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Abstract

We consider linear time-invariant differential–algebraic equations in both finite and infinite
dimensions. Utilizing the theory of state/signals systems, we identify which variables are states,
which variables are inputs and which variables are outputs and describe the dynamics though a
standard input/state/output system.

1 Introduction

If one models a real-world dynamical system and puts all the relevant variables in a vector-valued
function v, then in the linear finite-dimensional time-invariant case the equations obtained can be
written as

E0v̇(t) = A0v(t), (1)

for certain matrices E0,A0 ∈ Rk×n. Such a model is called a differential–algebraic equation (DAE).
A DAE is difficult to analyze directly and a good first step to analyze a DAE is to restructure
the equations. We show that we can write Rn = X +̇U+̇Y (direct sum) and that accordingly
decomposing v(t) = x(t) + u(t) + y(t) we have

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (2)

for certain (single-valued) bounded operators A : X → X , B : U → X , C : X → Y and D : U → Y
which in the considered finite-dimensional case can be represented by matrices. Hence the DAE
(1) can be re-written as an input/state/output system (2) with state space X , input space U and
output space Y, which is much easier to analyze.

We also consider the infinite-dimensional situation where instead of (2) we obtain[
ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, (3)

where the (single-valued) operator S is in general unbounded and generalizes the block matrix[
A B
C D

]
. Generally, the infinite-dimensional system (3) may not have particularly nice properties

(aside from S being single-valued), but under some mild additional assumptions we obtain that S
is an operator node in the sense of [13].

In Section 2 we give sufficient detail about the above constructions to consider several examples
in Section 3. Section 4 compares our results to results available in the literature. Finally in Section
5 we state precise theorems with proofs.
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2 Informal statements of the main results

To the DAE (1) we can associate the subspace of Rn × Rn given by

W :=

{[
q
v

]
∈
[
Rn
Rn
]

: E0q = A0v

}
.

As a subspace of a product space, W can naturally be seen as the graph of a multi-valued operator
A0 (also known as a linear relation):

gph(A0) := W, A0v =

{
q :

[
q
v

]
∈ gph(A0)

}
.

In Section 5 we will in fact formulate all results in terms of multi-valued operators.
Conversely, if M is a closed multi-valued operator on a Hilbert space V (closed meaning that

gph(M) is closed), then by [1, Lemma 4.1.15] there exists a Hilbert space Z and bounded single-
valued linear operators E,A : V → Z such that (this is called a kernel representation)

gph(M) =

{[
q
v

]
∈
[
V
V

]
: Eq = Av

}
.

We have the following important subspaces associated to a multi-valued operator M:

dom(M) =

{
v : ∃q such that

[
q
v

]
∈ gph(M)

}
,

mul(M) =

{
q :

[
q
0

]
∈ gph(M)

}
,

im(M) =

{
q : ∃v such that

[
q
v

]
∈ gph(M)

}
.

We note that in terms of a kernel representation we have

dom(M) = {v : ∃q such that Eq = Av} , mul(M) = N(E),

im(M) = {q : ∃v such that Eq = Av} .

2.1 The ultimate multi-valued operator

We specialize again to the finite-dimensional case and consider the multi-valued operator

gph(A0) =

{[
q
v

]
∈
[
Rn
Rn
]

: E0q = A0v

}
,

associated to the DAE (1). As a first step, from this multi-valued operator we should obtain a
multi-valued operator A with the same set of continuously differentiable trajectories but with the
additional property that im(A) ⊂ dom(A). To this end, we consider the sequence of multi-valued
operators Ak defined iteratively by

gph(Ak+1) = gph(Ak) ∩
[
dom(Ak)
dom(Ak)

]
. (4)
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Because of finite-dimensionality, this sequence must terminate, i.e. there exists a µ ∈ N0 such that
Aµ+1 = Aµ. We define A := Aµ and A then indeed has the property that im(A) ⊂ dom(A).
Crucial is that all of these multi-valued operators have the same set of continuously differentiable
trajectories: v is a continuously differentiable solution of (1) if and only if (for any k ∈ N)[

v̇(t)
v(t)

]
∈ gph(A0)⇐⇒

[
v̇(t)
v(t)

]
∈ gph(Ak)⇐⇒

[
v̇(t)
v(t)

]
∈ gph(A).

Intuitively, in general the original multi-valued operator A0 has “too large” a graph and the graph
of A is the subspace of gph(A0) which (minimally) suffices for the description of the continuously
differentiable trajectories.

2.2 The input/state/output decomposition

We define Y0 as a direct complement to dom(A):

Rn = dom(A)+̇Y0,

(choosing Y0 as the orthogonal complement would make it unique, but there can be reasons to
consider a non-orthogonal direct complement). We subsequently define the signal space

W := mul(A) + Y0,

(this sum is actually direct since by construction mul(A) ⊂ im(A) ⊂ dom(A)) and define the state
space X as a direct complement (once again, choosing the orthogonal complement would make it
unique, but there can be reasons to consider a non-orthogonal direct complement):

Rn = X +̇W.

We then decompose the signal space as a direct sum of the output space Y and the input space U

W = Y+̇U ,

where the condition on the output space is that Y is a direct complement to mul(A). The choice
Y := Y0 and U := mul(A) is always valid, but there can be reasons to consider other choices.

We then have
Rn = X +̇U+̇Y,

and with respect to this decomposition we obtain that the dynamics is described by the in-
put/state/output system (2) (where A, B, C and D can also be described, but in examples these
are often obvious once we know the decomposition).

2.3 The infinite-dimensional case

In the infinite-dimensional case we consider initially a multi-valued operator A0 on the Hilbert
space V (where the choice V = Rn gives back the finite-dimensional case previously considered). In
(4) we have to consider closures of domains, i.e. we instead have to consider

gph(Ak+1) = gph(Ak) ∩
[
dom(Ak)
dom(Ak)

]
,

3



and the operator A is defined through

V• =
∞⋂
k=1

dom(Ak), gph(A) = gph(A0) ∩
[
V•
V•

]
.

It is no longer guaranteed that the sequence terminates, so that we instead have to assume this,
i.e. we have to assume that there exists a µ ∈ N0 such that Aµ+1 = Aµ. We now obtain that

im(A) ⊂ dom(A) in case of termination (there are alternative assumptions under which this holds).
The definitions of Y0, X andW remain essentially the same (the spaces Y0 and X are now explicitly
assumed closed):

V = dom(A)+̇Y0, W := mul(A) + Y0, V = X +̇W.

The decomposition of the signal space W into an input space U and an output space Y becomes
more complicated (unless dom(A) is closed in which case the situation is the same as described in
the finite-dimensional case). Instead of the output space being taken as a direct complement in W
to mul(A), it should be chosen as a direct complement in W to the characteristic signal bundle.
Here we will restrict ourselves to the special case where Y0 = {0} (Section 5 does deal with the
general case). In that special case the characteristic signal bundle is given by (here λ ∈ C)

F̂(λ) :=

{
w ∈ W : ∃x ∈ X such that

[
λx

x+ w

]
∈ gph(A)

}
.

In the case that dom(A) is closed, F̂(∞) is well-defined and equals mul(A), but in general a finite
value for λ needs to be used. The output space Y is chosen to satisfy Y ∩mul(A) ∩ dom(A) = {0}
and as a direct complement in W to F̂(λ). Subsequently, the input space U is chosen as a direct
complement in W to Y:

W = Y+̇F̂(λ) = Y+̇U .

We then have that F̂(λ) is the graph of a single-valued operator Ĝ(λ) : U → Y, which is the
transfer function of the input/state/output system. This knowledge can be used to distinguish
more desirable choices of input and output spaces from less desirable ones (one good criterion
would be to make a choice so that Ĝ is well-posed, i.e. uniformly bounded on some right half-
plane, if such a choice is possible).

3 Examples

3.1 Finite-dimensional examples

Example 3.1. We consider [7, Example 2.4] from our perspective. The DAE there models a simple
RLC circuit with equations

Lİ = VL, CV̇C = I, 0 = −RI + VR, 0 = VL + VC + VR − VS .

We define
v1 = I, v2 = VL, v3 = VC , v4 = VR, v5 = VS .

4



This corresponds to the multi-valued operator

gph(A0) =

{[
q
v

]
∈
[
R5

R5

]
:
Lq1 = v2, Cq3 = v1, 0 = −Rv1 + v4,

0 = v2 + v3 + v4 − v5

}
.

The domain of this equals

dom(A0) =
{
v ∈ R5 : 0 = −Rv1 + v4, 0 = v2 + v3 + v4 − v5

}
,

so that

gph(A1) =


[
q
v

]
∈
[
R5

R5

]
:
Lq1 = v2, Cq3 = v1, 0 = −Rv1 + v4,

0 = v2 + v3 + v4 − v5,
0 = −Rq1 + q4, 0 = q2 + q3 + q4 − q5

 .

We note that the added constraints in gph(A1) signify that for continuously differentiable trajec-
tories we must have

0 = −Rİ + V̇R, 0 = V̇L + V̇C + V̇R − V̇S .
We have dom(A1) = dom(A0) so that the sequence terminates and we have A = A1. Therefore

gph(A) =


[
q
v

]
∈
[
R5

R5

]
:
Lq1 = v2, Cq3 = v1, 0 = −Rv1 + v4,

0 = v2 + v3 + v4 − v5,
0 = −Rq1 + q4, 0 = q2 + q3 + q4 − q5

 ,

and
dom(A) =

{
v ∈ R5 : 0 = −Rv1 + v4, 0 = v2 + v3 + v4 − v5

}
.

Note that dom(A) has dimension three. The multi-valued part of A equals

mul(A) =
{
z ∈ R5 : q1 = 0, q3 = 0, 0 = −Rq1 + q4, 0 = q2 + q3 + q4 − q5

}
,

which has dimension one. Equivalently, we have

dom(A) = span




1
0
0
R
R

 ,


0
1
0
0
1

 ,


0
0
1
0
1


 , mul(A) = span




0
1
0
0
1


 .

