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Abstract. A stability theorem for the feedback connection of two (possibly infinite-dimensional) time-
invariant linear systems is presented. The theorem is formulated in the frequency domain and is in the
spirit of combined passivity/small-gain results. It places a mixture of positive realness and small-gain
assumptions on the two transfer functions to ensure a certain notion of input-output stability, called
Sobolev stability (which includes the classical L2-stability concept as a special case). The result is more
general than the classical passivity and small-gain theorems: strong positive realness of either the plant or
controller is not required and the small gain condition only needs to hold on a suitable subset of the open
right-half plane. We show that the “mixed” stability theorem is applicable in settings where L2-stability
of the feedback connection is not possible, such as output regulation and disturbance rejection of certain
periodic signals by so-called repetitive control.
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1 Introduction

For time-invariant linear control systems, positive realness is the frequency domain characterization of the
time-domain property of passivity. Positive realness in a circuit theory context appears to date back to
the 1931/32 papers [7, 9, 10] and is, nowadays, a key concept in mathematical systems and control theory.
Indeed, on the one hand, it is fundamental for the analysis and synthesis of electrical networks [4, 27]
whilst, on the other, it appears as a natural condition in the study of the stability of certain nonlinear
control systems, so called absolute stability, via the Kalman-Yakubovich-Popov (or positive real) lemma
[21, 23]. The upshot is that positive realness is a much-studied property, over a vast array of literature. For
example, positive realness plays a central role in the recent monograph [6] on dissipative systems. We refer
the reader to [4, 6, 19, 26] for more background on the positive real property and note that some authors
use the term positive, rather than positive real, such as in [42]. In the time-invariant linear case, the
passivity theorem (see [19, Theorem 6.16] for a version which captures a large class of infinite-dimensional
systems) states that the feedback connection of an L2-input-output stable and strongly positive real plant,
and positive real controller, is itself positive real and L2-input-output stable. This result traces its roots
back to the work of Zames [40]. Similar to passivity notions, small loop-gain ideas have been around in
control theory for a long time: the first formal statements of the small-gain theorem seem to have appeared
in [33, 40], see also [13, Chapters III and V]. It is well-known from [18] that the conditions of the passivity
and small-gain theorems may be “shared” or “mixed” across the plant and controller, and still guarantee
stability. We refer the reader to the recent paper [11], and the references therein, for more background on
mixed stability results, and their generalisations.

The stability criteria (passivity, small-gain and mixed) referred to above are formulated within the frame-
work of Lp-input-output stability (where, usually, p = 2 or p = ∞). Whilst this setting is sufficient for many
purposes, there are situations in the control of PDEs and repetitive control in which L2 or L∞-stability
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is impossible to achieve and therefore, more refined stability concepts are required. This is addressed by
the state-space concept of polynomial stability of operator semi-groups (see, for example, [1, 5, 32]) and
the related P-stability notion in the frequency domain [25, 29]. A new stability concept called Sobolev
input-output stability has been recently introduced in [20] which contains L2- and P-stability as special
cases. This concept is applicable to a rather general class of causal translation-invariant linear input-
output operators, the domain and codomain of which are spaces of vector-valued distributions: for real
numbers α and β, Sobolev (α, β)-stability of an input-output operator H simply refers to the property
that H maps the Sobolev space Hα(R, U) continuously into the Sobolev space Hβ(R, Y ), where U and
Y are Hilbert spaces. The familiar notion of L2-stability corresponds to the case wherein α = β = 0. In
the frequency domain, Sobolev (α, β)-stability can be conveniently characterized by the condition that the
function s 7→ (1 + s)β−αH(s) is holomorphic and bounded on the open right-half plane, where H denotes
the transfer function of H, see Section 3. Obviously, if α > β (α < β), then application of the input-output
operator reduces (increases) the regularity of the input.

In the current paper, we initiate the study of so-called Sobolev stabilizing feedbacks, that is, control-
lers which ensure that the closed-loop systems is Sobolev stable. The main result, a general mixed
passivity/small-gain theorem, is a frequency-domain criterion for the Sobolev stability of the feedback
connection of two (possibly infinite-dimensional) time-invariant linear systems, see Theorem 4.2. Loosely
speaking, the theorem states that a suitable mixture of positive realness- and small-gain-type conditions
holding on certain subsets of the open right-half plane ensures that the feedback system is Sobolev stable.
The passivity and small-gain theorems for linear systems in an L2-stability setting are contained in The-
orem 4.2 as special cases, as is [42, Theorem 4.2], see Section 4 for details.

We apply our mixed passivity/small-gain theorem in the context of a general version of the output-
regulation and disturbance-rejection problem (also referred to as the servo problem). Inspired by the
frequency-domain theory of the internal model principle [24, 25, 37], a sufficient condition for a Sobolev
stabilizing controller to solve the servo problem is given in Theorem 5.1. This result is then applied to
the so-called repetitive control problem (see for example [38]) for which it is known that L2-stability of
the closed loop is not possible for plant transfer functions which tend to 0 at high frequencies. However,
as we demonstrate, these feedback connections are Sobolev stable, and Corollary 5.4 provides a sufficient
condition for a Sobolev stabilizing controller to be a solution to the servo problem in repetitive control.

