedback pair by Σ[f,g]. Then the optimal closed-loop system of Σd

is the Cayley transform with parameter α of Σ[f,g]. The set Λ on which Σ[f,g]

is defined and polynomially bounded contains ΛE ∩ C+
0 .

Proof. The equations (14.1) are satisfied by definition. Since I − g(α) =
I−Gd, it follows that [f, g] is an admissible feedback pair. We will show that
I − g(s) has a bounded inverse on the exponential region Λ0

E := ΛE ∩ C+
0 .

Note that under the map z = (α − s)/(α + s) the region Λ0
E is mapped

into the connected component of 1/ρ(Ad) ∩ D that contains zero. Define
the function G(z) := g(s), where z = (α − s)/(α + s). It follows that
G(z) = Gd + Fdz(I − zAd)−1Bd. We have that I − G(z) is invertible on
ρ(AQ), where AQ is the state operator of the optimal closed-loop system
of Σd. Lemma B.8 shows that the connected component of 1/ρ(AQ) ∩ D
that contains zero contains the connected component of 1/ρ(Ad) ∩ D that
contains zero. It follows that it contains the image of Λ0

E. From this we see
that indeed I − g(s) has a bounded inverse on the exponential region Λ0

E.
Lemma 14.12 shows that the optimal closed-loop system of Σd is the Cayley
transform with parameter α of Σ[f,g]. Since the optimal closed-loop system
of Σd is input-output stable it follows that I − g has an inverse that extends
to a function in H∞(C+

0 ,U ). So (I − g)−1 is uniformly bounded on Λ0
E.

It follows that [f, g] is an exponential region admissible feedback pair. The
other statements follow easily from the above.

Definition 14.23. Let Σ be a distributional resolvent linear system that
satisfies the finite cost condition and let α > 0 be such that α ∈ ΛE. The
exponential region admissible feedback pair [f, g] from Lemma 14.22 is called
the α-optimal feedback pair. The corresponding closed-loop system is
called the α-optimal closed-loop system.

Note that it easily follows from the proof of Proposition 14.22 that an α-
optimal feedback pair for an exponentially bounded distributional resolvent
linear system is a half-plane admissible feedback pair.

Proposition 14.24. Let Σ be a distributional resolvent linear system that
satisfies the finite cost condition and let α > 0 be such that α ∈ ΛE. Then
the α-optimal closed-loop system is output stable and input-output stable.

Proof. This follows from the corresponsing discrete-time results and Proposi-
tion 14.4 which shows that output stability and input-output stability trans-
late under the Cayley transform.
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Proposition 14.25. Let Σ be a distributional resolvent linear that satisifies
the finite cost condition. Denote the element of minimal norm in V (x0) by
[umin

x0
; ymin

x0
]. Let α ∈ ΛE with α > 0 and let [f, g] be an α-optimal feedback

pair. Then ûmin
x0

(s) = (I − g(s))−1f(s)x0 for s ∈ ΛE ∩ C+
0 .

Proof. Denote the Cayley transform of Σ with parameter α by Σd. Note that
V (x0) has a unique element of minimal norm by Proposition 13.6 and the
fact that Vd(x0) has a unique element of minimal norm [ud; yd]. Proposition
14.22 shows that the optimal closed-loop system of Σd is the Cayley transform
with parameter α of Σ[f,g]. The first component of the output for initial state
x0 and input zero of the optimal closed-loop system of Σd is easily seen
to be the optimal input ud. Since this optimal closed-loop system of Σd

is the Cayley transform with parameter α of Σ[f,g], it follows that the first
component of the output for initial state x0 and input zero of Σ[f,g] equals
M−1ud. But M−1ud also equals ûmin

x0
, the first component of the element of

minimal norm in V (x0). It follows that ûmin
x0

is the first component of the
output for initial state x0 and input zero of Σ[f,g]. This gives the desired
formula ûmin

x0
(s) = (I−g(s))−1f(s)x0 for s in all exponential regions on which

Σ[f,g] has the polynomial boundedness property. That ΛE ∩ C+
0 is such a

region follows from Proposition 14.22.

14.4 Coprime factorization

We will focus exclusively on strongly right-coprime factorizations. The other
cases treated in Chapter 7 can be treated analogously.

Definition 14.26. Let M ∈ H∞(C+
0 ;L(H1,H2)), N ∈ H∞(C+

0 ;L(H1,H3)).
The functions M and N are called strongly right-coprime if [M; N]

has a left-inverse in H∞(C+
0 ;L(H2 × H3,H1)), i.e. if there exist X̃ ∈

H∞(C+
0 ;L(H2,H1)) and Ỹ ∈ H∞(C+

0 ;L(H3,H1)) such that

X̃(s)M(s)− Ỹ(s)N(s) = IH1 ∀s ∈ C+
0 . (14.2)

The functions X̃ and Ỹ are called right Bezout factors for the pair (M,N).

Definition 14.27. Let G : ΛE ⊂ C → L(U ,Y ), with ΛE an exponential
region, be holomorphic and polynomially bounded.

G has a right factorization if there exist M ∈ H∞(C+
0 ;L(U )) and

N ∈ H∞(C+
0 ;L(U ,Y )) such that M(s) is invertible for s in some exponential

region, M−1 is polynomially bounded on an exponential region, and G(s) =
N(s)M(s)−1 for s in some exponential region. The factor [M; N] provides
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a strongly right-coprime factorization if M and N are strongly right-
coprime. The right factor [M; N] is called normalized when multiplication
with [M; N] is an isometry from H2(C+

0 ,U ) into H2(C+
0 ,U × Y ).

Note that characteristic functions of distributional resolvent linear sys-
tems belong to the class of functions to which the above definitions of factor-
ization apply. The following result shows under which conditions the char-
acteristic function of a distributional resolvent linear system has a strongly
right-coprime factorization.

Proposition 14.28. Assume that the distributional resolvent linear system
Σ and its dual system both satisfy the finite cost condition and let α > 0 be
such that α ∈ ΛE. Then the characteristic function of the α-optimal closed-
loop system has a holomorphic extension to C+

0 and this extension provides a
normalized strongly right-coprime factorization of the characteristic function
of Σ.

Proof. Let α ∈ ΛE and α > 0. Denote the Cayley transform of Σ with
parameter α by Σd. It follows from Proposition 7.20 that the transfer function
of Σd has a normalized strongly right-coprime factor [Md; Nd] with Bezout pair
[X̃d, Ỹd]. The function [Md; Nd] is the transfer function of the optimal closed-
loop system of Σd. Define [M(s); N(s)] := [Md(z); Nd(z)], [X̃(s), Ỹ(s)] :=
[X̃d(z), Ỹd(z)], where z and s are related by z = (α − s)/(α + s). It easily
follows that the indicated functions are in H∞ and that (14.2) holds. It is
also easily seen that M−1 equals (I−g(s))−1f(s) on ΛE∩C+

0 , where [f, g] is the
α-optimal feedback pair. It follows that M is invertible on ΛE ∩C+

0 and that
M−1 is polynomially bounded on ΛE ∩ C+

0 . The equality d(s) = N(s)M(s)−1

on ΛE ∩ C+
0 also follows.

Remark 14.29. In Section 14.7 we will see that any function that has a
strongly right-coprime factorization coincides on some exponential region
with the characteristic function of some distributional resolvent linear sys-
tem that satisfies the finite cost condition and whose dual system satisfies
the finite cost condition.

Remark 14.30. It is easily shown that, as in the discrete-time case, the exis-
tence of a strongly left-coprime factorization, the existence of a normalized
strongly left-coprime factorization, the existence of a strongly right-coprime
factorization, the existence of a normalized strongly right-coprime factoriza-
tion, the existence of a doubly coprime factorization and the existence of a
normalized doubly coprime factorization are all equivalent.

Remark 14.31. We consider the special case that G is holomorphic and poly-
nomially bounded on a right half-plane and not just on an exponential region.
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The Bezout equation gives X̃ − Ỹ(s)G(s) = M(s)−1 for s in an exponential
region. Using that the left-hand side is a holomorphic and polynomially
bounded function on a right half-plane it is not difficult to see that M(s) is
invertible for s in a right half-plane and that the inverse function is polyno-
mially bounded on a right half-plane.

It follows similarly that if G is holomorphic and uniformly bounded on a
right half-plane, then so is M−1.

14.5 The gap metric

The gap between distributional resolvent linear systems is defined similarly
as for discrete-time systems using the gap metric on subspaces of a given
Hilbert space (see Definition 9.1).

Definition 14.32. Let Σi (i = 1, 2) be distributional resolvent linear systems
with the same input and output spaces. The gap δ(Σ1,Σ2) is defined to be
δ(V1(0),V2(0)).

Proposition 14.33. Let Σi (i = 1, 2) be distributional resolvent linear sys-
tems with the same input and output spaces, α ∈ ΛE for both systems, and
α > 0. Let Σi

d be the respective Cayley transforms with parameter α. Then
δ(Σ1,Σ2) = δ(Σ1

d,Σ
2
d).

Proof. This follows easily using that Vi(0) is isometrically isomorphic to
V i

d (0) (i = 1, 2) under the Möbius operator by Proposition 13.6.

14.6 Stabilization

Definition 14.34. Let G : ΛE ⊂ C → L(U ,Y ) with ΛE an exponential
region be holomorphic and polynomially bounded. We say that K is an
admissible feedback function for G if K : ΛE ⊂ C → L(U ,Y ) is holo-
morphic and polynomially bounded and I−KG has a bounded inverse on an
exponential region.