The space Y0 should be taken as a direct complement of dom(A) and therefore must have dimension
two. To align with the original variables we choose

Y0 = span




0
1
0
0
0

 ,


0
0
0
1
0


 .

This gives

W = Y0 + mul(A) = span




0
1
0
0
0

 ,


0
0
0
1
0

 ,


0
1
0
0
1


 = span




0
1
0
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1


 .
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The state space X should be chosen as a direct complement of W. To align with the original
variables we choose

X = span




1
0
0
0
0

 ,


0
0
1
0
0


 .

We choose the output space Y = Y0. Finally, we must choose the input space U as a direct
complement of Y in W and to align with the original variables we choose

U = span




0
0
0
0
1


 .

These choices mean that v1 and v3 are states, v5 is an input and v2 and v4 are outputs, i.e. I and
VC are states, VS is an input and VL and VR are outputs. Re-writing the original equations gives

Lİ = −RI − VC + VS , CV̇C = I, VL = −RI − VC + VS , VR = RI,

which is the input/state/output system[
İ

V̇C

]
=

[
−R
L − 1

L
1
C 0

] [
I
VC

]
+

[
1
0

]
VS ,

[
VL
VR

]
=

[
−R −1
R 0

] [
I
VC

]
+

[
1
0

]
VS .

Example 3.2. We consider [2, Example 6.1] from our perspective. To not prejudice the choice of
input, we denote what is denoted u in [2, Example 6.1] by v6. The equations then are

v̇1 = v1 + v2 + v6, v̇2 = −v1 + v2 + v6, v̇4 = v3 − v6, 0 = v4,

(note that there are no constraints on v5). This corresponds to the multi-valued operator

gph(A0) =

{[
q
v

]
∈
[
R6

R6

]
:
q1 = v1 + v2 + v6, q2 = −v1 + v2 + v6,

q4 = v3 − v6, 0 = v4

}
.

The domain of this equals
dom(A0) =

{
v ∈ R6 : v4 = 0

}
,

so that

gph(A1) =

{[
q
v

]
∈
[
R6

R6

]
:
q1 = v1 + v2 + v6, q2 = −v1 + v2 + v6,

q4 = v3 − v6, 0 = v4, 0 = q4

}
.

The domain of this equals

dom(A1) =
{
v ∈ R6 : v4 = 0, v3 = v6

}
,

so that

gph(A2) =

{[
q
v

]
∈
[
R6

R6

]
:

q1 = v1 + v2 + v6, q2 = −v1 + v2 + v6,
0 = v3 − v6, 0 = v4, 0 = q4, 0 = q3 − q6

}
.
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We have dom(A2) = dom(A1) so that the sequence terminates and we have A = A2. Note that
dom(A) = dom(A2) = dom(A1) has dimension four. The multi-valued part of A equals

mul(A) =
{
z ∈ R6 : q6 = q3, q1 = 0, q2 = 0, q4 = 0

}
,

which has dimension two. Equivalently we have

dom(A) = span





1
0
0
0
0
0

 ,


0
1
0
0
0
0

 ,


0
0
1
0
0
1

 ,


0
0
0
0
1
0




, mul(A) = span





0
0
1
0
0
1

 ,


0
0
0
0
1
0




.

The space Y0 should be taken as a direct complement of dom(A) and therefore must have dimension
two. To align with the original variables we choose

Y0 = span





0
0
1
0
0
0

 ,


0
0
0
1
0
0




.

This gives

W = Y0 + mul(A) = span





0
0
1
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
1
0
0
1

 ,


0
0
0
0
1
0




= span





0
0
1
0
0
0

 ,


0
0
0
1
0
0

 ,


0
0
0
0
1
0

 ,


0
0
0
0
0
1




.

The state space X should be chosen as a direct complement of W. To align with the original
variables we choose

X = span





1
0
0
0
0
0

 ,


0
1
0
0
0
0




.

We choose the output space Y = Y0. Finally, we should choose the input space U as a direct
complement of Y in W and to align with the original variables we choose

U = span





0
0
0
0
1
0

 ,


0
0
0
0
0
1




.
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Therefore v1 and v2 are states, v3 and v4 are outputs and v5 and v6 are inputs. The input/state/output
system is [

v̇1
v̇2

]
=

[
1 1
−1 1

] [
v1
v2

]
+

[
0 1
0 1

] [
v5
v6

]
,

[
v3
v4

]
=

[
0 0
0 0

] [
v1
v2

]
+

[
0 1
0 0

] [
v5
v6

]
.

In [2, Example 6.1] the following cost functional is considered∫ ∞
0
|v6(t)|2 + |v1(t)|2 + |v2(t)|2 dt.

If we ignore the input v5 (which doesn’t play a role in the dynamics or the cost), then this becomes
a standard linear quadratic optimal control problem with input v6, state [ v1v2 ] and control operator
[ 11 ] (the variables v3, v4 and v5 play no role and can at this stage be ignored). The corresponding
algebraic Riccati equation can be easily numerically solved and results in the optimal feedback

v6 = −5.1813v1 + 0.4142v2. (5)

This part of the optimal control is unique, but since v5 is an input which is unconstrained by the
problem, it can be arbitrary in an optimal control (so that optimal controls are not unique, but
the non-uniqueness is easily identified).

In [2, Example 6.1] the following initial conditions are specified:

v1(0) = 1, v2(0) = −1, v3(0) = v4(0) = v5(0) = 0. (6)

These initial conditions are consistent with the constraints in the sense that v(0) belongs to dom(A)
if (and only if) v6(0) = 0 is chosen. However, they are not consistent with the optimal feedback (5)
since that equation is then not satisfied at t = 0. This implies that with the initial conditions (6)
the cost functional has an infimum which is not a minimum. This seems to have gone unnoticed
in [2, Example 6.1]. The underlying issue is that (6) through the initial condition on v3 imposes
an initial condition on the control (since v6 = v3). By writing the DAE as an input/state/output
system, it becomes clear which initial conditions can (and should) be imposed: only elements of the
state space X (in this example v1 and v2) should have initial conditions and no initial conditions
for the inputs or outputs should be imposed (although since in this example the input component
v5 plays no role, it doesn’t hurt if an initial condition is imposed on v5).

3.2 Infinite-dimensional examples

Example 3.3. We consider the example from [6]. There two coupled temperature equations on the
spatial interval (0, 1) are considered where in both equations diffusion is neglected (only convection
is considered) and in one equation the time constant is set to zero. This leads to (here dot indicates
time derivative and prime denotes spatial derivative)

Ṫw = Tg − Tw, T ′g = Tw − Tg,

where for notational simplicity we set all the relevant constants in [6] equal to one. To minimize
smoothness assumptions, we write the second equation in integral form as

Tg(ξ) = e−ξTg(0) +

∫ ξ

0
e−(ξ−η)Tw(η) dη.
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With v1 := Tw, v2 := Tg, v3 := Tg(0), a corresponding multi-valued operator is

gph(A0) =

{[
q
v

]
∈
[
L2(0, 1)2 × R
L2(0, 1)2 × R

]
:

q1 = v2 − v1,
v2(ξ) = e−ξv3 +

∫ ξ
0 e−(ξ−η)v1(η) dη

}
.

The domain of this equals

dom(A0) =

{
v ∈ L2(0, 1)2 × R : v2(ξ) = e−ξv3 +

∫ ξ

0
e−(ξ−η)v1(η) dη

}
,

which leads to

gph(A1) =


[
q
v

]
∈
[
L2(0, 1)2 × R
L2(0, 1)2 × R

]
:

q1 = v2 − v1,
v2(ξ) = e−ξv3 +

∫ ξ
0 e−(ξ−η)v1(η) dη,

q2(ξ) = e−ξq3 +
∫ ξ
0 e−(ξ−η)q1(η) dη

 .

We then have dom(A1) = dom(A0), so that A = A1. We note that dom(A) = dom(A0) is closed.
Because of this, the situation is actually like described in Section 2 for the finite-dimensional case
and there is no need to consider the characteristic signal bundle. We should choose Y0 as a direct
complement of dom(A). We can choose

Y0 =

 0
L2(0, 1)

0

 ,
which is indeed a direct complement of dom(A) as we can uniquely writeL2(0, 1)

L2(0, 1)
R

 3
p1p2
p3

 =

 0

p2 − e−ξp3 −
∫ ξ
0 e−(ξ−η)p1(η) dη
0


+

 p1
e−ξp3 +

∫ ξ
0 e−(ξ−η)p1(η) dη
p3

 ∈ Y0 + dom(A).

We have
mul(A) =

{
q ∈ L2(0, 1)2 × R : q1 = 0, q2(ξ) = e−ξq3

}
,

so that

W = Y0 + mul(A) =

 0
L2(0, 1)

R

 .
As a direct complement we choose

X =

L2(0, 1)
0
0

 .
We choose

U =

0
0
R

 , Y = Y0 =

 0
L2(0, 1)

0

 ,
9



which is valid since U+̇Y = W. We therefore have that x := v1 is a state, y := v2 is an output
and u := v3 is an input. In terms of the original variables, this means that Tw is a state, Tg is an
output and Tg(0) is an input. The input/state/output equations are

ẋ(t, ξ) = e−ξu(t) +

∫ ξ

0
e−(ξ−η)x(t, η) dη − x(t, ξ),

y(t, ξ) = e−ξu(t) +

∫ ξ

0
e−(ξ−η)x(t, η) dη,

i.e.

(Ax)(ξ) =

∫ ξ

0
e−(ξ−η)x(η) dη − x(ξ), (Bu)(ξ) = e−ξu,

(Cx)(ξ) =

∫ ξ

0
e−(ξ−η)x(η) dη, (Du)(ξ) = e−ξu,

which we note are all bounded operators (this is because dom(A) is closed).

Example 3.4. We consider the following PDE on the spatial domain (0, 1) with boundary conditions

v̇1 = −v′1, v1(0) = v2, v1(1) = v3.

