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Abstract

We consider harvesting of a population with continuous age-structure and where
density dependence is implemented through interaction of the population with a food
source. Using a Von Bertalanffy length-age relation, the continuous age-structure is
equivalent to a continuous length-structure. We allow the harvesting rate to be an
arbitrary function of length. This allows for a comparison of harvesting strategies,
including conventional harvesting and balanced harvesting. As a particular example,
we consider plaice (Pleuronectes platessa, Pleuronectidae). The harvesting rate which
gives the maximum sustainable yield is consistent with conventional harvesting: there
exists a body size such that individuals smaller than that size are not harvested and
individuals larger than that size are maximally harvested.

Introduction

In the conventional theory of fishing [1], it is assumed that there exists a length
(length at first capture) `c below which the fishing mortality rate equals zero and
above which the fishing mortality rate equals some constant F0. An objective in the
conventional theory of fishing then is to determine the pair (`c, F0) which achieves
Maximum Sustainable Yield (MSY).

There has recently been a proposal for “balanced harvesting” as an alternative to
this conventional harvesting [2, 3]. There is some confusion about what balanced
harvesting precisely means [4, page 212]. It is alternatively presented as a harvesting
policy which preserves ecosystem structure or as a harvesting policy where fishing
mortality rate is proportional to productivity. Moreover, “ecosystem structure” and
“productivity” themselves are multi-interpretable. Several different possible
implementations of the idea are considered in [5]. See [6] for a critique of balanced
harvesting. It is however clear that balanced harvesting is considered as different from
conventional harvesting and therefore that it proposes a fishing mortality rate which is
not of the conventional form described above.

We consider a harvesting rate F which can be an arbitrary function of length `
satisfying 0 ≤ F (`) ≤ Fmax for some maximal rate Fmax > 0. This in particular
includes both conventional harvesting and balanced harvesting (however implemented)
and other harvesting strategies as depicted in Fig 1 as possibilities. We emphasize
that in our setting, finding the harvesting rate which achieves Maximum Sustainable
Yield is not a parameter optimization problem, but instead the optimization is over all
functions F satisfying 0 ≤ F (`) ≤ Fmax. We show analytically that the harvesting rate
which achieves MSY at each length equals either 0 or Fmax. This in particular implies
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that unconventional harvesting as depicted in Fig 1 does not achieve MSY. For
parameter values corresponding to plaice (Pleuronectes platessa, Pleuronectidae) we
show numerically that the MSY harvesting rate is of the conventional form: there
exists a length `c such that F (`) equals zero for ` < `c and equals Fmax for ` > `c.

We emphasize that in contrast to the conventional theory of fishing [1], we do not
assume that the harvesting rate is of this form, it is instead a consequence of the wish
to maximize sustainable yield.

Fig 1. For a given maximal harvesting rate Fmax, conventional harvesting gives a zero
harvesting rate below length `c and a harvesting rate Fmax above `c. Also depicted is
a harvesting rate which is not of the conventional type as a function of length as

F (`) = Fmax exp

(
− 1

2σm

(
ln
(

`3

`3max

))2)
for some parameters σm and `max.

Methods

Model description

Let n(t, a) be the density of a population at time t with age a so that∫ a2

a1

n(t, a) da,

is the size of the population at time t with ages in between a1 and a2. The classical
McKendrick–Von Foerster equation describing the time evolution of n is

∂n

∂t
+
∂n

∂a
= −Z(t, a)n,

where Z(t, a) > 0 is the mortality rate. We have

Z(t, a) = M + F (t, a),

where M > 0 is the natural mortality rate (assumed to be constant) and F (t, a) ≥ 0 is
the harvesting rate. Harvesting is usually body-size-dependent rather than
age-dependent. Therefore we consider an age-length relationship as follows:

∂`

∂t
+
∂`

∂a
= g(`), `(t, a = 0) = `b,

where `(t, a) denotes the length at time t and age a, `b > 0 is the length at birth
(“birth” in our context of plaice actually means benthic settlement), and g is a given
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growth function. Since g and `b are assumed to be independent of time t, it follows
that ` is in fact independent of t as well. In the special case that g(`) = K(`∞ − `),
where K, `∞ > 0 we have that

`(a) = `∞ − (`∞ − `b)e−Ka, (1)

which is the classical Von Bertalanffy relation. From this we obtain age as a function
of length

a(`) =
1

K
ln

(
`∞ − `b
`∞ − `

)
.