Definition 14.35. An admissible feedback function K for G is called stabi-
lizing if[

(I − KG)−1 K(I − GK)−1

G(I − KG)−1 (I − GK)−1

]
extends to a function in H∞(C+

0 ,L(U × Y ,U × Y )).
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We discuss the continuous-time analogue of the discrete-time robust right
factor stabilizing feedback function from Definition 8.13. We only do this for
the finite-dimensional case as this is all we need in the sequel and a full
discussion of the general case would take us too far afield (see Curtain [11]
for this case). Assume that U ,X and Y are finite-dimensional and the
system Σ is described by

ẋ(t) = Ax(t) +Bu(t) y(t) = Cx(t) +Du(t). (14.3)

Further assume that this system has solutions Q and P to its (continuous-
time) control and filter algebraic Riccati equation, respectively. Here the
(continuous-time) control algebraic Riccati equation is

A∗Q+QA+ C∗C = (QB + C∗D)(I +D∗D)−1(B∗Q+D∗C),

and the (continuous-time) filter algebraic Riccati equation is

AP + PA∗ +BB∗ = (PC∗ +BD∗)(I +DD∗)−1(CP +DB∗).

Let ε < 1/
√

1 + µ2
1, where µ1 is the largest LQG-characteristic value of Σ.

Define the controller by its system operator[
A+BF +WPC∗(C +DF ) WPC∗

B∗Q −D∗

]
,

where F := −(I + D∗D)−1(D∗C + B∗Q) and W := ((1 − ε2)I + ε2PQ)−1.
Denote the transfer function of the controller by K and the transfer function
of Σ by G. Then K is an admissible feedback function and it is stabilizing for
all G∆ with δg(G,G∆) ≤ ε. The above follows from McFarlane and Glover
[54].

14.7 Balanced realizations

Definition 14.36. An input and output stable distributional resolvent linear
system is called Lyapunov-balanced if its controllability and observability
gramian are equal.

Proposition 14.37. Any function in H∞(C+
0 ,L(U ,Y )) has a minimal

Lyapunov-balanced realization. Minimal Lyapunov-balanced realizations are
unique up to a unitary similarity transformation in the state space. The
pseudoresolvent is the resolvent of the generator of a strongly continuous
contraction semigroup. Both the minimal Lyapunov-balanced realization and
its dual system are strongly stable.
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Proof. See Theorem 9.5.6 of Staffans [89].

LQG-characteristic values are defined as in discrete-time.

Definition 14.38. Let Σ be a distributional resolvent linear system that
satisfies the finite cost condition and whose dual system satisfies the finite
cost condition. Denote the optimal cost operator by Qmin and the optimal
cost operator of the dual system by Pmin. The square roots of the points in
the spectrum of PminQmin, with the exception of zero, are called the LQG-
characteristic values of Σ.

Note that, using the Cayley transform and the corresponding discrete-
time result, it is easily seen that two distributional resolvent linear systems
whose characteristic functions coincide on an exponential region have the
same LQG-characteristic values.

Definition 14.39. A distributional resolvent linear system is called LQG-
balanced if it and its dual system satisfy the finite cost condition and the
optimal cost operator of the system and of its dual system are equal. It is
called compact LQG-balanced if it is LQG-balanced and the optimal cost
operator is compact.

Proposition 14.40. Let Σ be a distributional resolvent linear system and
α ∈ ΛE with α > 0. Σ is LQG-balanced if and only if its Cayley transform
with parameter α is. It is compact LQG-balanced if and only if its Cayley
transform with parameter α is.

Proof. This easily follows using Proposition 14.21.

Proposition 14.41. Let G : ΛE ⊂ C → L(U ,Y ), with ΛE an exponen-
tial region, be holomorphic and polynomially bounded. Assume that G has
a normalized strongly right-coprime factor [M; N]. Then there exists a mini-
mal LQG-balanced distributional resolvent linear system whose characteristic
function coincides with G on some exponential region. Such a system is
unique up to a unitary transformation in the state space.

Proof. By Proposition 14.37 [M; N] has a minimal Lyapunov-balanced real-
ization Σ̌LYAP. Note that since a minimal Lyapunov-balanced realization is
strongly stable the set Λ̌ of Σ̌LYAP contains the whole right half-plane. Since
ď1, the first component of the characteristic function of Σ̌LYAP, coincides
with M on the right half-plane we have that ď1(s) has a bounded inverse for
s in some exponential region and that ď−1

1 is polynomially bounded on some
exponential region. Define the distributional resolvent linear system Σ by[

a b

c d

]
:=

[
ǎ− b̌ď−1

1 č1 b̌ď−1
1

č2 − ď2ď
−1
1 č1 ď2ď

−1
1

]
.
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It follows from the above that this is indeed a distributional resolvent linear
system. Apply the similarity transformation (I − L2)1/4 to Σ to obtain a
distributional resolvent linear system ΣLQG. Here L is the gramian of the
minimal Lyapunov-balanced realization Σ̌LYAP. Now let α > 0 be in the ex-
ponential region of all the above constructed systems. Applying the Cayley
transform with parameter α to the above systems and comparing with the
proof of Proposition 10.34 shows that the Cayley transform of ΣLQG is mini-
mal and LQG-balanced. It follows using Proposition 14.40 that ΣLQG is. Its
characteristic function ď2ď

−1
1 equals NM−1 on an exponential region and this

equals G. The desired result follows.

Remark 14.42. It is easily seen from the proof of Proposition 14.41 and re-
mark 14.31 that if G is holomorphic and polynomially bounded on a right
half-plane instead of only on an exponential region, then a minimal LQG-
balanced realization is an exponentially bounded distributional resolvent lin-
ear system. Similarly it follows that a minimal LQG-balanced realization is
well-posed if G is holomorphic and uniformly bounded on a right half-plane.

Definition 14.43. Given a compact LQG-balanced distributional resolvent
linear system Σ, let (wi) be an ordered sequence of eigenvectors of the optimal
cost operator Qmin (the ordering is such that the corresponding eigenvalues
µi form a nonincreasing sequence). Let α ∈ ΛE with α > 0. Let n ∈ Z+

be such that µn > µn+1. The α-truncated LQG-balanced realization of
dimension n with respect to the sequence of eigenvectors (wi) is defined as
the restriction/projection of the operator[

a(α) b(α)
c(α) d(α)

]
onto Xn := {wi : i = 1, . . . , n}.

The following result shows that the Cayley transform and α-LQG-balanced
truncation commute.

Proposition 14.44. Let Σ be a compact LQG-balanced distributional resol-
vent linear system and α ∈ ΛE with α > 0. The Cayley transform with pa-
rameter α of the α-truncated LQG-balanced realization of dimension n equals
the truncated LQG-balanced realization of the Cayley transform with param-
eter α of Σ.

Proof. This follows trivially from the definitions.

From the above we immediately obtain the following analogues of Propo-
sitions 10.45, 10.46 and 10.47.
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Proposition 14.45. Let Σ be a compact LQG-balanced distributional re-
solvent linear system with U and Y finite-dimensional. Assume that the
LQG-characteristic values (µi) form a summable sequence. Let α ∈ ΛE with
α > 0. Denote by Σn the α-truncated LQG-balanced system of dimension n
of Σ. Then we have

~δg(Σ,Σn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

.

Proposition 14.46. Let Σ be a compact LQG-balanced distributional re-
solvent linear system with U and Y finite-dimensional. Assume that the
LQG-characteristic values (µi) form a summable sequence. Let α ∈ ΛE with
α > 0. Denote by Σn the α-truncated LQG-balanced system of dimension n
of Σ. Then there exists a N ∈ Z+ such that

2
∞∑

i=N+1

µi√
1 + µ2

i

<
1√

1 + µ2
1

. (14.4)

For n ≥ N we have

δg(Σ,Σn) ≤ 2
∞∑

i=n+1

µi√
1 + µ2

i

. (14.5)

Remark 14.47. The condition that the LQG-characteristic values are summable
is satisfied by many systems, but there are also many systems for which it is
not satisfied. In Chapter 15 we consider a typical case in which the condition
is satisfied. In that example it is crucial that the damping parameter β is
positive, for β = 0 the LQG-characteristic values are not summable.

Remark 14.48. It follows from Proposition 14.46 and the results collected
in Section 14.6 that the robust right factor stabilizing feedback function re-
viewed in Section 14.6 designed for the α-truncated LQG-balanced system
of dimension n for n large enough stabilizes Σ. In fact, it also stabilizes all
systems close to Σ in the gap metric and by choosing n large enough the
robustness radius converges to the optimal robustness radius 1/

√
1 + µ2

1.

Notes

The definition of admissible feedback pair as given in this chapter are taken
from Opmeer [66]. The solution of the linear quadratic optimal control prob-
lem as given here were also presented earlier in [66]. The results on coprime
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factorization are slight modifications of those in Curtain and Opmeer [16].
The results on LQG-balanced realizations are from Opmeer [68]. Earlier
results on Lyapunov-balanced realizations in continuous-time for infinite-
dimensional systems are among other Glover, Curtain and Partington [35]
and Ober and Montgomery-Smith [62]. To obtain a complete theory of ad-
missible feedback functions one needs to consider controllers with internal
loop as in Weiss and Curtain [97] and Curtain, Weiss and Weiss [17].
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Chapter 15

An example

We consider the robust stabilization of a beam. In Section 15.2 we show that
the conditions under which we have convergence of LQG-balanced trunca-
tions are satisfied for this example. Section 15.3 contains numerical results
for this example.

15.1 The model

The system we consider is a one-dimensional Euler-Bernoulli beam with
Voigt-damping and with free ends. The measurements are the displacement
and the angle of rotation of the middle of the beam. As actuators we choose
a force and a moment at the middle of the beam.

We obtain the partial differential equation

∂2w

∂t2
+ β

∂5w

∂x4∂t
+ α

∂4w

∂x4
=
u1δ − u2δ

′

ρa
,

α
∂2w

∂x2
(−1, t) + β

∂3w

∂x2∂t
(−1, t) = 0, α

∂2w

∂x2
(1, t) + β

∂3w

∂x2∂t
(1, t) = 0,

α
∂3w

∂x3
(−1, t) + β

∂4w

∂x3∂t
(−1, t) = 0, α

∂3w

∂x3
(1, t) + β

∂4w

∂x3∂t
(1, t) = 0,

y(t) =

[
w(0, t)
∂w
∂x

(0, t)

]
,

where w(t, x) is the displacement of the beam at position x ∈ (−1, 1) at
time t, u1(t) is the force applied and u2(t) the moment applied to the middle
(x = 0) of the beam, y(t) holds the measurements, ρ, a, α and β are (positive)
physical parameters and δ is the Dirac delta distribution and δ′ is its distri-
butional derivative. A derivation of this model from physical considerations
is given in Bontsema [6].
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We put the above partial differential equation in an abstract operator-
theoretic framework. We note that the spaces Hs used in this section are
Sobolev spaces. Define the operator L : D(L) ⊂ L2(−1, 1)→ L2(−1, 1) as

L :=
d4

dξ4
,

D(L) :=

{
w ∈ H4(−1, 1) :

d2w

dξ2
(−1) =

d2w

dξ2
(1) =

d3w

dξ3
(−1) =

d3w

dξ3
(1) = 0

}
.