A corresponding multi-valued operator is

gph(A0) =

{[
q
v

]
∈
[
L2(0, 1)× R2

H1(0, 1)× R2

]
: q1 = −v′1, v1(0) = v2, v1(1) = v3

}
.

The domain of this equals

dom(A0) =
{
v ∈ H1(0, 1)× R2 : v1(0) = v2, v1(1) = v3

}
,

which is dense in L2(0, 1)×R2. Hence A = A0 and dom(A) = L2(0, 1)×R2, so that we must have
Y0 = {0} and therefore W = mul(A). We have

mul(A) =
{
q ∈ L2(0, 1)× R2 : q1 = 0

}
,

which has dimension two (and is therefore closed). We note that mul(A) ∩ dom(A) = {0}. We
should choose X as a direct complement of mul(A) in L2(0, 1) × R2. To align with the original
variables we choose

X =
{
v ∈ L2(0, 1)× R2 : v2 = v3 = 0

}
.

Since dom(A) is not closed, we have to consider the characteristic signal bundle. We have

F̂(λ) =


 0
v2
v3

 ∈
L2(0, 1)

R
R

 : ∃v1 ∈ H1(0, 1) such that
λv1 = −v′1,

v1(0) = v2, v1(1) = v3

 .

We have that λv1 = −v′1 has the general solution v1(ξ) = e−λξv1(0), so that the boundary condition
v1(0) = v2 gives v1(ξ) = e−λξv2, and we must then have v3 = v1(1) = e−λv2, so that

F̂(λ) =


 0

1
e−λ

 v2 : v2 ∈ R

 .
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We choose the output space Y as the following direct complement of the characteristic signal bundle
(note that since mul(A) ∩ dom(A) = {0}, any direct complement would suffice)

Y =

0
0
R

 ,
and we choose the input space U as a direct complement (in fact orthogonal) to Y in W = mul(A):

U =

0
R
0

 .
This means that v2 is an input and v3 is an output. This gives the transfer function e−λ which is
well-posed (the opposite choice of v2 an output and v3 an input would give the transfer function
eλ which is not well-posed and therefore this opposite choice, though allowed, is not sensible). The
input/state/output system we obtain with input u := v2, state x := v1 and output y := v3 is
described by the operator

S

[
x
u

]
=

[
−x′
x(1)

]
, dom(S) =

{[
x
u

]
∈
[
H1(0, 1)

R

]
: x(0) = u

}
,

and is well-known to in fact be a well-posed linear system (here with some abuse of notation we

identify the input space
[
0
R
0

]
with R).

Example 3.5. We consider the example from [11, Section 5] which is an electrical circuit with a
transmission line. The equations are (where for notational simplicity we take GT = RT = 0 and
CT = LT = C = 1 in the notation of [11] and we omit uV which just equals uC and therefore plays
a trivial role, but complicates notation):

V̇ = −I ′, İ = −V ′,
u̇C = iC , 0 = −iV − iC + I(0), 0 = −uC + V (0), 0 = I(1).

We define
v1 = V, v2 = I, v3 = uC , v4 = iC , v5 = iV .

A corresponding multi-valued operator is

gph(A0) =

{[
q
v

]
∈
[
L2(0, 1)2 × R3

H1(0, 1)2 × R3

]
:

q1 = −v′2, q2 = −v′1, q3 = v4,
v2(0) = v4 + v5, v1(0) = v3, v2(1) = 0

}
.

This gives

dom(A0) =
{
v ∈ H1(0, 1)2 × R3 : v2(0) = v4 + v5, v1(0) = v3, v2(1) = 0

}
,

whose closure is dom(A0) = L2(0, 1)2 × R3, so that A = A0 and Y0 = {0}. We have

mul(A) = {q : q1 = q2 = q3 = 0} = span




0
0
0
1
0

 ,


0
0
0
0
1


 ,
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which is two-dimensional (and therefore closed). We should choose the state space X as a direct
complement to W (which here equals mul(A)) and to align with the original variables, we choose

X =
{
v ∈ H1(0, 1)2 × R3 : v4 = v5 = 0

}
.

We note that

mul(A) ∩ dom(A) = {x : v1 = v2 = v3 = v4 + v5 = 0} = span




0
0
0
1
−1


 ,

which is one-dimensional.
Since dom(A) is not closed, we have to consider the characteristic signal bundle. We have

F̂(λ) =


[

0
w

]
∈
[
L2(0, 1)× R

R2

]
: ∃v ∈ L2(0, 1)× R such that

λv1 = −v′2,
λv2 = −v′1,
λv3 = w1,

v2(0) = w1 + w2,
v1(0) = v3,
v2(1) = 0


.

Solving the ODEs with the boundary conditions v1(0) = v3 = w1
λ and v2(1) = 0 gives

v1(ξ) =
w1

λ
(cosh(λξ)− tanh(λ) sinh(λξ)) ,

v2(ξ) =
w1

λ
(− sinh(λξ) + tanh(λ) cosh(λξ)) .

From the final equation v2(0) = w1 + w2 we then obtain

w2 =

(
tanh(λ)

λ
+ 1

)
w1.

Therefore

F̂(λ) =


 0

1
tanh(λ)

λ + 1

w1

 .

We choose

Y = span




0
0
0
0
1


 ,

noting that this is a direct complement of the signal bundle and that Y ∩mul(A)∩ dom(A) = {0}.
We choose the input space U as the orthogonal complement of Y in W = mul(A):

U = span




0
0
0
1
0


 .
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This means that we consider v4 as input and v5 as output. We have that v1, v2 and v3 are states.
The input/state/output system is described by the operator

S

[
x
u

]
=


−x′2−x′1
u


x2(0)− u

 , dom(S) =

{[
x
u

]
∈
[
H1(0, 1)2 × R

R

]
:
x1(0) = x3,
x2(1) = 0

}
,

where

x =

x1x2
x3

 =

v1v2
v3

 =

 VI
uC

 , u = v4 = iC , y = v5 = iV .

4 Literature comparison

By Proposition 5.11, in the finite-dimensional case we have dom(Ak−1) = dom(Ak0) for all k ∈ N.
The spaces dom(Ak0) and the space V• appear in the DAE literature in terms of kernel represen-
tations. In terms of a kernel representation of A0 we have (here A−10 W for a set W refers to the
inverse image under A0 of W):

dom(Ak+1
0 ) = A−10 E0 dom(Ak0),

which is how it appears in the DAE literature (e.g. [3, 4]) as the first Wong sequence of the pencil
sE0 −A0. The space V• then is the limit of this first Wong sequence.

The multi-valued operators Ak themselves (rather than just their domains) also appear in the
DAE literature in terms of kernel representations. In terms of a kernel representation we have

gph(A1) =

{[
z
x

]
: E0z = A0x, ∃z1 such that E0z1 = A0z

}
,

and more generally

gph(Ak) =


[
z
x

]
: E0z = A0x, ∃z1, . . . zk such that

E0z1 = A0z,
E0zj = A0zj−1,
j ∈ {2, . . . , k}

 .

In terms of the derivative array [2]

M :=


E0

−A0 E0

. . .
. . .

−A0 E0

 , N :=


A0 0 . . . 0

0 0
...

...
. . .

...
0 . . . . . . 0

 ,
this is (note that the xj play a trivial role)

gph(Ak) =


[
z
x

]
: ∃z1, . . . zk, x1, . . . , xk such that M


z
z1
...
zk

 = N


x
x1
...
xk


 ,
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and the algorithm in [2, Theorem 3.1] can be seen as determining a kernel representation of gph(Ak).
Even though Wong sequences and derivative arrays both appear in the DAE literature, this con-
nection between them (one giving the graph, the other the domain) does not seem to have been
explicitly made before.

In [7] and [2] based on dimensions, it is realized that some variables should be interpreted as
states and some as inputs, but no method is given for making this distinction. An algorithm for
this is given in [5]. Also related is [8] where a DAE and is written as an input-state system with
an output zeroing condition (the explicitation in [8, Proposition 6.7]). The above cited articles are
all on finite-dimensional systems and take different approaches than we do. A particular difference
is that we allow for quite some flexibility in the choice of the state, input and output spaces. We
note that the Wong sequence appears in an infinite-dimensional context in [14] (although not under
that name).

In behavioral theory, it is known that a linear differential system can always be written in
standard input/state/output form [10], which is closely related to, but not quite indentical to
the finite-dimensional version of our main result (as in the behavioral result a state is generally
constructed rather than identified amongst the existing variables and it is therefore closer to classical
realization theory than to our results).

5 Theorems and proofs

In this section we give precise statements and proofs for the results informally stated in Section
2. In Section 5.1 we detail the construction of A from A0 and we also give some results which
allow us to connect this to the Wong sequence known in DAE theory. In Section 5.2 we consider
the decomposition V = X +̇W and how this gives a multi-valued operator A× obtained from A.
Section 5.3 reviews some results from state/signal theory [1] which are needed. Sections 5.4 and 5.5
construct a state/signal system from the multi-valued operator A (and conversely) and in Section
5.6 from this state/signal system an input/state/output system is obtained (this last step is a
straightforward application of results from [1]). Finally, in Section 5.7 we state results, which
easily follow from the earlier results, which more directly link the multi-valued operator A to the
input/state/output system.

5.1 From a multi-valued operator to a multi-valued operator

Let A0 be a multi-valued operator on the Hilbert space V. Define the sequence (Ak)∞k=1 of multi-
valued operators on V iteratively by

gph(Ak+1) = gph(Ak) ∩
[
dom(Ak)
dom(Ak)

]
,

further define

V• :=
∞⋂
k=0

dom(Ak),

and define the multi-valued operator A on V by

gph(A) = gph(A0) ∩
[
V•
V•

]
.
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Lemma 5.1. We have

gph(Ak+1) = gph(A0) ∩
[
dom(Ak)
dom(Ak)

]
.