The applicability of the Von Bertalanffy relation is extensively discussed in [1].
We assume that a reproduction function β(a) is given with the interpretation that∫ a2

a1

β(a)n(t, a) da,

is the total number of births at time t to parents with age in between a1 and a2.
Reproduction is in fact better described in terms of length than in terms of age, so we
will prescribe the reproduction function β as a function of length and β(a) in the
above is in fact β(`(a)). As is common, we assume that there is a length at
maturation `m > 0 below which no reproduction takes place. We take

β(`) =

{
0 ` < `m

r`3 ` ≥ `m,

where r > 0 is a fecundity coefficient. That reproduction is proportional to `3 (and
hence to volume and weight) is a common assumption [1, Section 6.1.2] which is
reasonably supported by data [7].

It follows from integrating the McKendrick–Von Foerster equation over all ages that

d

dt

∫ ∞
0

n(t, a) da = −
∫ ∞
0

∂n

∂a
da−

∫ ∞
0

Z(t, a)n(t, a) da.

Since the left-hand side is the change in time of the total population and the second
term on the right equals total mortality, the first term on the right must equal total
births (assuming a closed system, i.e. with no migration). It follows that we must have∫ ∞

0

β(a)n(t, a) da = −
∫ ∞
0

∂n

∂a
da,

i.e. ∫ ∞
0

β(a)n(t, a) +
∂n

∂a
da = 0.

Incorporating density dependence

In accordance with [8, 9] we assume that the growth function g and the reproduction
function β depend on a variable z (which can be given the interpretation of a food
source). This will result in density-dependence. More precisely we assume that

`∞ = `maxf(z), r = r0f(z),

i.e. that

g(`, z) = K (`maxf(z)− `) , β(`, z) =

{
0 ` < `m

r0f(z)`3 ` ≥ `m,
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where `max > 0, r0 > 0, and f has the Beverton–Holt form f(z) = z
z+zh

, where zh > 0
is given. The variable z is assumed to satisfy

dz

dt
= h(z)− I(t),

where I(t) is the (density-dependent) consumption at time t and is given by

I(t) =

∫ ∞
0

Imaxf(z)n(t, a) `(a)2 da,

where Imax > 0 and h determines the time evolution of z when n = 0 for which we will
assume the chemostat form h(z) = ν(C − z) where ν, C > 0. That consumption is
proportional to `2 (and hence to area) is a common assumption which is reasonably
supported by data [1, Section 9.4.3.1.1].

That `∞ depends on food consumption, but K does not is consistent
with [1, Section 9.4.1].

The total yield Y (t) at time t from harvesting is

Y (t) =

∫ ∞
0

δvF (t, a)n(t, a) (δm`(a))
3
da,

where δv > 0 is volume specific mass and δm > 0 is a shape coefficient.
We are interested in maximum sustainable yield, so we consider the situation where

everything is independent of time t and we wish to maximize the yield in this
situation. For numerical considerations we replace the upper-limit ∞ in the integrals
in the above description by some large finite amax where amax > 0 is a maximal age.
We further assume that the harvesting rate is bounded by some Fmax > 0, i.e.
0 ≤ F (a) ≤ Fmax. We will comment on the role of Fmax in the results section.

We summarize the problem in (2).

∂n

∂a
= −(M + F (a))n(a),

∂`

∂a
= K (`maxf(z)− `(a)) , `(a = 0) = `b,∫ amax

0

(β(`(a), z)−M − F (a))n(a) da = 0,∫ amax

0

f(z)n(a) `(a)2 da =
νC

Imax

(
1− z

C

)
,

f(z) =
z
C

z
C + zh

C

,

β(`, z) =

{
0 ` < `m

r0f(z)`3 ` ≥ `m,

maximize

∫ amax

0

δvF (a)n(a) (δm`(a))
3
da,

0 ≤ F (a) ≤ Fmax.

(2)

Parametrization

We consider parameter values for plaice (Pleuronectes platessa, Pleuronectidae), but
other species could similarly be considered. From FishBase [10] we obtain the following

`max = 100 cm, M = 0.12 year−1, K = 0.1 year−1, `m = 26.6 cm.
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We further assume (in accordance with [9])

`b = 1 cm, amax = 30 year.

We have that νC
Imax

only scales the density n, so that we can assume without loss of
generality that it equals 1 (by considering n in appropriate units). Similarly, δv and
δm scale out of the problem.

The lifetime reproductive output in the density-independent case (f = 1) and with
no harvesting (F = 0) equals

r0

∫ amax

am

e−Ma
(
`max − (`max − `b)e−Ka

)3
da,

where am is the age at maturity in this context, i.e.

am =
1

K
ln

(
`max − `b
`max − `m

)
.

We choose r0 so that this lifetime reproductive output equals 22.2 [11]. This gives

r0 = 1.49× 10−5.