It is elementary to show that L is a densely defined nonnegative operator.
We define the spaces X := D(L1/2)× L2(−1, 1), U := C2, Y = C2 and the
following operators. The operator A : D(A) ⊂X →X is defined by

A

[
x1

x2

]
:=

[
x2

−αL
(
x1 + β

α
x2

) ]
,

D(A) :=

{[
x1

x2

]
∈X : x2 ∈ D(L1/2), x1 +

β

α
x2 ∈ D(L)

}
.

The operator B is defined through its adjoint B∗ : D(A) ⊂X → U

B∗
[
x1

x2

]
:=

1

ρa

[
x2(0)
x′2(0)

]
.

The operator C : D(A) ⊂X → Y is defined by

C

[
x1

x2

]
:=

1

ρa

[
x1(0)
x′1(0)

]
.

The feedthrough operator D is taken equal to zero. In Bontsema [6] it is
shown that this is indeed a representation of the partial differential equation
obtained earlier.

15.2 Theoretical results

The next proposition shows that our beam system has a compact LQG-
balanced realization and the error bound (14.5) holds.

Proposition 15.1. The system considered satisfies all the assumptions of
Proposition 14.46.
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Proof. If follows from Bontsema [6, Lemma 2.13] that the system under con-
sideration is a well-posed linear system, which implies that it is an exponen-
tially bounded distributional resolvent linear system. The input and output
space are both two-dimensional. It remains to show that the finite cost
condition and the dual finite cost condition are satisfied, and that the LQG-
characteristic values form a summable sequence.

A spectral decomposition of the main operatorA as performed in Bontsema
[6] shows that A has α/β in its continuous spectrum, the other spectral points
are eigenvalues and these are either located on a circle with center −α/β and
radius α/β or on the negative part of the real line (see figure 15.1).

−1400 −1200 −1000 −800 −600 −400 −200 0
−300

−200

−100

0

100

200

300

Figure 15.1: Eigenvalues of the A operator of the beam

All spectral points are in the open left half-plane, except for a quadruple
eigenvalue at zero. From the above spectral decomposition one can conclude
that the operator A generates an analytic semigroup (this follows as in the
appendix of Chen and Triggiani [8]). It is shown in Bontsema [6] that the
control operator B is unbounded, but not maximally unbounded and that
the observation operator C is bounded. Using the spectral decomposition
of A we can split the system into a stable part and an unstable part as in
Curtain and Zwart [18, Section 5.2]. Since the unstable part is controllable we
conclude that the system is exponentially stabilizable, which implies that it
satisfies the finite cost condition. That the system satisfies the dual finite cost
condition follows similarly. From the fact that the semigroup is analytic and
the control operator not maximally unbounded we conclude that the optimal
state feedback is bounded (see Lasiecka and Triggiani [50]). From this it
follows that the optimal closed-loop system has an analytic semigroup, a
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control operator that is not maximally unbounded and a bounded observation
operator. We invoke Curtain and Sasane [9, Theorem 6] to show that the
Hankel operator of this closed-loop system is nuclear. This shows that the
LQG-characteristic values of the original system are summable (the relation
between the Hankel singular values of the closed-loop system and the LQG-
characteristic values of the original system are the same as given in Corollary
10.32 for discrete-time systems).

15.3 Numerical results

For the purpose of numerical investigations we choose the physical parameters
in accordance with De Silva [21]. These parameter values are

ρa = 47.2, α = 1.129, β = 3.89× 10−4.

We analyze different approximation techniques using LQG-singular values
and Bode diagrams. We only show the Bode diagrams from the first input
to the first output, the response from the second input to the second output
is similar and the other two responses are zero. Also, we only show the Bode
magnitude diagram.

15.3.1 Modal approximation

It is relatively easy to obtain a modal approximation of our model based
on the eigenvectors of the fourth derivative operator with boundary condi-
tions as above. For more complicated models of physical systems it will not
be easy (or even possible) to obtain a modal approximation. In figure 15.2
the solid line is a Bode-diagram of the 30 dimensional modal approxima-
tion. Table 15.1 shows the largest ten LQG-characteristic values for modal
approximations.

If we construct the controller mentioned in Remark 14.48 based on a 4
mode approximation it stabilizes the 30 mode approximation, for a design
based on a lower order approximation this is no longer the case. Since the
unstable subspace is four-dimensional this is of course not very surprising.

15.3.2 Finite-difference approximation

We have obtained finite-difference approximations of our model. In figure
15.2 the dashed line is a 30 dimensional finite-difference approximation and in
figure 15.3 the dashed line is a 6 dimensional finite-difference approximation.
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Table 15.1: largest 10 LQG-characteristic values for modal approximations

6 modes 10 modes 14 modes 22 modes 30 modes
2.4142 2.4134 2.4134 2.4134 2.4134
2.4135 2.4123 2.4116 2.4111 2.4109
0.4143 0.4146 0.4147 0.4147 0.4148
0.4142 0.4144 0.4144 0.4144 0.4144
0.1071 0.1071 0.1071 0.1071 0.1071
0.1068 0.1068 0.1068 0.1068 0.1068

- 0.1010 0.1010 0.1010 0.1010
- 0.1004 0.1004 0.1004 0.1004
- 0.0009 0.0104 0.0104 0.0104
- 0.0009 0.0102 0.0102 0.0102

From this and the ‘intermediate’ Bode diagrams not shown it can be seen
that the resonance peaks are at too low a frequency and this error converges
slowly to zero. The 6 dimensional finite-difference approximation also has
an incorrect slope for low frequencies. In table 15.2 the LQG-characteristic
values for finite difference approximations are given.

Table 15.2: largest 10 LQG-characteristic values for finite difference approx-
imations

6 dim f-d 10 dim f-d 14 dim f-d 22 dim f-d 30 dim f-d
2.4142 2.4129 2.4129 2.4131 2.4132
0.9964 2.4125 2.4122 2.4116 2.4113
0.9799 0.4146 0.4146 0.4147 0.4147
0.6408 0.4144 0.4145 0.4144 0.4144
0.6394 0.3189 0.2286 0.1711 0.1503
0.4142 0.3183 0.2282 0.1708 0.1500

- 0.1133 0.1255 0.1225 0.1183
- 0.1129 0.1250 0.1219 0.1177
- 0.0089 0.0073 0.0109 0.0114
- 0.0088 0.0072 0.0108 0.0112

We can see here also that the 6 dimensional finite-difference approxima-
tion is not good and that convergence is slower then in the modal approx-
imation. However, from the 10 dimensional finite-difference approximation
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Figure 15.2: 30 mode approximation (-) and 30 dimensional finite difference
approximation (:)

on the first four LQG-characteristic values are fairly accurate and the other
LQG-characteristic values seem to converge to their correct values. It turns
out that the controller mentioned in Remark 14.48 when based on a 6 di-
mensional finite difference approximation is not stabilizing and that the one
based on a 10 dimensional finite difference approximation is. We conclude
that controller-design using finite-difference approximations leads to a con-
troller of more than 6 dimensions.

15.3.3 LQG-balanced approximation

We have shown that our model has a compact LQG-balanced realization.
Computing this realization exactly is however impossible. The method of
LQG-balancing can however be used to obtain good low-order approxima-
tions of good high-order approximations. We compute a LQG-balanced re-
alization for the 30 dimensional finite-difference approximation of the beam
(this is finite-dimensional LQG-balancing, so it can be done using an algo-
rithm from finite-dimensional theory). The Bode diagram of a 14 dimensional
LQG-balanced truncation of the 30 dimensional finite-difference approxima-
tion of the beam is shown in figure 15.4 and that of a 4 dimensional LQG-
balanced truncation of the 30 dimensional finite-difference approximation of
the beam is shown in figure 15.5.

As can be seen the approximation is about as good as can be expected
given the order of the approximation. The controller mentioned in Remark
14.48 when based on a 4 dimensional LQG-balanced truncation of a 30 di-
mensional finite difference approximation stabilizes the 30 dimensional modal
approximation. Thus it can be expected that it will stabilize the beam.
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Figure 15.3: 30 mode approximation (-) and 6 dimensional finite difference
approximation (:)
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Figure 15.4: 30 dimensional finite difference approximation (-) and its 14
dimensional LQG-balanced truncation

15.4 Conclusion

We showed that a finite difference approximation followed by a LQG-balanced
truncation gives a stabilizing 4 dimensional controller. This is as good as can
be obtained using a modal approximation. A stabilizing controller based only
on a finite difference approximation must have more then 6 states. This shows
that the combination of a finite difference approximation and LQG-balancing
is better than a finite difference approximation alone.

We note that it is crucial for the analysis presented here that the damp-
ing parameter β is positive. If β = 0, then one can show that the LQG-
characteristic values do not form a summable sequence. Controllers designed
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Figure 15.5: 30 dimensional finite difference approximation (-) and its 4
dimensional LQG-balanced truncation (:)

based on approximations in this case do not give a satisfactory performance
in numerical simulations.

Notes

The beam model presented here was thoroughly analyzed in Bontsema [6].
Proposition 15.1 and the numerical results presented here were reported ear-
lier in Opmeer, Wubs and Van Mourik [73]. The numerical results are based
on Van Mourik [92], where many more numerical results concerning our ex-
ample can be found. Some more numerical work on LQG-balanced realiza-
tions can be found in Evans [24].