Proof. We show this by induction. It is trivially true for k = 0. We have (the first equality is by
definition, the second by the induction hypothesis)

gph(Ak+2) = gph(Ak+1) ∩
[
dom(Ak+1)

dom(Ak+1)

]
= gph(A0) ∩

[
dom(Ak+1)

dom(Ak+1)

]
∩
[
dom(Ak)
dom(Ak)

]
= gph(A0) ∩

[
dom(Ak+1)

dom(Ak+1)

]
,

where in the last equality we used that dom(Ak+1) ⊂ dom(Ak) as gph(Ak+1) ⊂ gph(Ak).

We say that the sequence (Ak)∞k=1 terminates if there exists a µ ∈ N such that Aµ = Aµ+1 (in
which case V• = dom(Aµ)).

Lemma 5.2. If the sequence (Ak)∞k=1 terminates, then im(A) ⊂ dom(A).

Proof. Using termination for the first and last equalities we have

im(A) = im(Aµ+1) ⊂ dom(Aµ) = dom(A),

as desired.

The following definition gives a boundedness notion for multi-valued operators generalizing that
for single-valued operators. The terminology quasi-bounded is not standard, but will be useful for
us to distinguish two related but different notions which often appear in the literature with the
same name (in many instances, bounded requires the domain to be the whole space).

Definition 5.3. A multi-valued operator M : dom(M) ⊂ V → V is called quasi-bounded if there
exists a M > 0 such that for all x ∈ dom(M) there exists a z ∈Mx such that ‖z‖ ≤M‖x‖.

The closed-graph theorem for multi-valued operators (see e.g. [12]) states that the following
are equivalent for a closed multi-valued operator M:

• dom(M) is closed;

• M is quasi-bounded.

Proposition 5.4. If A0 is closed and dom(Ak) is closed for all k ∈ N0, then V• = V = dom(A).

Proof. As the intersection of the closed spaces dom(Ak), we have that V• is closed, so that in
particular V• = V•. Let x ∈ V• and let k ∈ N0. Then x ∈ dom(Ak+1) so that there exists a
zk ∈ dom(Ak) such that [ zkx ] ∈ gph(A0). By the closed graph theorem for multi-valued operators,
we have that A0 is quasi-bounded (as its graph and domain are closed). It follows that we can
choose the sequence (zk)k∈N0 to be bounded. Because we are in a Hilbert space, it follows that
(zk)k∈N0 has a weakly convergent subsequence. Let z denote the limit of this subsequence. Then
[ zkx ] ∈ gph(A0) converges weakly along a subsequence to [ zx ]. Since gph(A0) is a closed subspace
of a Hilbert space, it is weakly closed [9, Problem 19] and therefore the limit [ zx ] is in gph(A0).
Similarly, since the elements of (zj)j≥k are all in dom(Ak) and dom(Ak) is weakly closed, we have
z ∈ dom(Ak) and since this is true for all k ∈ N0 we have z ∈ V•. It follows that for all x ∈ V•
there exists a z ∈ V• such that [ zx ] ∈ gph(A0). This precisely means that dom(A) = V•.
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Corollary 5.5. If A0 is closed and dom(Ak) is closed for all k ∈ N0, then im(A) ⊂ dom(A) =
dom(A).

Proof. By definition we have im(A) ⊂ V•, so that Proposition 5.4 gives im(A) ⊂ dom(A) =
dom(A).

Example 5.6. We consider an example where the sequence (Ak)∞k=1 does not terminate. Define

gph(A0) =

{[
z
x

]
∈
[
`2(N)
`2(N)

]
: x1 = 0, zk = xk+1

}
.

We then have
dom(A0) =

{
x ∈ `2(N) : x1 = 0

}
,

so that

gph(A1) =

{[
z
x

]
∈
[
`2(N)
`2(N)

]
: x1 = z1 = 0, zk = xk+1

}
,

and therefore
dom(A1) =

{
x ∈ `2(N) : x1 = x2 = 0

}
.

Generally we have
dom(Ak) =

{
x ∈ `2(N) : x1 = x2 = . . . = xk+1 = 0

}
.

We therefore see that there does not exist a µ ∈ N such that dom(Aµ) = dom(Aµ+1).
We do have that dom(Ak) is closed for all k ∈ N0 (and we have that A0 is closed) and we have

V• = {0}. In accordance with Proposition 5.4 we have dom(A) = {0}.

Theorem 5.7. If at least one of the following conditions hold

• The sequence (Ak)∞k=1 terminates;

• A0 is closed and dom(Ak) is closed for all k ∈ N0;

then im(A) ⊂ dom(A).

Proof. Under the first condition this follows from Lemma 5.2. Under the second condition it follows
from Corollary 5.5.

Definition 5.8. Let M be a multi-valued operator on V. Then v : [0,∞) → V is a continuously
differentiable trajectory if v is continously differentiable (from the right at t = 0) and[

v̇(t)
v(t)

]
∈ gph(M), ∀t ≥ 0.

Theorem 5.9. Continuously differentiable trajectories of A0 and A coincide.

Proof. Since gph(A) ⊂ gph(A0), it is obvious that a continuously differentiable trajectory of A is a
continuously differentiable trajectory of A0. Let v be a continuously differentiable trajectory of A0.
Then v(t) ∈ dom(A0) and the difference quotient 1

h(v(t+h)−v(t)) is in dom(A0). It follows that v̇(t)

as the limit of the difference quotient belongs to dom(A0). Hence v is a continuously differentiable
trajectory of A1. Arguing similarly, we obtain that v is a continuously differentiable trajectory of
Ak for all k ∈ N. In particular v(t) ∈ dom(Ak) for all k ∈ N so that v(t) ∈ V•. As before, using

difference quotients, it follows from this that v̇(t) ∈ V•. We conclude that
[
v̇(t)
v(t)

]
∈ gph(A), i.e.

that v is a continuously differentiable trajectory of A.
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The following two results are to make the connection with the Wong sequence in Section 4 and
are also used when discussing discrete-time trajectories in Appendix B.

Lemma 5.10. Let M be a multi-valued operator. Then

dom(Mk+1) =

{
x ∈ dom(Mk) : ∃z ∈ dom(Mk) such that

[
z
x

]
∈ gph(M)

}
.

Proof. Since Mk+1 =MkM we have

gph(Mk+1) =

{[
y
x

]
: ∃z such that

[
z
x

]
∈ gph(M),

[
y
z

]
∈ gph(Mk)

}
,

so that (using that ∃y such that [ yz ] ∈ gph(Mk) is equivalent to z ∈ dom(Mk))

dom(Mk+1) =

{
x ∈ dom(M) : ∃z ∈ dom(Mk) such that

[
z
x

]
∈ gph(M)

}
.

Since dom(Mk) ⊂ dom(Mk+1) we can replace x ∈ dom(M) with x ∈ dom(Mk) without changing
the set. This gives the desired result.

Proposition 5.11. Assume that dom(Ak) is closed for all k ∈ N0. Then we have dom(Ak) =
dom(Ak+1

0 ).

Proof. We use induction. The statement is trivially true for k = 0, so assume that dom(Ak) =
dom(Ak+1

0 ). We have (since the domains are assumed closed, we can omit closures)

dom(Ak+1) =

{
x ∈ dom(Ak) : ∃z ∈ dom(Ak) such that

[
z
x

]
∈ gph(A0)

}
=

{
x ∈ dom(Ak+1

0 ) : ∃z ∈ dom(Ak+1
0 ) such that

[
z
x

]
∈ gph(A0)

}
= dom(Ak+2

0 ),

where in the last equality we have used Lemma 5.10.

5.2 To a multi-valued operator on a product space

Let A be a multi-valued operator on V and let X and W be closed subspaces such that

V = X +̇W.

Then we can define the multi-valued operator A× from
[ X
W
]

to itself by

gph(A×) =



z
p
x
w

 ∈

X
W
X
W

 :

[
z + p
x+ w

]
∈ gph(A)

 .

Conversely, given two Hilbert spaces X and W we can consider the product space Ṽ :=
[ X
W
]

(with
the product inner-product) and consider X and W canonically as subspaces through identifying
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them with
[
X
{0}

]
and

[
{0}
W

]
respectively. We can then define the multi-valued operator Ã on Ṽ

though

gph(Ã) =


[
q
v

]
∈

[
Ṽ
Ṽ

]
:


ΠX|Wq

ΠW|X q

ΠX|Wv

ΠW|X v

 ∈ gph(A×)

 .

We have that A and Ã are algebraically and topologically equivalent; however the inner-products
in V and Ṽ are different unless the direct sum V = X +̇W is orthogonal. Since inner-products play
no role in our theory (only the induced topology does), this difference is immaterial.

5.3 A brief review of state/signal systems

We recall several notions from state/signal theory [1]. A state/signal system with state space X
and signal space W is a subspace V of

[ X
X
W

]
. The state/signal system is called closed if V is a

closed subspace. The multi-valued part of the state/signal system isz ∈ X :

z0
0

 ∈ V
 .

The canonical input space of the state/signal system is

W0 :=

w ∈ W : ∃z such that

z0
w

 ∈ V
 .

The classical state space of the state/signal system is

Xcls :=

x ∈ X : ∃z, w such that

zx
w

 ∈ V
 .

The observation subspace of the state/signal system is

H0 :=


[
x
w

]
∈
[
X
W

]
: ∃z such that

zx
w

 ∈ V
 .

Definition 5.12. A state/signal system V is bounded if the following conditions all hold

(i) V is closed;

(ii) the multi-valued part of V equals {0};

(iii) for the classical state space we have Xcls = X ;

(iv) the canonical input space W0 is closed.

By [1, Theorem 4.2.31] this is equivalent to the definition of bounded in [1, Definition 2.1.37].
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Definition 5.13. We say that x : [0,∞) → X and w : [0,∞) → W form a continuously dif-
ferentiable trajectory of V if x and w are continuously differentiable (from the right at t = 0)
and ẋ(t)

x(t)
w(t)

 ∈ V, ∀t ≥ 0.