The parameter zh0 := zh
C is chosen as 0.25.

Formulation as a standard optimal control problem

We can reformulate the maximum sustainable yield problem (2) as a standard optimal
control problem. The independent variable is age a, the control variable u is the
harvesting rate F and we define the state x (which is a vector with 4 components)
through

x1 := n, x2 := `, x3(A) :=

∫ A

0

(β(`(a), z0)−M − F (a))n(a) da,

x4(A) :=

∫ A

0

f(z0)n(a) `(a)2 da.

With these definitions, (2) becomes the following standard optimal control problem:

x′1 = −(M + u)x1,

x′2 = K (`maxf(z0)− x2) , x2(0) = `b,

x′3 = (β(x2, z0)−M − u)x1, x3(0) = 0, x3(amax) = 0,

x′4 = f(z0)x1 x
2
2, x4(0) = 0, x4(amax) = 1− z0,

maximize

∫ amax

0

ux1x
3
2 da,

0 ≤ u ≤ Fmax,

β(`, z0) =

{
0 ` < `m

r0
z0

z0+zh0
`3 ` ≥ `m,

(3)

Here z0 := z
C ∈ [0, 1] is an optimization parameter which has to be determined

through the optimization problem.
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Analysis of the optimal control problem

The Pontryagin Principle [12–14] can be used to obtain information about the optimal
control problem (3). The Hamiltonian of the problem equals (for notational
convenience, we suppress dependence on z0)

−ux1x32 − λ1(M + u)x1 − λ2K (x2 − f`max)− λ3 (M + u− β(x2))x1 + λ4Imaxfx1x
2
2.

Defining the switching function (the coefficient of u in the Hamiltonian)

σ := −(x32 + λ1 + λ3)x1,

we have that

u(a) =


0 σ(a) > 0

singular σ(a) = 0

Fmax σ(a) < 0.

We further have

λ′1 = ux32 + λ1(M + u) + λ3 (M + u− β(x2))− λ4Imaxfx
2
2, λ1(0) = λ1(amax) = 0,

λ′3 = 0,

λ′4 = 0.

From this we can deduce that

σ′ =
(
Mx32 − 3x22K (f`max − x2) + λ3β(x2) + λ4Imaxfx

2
2

)
x1.

We now exclude the case of singular control. In the case of singular control we have
σ = 0 on a non-trivial interval and therefore σ′ = 0 on that interval. Since x1 > 0, it
follows that on that interval

Mx32 − 3x22K (f`max − x2) + λ3β(x2) + λ4Imaxfx
2
2 = 0.

Since λ3 and λ4 are constants, it follows from this that x2 must be piecewise constant
on this interval. However, since x2 is given by the Von Bertalanffy relation (1), this is
not possible. It follows that singular control is impossible and that therefore we have
bang-bang control, i.e.

u(a) =

{
0 σ(a) > 0

Fmax σ(a) < 0.

Hence for any given age (or equivalently: length) the harvesting rate is either zero or
maximal.

Numerical considerations

For numerical purposes it is needed to approximate the discontinuous reproduction
function β by a smooth one. The numerical method therefore uses instead

β(`, z) = r0f(z)`3
1 + 1

2e−10(`−`m)

1 + e−10(`−`m)
,

utilizing a standard smooth approximation of the sign function. Note that the
argumentation in the previous section excluding singular control carries over since this
didn’t use any specific form for β.
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The numerical solution of (3) starts from an initial guess for the control, the state
and the optimization parameter. We use

uinit(a) =
Fmax

2
, z0,init = zh0, x1,init(a) = e−(M+Fmax/2)a,

x3,init(a) =
`max

2
−
(
`max

2
− `b

)
e−Ka, x4,init = 0, x4,init = 1− zh0.

A very bad initial guess will lead to non-convergence or convergence to the zero
solution. However, a large range of initial guesses leads to the solution mentioned in
the results section (and no solution other than this solution or the zero solution was
ever found).

Note that the above initial guess does not bias towards u having the conventional
harvesting form.

Results

The numerical calculations were performed with the Julia package
OptimalControl.jl [15]. For values of the maximum harvesting rate Fmax in
{M2 ,M, 2M} the optimal harvesting rate as a function of length is depicted in Fig 2.
It can be seen that the optimal harvesting rate is zero below a certain length `c and is
maximal above this length. This switching length `c depends on Fmax and increases
with Fmax.

Fig 2. The optimal harvesting rate as a function of length for three values of the
maximum harvesting rate Fmax. Also shown is the length of maturation.