Chapter 16

Concluding remarks

By collecting various results from the previous chapters we obtain the fol-
lowing theorem.

Theorem 16.1. Let Hi (i = 1, 2, 3, 4) be

1. The set of functions G : D(G) ⊂ C → L(U ,Y ) that are holomorphic
and with 0 ∈ D(G).

2. The set of functions G : D(G) ⊂ C→ L(U ,Y ) defined on an exponen-
tial region that are holomorphic and bounded in norm by a polynomial.

3. The set of functions G : D(G) ⊂ C → L(U ,Y ) defined on a right
half-plane that are holomorphic and bounded in norm by a polynomial.

4. The set of functions G : D(G) ⊂ C → L(U ,Y ) defined on a right
half-plane that are holomorphic and uniformly bounded in norm.

Let Si (i = 1, 2, 3, 4) be

1. The class of discrete-time systems.

2. The class of distributional resolvent linear systems.

3. The class of exponentially bounded distributional resolvent linear sys-
tems.

4. The class of well-posed linear systems.

Let G ∈ Hi. Then the following are equivalent.

• G has a strongly right-coprime factorization.

• G has normalized strongly right-coprime factorization.
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• G has a strongly left-coprime factorization.

• G has normalized strongly left-coprime factorization.

• G has a doubly coprime factorization.

• G has a normalized doubly coprime factorization.

• G has a input and output stabilizable realization in Si.

• G has a minimal input and output stabilizable realization in Si.

• G has a realization in Si that satisfies the finite cost condition and
whose dual system also satisfies the finite cost condition.

• G has a minimal realization in Si that satisfies the finite cost condition
and whose dual system also satisfies the finite cost condition.

• G has a LQG-balanced realization in Si.

• G has a minimal LQG-balanced realization in Si.

In the case that i = 1 (the discrete-time case) the above is also equivalent
with

• There exists a stabilizing admissible feedback function for G.

• G has a realization in Si that has bounded nonnegative self-adjoint so-
lutions to both its control and its filter algebraic Riccati equation.

• G has a minimal realization in Si that has bounded nonnegative self-
adjoint solutions to both its control and its filter algebraic Riccati equa-
tion.

In the other cases (i = 2, 3, 4) this is also true, but one should use controllers
with internal loop and a more general form of the algebraic Riccati equations
than the usual continuous-time ones.

In the case that G has a compact LQG-balanced realization, the input
and output space are finite-dimensional, and the LQG characteristic val-
ues are summable we obtained that LQG-balanced truncations converge in
the gap metric, or equivalently, we have convergence of normalized strongly
right-coprime factors in H∞. Using a controller design that is robust with
respect to right factor perturbations in this case the plant with transfer func-
tion G can be stabilized by a finite-dimensional controller. The performance
of this controller approaches the performance of the corresponding infinite-
dimensional controller as the state space dimension of the approximation
goes to infinity.



Appendix A

Hardy spaces

In this appendix we give some basic definitions and results on Hardy spaces
that are needed in this thesis.

Definition A.1. Let H be a Hilbert space. The Hardy space H2(D; H ) is
defined as follows: F ∈ H2(D; H ) if F : D→H is holomorphic and

sup
0<r<1

1

2π

∫ 2π

0

‖F(reiθ)‖2H dθ <∞. (A.1)

Lemma A.2. 1. The space H2(D; H ) is a Hilbert space with as norm the
square root of the expression on the left-hand side of (A.1).

2. There is an isometric isomorphism between l2(Z+; H ) and H2(D; H )
given by (an)n∈Z+ 7→

∑∞
n=0 anz

n.

Definition A.3. Let B be a Banach space. The Hardy space H∞(D; B) is
defined as follows: F ∈ H∞(D; B) if F : D→ B is holomorphic and

sup
|z|<1

‖F(z)‖B <∞. (A.2)

Lemma A.4. 1. The space H∞(D; B) is a Banach space with norm the
expression on the left-hand side of (A.2).

2. There is an isometric isomorphism between H∞(D;L(U ,Y )) and the
set of bounded linear maps from H2(D; U ) to H2(D; Y ) that commute
with multiplication by z. The latter are all of the form h 7→ Fh with
F ∈ H∞(D;L(U ,Y )).

For δ ∈ (0, 1) and ζ ∈ T define Ωδ
ζ as the convex hull of {z ∈ C : |z| ≤

δ}∪{ζ}. The sets Ωδ
ζ are used to define the following nontangential limits.
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Lemma A.5. If F ∈ H2(D,H ) or F ∈ H∞(D,L(U ,Y )), then for almost
all ζ ∈ T and all δ ∈ (0, 1)

lim
z→ζ,z∈Ωδ

ζ

F(z)

exists and is independent of δ. The limit is taken in the strong topology in
the case that F ∈ H2(D,H ) and in the strong operator topology in the case
that F ∈ H∞(D,L(U ,Y )).

Proof. This follows from Rosenblum and Rovnyak [84, Theorem 4.6.A].

In the cases considered in Lemma A.5 a boundary function Fb of F is
defined almost everywhere on T by

Fb(ζ) := lim
z→ζ,z∈Ωδ

ζ

F(z).

Definition A.6. Let H be a Hilbert space. The Hardy space H2(T; H ) is
defined as follows: F ∈ H2(T; H ) if F ∈ L2(T,H ) and for all integers n ≥ 1∫

T
F(ζ)ζndζ = 0.

Definition A.7. The Hardy space H∞(T;L(U ,Y )) is defined as follows:
F ∈ H∞(T;L(U ,Y )) if F ∈ L∞(T,L(U ,Y )) and for all integers n ≥ 1∫

T
F(ζ)ζndζ = 0.

Lemma A.8. The Hardy space H2(T; H ) is a closed subspace of L2(T,H ).
It follows that with the induced norm it is a Hilbert space.

Lemma A.9. The Hardy space H∞(T;L(U ,Y )) is a closed subspace of
L∞(T,L(U ,Y )). It follows that with the induced norm it is a Banach space.

Lemma A.10. The boundary function of a H2(D; H ) function is an element
of H2(T; H ). This mapping is a unitary operator between these two Hardy
spaces.

Lemma A.11. The boundary function of a H∞(D;L(U ,Y )) function is
in H∞(T;L(U ,Y )). This mapping is an isometric operator onto the space
H∞(T;L(U ,Y )).

Due to Lemmas A.10 and A.11 we do not have to be careful about the
distinction between Hardy spaces on the unit disc and on the unit circle.
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Lemma A.12. The space l2(Z,H ) is isometrically isomorphic to the space
L2(T,H ). This isomorphism is given by

(an)n∈Z 7→
∞∑

n=−∞

anζ
n.

The subspace l2(Z+,H ) is mapped onto H2(T,H ).

The transformation from Lemma A.12 is called the Z-transform.
The space H∞(D+; B) can be defined analogously to H∞(D; B). Here

D+ is the (open) exterior of the closed unit disc. Define for F : D → B the
function F− : D+ → B is by F−(z) := F(1/z). It is easily seen that F 7→ F−

is an isometric isomorphism from H∞(D; B) onto H∞(D+; B). Functions in
H∞(D+;L(U ,Y )) also have nontangential limits almost everywhere and we
obtain a norm-preserving injection H∞(D+;L(U ,Y )) → L∞(T,L(U ,Y )).
Similar comments apply to the Hardy space H2(D+,H ).

Lemma A.13. If F ∈ H∞(D;L(U ,Y )) ∩ H∞(D+;L(U ,Y )), then F is
constant.

Proof. Define for u ∈ U the function Fu : D → Y by Fu(z) := F(z)u. It
easily follows that Fu ∈ H2(D,Y ) ∩H2(D+,Y ). Using Lemma A.12 we can
write

F(z)u =
∞∑

k=−∞

ak(u)zk.

Since Fu ∈ H2(D,Y ) it follows that ak(u) = 0 for k < 0 for all u ∈ U . From
Fu ∈ H2(D+,Y ) we obtain that ak(u) = 0 for k > 0 for all u ∈ U . We
conclude that

F(z)u = a0(u).

Hence F is a constant operator.

Corollary A.14. If H ∈ L∞(T;L(U ,Y )) is the boundary function of both
a function H1 in H∞(D;L(U ,Y )) and a function H2 in H∞(D+;L(U ,Y )),
then H is constant.

Proof. Define the function F : D∩D+ → L(U ,Y ) by F(z) := H1(z) if z ∈ D
and F(z) := H2(z) if z ∈ D+. Apply Lemma A.13 to this function. We
conclude that F is constant. It follows that H1 is constant. The boundary
function of a constant function is obvously constant, so H is constant.
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Definition A.15. For F ∈ L∞(T,L(U ,Y )) we define the operator LF :
L2(T,U ) → L2(T,Y ) by LFH = FH. This operator is called the Laurent
operator of F.

Definition A.16. For F ∈ L∞(T,L(U ,Y )) we define the operator TF :
H2(T,U ) → H2(T,Y ) by TF = PH2(T,Y )LF|H2(T,U ). This operator is called
the Toeplitz operator of F.

Note that we can identify the Toeplitz operator TF with an operator from
H2(D,U ) to H2(D,Y ) using the identification of functions on the unit disc
with their boundary functions discussed earlier.

Lemma A.17. We have L∗F = LF∗ and T ∗
F = TF∗, where the function F∗ ∈

L∞(T,L(Y ,U )) is defined by F∗(z) = F(z)∗.

Lemma A.18. Let F ∈ H∞(D,L(U ,Y )). The Laurent operator LF is iso-
metric if and only if F(ζ) is isometric for almost all ζ ∈ T.

Definition A.19. A function F ∈ H∞(T,L(U ,Y )) is called inner if its
Laurent operator LF is an isometry.

Lemma A.20. Let F ∈ H∞(D,L(U ,Y )). The Toeplitz operator TF is iso-
metric if and only if the Laurent operator LF is.

The following is known as Sarason’s theorem.