Remark 5.14. The notion of continuously differentiable trajectory is similar to but distinct from
the notion of classical trajectory from [1]. For a classical trajectory it is only assumed that w
is continuous. By density, this difference is immaterial. We consider the notion of continuously
differentiable trajectory since this connects more easily to trajectories for multi-valued operators.

5.4 From a multi-valued operator to a state/signal system

Let A be a multi-valued operator on V. Let Y0 be a closed subspace such that

V = dom(A)+̇Y0,

define
W := mul(A) + Y0,

and let X be a closed subspace such that

V = X +̇W.

Assume throughout that mul(A) ⊂ dom(A). We denote the multi-valued operator on
[ X
W
]

induced
by A and the decomposition V = X +̇W by A× as in Section 5.2.

Lemma 5.15. We have W = mul(A)+̇Y0.

Proof. We only have to show directness. Let w ∈ mul(A) ∩ Y0. Since mul(A) ⊂ dom(A) we have
w ∈ dom(A) ∩ Y0 and therefore w = 0.

Lemma 5.16. We have W ∩ dom(A) = mul(A).

Proof. Since mul(A) ⊂ W by definition of W and mul(A) ⊂ dom(A) by assumption, one inclusion
is obvious.

Let v ∈ W ∩ dom(A). Then v ∈ W, so v = u0 + y ∈ mul(A) +Y0, so that y = v− u0 ∈ dom(A)
using that v ∈ dom(A) and u0 ∈ mul(A) ⊂ dom(A). Therefore y ∈ dom(A) ∩ Y0 so that y = 0. It
follows that v = u0 ∈ mul(A).

Lemma 5.17. The space W is closed.

Proof. Let W 3 wn = un + yn ∈ mul(A) + Y0 be such that wn → w. Denote by Π to oblique
projection onto dom(A) along Y0. Define u := Πw and y := (I − Π)w. We have (using that
mul(A) ⊂ dom(A))

un = Πun = Π(un + yn)→ Πw = u,

which since un ∈ mul(A) gives that u ∈ mul(A). Similarly we have

yn = (I −Π)yn = (I −Π)(un + yn)→ (I −Π)w = y,

which since Y0 is closed gives y ∈ Y0. Therefore w = u+ y ∈ mul(A) +Y0. Hence W is closed.
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We define the state/signal system with state space X and signal space W (as defined above) by

V :=


zx
w

 ∈
XX
W

 : ∃p ∈ W such that


z
p
x
w

 ∈ gph(A×)

 . (7)

Lemma 5.18. With the assumptions and definitions as above, we have

(i) The multi-valued part of V equals {0};

(ii) For the canonical input space of V we have W0 = mul(A) ∩ dom(A).

(iii) For the classical state space of V we have

Xcls = {x ∈ X : ∃w ∈ W such that x+ w ∈ dom(A)} ,

and Xcls is dense in X .

(iv) If A is closed and quasi-bounded, then V is bounded.

(v) For the observation subspace of V we have H0 = dom(A×).

If additionally we have im(A) ⊂ dom(A), then additionally the following holds:

(vi) We havez ∈ X : ∃x,w such that

zx
w

 ∈ V
 ⊂

{
z ∈ X : ∃p such that

[
z
p

]
∈ H0

}
. (8)

Proof. (i) By definition the multi-valued part of V isz ∈ X :

z0
0

 ∈ V
 =

{
z ∈ X : ∃p ∈ W such that

[
z + p

0

]
∈ gph(A)

}
.

We then have z+ p ∈ mul(A) ⊂ W, which since p ∈ W implies z ∈ W, but then z ∈ X ∩W = {0}.
Therefore the multi-valued part of V indeed equals {0}.

(ii) The canonical input space by definition is

W0 =

w ∈ W : ∃z such that

z0
w

 ∈ V


=

{
w ∈ W : ∃z ∈ X , p ∈ W such that

[
z + p
w

]
∈ gph(A)

}
=

{
w ∈ W : ∃q ∈ V such that

[
q
w

]
∈ gph(A)

}
= dom(A) ∩W.
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Using Lemma 5.16, it follows that W0 ⊂ dom(A) ∩ W = mul(A). Combined with the above
established W0 ⊂ dom(A), this gives W0 ⊂ mul(A) ∩ dom(A). Conversely, assume that w ∈
mul(A) ∩ dom(A). Then since mul(A) ⊂ W we have w ∈ W ∩ dom(A) =W0.

(iii) By definition the classical state space of V is

Xcls =

x : ∃z, w such that

zx
w

 ∈ V


=

{
x ∈ X : ∃z ∈ X , w, p ∈ W such that

[
z + p
x+ w

]
∈ gph(A)

}
= {x ∈ X : ∃w ∈ W such that x+ w ∈ dom(A)} .

We now show that Xcls is dense in X . Let x ∈ X . Then V 3 x = a + w ∈ dom(A)+̇Y0. Since
a ∈ dom(A), there exists a sequence dom(A) 3 an → a. Let Π be the oblique projection onto X
along W. Define xn := Πan ∈ X and wn := (I − Π)an ∈ W. Then xn + wn = an ∈ dom(A), so
that xn is in Xcls. We have xn = Πan → Πa. We further have x = Πx = Π(a + w) = Πa since
w ∈ Y0 ⊂ W and the projection is along W. Therefore xn → x, showing that Xcls is dense in X .

(iv) Assume that A is closed and quasi-bounded. By the closed graph theorem for multi-valued
operators we have that dom(A) is closed. By (i) we always have that the multi-valued part of V
equals {0}. Since dom(A) and mul(A) are closed we have using (ii) that the canonical input space
as the intersection of these is closed. Let x ∈ X . We can write V 3 x = a + y ∈ dom(A)+̇Y0, so
that x − y = a ∈ dom(A). Since dom(A) is closed, with w := −y ∈ W we have x + w ∈ dom(A),
so that x ∈ Xcls by (iii). It follows that X = Xcls. It remains to show that V is closed.

Let V 3
[
zn
xn
wn

]
→
[
z
x
w

]
. Then there exist pn ∈ W such that

gph(A) 3
[
zn + pn
xn + wn

]
.

By quasi-boundedness, pn can be chosen as a bounded sequence. It follows that (pn) has a weakly
convergent subsequence. Since W as a closed subspace of a Hilbert space is weakly closed [9,
Problem 19], we have that the weak limit p belongs to W. It follows that along a subsequence

gph(A) 3
[
zn + pn
xn + wn

]
→
[
z + p
x+ w

]
,

which since gph(A) is closed implies
[
z+p
x+w

]
∈ gph(A). It follows that

[
z
x
w

]
∈ V and therefore that

V is closed. We conclude that V is bounded.
(v) The claim about the observation subspace is immediate from the definitions.
(vi) The condition im(A) ⊂ dom(A) translates to im(A×) ⊂ dom(A×).

Let z be such that there exist x and w such that
[
z
x
w

]
∈ V . By definition of V this implies

that there exists a p ∈ W such that

[
z
p
x
w

]
∈ gph(A×). Then [ zp ] ∈ im(A×) which by the additional

assumption in this part of the result gives [ zp ] ∈ dom(A×). Using that by (v) we have H0 =
dom(A×) then gives [ zp ] ∈ H0 which gives the desired result.
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5.5 From a state/signal system to a multi-valued operator

Let V be a state/signal system whose multi-valued part equals {0} and which satisfies (8). Define
the multi-valued operator M on

[ X
W
]

by

gph(M) :=



z
p
x
w

 ∈

X
W
X
W

 :

zx
w

 ∈ V, [
z
p

]
∈ H0

 . (9)

Lemma 5.19. With the assumptions and definitions as above, we have

(i) dom(M) = H0;

(ii) mul(M) =
[

0
W0

]
where W0 is the canonical input space;

(iii) If V is closed, then M is closed.

(iv) If V is bounded, then M is closed and quasi-bounded.

Proof. (i) We have

dom(M) =


[
x
w

]
: ∃z, p such that

zx
w

 ∈ V, [
z
p

]
∈ H0

 .

The condition
[
z
x
w

]
∈ V precisely means [ xw ] ∈ H0 and by the assumption (8), the condition

[ zp ] ∈ H0 doesn’t impose any further restrictions. Therefore dom(M) = H0.
(ii) We have (using that the multi-valued part of V is trivial)

mul(M) =


[
z
p

]
:

z0
0

 ∈ V, [
z
p

]
∈ H0

 =

{[
0
p

]
:

[
0
p

]
∈ H0

}
=

[
0

W0

]
,

using that the multi-valued part of the closure is the closure of the multi-valued part.
(iii) Let

gph(M) 3


zn
pn
xn
wn

→

z
p
x
w

 .
Then

V 3

znxn
wn

→
zx
w

 , H0 3
[
zn
pn

]
→
[
z
p

]
,

which since V and H0 are closed gives
[
z
x
w

]
∈ V and [ zp ] ∈ H0, so that

[
z
p
x
w

]
∈ gph(M).

(iv) Since V is bounded, it is closed so that by (iii) we have thatM is closed. By [1, Definition
2.1.37] we have that the observation subspaceH0 is closed, which by (i) gives that dom(M) is closed.
It follows from the closed graph theorem for multi-valued operators that M is quasi-bounded.
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Lemma 5.20. If we start with a multi-valued operator A that satisfies im(A) ⊂ dom(A), then form
V using (7), and then form M using (9), we have gph(A×) ⊂ gph(M), where we have equality if
moreover mul(A) is closed.

Proof. The condition im(A) ⊂ dom(A) translates to im(A×) ⊂ dom(A×).

Let

[
z
p
x
w

]
∈ gph(A×). By definition of V we then have

[
z
x
w

]
∈ V . Moreover, [ zp ] ∈ im(A×), so

that by assumption [ zp ] ∈ dom(A×), which by Lemma 5.18 gives [ zp ] ∈ H0. Therefore gph(A×) ⊂
gph(M).