By the chain rule we have∫ a2

a1

n(a) da =

∫ `(a2)

`(a1)

n(a(`))
da

d`
d` =

∫ `(a2)

`(a1)

n(a(`))
1

g(`)
d`,

so that N(`) := n(a(`)) 1
g(`) is the density as a function of ` in the sense that∫ `2

`1

N(`) d`,

is the size of the population with lengths in between `1 and `2. In Fig 3 we give this
density as a function of length for the above three values of the maximum harvesting
rate Fmax.

Length as a function of age is depicted in Fig 4. We note that because of density
dependence the ultimate length `∞ depends on the variable z. What we see in Fig 4 is
that the ultimate length increases with the maximal harvesting rate Fmax. This is
because the variable z increases with Fmax and `∞ increases with z.
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Fig 3. The optimal density as a function of length for three values of the maximum
harvesting rate Fmax. Also shown is the length of maturation.

Fig 4. Length as a function of age for three values of the maximum harvesting rate
Fmax.

The role of the maximum harvesting rate

It is not our main focus, but one might wonder about how the maximum harvesting
rate Fmax (which could be seen as being proportional to the size of the fishing fleet)
influences the results.

Because of the nature of the problem, the maximum sustainable yield is increasing
with the maximum harvesting rate Fmax. As indicated in Table 1, beyond a value of
Fmax = 5M there is hardly any improvement in the maximum sustainable yield.

For relatively large values of the fraction Fmax

M , we depict the optimal harvesting
rate as a function of length in Fig 5 and the density as a function of length in Fig 6. It
seems that as Fmax

M →∞, the switching length `c converges to some finite value `∗c
(this is consistent with [1, Figure 17.14] which considers a somewhat different model)
and that the optimal harvesting strategy is to harvest the whole population with
length above `∗c (and harvest none with length below this).

Discussion

We considered harvesting of a population with length as a continuous variable and
density-dependence through interaction with a food source. We allowed the harvesting
rate to be an arbitrary function of length. The optimal harvesting rate (with respect
to MSY) turned out to be of the form used in conventional harvesting of fish:
individuals below a certain body size are not harvested and those above that size are
(maximally) harvested. This is an argument in favor of conventional harvesting and
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Fmax/M MSY(Fmax)/MSY(M)
1
2 0.662
1 1
2 1.219
5 1.315
10 1.333
20 1.338
30 1.339

Table 1. The maximum sustainable yield for various values of the maximum
harvesting rate Fmax normalized by the maximum sustainable yield when the
maximum harvesting rate is equal to the natural mortality rate M .

Fig 5. The optimal harvesting rate as a function of length for three large values of
the maximum harvesting rate Fmax. Also shown is the length of maturation.

against balanced harvesting (we note that balanced harvesting, however implemented,
is mathematically guaranteed not to give maximum sustainable yield for our model).
We do consider a single species model (interacting with a food source) and the results
could potentially be different if a model of several interacting species were to be
considered instead. The optimal control problem could be generalized to include such
interaction. Optimal harvesting problems are linear in the control and therefore
belong to a very special class of optimal control problems. The only way that an
optimal harvesting rate which does not equal either zero or maximal for all lengths
can arise in such a problem is as singular control. For our model this has been
mathematically excluded, but it is in principle possible that singular control is optimal
for other models (for example multi-species models). This is the mathematical
mechanism through which something that might be termed balanced harvesting could
be optimal: as singular control.

Instead of maximum sustainable yield as objective, one could consider maximum
economic sustainable yield by adding −cFmax to the objective function for some c > 0
(this includes cost of harvesting in the objective). The maximal harvesting rate Fmax

should then be treated as an optimization parameter (similarly to the variable z in (2)
or the normalized variable z0 in (3)). Due to the diminishing returns in yield with
increasing Fmax shown in Table 1, there will exist a unique F ∗max which gives the
maximum economic sustainable yield. The optimal harvesting rate and optimal
density will then be as calculated in the results section with the maximal harvesting
rate set equal to this F ∗max. Therefore in essence, we have also solved the maximum
economic sustainable yield problem.

We provided a partial mathematical analysis of the optimal control problem (3).
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Fig 6. The optimal density as a function of length for three large values of the
maximum harvesting rate Fmax. Also shown is the length of maturation.

Fuller mathematical analysis of similar problems is available in the literature [16], but
is seems not of our exact problem. This mathematical analysis of similar, but
different, problems is consistent with our results in that it excludes singular control
and typically finds that there exists one switch between minimal and maximal control.

It is easy to incorporate additional constraints into the optimal control problem,
for example those proposed in [17].

Supporting information

S1 File. Julia-Fish.jl The Julia code.
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