Lemma A.21. Let H1 and H2 be Hilbert spaces, H ∈ H∞(D,L(H1,H2))
an inner function and F ∈ H∞(D,L(H2)). Let Im(TH) denote the image of
the Toeplitz operator of H, Im(TH)⊥ its orthogonal complement in H2(D,H2)
and PIm(TH)⊥ ∈ L(H2(D,H2)) the orthogonal projection onto this ortogonal
complement. Then

‖PIm(TH)⊥TF‖ = inf
V∈H∞(D,L(H2,H1))

‖F− HV‖H∞(D,L(H2)).

Proof. See for example Nikol′skĭı [59, p191].

We need the following two corollaries of Sarason’s theorem.

Corollary A.22. Let U and Y be Hilbert spaces, H,F ∈ H∞(D,L(U ,U ×
Y )) with H an inner function. Then

‖PIm(TH)⊥TF‖ = inf
V∈H∞(D,L(U ))

‖F− HV‖H∞(D,L(U ,U ×Y )).
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Proof. We apply Lemma A.21 and denote the operators there with tildes to
distinguish them from the operators used in the statement of this lemma.
Apply Lemma A.21 with H1 = U , H2 = U × Y , H̃ = H and F̃ = [F, 0]. It
is easily seen from the form of F̃ that

‖PIm(TH)⊥TF‖ = ‖PIm(TH̃)⊥TF̃‖.

The parameter Ṽ from Lemma A.21 can be decomposed as Ṽ = [Ṽ1, Ṽ2]. We
have

inf
Ṽ∈H∞(D,L(U ×Y ,U ))

‖F̃− H̃Ṽ‖H∞(D,L(U ×Y ))

= inf
Ṽ∈H∞(D,L(U ×Y ,U ))

‖[F− HṼ1,−HṼ2]‖H∞(D,L(U ×Y ))

= inf
V ∈H∞(D,L(U ))

‖[F− HV‖H∞(D,L(U ,U ×Y )),

where we have used that the infimum over Ṽ2 is reached for Ṽ2 = 0. From
Lemma A.21 we now obtain the desired equality.

Corollary A.23. Let U and Y be Hilbert spaces, H ∈ H∞(D,L(U ,U ×Y ))
an inner function and F ∈ H∞(D,L(Y ,U × Y )). Then

‖PIm(TH)⊥TF‖ = inf
V∈H∞(D,L(Y ,U ))

‖F− HV‖H∞(D,L(Y ,U ×Y )).

Proof. We apply Lemma A.21 and denote the operators there with tildes to
distinguish them from the operators used in the statement of this lemma.
Apply Lemma A.21 with H1 = U , H2 = U × Y , H̃ = H and F̃ = [0,F]. It
is easily seen from the form of F̃ that

‖PIm(TH)⊥TF‖ = ‖PIm(TH̃)⊥TF̃‖.

The parameter Ṽ from Lemma A.21 can be decomposed as Ṽ = [Ṽ1, Ṽ2]. We
have

inf
Ṽ∈H∞(D,L(U ×Y ,U ))

‖F̃− H̃Ṽ‖H∞(D,L(U ×Y ))

= inf
Ṽ∈H∞(D,L(U ×Y ,U ))

‖[−HṼ1,F− HṼ2]‖H∞(D,L(U ×Y ))

= inf
V∈H∞(D,L(U ))

‖[F− HV‖H∞(D,L(Y ,U ×Y )),

where we have used that the infimum over Ṽ1 is reached for Ṽ1 = 0. From
Lemma A.21 we now obtain the desired equality.
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Definition A.24. For F ∈ L∞(T,L(H1,H2)) we define the operator HF :
L2(T,H1) → L2(T,H2) by HF := PH2(D,H2)LFPH2(D,H1)⊥ . This operator is
called the Hankel operator of F.

Remark A.25. We warn the reader that in the literature there are several
different definitions of the concept of the Hankel operator of a function.

The next result relates the Hankel operator of a H∞(D,L(U ,Y )) func-
tion with the Hankel map of an input-output stable discrete-time system (see
the definition on page 9, Definition 3.1 and Proposition 3.22).

Lemma A.26. Let Σ be an input-output stable discrete-time system with
transfer function D and Hankel map H. Denote the Hankel operator of D ∈
H∞(D,L(U ,Y )) by HD and the Z-transform from l2(Z,H ) to L2(T,H ) by
ZH . Then HDZU = ZYH. In particular, ‖HD‖ = ‖H‖.

Proof. This follows easily from the definitions.

The following result is known as Nehari’s theorem (or sometimes Page’s
theorem).

Lemma A.27. Let H1 and H2 be Hilbert spaces and F ∈ L∞(D,L(H1,H2)).
Then

‖HF‖ = inf
V∈H∞(D,L(H2,H1))

‖F∗ − V‖L∞(D,L(H2,H1)).

Proof. It is shown in e.g. Peller [75, page 68], Nikol′skĭı [59, p191] that for
H ∈ L∞(D,L(H2,H1))

‖PH2(D,H1)⊥LHPH2(D,H2)‖ = inf
V∈H∞(D,L(H2,H1))

‖H− V‖L∞(D,L(H2,H1)).

Applying this with H = F ∗ gives

‖PH2(D,H1)⊥L
∗
FPH2(D,H2)‖ = inf

V∈H∞(D,L(H2,H1))
‖F∗ − V‖L∞(D,L(H2,H1)).

The desired result now follows from noting that the left-hand side of this last
expression is the norm of the adjoint of the Hankel operator of F and that
an operator and its adjoint have the same norm.

Lemma A.28. Let H1 and H2 be finite-dimensional Hilbert spaces and F ∈
H∞(D,L(H1,H2)) a rational function. Then, for each σ > ‖HF‖ there exists
a rational H ∈ H∞(D,L(H1,H2)) such that

‖F∗ − H‖L∞(D,L(H1,H2)) ≤ σ.
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Proof. This follows from the explicit state space formulas given in McFarlane
and Glover [54, Appendix B].

The second statement in the following result is known as the Corona
theorem.

Lemma A.29. Let F ∈ H∞(D,L(H1,H2)). If there exists a function H ∈
H∞(D,L(H2,H1)) such that H(s)F(s) = I for all s ∈ D, then there exists a
ε > 0 such that for all s ∈ D and all h ∈H1

‖F(s)h‖H2 ≥ ε‖h‖H1 . (A.3)

If H1 is finite-dimensional then the converse is also true, i.e., if there exists
a ε > 0 such that for all s ∈ D and all h ∈ H1 we have (A.3), then there
exists a H ∈ H∞(D,L(H2,H1)) such that H(s)F(s) = I for all s ∈ D.

Notes

General references on Hardy space theory are Duren [23], Garnett [32] and
Hoffman [39]. The vector-valued case can be found in Nikol′skĭı [61], [59],
[60], Peller [75] and Rosenblum and Rovnyak [84].
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Appendix B

Algebraic Riccati equations

In this appendix we prove some simple algebraic results concerning algebraic
Riccati equations.

Lemma B.1. Let P and Q be nonnegative self-adjoint operators. Define

AP := A− (BD∗ + APC∗)(R + CPC∗)−1C, (B.1)

AQ := A−B(S +B∗QB)−1(D∗C +B∗QA), (B.2)

A := A−BS−1D∗C. (B.3)

where S := I +D∗D and R := I +DD∗. Then

AP (I + PC∗R−1C) = A = (I +BS−1B∗Q)AQ, (B.4)

AQ = (I +BS−1B∗Q)−1AP (I + PC∗R−1C), (B.5)

AP = (I +BS−1B∗Q)AQ(I + PC∗R−1C)−1. (B.6)

Proof. We prove that AP (I + PC∗R−1C) = A. The equality A = (I +
BS−1B∗Q)AQ is proved similarly. By writing out AP in full we have

AP (I + PC∗R−1C)

= A(I + PC∗R−1C)− (BD∗ + APC∗)(R + CPC∗)−1C(I + PC∗R−1C)

= A(I + PC∗R−1C)− (BD∗ + APC∗)(R + CPC∗)−1(R + CPC∗)R−1C

= A+ APC∗R−1C − (BD∗ + APC∗)R−1C = A−BD∗R−1C

= A−BS−1D∗C,

since D∗R−1 = S−1D∗. This completes the proof of (B.4). Equations (B.5)
and (B.6) easily follow from (B.4).

Remark B.2. Note that in the above lemma we have not assumed that P and
Q are solutions of the Riccati equations.
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We now prove that the Riccati equations can be written in several different
but equivalent versions.

Lemma B.3. Let P and Q be nonnegative self-adjoint operators.

1. P satisfies

APP (I + C∗R−1CP )A∗
P − P +BS−1B∗ = 0, (B.7)

where AP is defined by (B.1), if and only if it satisfies

AP (I + C∗R−1CP )−1A∗ − P +BS−1B∗ = 0, (B.8)

where A is defined by (B.3).

2. P satisfies (B.7) if and only if it satisifies the filter algebraic Riccati
equation.

3. Q satisfies

A∗
Q(I +QBS−1B∗)QAQ −Q+ C∗R−1C = 0, (B.9)

where AQ is defined by (B.2), if and only if it satisfies

A∗Q(I +BS−1B∗Q)−1A−Q+ C∗R−1C = 0, (B.10)

where A is defined by (B.3).

4. Q satisfies (B.9) if and only if it satisifies the control algebraic Riccati
equation.

Proof. We shall prove the equivalence of the filter equations; the equivalence
of the control equations is similar.

1. The equations (B.7) and (B.8) are equivalent if and only if the following
holds:

AP (I + C∗R−1CP )−1A∗ = APP (I + C∗R−1CP )A∗
P . (B.11)

We use Lemma B.1 (which tells us that A = AP (I + PC∗R−1C)) to write
the left-hand side of (B.11) as

AP (I + PC∗R−1C)P (I + C∗R−1CP )−1(I + C∗R−1CP )A∗
P ,

which is indeed equal to the right-hand side of (B.11).
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2. To prove the equivalence of (B.7) and the filter algebraic Riccati
equation we substitute in (B.7) for AP from (B.1) and for (I+C∗R−1CP )A∗

P ,
we substitute A∗ (using (B.4)) and then substitute (B.3) for A. We then get

(A−(BD∗+APC∗)(R+CPC∗)−1C)P (A∗−C∗DS−1B∗)−P+BS−1B∗ = 0.