For the converse, let

[
z
p
x
w

]
∈ gph(M). Since

[
z
x
w

]
∈ V , we have that there exists a p0 such that[

z
p0
x
w

]
∈ gph(A×). From the first part of the proof it follows that we must have [ zp0 ] ∈ H0. We then

have [
0

p− p0

]
=

[
z
p

]
−
[
z
p0

]
∈ H0.

Using Lemma 5.18 it follows that [
0

p− p0

]
∈ dom(A×).

It follows that p − p0 ∈ dom(A) ∩W which by Lemma 5.16 equals mul(A). Using that mul(A) is
closed, we obtain 

0
p− p0

0
0

 ∈ gph(A×),

so that 
z
p
x
w

 =


z
p0
x
w

−


0
p− p0

0
0

 ∈ gph(A×),

as desired.

Lemma 5.21. If im(A) ⊂ dom(A) and mul(A) is closed, then we have the following. Continuously
differentiable trajectories of A and V coincide in the sense that if [ xw ] is a continuously differentiable
trajectory of V , then v := x + w is a continuously differentiable trajectory of A and if v is a
continuously differentiable trajectory of A, and we (uniquely) write v = x + w with respect to the
decomposition V = X +̇W, then [ xw ] is a continuously differentiable trajectory of V .

Proof. Let [ xw ] be a continuously differentiable trajectory of V . By definition we have that both x
and w are continuously differentiable and that for all t ≥ 0ẋ(t)

x(t)
w(t)

 ∈ V.

23



We then have
[
x(t)
w(t)

]
∈ H0 so that (by considering difference quotients)

[
ẋ(t)
ẇ(t)

]
∈ H0. From Lemma

5.20 it follows that 
ẋ(t)
ẇ(t)
x(t)
w(t)

 ∈ gph(A×),

which precisely means [
ẋ(t) + ẇ(t)
x(t) + w(t)

]
∈ gph(A),

so that indeed v = x+ w is a continuously differentiable trajectory of A.
Let v be a continuously differentiable trajectory of A. Then for all t ≥ 0[

v̇(t)
v(t)

]
∈ gph(A).

Write v(t) = x(t) + w(t) with respect to the decomposition V = X +̇W. Then x and w are
continuously differentiable and v̇(t) = ẋ(t) + ẇ(t). It follows that[

ẋ(t) + ẇ(t)
x(t) + w(t)

]
=

[
v̇(t)
v(t)

]
∈ gph(A).

From this we conclude that (with p(t) := ẇ(t) ∈ W)ẋ(t)
x(t)
w(t)

 ∈ V,
so that [ xw ] is a continuously differentiable trajectory of V .

Example 5.22. We give an example to illustrate the imporance of the condition im(A) ⊂ dom(A).
Let

gph(A) =

{[
q
v

]
∈
[
R3

R3

]
: q1 = v2, q2 = v3, v1 = 0

}
.

Then

dom(A) =
{
v ∈ R3 : v1 = 0

}
, im(A) = R3, mul(A) =

{
q ∈ R3 : q1 = q2 = 0

}
,

so that the condition im(A) ⊂ dom(A) is not satisfied but the standing assumption that mul(A) ⊂
dom(A) is satisfied. We consider

Y0 =
{
v ∈ R3 : v2 = v3 = 0

}
, W = Y0 + mul(A) =

{
v ∈ R3 : v2 = 0

}
,

X =
{
v ∈ R3 : v1 = v3 = 0

}
.

We then have

V =


zx
w

 ∈
XX
W

 : z2 = w3, w1 = 0

 .
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For f twice continuously differentiable we have that

x(t) =

 0
f(t)

0

 , w(t) =

 0
0

f ′(t)

 ,
is a continuously differentiable trajectory of V . However, the equations describing trajectories of
A are

v̇1 = v2, v̇2 = v3, v1 = 0.

and it easily follows that v = 0 is the only continuously differentiable trajectory of A. Hence the
conclusion of Lemma 5.21 is false (and as mentioned above, the assumptions in Lemma 5.21 are
not satisfied). Of course, we can use the iteration from Section 5.1 with A0 the above multi-valued
operator to arrive at a multi-valued operator which does satisfy im(A) ⊂ dom(A), and produce the
corresponding state/signal system (and this is what one should do for this example).

5.6 From a state/signal system to an input/state/output system

Let V be a state/signal system with state space X and signal space W. Let U and Y be closed
subsspaces such that (this is called an input/output representation in [1, Definition 4.2.5])

W = U+̇Y,

and let S be the multi-valued operator from
[ X
U
]

to
[ X
Y
]

given by (this is called an input/state/output
representation in [1, Definition 4.2.10])

gph(S) =



z
y
x
u

 :

 z
x

u+ y

 ∈ V
 . (10)

Definition 5.23. We say that x : [0,∞) → X , u : [0,∞) → U and y : [0,∞) → Y form a
continuously differentiable trajectory if x, u and y are continuously differentiable (from the right at
t = 0) and 

ẋ(t)
y(t)
x(t)
u(t)

 ∈ gph(S), ∀t ≥ 0.

Lemma 5.24. With the assumptions and definitions as at the start of this section we have the

following. Continuously differentiable trajectories of V and S coincide in the sense that if
[
x
u
y

]
is a

continuously differentiable trajectory of S, then [ x
u+y ] is a continuously differentiable trajectory of

V and if [ xw ] is a continuously differentiable trajectory of V and we (uniquely) write w = u+y with

respect to the decomposition W = U+̇Y, then
[
x
u
y

]
is a continuously differentiable trajectory of S.

Proof. This is immediate from the definitions.
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The classical state space of S isx ∈ X : ∃z, u, y such that


z
y
x
u

 ∈ gph(S)

 ,

and it is trivial to see that the classical state spaces of V and S coincide. It is also easy to see that
V is closed if and only if S is closed (see [1, Lemma 4.2.11 (i)]).

Lemma 5.25. We have that S is single-valued if and only if both the multi-valued part of V equals
{0} and Y ∩W0 = {0} where W0 is the canonical input space of V .

Proof. This is essentially contained in [1, Theorem 4.2.15].

Assume that S is single-valued. Let y ∈ Y ∩W0. Then there exists a z ∈ X such that
[ z
0
y

]
∈ V ,

which implies [ zy ] ∈ S [ 00 ]. Since S is single-valued, this implies y = 0 (and z = 0). Therefore

Y ∩W0 = {0}. Let z be in the multi-valued part of V . Then
[
z
0
0

]
∈ V so that [ z0 ] ∈ S [ 00 ] which

since S is single-valued implies z = 0. Hence the multi-valued part of V equals {0}.
Assume that the multi-valued part of V equals {0} and that Y ∩ W0 = {0}. Let [ zy ] ∈ S [ 00 ].

Then
[ z
0
y

]
∈ V , so that y ∈ W0. It follows that y ∈ Y ∩W0, so that y = 0. Then

[
z
0
0

]
∈ V , so that z

is in the multi-valued part of V , so that by assumption z = 0. It follows that S is single-valued.

Proposition 5.26. We have that S is a bounded single-valued everywhere-defined operator if and
only if the following conditions both hold:

(i) V is bounded;

(ii) Y is a direct complement to W0.

Proof. Assume the two stated conditions. By [1, Theorem 4.2.33] the second condition is equivalent
to (U ,Y) being an input/state/output bounded input/output representation of W in the sense of
[1, Definition 4.2.16], which precisely means that S is bounded.

Assume that S is bounded. It follows from [1, Lemma 4.2.11 (iv)] that V is bounded. Using [1,
Theorem 4.2.33] we obtain that Y is a direct complement to W0.

The formal resolvent of the state/signal system V is the family of multi-valued operators Ê(λ)
indexed by λ ∈ C defined by

Ê(λ) :=

 0 1 0
−1 λ 0
0 0 1

V,
the resolvent set ρ(V ) consists of those λ ∈ C for which Ê(λ) is a bounded everywhere-defined
single-valued operator from

[ X
W
]

to X , and V is called resolvable if its resolvent set is non-empty
[1, Definition 3.4.33]. We note that a resolvable state/signal system is closed [1, Lemma 3.4.34].

The characteristic signal bundle of V is [1, Definition 3.4.15]

F̂(λ) :=

w ∈ W : ∃x such that

λxx
w

 ∈ V
 .
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The formal resolvent of the input/state/output system S is the family of multi-valued operators
Ĝ(λ) indexed by λ ∈ C defined by [1, (10.2.1(a)]

gph(Ĝ(λ)) =


0 0 1 0
0 1 0 0
−1 0 λ 0
0 0 0 1

 gph(S),

the resolvent set ρiso(S) is the set of thoseλ ∈ C for which Ĝ(λ) is a bounded everywhere-defined
single-valued operator from

[ X
U
]

to
[ X
Y
]
, and S is called resolvable if its resolvent set is non-empty.

Lemma 5.27. Let V be closed. The following are equivalent:

(a) λ ∈ ρiso(S);

(b) λ ∈ ρ(V ) and Y is a direct complement of the characteristic signal bundle F̂(λ) in W.

Proof. This is [1, Theorem 10.3.6] (in particular (vii) implies (ii) in that result).

The main operator A of an input/state/output system S is the multi-valued operator from X
to X defined by

gph(A) =


[
z
x

]
: ∃y ∈ Y such that


z
y
x
0

 ∈ gph(S)

 .

We note that by [1, Theorem 10.2.4], resolvability of S implies that A has a non-empty resolvent
set and that ρiso(S) = ρ(A) (where ρ(A) is the usual resolvent set of the multi-valued operator A).

The following definition is adapted from [13] (by [13, Lemma 4.7.7] this definition is equivalent
to [13, Definition 4.7.2]).

Definition 5.28. An operator node is a single-valued linear operator
S : dom(S) ⊂

[ X
U
]
→
[ X
Y
]

with the following properties. We decompose S =
[
A&B
C&D

]
where

A&B : dom(S) → X and C&D : dom(S) → Y. We denote dom(A) := {x ∈ X : [ x0 ] ∈ dom(S)},
define A : dom(A) ⊂ X → X by Ax = A&B [ x0 ] and require the following to hold:

(i) S is closed;

(ii) A&B is closed;

(iii) A has a nonempty resolvent set and dom(A) is dense in X ;

(iv) For all u ∈ U there exists a x ∈ X such that [ xu ] ∈ dom(S).