Rewriting this gives

APA∗ − P +BB∗ = (BD∗ + APC∗)(R + CPC∗)−1CPA∗

−(BD∗ + APC∗)(R + CPC∗)−1CPC∗DS−1B∗

+APC∗DS−1B∗ −BS−1B∗ +BB∗.

We now focus on the last two lines of this last equation. We note that
I − S−1 = D∗DS−1 and we can thus rewrite these last two lines as

−(BD∗+APC∗)(R+CPC∗)−1CPC∗DS−1B∗+APC∗DS−1B∗+BD∗DS−1B∗,

and this can be rewritten as

(BD∗ + APC∗)(R + CPC∗)−1[−CPC∗ +R + CPC∗]DS−1B∗.

Noting that RDS−1 = D, we see that this is equal to

(BD∗ + APC∗)(R + CPC∗)−1DB∗.

This completes the proof of the equivalence of (B.7) and the filter algebraic
Riccati equation.

Lemma B.4. Assume the discrete-time system Σ has a solution Q of its con-
trol algebraic Riccati equation and P be of its filter algebraic Riccati equation.
Define AP and AQ by (B.1) and (B.2), respectively. Then

(I + PQ)AQ = AP (I + PQ). (B.12)

Proof. We use the equivalent version of the filter algebraic Riccati equation
(B.7) to write

P = APP (I + C∗R−1CP )A∗
P +BS−1B∗,

which leads to

I + PQ = I + APP (I + C∗R−1CP )A∗
PQ+BS−1B∗Q

and so

(I + PQ)AQ = (I +BS−1B∗Q)AQ + APP (I + C∗R−1CP )A∗
PQAQ.
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We use (B.5) to write the right-hand side as

AP (I + PC∗R−1C) + APP (I + C∗R−1CP )A∗
PQAQ.

Rearranging gives

AP + APP [C∗R−1C + (I + C∗R−1CP )A∗
PQAQ],

and using (B.5) again we obtain

AP + APP [C∗R−1C + A∗
Q(I +QBS−1B∗)QAQ].

According to the version (B.9) of the control algebraic Riccati equation, the
term in square brackets equals Q. So the above is equal to AP (I +PQ).

We now prove a relation concerning the difference of two solutions of a
Riccati equation.

Lemma B.5. Assume the discrete-time system Σ has solutions Q1 and Q2

of its control algebraic Riccati equation. Define AQ1 and AQ2 similarly to
(B.2). Then

Q1 −Q2 = A∗
Q2

(Q1 −Q2)AQ1 .

Proof. Subtract the form (B.9) of the control algebraic Riccati equation for
Q1 and Q2 to obtain

Q1−Q2 = A∗
Q1

(I+Q1BS
−1B∗)Q1AQ1−A∗

Q2
(I+Q2BS

−1B∗)Q2AQ2 . (B.13)

According to Lemma B.1 (say with P = I) we have

AQ2 = (I +BS−1B∗Q2)
−1AP (I + PC∗R−1C) (B.14)

= (I +BS−1B∗Q2)
−1(I +BS−1B∗Q1)AQ1 .

Combining (B.13) and (B.14) we obtain

Q1 −Q2 = A∗
Q2

(I +Q2BS
−1B∗)Q1AQ1 − A∗

Q2
Q2(I +BS−1B∗Q1)AQ1

= A∗
Q2

(Q1 −Q2)AQ1 .

Proof of Proposition 6.39. Denote the Riccati closed-loop system associ-
ated with the solution Q by ΣQ. We need to show that

AQP (I + PQ)−1 − P (I + PQ)−1 +BQB
∗
Q = 0.
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From (B.5) and (B.12) we see that this is equivalent to

(I+BS−1B∗Q)−1AP (I+PC∗R−1C)PA∗
P (I+QP )−1−P (I+QP )−1+BQB

∗
Q = 0.

(B.15)

It is easily proven that

(I +BS−1B∗Q)BQB
∗
Q = BS−1B∗.

Using this we see that (B.15) is equivalent to

(I +BS−1B∗Q)−1 ×[
AP (I + PC∗R−1C)PA∗

P − (I +BS−1B∗Q)P +BS−1B∗(I +QP )
]
×

(I +QP )−1 = 0.

The term in square brackets is zero since it is the equivalent version (B.7) of
the filter Riccati equation. �

Lemma B.6. Suppose that the discrete-time system with system operator
[Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] is such that Ď1 has a bounded inverse and that there
exists a nonnegative self-adjoint operator V such that

B̌∗V Ǎ+ Ď∗Č = 0. (B.16)

Define A,B,C,D as in Proposition 2.23, S := I +D∗D and R := I +DD∗.
Then

1. Ǎ = A−B(S +B∗V B)−1(D∗C +B∗V A) and

2. Ǎ∗V Ǎ− V + Č∗Č = Ǎ∗(I + V BS−1B∗)V Ǎ− V + C∗R−1C.

Proof. We first prove the equality

SČ1 = −(B∗V Ǎ+D∗C). (B.17)

From (B.16) and (2.5) we obtain

Ď∗
1B

∗V Ǎ+ Ď∗
1Č1 + Ď∗

2Č2 = 0.

Thus

Č1 = −B∗V Ǎ−D∗Č2 = −B∗V Ǎ−D∗(C +DČ1)

and this yields (B.17):

SČ1 = (I +D∗D)Č1 = −B∗V Ǎ−D∗C.
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We now prove the first equality stated in the lemma. We take the equality
just proved (B.17) and substitute Ǎ = A+BČ1 to obtain

SČ1 = −(B∗V (A+BČ1) +D∗C).

Thus

(S +B∗V B)Č1 = −(B∗V A+D∗C).

We now solve for Č1 and substitute to obtain

Ǎ = A+BČ1 = A−B(S +B∗V B)−1(B∗V A+D∗C).

We now prove the equality

Č∗Č = Ǎ∗V BS−1B∗V Ǎ+ C∗R−1C. (B.18)

We have

Č∗Č = Č∗
1 Č1 + Č∗

2 Č2

and substituting for Č2 from (2.5) gives

Č∗Č = Č∗
1 Č1 + (C +DČ1)

∗(C +DČ1).

Finally, substituting for Č1 from (B.17) and simplifying gives the result.
The second equality stated in the lemma follows easily from (B.18).

Lemma B.7. Suppose that the discrete-time system with system operator
[Ǎ, B̌; [Č1; Č2], [Ď1; Ď2]] is such that Ď1 has a bounded inverse and assume
that a nonnegative self-adjoint operator V exists such that

B̌∗V B̌ + Ď∗Ď = I.

Define A,B,C,D as in Proposition 2.23. Then we have

1. B∗V B + S = Ď−∗
1 Ď−1

1 and

2. B̌B̌∗(I + V BS−1B∗) = BS−1B∗.

Proof. 1. The given equation for V translates to

Ď∗
1B

∗V BĎ1 + Ď∗
1Ď1 + Ď∗

1D
∗DĎ1 = I,

and multiplying from the left with Ď−∗
1 and from the right with Ď−1

1 gives
the result.
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2. The first equality implies that (S + B∗V B)−1 = Ď1Ď
∗
1 and so B(S +

B∗V B)−1B∗

= B̌B̌∗. Hence

B̌B̌∗(I + V BS−1B∗) = B(S +B∗V B)−1B∗(I + V BS−1B∗)

= B(S +B∗V B)−1(S +B∗V B)S−1B∗ = BS−1B∗,

which proves the second equality.

Proof of Lemma 6.46. It easily follows from Proposition 6.45 that Σ̌ is the
Riccati closed-loop system of Σ corresponding to the solution of the control
Riccati equation Q := Lc. This in particular implies that Ǎ = AQ, where AQ

is defined by (B.2). Define P := L(I − QL)−1 and define AP by (B.1). We
establish the identity

(I − LQ)AP = Ǎ(I − LQ) (B.19)

or by (B.6) the equivalent identity

(I − LQ)(I +BS−1B∗Q)Ǎ = Ǎ(I − LQ)(I + PC∗R−1C). (B.20)

Since P = L(I−QL)−1 = (I−LQ)−1L the right-hand side of (B.20) is equal
to

Ǎ− ǍLQ+ ǍLC∗R−1C.

We substitute Q − C∗R−1C = Ǎ∗(I + QBS−1B∗)QǍ (this identity holds
because Q is a solution of the filter Riccati equation; see (B.9)) to obtain for
the right-hand side of (B.20)

Ǎ− ǍLǍ∗(I +QBS−1B∗)QǍ.

The control Lyapunov equation tells us that ǍLǍ∗ = L − B̌B̌∗ and so the
right-hand side of (B.20) is equal to

Ǎ− L(I +QBS−1B∗)QǍ+ B̌B̌∗(I +QBS−1B∗)QǍ.

Substituting B̌B̌∗(I + QBS−1B∗) = BS−1B∗ from Lemma B.7 with V = Q
we obtain for the right-hand side of (B.20)

Ǎ− L(I +QBS−1B∗)QǍ+BS−1B∗QǍ,

which is equal to the left-hand side of (B.20). This proves (B.19). We show
that P is a solution of the filter algebraic Riccati equation. We start with
the control Lyapunov equation

ǍLǍ∗ − L+ B̌B̌∗ = 0
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and substitute Ǎ = (I − LQ)AP (I − LQ)−1 from (B.19) and Ǎ∗ = (I +
C∗R−1CP )A∗

P (I +QBS−1B∗)−1 from (B.6) to obtain

(I−LQ)AP (I−LQ)−1L(I+C∗R−1CP )A∗
P (I+QBS−1B∗)−1−L+B̌B̌∗ = 0.

We multiply by (I − LQ)−1 from the left and by (I + QBS−1B∗) from the
right to obtain

APP (I+C∗R−1CP )A∗
P−P (I+QBS−1B∗)+(I−LQ)−1B̌B̌∗(I+QBS−1B∗)=0.

We again use the fact that B̌B̌∗(I +QBS−1B∗) = BS−1B∗ to obtain

APP (I+C∗R−1CP )A∗
P−P−PQBS−1B∗+(I−LQ)−1BS−1B∗ = 0.

(B.21)

Using that P = (I − LQ)−1L we see that the sum of the two last terms of
the left-hand side of (B.21) equals BS−1B∗. This proves that P is a solution
of the equivalent version (B.7) of the filter algebraic Riccati equation. �

Lemma B.8. Let Q be a solution of the control algebraic Riccati equation
of Σ. Define AQ by (B.2). Denote by D the closed unit disc. Then the
component of 1/ρ(A)∩D that contains zero is contained in the component of
1/ρ(AQ) ∩ D that contains zero.

Proof. We first show that if λ ∈ D is in the approximate point spectrum of
AQ, then it is in the appoximate point spectrum of A.

We first note that for all x ∈X and λ ∈ C

||(λI − A)x|| ≤ ||(AQ − A)x||+ ||(λI − AQ)x|| ≤ (B.22)

||B(S +B∗QB)−1|| (||D∗Cx||+ ||B∗QAx||) + ||(λI − AQ)x||.
Second we note that the control algebraic Riccati equation (it follows most
easily from the equivalent version (B.9)) implies that for every x ∈X

‖S−1/2B∗QAQx‖2 + ‖R−1/2Cx‖2 = ‖Q1/2x‖2 − ‖Q1/2AQx‖2. (B.23)

For every λ in the exterior of the open unit disc we have that the right-hand
side of (B.23) is smaller than or equal to |λ|2 ‖Q1/2x‖2−‖Q1/2AQx‖2, which
equals

−〈Q(λI −AQ)x, (λI −AQ)x〉+λ〈Qx, (λI −AQ)x〉+ λ̄〈(λI −AQ)x,Qx〉.

It is easily computed that B∗QAQ = S(S + B∗QB)−1B∗QA. It follows that
the left-hand side of (B.23) is equal to

||S1/2(S +B∗QB)−1B∗QAx||2 + ||R1/2Cx||2.
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Hence we obtain

||S1/2(S +B∗QB)−1B∗QAx‖2 + ‖R−1/2Cx‖2 (B.24)

≤ −‖Q1/2(λI − AQ)x‖2 + λ〈Qx, (λI − AQ)x〉+ λ̄〈(λI − AQ)x,Qx〉.

Assume that λ ∈ D is in the approximate point spectrum of AQ. Then there
exists an sequence xn ∈ X with ‖xn‖ = 1 such that ‖(λI − AQ)xn‖ → 0.
It follows from (B.24) that ‖B∗QAxn‖ → 0 and ‖Cxn‖ → 0. It then follows
using (B.22) that ‖(λI−A)xn‖ → 0. This means that λ is in the approximate
point spectrum of A. So we have σa(AQ) ∩ D+ ⊂ σa(A) ∩ D+.

Let µ be an element of the component of 1/ρ(A) ∩ D that contains zero.
Then there exists a path l in 1/ρ(A)∩D that has zero and µ as its endpoints.
Assume that µ is not an element of the component of 1/ρ(AQ) ∩ D that
contains zero. Consider the sets

Vσ := {z ∈ lµ : 1/z ∈ σ(AQ)∩D+}, Vρ := {z ∈ lµ : 1/z ∈ ρ(AQ)∩D+}.

Since l is contained in the closed unit disc it follows that l = Vσ ∪ Vρ. It is
easily seen that Vσ is closed. Let p : [0, 1]→ l be a parametrization of l. We
have p(0) = 0 ∈ Vρ and p(1) = µ ∈ Vσ. We have [0, 1] = p−1(Vσ) ∪ p−1(Vρ).
Since p−1(Vσ) is closed it has a smallest element. Denote this smallest element
by tmin. Since 0 ∈ p−1(Vρ) we have tmin > 0. Denote λmin = p(tmin). It follows
by construction that λmin is an element of the boundary of σ(AQ). Since
the boundary of the spectrum consists of approximate eigenvalues we have
λmin ∈ σa(AQ)∩D+. It follows, using the above established relation between
the approximate eigenvalues, that λmin ∈ σa(A) ∩ D+. But this contradicts
the fact that l is contained in 1/ρ(A) ∩ D. The desired result follows.
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Summary

The main aim of this thesis is, as the title suggests, the presentation of
results on model reduction for controller design for infinite-dimensional sys-
tems. These results are presented for discrete-time systems in Chapter 10
and for continuous-time systems in Section 14.7. They are perfect generaliza-
tions of the finite-dimensional results: we obtained existence and uniqueness
of minimal LQG-balanced realizations under conditions that are obviously
necessary (but it is far from obvious that they are sufficient!) and an error-
bound for truncated LQG-balanced realizations. The results are illustrated
by a controller design for a beam in Chapter 15.

Along the way we generalized several important theorems and introduced
a few promising new concepts. Arguably the most important theorem that we
generalize is that on the existence of (strongly) coprime factorizations. The
results in Chapter 7 solve this long outstanding problem for which many par-
tial results exist in the literature. The most important new concept resulting
from this Ph.D. work is probably that of a (distributional) resolvent linear
system. As shown in part II many systems described by partial differential
equations fall into this class of systems and one can reasonably easily prove
theorems for this class of systems. That this new concept brings together
well-established concepts such as distribution semigroups, the Cayley trans-
form and nonhomogeneous elliptic boundary value problems strengthens our
belief that we have discovered an important new class of systems.
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Samenvatting

Het hoofddoel van dit proefschrift is, zoals de titel aangeeft, de presen-
tatie van resultaten over modelreductie voor regelaarontwerp voor oneindig-
dimensionale systemen. Deze resultaten worden voor discrete-tijd syste-
men gegeven in hoofdstuk 10 en voor continue-tijd systemen in sectie 14.7.
Deze resultaten zijn perfecte generalizaties van de overeenkomstige eindig-
dimensionale resultaten: we tonen existentie en eenduidigheid van mini-
male LQG-gebalanceerde realizaties aan onder condities die overduidelijk
noodzakelijk zijn (maar het is verre van overduidelijk dat deze condities
ook voldoende zijn!) en we geven een foutafschatting voor afgekapte LQG-
gebalanceerde realizaties. De theoretische resultaten worden in hoofdstuk 15
gëıllustreerd middels een regelaarontwerp voor een balk.

Als tussenresultaten presenteren we generalizaties van een aantal belan-
grijke stellingen. Waarschijnlijk de belangrijkste stelling die we generalizeren
is die over het bestaan van (sterke) copriem factorizaties. De resultaten in
hoofdstuk 7 geven een volledige oplossing van dit al lang openstaande prob-
leem waarvoor vele deeloplossingen bestaan in de literatuur.

Ook introduceren we in dit proefschrift een aantal nieuwe concepten.
Het belangrijkste nieuwe concept in dit proefschrift is waarschijnlijk dat
van een (distributional) resolvent linear system. Zoals beschreven in deel
II van dit proefschrift vallen vele systemen beschreven door partiële differ-
entiaalvergelijkingen binnen deze klasse van systemen en kan men relatief
eenvoudig stellingen bewijzen voor deze klasse van systemen. Dat dit nieuwe
concept enkele bestaande concepten zoals distributie halfgroepen, de Cayley
transformatie en niet-homogene elliptische randwaardeproblemen bij elkaar
brengt sterkt ons in de overtuiging dat we een belangrijke nieuwe klasse van
systemen ontdekt hebben.
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Tot slot

Dit proefschrift werd mede mogelijk gemaakt door...
Mijn promotor: Het onderwerp van dit proefschrift is door haar aangedra-

gen en de meeste resultaten gepresenteerd in dit proefschrift zijn het product
van ons gezamenlijk werk. Verder dank ik haar voor al de wijze lessen die ze
geprobeerd heeft mij te leren.

De RuG-wiskundigen: Ik heb met veel plezier negen jaar op de wiskunde
afdeling van de Rijksuniversiteit Groningen rondgelopen. Tijdens de colleges
en daarbuiten heb ik veel geleerd van de hoogleraren en docenten van de
afdeling. Een extra woord van dank gaat uit naar Erik Thomas die me ook
nog tijdens mijn promotieonderzoek een aantal maal van essentiële kennis
deelgenoot heeft gemaakt.

Mijn afstudeerder: De numerieke resultaten in sectie 15.3 van dit proef-
schrift zijn verkregen met behulp van een matlab-programma dat geschreven
is door Simon van Mourik voor zijn afstuderen. Dank dat je dit numerieke
werk uit mijn handen hebt genomen Simon!

De systeemtheorie groep: De systeemtheorie groep is in de vijf jaar dat ik
er nu deel van uit maak erg veranderd, maar is altijd een bron van steun en
inspiratie gebleven. Daar wil ik de officiële en onofficiële leden van de groep
gedurende de afgelopen vijf jaar voor bedanken.

De wiskunde promovendi: Nu het mijn beurt is om te gaan heb ik heb een
hele generatie van promovendi zijn komen of gaan. Thanks for everything
guys!

De leescommissie: Ik wil de leden van de leescommissie danken voor het
vrijmaken van een deel van hun schaarse tijd om mijn proefschrift te lezen en
er commentaar op te geven. Verder wil ik Olof Staffans bedanken voor de twee
maanden die ik bij hem in Finland mocht doorbrengen. Het schrijven van
dit proefschrift en het uitwerken van onze toen behaalde resultaten kwamen
elkaar danig in de weg te zitten, maar nu het proefschrift geschreven is zullen
die artikelen met onze ‘Finse’ resultaten dan toch daadwerkelijk afgemaakt
kunnen worden.

NWO: Dit onderzoek werd gefinancierd door een subsidie uit de open
competitie van de Nederlandse organisatie voor Wetenschappelijk Onderzoek.