Note that A in Definition 5.28 is the main operator of S.

Lemma 5.29. We have that S is an operator node if and only if the following conditions both hold:

(i) S is single-valued;

(ii) S is resolvable.
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Proof. This is [1, Theorem 10.2.26] noting that S resolvable implies S closed.

Theorem 5.30. We have that S is an operator node if and only if the following conditions all
hold:

(i) the multi-valued part of V equals {0};

(ii) V is resolvable;

(iii) Y ∩W0 = {0};

(iv) Y is a direct complement of the characteristic signal bundle F̂(λ) in W for some λ ∈ ρ(V ).

Proof. Assume that S is an operator node. Then by Lemma 5.29, S is single-valued which by
Lemma 5.25 implies (i) and (iii). By Lemma 5.29, S is resolvable, which implies that S is closed
which implies that V is closed. From Lemma 5.27 we then obtain (ii) and (iv).

Assume the above condititions. By Lemma 5.25 we obtain that S is single-valued. Since V
resolvable implies V closed, by Lemma 5.27 we obtain that S is resolvable. From Lemma 5.29 we
obtain that S is an operator node.

Remark 5.31. With respect to W = U+̇Y, the characteristic signal bundle F̂(λ) becomes the graph
of the input/output resolvent Ĝ(λ) (this follows from [1, 10.3.7(a)]). For S to be well-posed (for the
definition of a well-posed input/state/output system (as in [13]), we refer to [1, Definition 14.1.1])
it is necessary that Ĝ is uniformly bounded on some right half-plane. This can further inform the
choice of the decomposition W = U+̇Y in Theorem 5.30.

5.7 From a multi-valued operator to an input/state/output system

We assume that the multi-valued operator A is as in Section 5.4 (in particular, it is assumed that
im(A) ⊂ dom(A)), that V is defined in terms of A as in (7) and that S is defined in terms of V as
in (10).

We note that if the conditions on the multi-valued operator are not satisfied then the con-
struction in Section 5.1 can often be used to obtain a multi-valued operator with the same set
of continuously differentiable trajectories which does satisfy the assumptions and can therefore be
used as A in this section.

Theorem 5.32. With the assumptions and definitions as at the start of this section and the ad-
ditional assumption that mul(A) is closed we have the following. Continuously differentiable tra-

jectories of A and S coincide in the sense that if
[
x
u
y

]
is a continuously differentiable trajectory of

S, then v := x + u + y is a continuously differentiable trajectory of A and if v is a continuously
differentiable trajectory of A and we (uniquely) write v = x+u+y with respect to the decomposition

V = X +̇U+̇Y, then
[
x
u
y

]
is a continuously differentiable trajectory of S.

Proof. This follows from combining Lemma 5.21 and Lemma 5.24.

Theorem 5.33. We have that S is single-valued if and only if Y ∩mul(A) ∩ dom(A) = {0}.
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Proof. From Lemma 5.25, we have that S is single-valued if and only if both the multi-valued part
of V equals {0} and Y ∩W0 = {0} where W0 is the canonical input space of V . By Lemma 5.18
the first of these conditions is always true and by that same lemmaW0 = mul(A)∩dom(A), giving
the desired result.

Theorem 5.34. We have that S is a bounded single-valued everywhere-defined operator if the
following conditions all hold:

(i) A is closed;

(ii) dom(A) is closed;

(iii) Y is a direct complement to mul(A) ∩ dom(A).

If mul(A) is closed, then the converse is also true.

Proof. We verify the conditions in Proposition 5.26.
Assume the listed conditions. By Lemma 5.18 and the closed graph theorem for multi-valued

operators we have that V is bounded. By Lemma 5.18 we have that the canonical input space
W0 equals mul(A) ∩ dom(A) so that Y is a direct complement to W0. Therefore the conditions in
Proposition 5.26 are satisfied, so that S is bounded.

Assume that S is bounded and mul(A) is closed. Then by Proposition 5.26 we have that V is
bounded. From Lemma 5.19 we have that M as given there is closed and quasi-bounded. From
Lemma 5.20 it follows that A× and therefore A is closed and quasi-bounded. From the closed
graph theorem for multi-valued operators we then obtain that A is closed and dom(A) is closed.
The last condition follows from Proposition 5.26 using thatW0 equals mul(A)∩dom(A) by Lemma
5.18.

Theorem 5.35. We have that S is an operator node if and only if the following conditions all
hold:

(i) Y ∩mul(A) ∩ dom(A) = {0};

(ii) V is resolvable;

(iii) Y is a direct complement of the characteristic signal bundle F̂(λ) in W for some λ ∈ ρ(V ).

Proof. We verify the conditions in Theorem 5.30. By Lemma 5.18 we have that the condition
that the multi-valued part of V equals {0} is always satisfied. By Lemma 5.18 we have that
canonical input space W0 equals mul(A) ∩ dom(A), so that the two conditions Y ∩W0 = {0} and
Y ∩mul(A)∩ dom(A) = {0} are the same. The remaining condition (resolvability of V ) is literally
identical.

Remark 5.36. Whereas Theorem 5.34 does not mention V , Theorem 5.35 does. In principle the
two conditions involving V in Theorem 5.35 could be phrased in terms of A, but its seems more
natural to phrase them in terms of V .
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A Frequency domain trajectories

In addition to continuously differentiable trajectories, as we have discussed up to now, there is also
the notion of frequency domain trajectories (which is for example important in optimal control
problems).

Definition A.1. Let Ω be a non-empty open subset of C. A frequency domain Ω trajectory is
defined as follows.

• For a multivalued operator A on V it is a pair (v̂, v0) where v̂ is a holomorphic function
defined on Ω with values in V and v0 ∈ V such that for all λ ∈ Ω[

−v0 + λv̂(λ)
v̂(λ)

]
∈ gph(A).

• For a state/signal system V it is a triple (x̂, ŵ, x0) where x̂ and ŵ are holomorphic functions
defined on Ω with values in X and W respectively and x0 ∈ X such that for all λ ∈ Ω−x0 + λx̂(λ)

x̂(λ)
ŵ(λ)

 ∈ V. (11)

• For a multi-valued operator from
[ X
U
]

to
[ X
Y
]

it is a quadruple (x̂, ŷ, x0, û) where x̂, ŷ and û
are holomorphic functions defined on Ω with values in X , Y and U respectively and x0 ∈ X
such that for all λ ∈ Ω 

−x0 + λx̂(λ)
ŷ(λ)
x̂(λ)
û(λ)

 ∈ gph(S). (12)

The state/signal definition of frequency domain Ω trajectory is [1, Definition 12.1.1] and the
input/state/output one is [1, Definition 11.1.1].

We note that the equations (11) and (12) are respectively equivalent to

x̂(λ)
x0

ŵ(λ)

 ∈ Ê(λ),


x̂(λ)
ŷ(λ)
x0

û(λ)

 ∈ Ĝ(λ),

where Ê and Ĝ are the respective formal resolvents.
In the remainder of this section, we assume that that V is defined in terms of A as in (7) and

that S is defined in terms of V as in (10).

Proposition A.2. If im(A) ⊂ dom(A) and mul(A) is closed, then we have the following. Frequency
domain Ω trajectories of A and V coincide in the sense that if (x̂, ŵ, x0) is a frequency domain Ω
trajectory of V , then with v̂ := x̂+ŵ there exists a w0 ∈ W such that with v0 := x0+w0 we have that
(v̂, v0) is a frequency domain Ω trajectory of A and if (v̂, v0) is a frequency domain Ω trajectory
of A, and we (uniquely) write v̂ = x̂ + ŵ and v0 = x0 + w0 with respect to the decomposition
V = X +̇W, then (x̂, ŵ, x0) is a frequency domain Ω trajectory of V .
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Proof. Let (x̂, ŵ, x0) be a frequency domain Ω trajectory of V , i.e. for all λ ∈ Ω−x0 + λx̂(λ)
x̂(λ)
ŵ(λ)

 ∈ V. (13)

Using (8) we have that there exists a p(λ) ∈ W such that[
−x0 + λx̂(λ)

p(λ)

]
∈ H0. (14)

For fixed α ∈ Ω, define w0 := αŵ(α)− p(α). Then (14) with λ = α precisely is[
−x0 + αx̂(α)
−w0 + αŵ(α)

]
∈ H0.

For λ ∈ Ω we have[
−x0 + λx̂(λ)
−w0 + λŵ(λ)

]
=

[
−x0 + αx̂(α)
−w0 + αŵ(α)

]
+ λ

[
x̂(λ)
ŵ(λ)

]
− α

[
x̂(α)
ŵ(α)

]
∈ H0,

where we have used that by (13) (applied with λ and with λ = α) we have that
[
x̂(λ)
ŵ(λ)

]
and

[
x̂(α)
ŵ(α)

]
are both in H0. It follows from Lemma 5.20 that

−x0 + λx̂(λ)
−w0 + λŵ(λ)

x̂(λ)
ŵ(λ)

 ∈ gph(A×),

which precisely means that [
−x0 − w0 + λx̂(λ) + λŵ(λ)

x̂(λ) + ŵ(λ)

]
∈ gph(A).

This gives that (v̂, v0) is a frequency domain Ω trajectory of A.
Let (v̂, v0) be a frequency domain Ω trajectory of A, i.e. for all λ ∈ Ω[

−v0 + λv̂(λ)
v̂(λ)

]
∈ gph(A).

Then [
−x0 − w0 + λx̂(λ) + λŵ(λ)

x̂(λ) + ŵ(λ)

]
∈ gph(A),

so that 
−x0 + λx̂(λ)
−w0 + λŵ(λ)

x̂(λ)
ŵ(λ)

 ∈ gph(A×),

so that −x0 + λx̂(λ)
x̂(λ)
ŵ(λ)

 ∈ V,
which precisely means that (x̂, ŵ, x0) is a frequency domain Ω trajectory of V .
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Proposition A.3. Frequency domain Ω trajectories of V and S coincide in the sense that if
(x̂, ŷ, x0, û) is a frequency domain Ω trajectory of S, then (x̂, û + ŷ, x0) is a frequency domain Ω
trajectory of V and if (x̂, ŵ, x0) is a frequency domain Ω trajectory of V and we (uniquely) write
ŵ = û+ ŷ with respect to the decomposition W = U+̇Y, then (x̂, ŷ, x0, û) is a frequency domain Ω
trajectory of S.

Proof. This is [1, Lemma 12.1.4]

Corollary A.4. If im(A) ⊂ dom(A) and mul(A) is closed, then we have the following. Frequency
domain Ω trajectories of A and S coincide in the sense that if (x̂, ŷ, x0, û) is a frequency domain Ω
trajectory of S, then with v̂ := x̂+û+ŷ there exist u0 ∈ U and y0 ∈ Y such that with v0 := x0+u0+y0

we have that (v̂, v0) is a frequency domain Ω trajectory of A and if (v̂, v0) is a frequency domain
Ω trajectory of A and we (uniquely) write v̂ = x̂+ û+ ŷ and v0 = x0 + u0 + y0 with respect to the
decomposition V = X +̇U+̇Y, then (x̂, ŷ, x0, û) is a frequency domain Ω trajectory of S.

Proof. This follows from combining Proposition A.2 and Proposition A.3.

Example A.5. It is not true that frequency domain trajectories are preserved by the iteration from
Section 5.1 (unlike continuously differentiable trajectories as shown in Theorem 5.9). Let

gph(A0) =

{[
q
v

]
∈
[
R2

R2

]
: q1 = v2, v1 = 0

}
.

Applying the iteration from Section 5.1 gives

gph(A) =

{[
q
v

]
∈
[
R2

R2

]
: q1 = q2 = v1 = v2 = 0

}
,

so that the only frequency domain trajectory of A is (0, 0) (the choice of Ω is immaterial). On

the other hand, A0 has the nontrivial frequency domain trajectory v̂ =
[

0
−v01

]
, v0 =

[
v01
v02

]
where

v01, v
0
2 ∈ R are arbitrary.

We now give some positive results on the preservation of frequency domain trajectories under
the iteration from Section 5.1.

Proposition A.6. Let (v̂, v0) be an Ω trajectory of A0. Then it is an Ω trajectory of A1 if and
only if v0 ∈ dom(A0). Moreover, it is an Ω trajectory of A if and only if v0 ∈ V•.

Proof. Let v0 ∈ dom(A0). Since (v̂, v0) is an Ω trajectory of A0 we have v̂(λ) ∈ dom(A0), so that
−v0 + λv̂(λ) ∈ dom(A0). It follows that[

−v0 + λv̂(λ)
v̂(λ)

]
∈ gph(A0) ∩

[
dom(A0)

dom(A0)

]
= gph(A1), (15)

which shows that (v̂, v0) is an Ω trajectory of A1.
Let (v̂, v0) be an Ω trajectory ofA1. Then (15) holds, so that v̂(λ) ∈ dom(A0) and −v0+λv̂(λ) ∈

dom(A0), which implies that v0 ∈ dom(A0).
Let v0 ∈ V•. Then v0 ∈ dom(A0), so that (v̂, v0) is an Ω trajectory of A1 by the above. Moreover

v0 ∈ dom(A1), which implies similarly that (v̂, v0) is an Ω trajectory of A2. Proceeding like this, we
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obtain that (v̂, v0) is an Ω trajectory of Ak for all k ∈ N. In particular, v̂(λ) ∈ ∩∞k=1 dom(Ak) = V•.
It follows that [

−v0 + λv̂(λ)
v̂(λ)

]
∈ gph(A0) ∩

[
V•
V•

]
= gph(A), (16)

so that (v̂, v0) is an Ω trajectory of A.
Conversely, assume that (v̂, v0) is an Ω trajectory of A. Then (16) holds, which implies that

v̂(λ) ∈ V• and −v0 + λv̂(λ) ∈ V•, the combination of which implies v0 ∈ V•.

B Discrete-time trajectories

In addition to continuous-time trajectories, it is possible to consider discrete-time trajectories.

Definition B.1. Infinite-time discrete-time trajectories are defined as follows.

• For a multi-valued operator A it is a sequence v : N0 → V such that for all n ∈ N0[
vn+1

vn

]
∈ gph(A). (17)

• For a state/signal system V it is a pair of sequences x : N0 → X and w : N0 →W such that
for all n ∈ N0 xn+1

xn
wn

 ∈ V.
• For a multi-valued operator from

[ X
U
]

to
[ X
Y
]

it is a triple of sequences x : N0 → X , y : N0 → Y
and u : N0 → U such that for all n ∈ N0

xn+1

yn
xn
un

 ∈ gph(S).

The state/signal definition of discrete-time trajectory is [1, Definition 7.4.1] and the input/state/output
one is adapted from [1, Definition 6.5.2].

In the remainder of this section, we assume that that V is defined in terms of A as in (7) and
that S is defined in terms of V as in (10).

Proposition B.2. If im(A) ⊂ dom(A) and mul(A) is closed, then we have the following. Infinite-
time discrete-time trajectories of A and V coincide in the sense that if (x,w) is an infinite-time
discrete-time trajectory of V , then v defined by vn := xn + wn is an infinite-time discrete-time
trajectory of A and if v is an infinite-time discrete-time trajectory of A, and we (uniquely) write
vn = xn +wn with respect to the decomposition V = X +̇W, then (x,w) is an infinite-time discrete-
time trajectory of V .
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Proof. Let (x,w) be an infinite-time discrete-time trajectory of V . Then for all n ∈ N0xn+1

xn
wn

 ∈ V.
It follows that also

[ xn+2
xn+1
wn+1

]
∈ V , so that

[ xn+1
wn+1

]
∈ H0. It follows from Lemma 5.20 that

xn+1

wn+1

xn
wn

 ∈ gph(A×),

which precisely means that [
xn+1 + wn+1

xn + wn

]
∈ gph(A),

i.e. that v is an infinite-time discrete-time trajectory of A.
Let v be an infinite-time discrete-time trajectory of A. Then [ vn+1

vn ] ∈ gph(A), i.e.[
xn+1 + wn+1

xn + wn

]
∈ gph(A),

so that 
xn+1

wn+1

xn
wn

 ∈ gph(A×),

which gives that xn+1

xn
wn

 ∈ V.
Hence (x,w) is an infinite-time discrete-time trajectory of V .

Proposition B.3. Infinite-time discrete-time trajectories of V and S coincide in the sense that if
(x, y, u) is an infinite-time discrete-time trajectory of S, then (x, u+ y) is an infinite-time discrete-
time trajectory of V and if (x,w) is an infinite-time discrete-time trajectory of V and we (uniquely)
write wn = un + yn with respect to the decomposition W = U+̇Y, then (x, y, u) is an infinite-time
discrete-time trajectory of S.

Proof. This is essentially [1, Lemma 7.4.3].

Corollary B.4. If im(A) ⊂ dom(A) and mul(A) is closed, then we have the following. Infinite-
time discrete-time trajectories of A and S coincide in the sense that if (x, y, u) is an infinite-time
discrete-time trajectory of S, then v defined by vn := xn + un + yn is an infinite-time discrete-time
trajectory of A and if v is an infinite-time discrete-time trajectory of A, and we (uniquely) write
vn = xn +un + yn with respect to the decomposition V = X +̇U+̇Y, then (x, y, u) is an infinite-time
discrete-time trajectory of S.
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Proof. This follows from combining Proposition B.2 and Proposition B.3.

The following result considers the iteration from Section 5.1 in the context of discrete-time
trajectories.

Proposition B.5. Assume that dom(Ak) is closed for all k ∈ N0. Then infinite-time discrete-time
trajectories of A and A0 coincide.

Proof. As gph(A) ⊂ gph(A0), we always have that an infinite-time discrete-time trajectory of A is
an infinite-time discrete-time trajectory of A0.

From Proposition 5.11 we have that dom(Ak) = dom(Ak+1
0 ), so that by Proposition 5.4 we have

dom(A) =

∞⋂
k=0

dom(Ak+1
0 ), (18)

and

gph(A) = gph(A0) ∩
[
dom(A)
dom(A)

]
. (19)

Let v be an infinite-time discrete-time trajectory of A0. Then as for all k ∈ N0[
v1
v0

]
,

[
v2
v1

]
, . . . ,

[
vk+1

vk

]
∈ gph(A0),

we have [ vk+1
v0 ] ∈ gph(Ak+1

0 ), so that v0 ∈ dom(Ak+1
0 ). From (18) we obtain v0 ∈ dom(A). Similarly,

we obtain that vn ∈ dom(A) for all n ∈ N. We then have for all n ∈ N0[
vn+1

vn

]
∈ gph(A0) ∩

[
dom(A)
dom(A)

]
,

which by (19) gives that v is an infinite-time discrete-time trajectory of A.

Example B.6. We show that finite-time discrete-time trajectories (defined in the obvious way by
requiring (17) to hold for n ∈ {0, . . . , N − 1} for some N ≥ 1 where N is called the length) are not
necessarily preserved by the iteration from Section 5.1. Let

gph(A0) =

{[
q
v

]
∈
[
R2

R2

]
: q1 = v2, v1 = 0

}
.

Applying the iteration from Section 5.1 gives

gph(A) =

{[
q
v

]
∈
[
R2

R2

]
: q1 = q2 = v1 = v2 = 0

}
.

We have that for any a ∈ R and b ∈ R 
a
b
0
a

 ∈ gph(A0),

so that the finite sequence v : {0} → R2 defined by v0 := [ 0a ] is a discrete-time trajectory of length
one of A0. However, for a 6= 0 this is not a discrete-time trajectory of length one of A.
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