Mijn familie: In dit dankwoord last but certainly not least.
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List of Notation

Symbol Short description Page

A state operator 8
A state function 10
A resolvent of a discrete-time system 12
a pseudoresolvent (of a continuous-time system) 124

B input operator 8
B Banach space
B behavior 7
B input map 8
B input function 10
B incoming wave function of a discrete-time system 12
b incoming wave function of a continuous-time system 124
~B(·, ·) directed gap ball 95
B(·, ·) gap ball 95

C output operator 8
C set of complex numbers
C+

σ open right half-plane {s ∈ C : Res > σ}
C output map 8
C output function 10
C outgoing wave function of a discrete-time system 12
c outgoing wave function of a continuous-time system 124
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Symbol Short description Page

d Dirichlet form 133
D feedthrough operator 8
D open unit disc {z ∈ C : |z| < 1}
Dr open disc {z ∈ C : |z| < r}
D closed unit disc {z ∈ C : |z| ≤ 1}
Dr closed disc {z ∈ C : |z| ≤ r}
D input-output map 9
D transfer function 11
D characteristic function of a discrete-time system 13
d characteristic function of a continuous-time system 124

F component of an admissible feedback pair 33
F feedback operator associated with the Riccati equation 49
f component of an admissible feedback pair 147
Fmin optimal cost feedback operator 47

G component of an admissible feedback pair 33
g component of an admissible feedback pair 147
G holomorphic function

H (separable) Hilbert space
H Hankel map 9
H2 Hardy space 169
H∞ Hardy space 169
Hs Sobolev space (only in Chapter 12)
H0 Space of functions holomorphic at zero 61

I+ minimizing operator 45

J cost function 43

K subspace of a Hilbert space
K admissible feedback function 81



LIST OF NOTATION 195

Symbol Short description Page

L strongly elliptic operator 133
LF Laurent operator of the function F 172
L(B1,B2) set of bounded linear operators from B1 to B2

L(B) set of bounded linear operators from B to itself
l2(J,H ) set of square summable sequences J ⊂ Z→H
L2(J,H ) set of square summable functions J ⊂ R→H
M Möbius operator 140
M component of a right factor 62

M̃ component of a left factor 62

N component of a right factor 62

Ñ component of a left factor 62

q component of a control Riccati triple 49
qmin optimal cost sesquilinear form 46
Q solution of the control algebraic Riccati equation 49
Qmin optimal cost operator 47

R set of real numbers
R+ set of nonnegative real numbers {x ∈ R : x ≥ 0}
R− set of negative real numbers {x ∈ R : x < 0}
r(T ) spectral radius of the operator T
rA radius of convergence of series for A 10
rB radius of convergence of series for B 10
rC radius of convergence of series for C 10
rD radius of convergence of series for D 11

s component of a control Riccati triple 49
S (often) system operator 8
S sensitivity operator associated with the Riccati equation 49



196 LIST OF NOTATION

Symbol Short description Page

T unit circle {z ∈ C : |z| = 1}
TF Toeplitz operator of the function F 172

U input space (a separable Hilbert space) 7

V (x0) set of stable input-output pairs 44

X state space (a separable Hilbert space) 7
X component of a left Bezout factor 62

X̃ component of a right Bezout factor 62

Y output space (a separable Hilbert space) 7
Y component of a left Bezout factor 62

Ỹ component of a right Bezout factor 62

Z set of integers
Z+ set of non-negative integers {n ∈ Z : n ≥ 0}
Z− set of negative integers {n ∈ Z : n < 0}

δ gap metric 89,92
~δ directed gap 89,92

Λ set of definition of a resolvent linear system 124
ΛE exponential region 126

Σ system

† f †(s) := f(s̄)∗ 16

∧ ĥ is the Z-transform or Laplace transform of h



Bibliography

[1] Shmuel Agmon. Lectures on elliptic boundary value problems. Prepared
for publication by B. Frank Jones, Jr. with the assistance of George
W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2. D. Van
Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965.

[2] W. Arendt, O. El-Mennaoui, and V. Kéyantuo. Local integrated semi-
groups: evolution with jumps of regularity. J. Math. Anal. Appl.,
186(2):572–595, 1994.

[3] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank
Neubrander. Vector-valued Laplace transforms and Cauchy problems,
volume 96 of Monographs in Mathematics. Birkhäuser Verlag, Basel,
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Index

admissible feedback function, 81, 152
robust right factor stabilizing,

85, 87, 118
stabilizing, 81

admissible feedback pair, 33, 53, 62,
115, 147

exponential region, 147
half-plane, 147

admissible injection pair, 33
algebraic Riccati equation

control, 49, 53
filter, 54

aperture, see gap
approximately controllable, 8, 9, 145
approximately observable, 8, 9, 145

backward shift realization, 15, 21,
28

restricted, 15
balanced

compact LQG, 115, 154
compact Lyapunov, 97
LQG, 113, 154
Lyapunov, 97, 153
truncated LQG, 115, 155
truncated Lyapunov, 99

balanced realization, 97–119
Bezout factors

left, 62
right, 61, 150

boundary function, 170

characteristic function, 13, 13, 14,
124

closed-loop system, 33, 34, 53, 147
optimal, 53, 68, 149
Riccati, 53, 69

compact Lyapunov-balanced, see bal-
anced

control algebraic Riccati equation,
see algebraic Riccati equa-
tion

control Lyapunov equation, see Lya-
punov equation

control Riccati triple, see Riccati
triple

controllability gramian, see gramian
controllable

approximately, see approximately
controllable

coprime
strongly left-, 61
strongly right-, 61, 150
weakly right-, 61

coprime factorization, see factoriza-
tion

detectable
exponentially, 34, 119

Dirichlet form, 133
discrete-time system, 7
distributional resolvent linear sys-

tem, see resolvent linear sys-
tem

dual system, 15, 16, 145
dynamical system, 7

elliptic
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strongly, 133
energy preserving, 37, 37–41, 53
exponential stability, see stability
exponentially bounded, 126
exponentially detectable, see detectable
exponentially stabilizable, see sta-

bilizable

factorization
coprime, 61–79
doubly coprime, 62
left, 62
normalized doubly coprime, 62
normalized left, 62
normalized right, 62
normalized weakly right-coprime,

93
right, 62, 150
strongly left-coprime, 62
strongly right-coprime, 62, 82,

83, 151
weakly right-coprime, 62

FCC, see finite cost condition
feedback, see admissible feedback

pair
feedthrough operator, see operator,

feedthrough
filter algebraic Riccati equation, see

algebraic Riccati equation
filter Riccati triple, see Riccati triple
finite cost condition, 43, 53, 148
finitely nonzero, 8
function

characteristic, see characteris-
tic function

input, 10, 14
output, 10, 14
state, 10, 14
transfer, 11, 13, 14

gap, 89, 92, 117, 152

directed, 89, 92, 116
gap ball, 95

directed, 95
gap metric, 89–96
gramian

controllability, 24, 57, 146
observability, 22, 53, 146

Hankel map, see map, Hankel
Hankel operator, 67, 68, 174
Hankel singular values, 98
Hilbert-Schmidt, 100

incoming wave function, see wave
function, incoming

injection pair, see admissible injec-
tion pair

inner, 172, 172
input, 7
input function, see function, input
input map, see map, input
input operator, see operator, input
input space, 7
input stability, see stability
input stabilizable, see stabilizable
input-output function, see function,

input-output
input-output map, see map, input-

output
input-output pairs, see stable input-

output pairs
input-output stability, see stability
interconnection

series, 16, 16, 17

Laurent operator, 172
linear quadratic optimal control prob-

lem, see LQR problem
LQG-characteristic values, 113, 154
LQR-problem, 43, 43–60
Lyapunov equation

control, 24, 55
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observation, 22, 38
Lyapunov-balanced, see balanced

Möbius operator, 140
map

Hankel, 9, 10, 21, 25, 28
input, 8, 10
input-output, 9, 10
output, 8, 10

maximal pseudoresolvent, see pseu-
doresolvent

minimal, 8, 145
minimizing operator, 45

Nehari’s theorem, 174
node

operator, 125
system, 127

nontangential limit, 169
nuclear, 100

observability gramian, see gramian
observable

approximately, see approximately
observable

observation Lyapunov equation, see
Lyapunov equation

operator
feedthrough, 8
input, 8
output, 8
state, 8
system, 8

operator node, see node
optimal closed-loop system, see closed-

loop system
optimal control problem, see LQR

problem
optimal cost feedback operator, 47
optimal cost operator, 47
optimal cost sesquilinear form, 46
optimal feedback pair, 149

orthogonal projection lemma, 43
outgoing wave function, see wave

function, outgoing
output, 7
output function, see function, out-

put
output map, see map, output
output operator, see operator, out-

put
output space, 7
output stability, see stability
output stabilizable, see stabilizable

Page’s theorem, 174
perturbation

right factor admissible, 85, 96
power stability, see stability
pseudoresolvent, 124, 124

maximal, 124

realization, 14, 14
resolvent, 12, 14
resolvent linear system, 124

distributional, 126
Riccati closed-loop system, see closed-

loop system
Riccati equation, see algebraic Ric-

cati equation
Riccati triple

control, 49
filter, 54

Sarason’s theorem, 172
Schmidt pairs, 98
shift realization

backward, see backward shift
realization

singular values, 100
stability, 19–32
stabilizable, 33–36

exponentially, 34, 119
input, 34, 69
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output, 34, 53, 69, 148, 148
stable, see stability

exponentially, 19, 102, 145
input, 19, 40, 146
input-output, 19, 37, 40, 53, 146
output, 19, 37, 53, 146
power, 19
strongly, 19, 97

stable input-output pairs, 44, 63,
142

state, 7
state function, see function, state
state operator, see operator, state
state space, 7
storage operator, 37
strong stability, see stability
strongly elliptic, see elliptic
system

discrete-time, see discrete-time
system

resolvent linear, see resolvent
linear system

system operator, see operator, sys-
tem

Toeplitz operator, 172
trajectories, 7
truncated Lyapunov-balanced, see

balanced

wave function
incoming, 12, 14, 124
outgoing, 12, 14, 124

well-posed, 128

Z-transform, 11, 11, 171
Z-transformable, 11