The paper is organised as follows. Section 2 contains preliminaries on notation and certain spaces of
functions and distributions. In Section 3, we recall a number of results on Sobolev stability from [20] and
introduce the concept of Sobolev stabilizing feedback operators. Section 4 contains the main result, a
general mixed passivity/small-gain theorem for Sobolev stability. As has been mentioned already, Sobolev
stabilizing feedbacks are used in the context of output regulation and disturbance rejection in Section 5.
Six examples are presented in Section 6, and summarising comments appear in Section 7. Some technical
material relating to Example 6.7 is relegated to the Appendix.

2 Preliminaries

We gather some preliminary material required for the statement and proofs of the results in Sections 3–6.

2.1 Notation

Let Z and N denote the integers and the positive integers, respectively, and set N0 := N ∪ {0}. As usual,
Q, R and C denote the fields of rational, real and complex numbers, respectively. For µ ∈ R, we let Cµ

denote the right-half complex plane of complex numbers with real part greater than µ.

For complex Banach spaces X and Y , we let B(X,Y ) denote the vector space of bounded linear operat-
ors X → Y , which is a Banach space when equipped with the uniform topology, and set B(X) := B(X,X).
If X is a Hilbert space and T ∈ B(X), then we define the real part ReT of the operator T by

ReT :=
1

2
(T + T ∗),

where T ∗ denotes the adjoint of T . Furthermore, for two operators S, T ∈ B(X), X a complex Hilbert
space space, we write T ≥ S if T − S is positive semi-definite.
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2.2 Spaces of holomorphic functions

Here, and throughout, U and Y denote complex Hilbert spaces. For nonempty, open Ω ⊂ C we define
H(Ω,B(U, Y )) as the vector space of holomorphic functions Ω → B(U, Y ) and H∗(Ω,B(U, Y )) as the
space of all B(U, Y )-valued functions which are holomorphic on Ω, with the exception of isolated points,
namely poles and essential singularities, understanding that removable singularities have been removed by
holomorphic extension. Consequently, if H ∈ H∗(Ω,B(U, Y )), then H ∈ H(Ω\ΣH,B(U, Y )), where ΣH

denotes the set of singularities (poles and essential singularities) of H in Ω. For µ ∈ R, we write

Hµ(B(U, Y )) := H(Cµ,B(U, Y )) and H∗
µ(B(U, Y )) := H∗(Cµ,B(U, Y )).

A function H ∈ H∗
0(B(U)) is said to be positive real if ReH(s) ≥ 0 for all s ∈ C0\ΣH, and strongly

positive real if there exists δ > 0 such that ReH(s) ≥ δI for all s ∈ C0\ΣH. It is well known (see, for
example, [19]) that if a function H ∈ H∗

0(B(U)) is positive real, then it cannot have any singularities in C0.

Let H∞(Ω,B(U, Y )) denote the space of all bounded holomorphic functions Ω → L(U, Y ), and set
H∞

µ (B(U, Y )) := H∞(Cµ,B(U, Y )). Endowed with the norm

∥H∥H∞
µ

:= sup
s∈Cµ

∥H(s)∥,

H∞
µ (B(U, Y )) is a Banach space. For brevity, we abbreviate this to H∞

µ when U = Y = C. For fur-
ther background on vector-valued holomorphic and meromorphic functions we refer the reader to, for
example, [14, Chapter 9] or [31, Chapter 4].

2.3 Spaces of function and distributions and integral transforms

Let X denote a complex Banach space. The space of m-times continuously differentiable functions from J
to X, J ⊂ R an interval, is denoted by Cm(J,X), whilst C∞

c (R, X) stands for the space of infinitely
differentiable functions R → X with compact support. We let S and D denote the Schwartz space of
rapidly decreasing C∞- functions R → C and the space of compactly supported C∞-functions R → C,
endowed with their usual topologies, respectively. The spaces of all continuous linear maps D → X
and S → X are denoted by D′(X) and S′(X), respectively. We have that S′(X) ⊂ D′(X) and the elements
in D′(X) are called X-valued distributions. A distribution in S′(X) is said to be tempered (or, slowly
growing). The subspace of distributions in D′(X) with support bounded on the left is denoted by D′

ℓ(X),
and similarly, S′ℓ(X) stands for the space of tempered distributions having support bounded on the left.
For more details on vector-valued distributions we refer the reader to, for example, [2, Chapter III: Sections
4.1 and 4.2], [3, Chapter VII], [12, Chapter XVI: Section 2], [16, Chapter 8] and [41, Chapters 3, 5 and 6].

The Fourier transform of a function f ∈ L1(R, X) is defined by

(Ff)(y) :=

∫ ∞

−∞
e−iytf(t) dt ∀ y ∈ R .

As F is an automorphism on S, the definition of the Fourier transform extends to S′(X) via

(Fu)(ϕ) := u(Fϕ) ∀ϕ ∈ S, where u ∈ S′(X).

It is well known that the Fourier transform F is an automorphism on S′(X) with F and F−1 being
sequentially continuous. If X = U is a complex Hilbert space, then the restriction of F : S′(U) → S′(U)
to L2(R, U) is an automorphism on L2(R, U), in fact, (1/

√
2π)F is a unitary operator on L2(R, U), and

so ∥Fu∥L2(R) =
√
2π∥u∥L2(R) for every u ∈ L2(R, U).

Let U be a complex Hilbert space and J ⊂ R an interval. We set W 0,2(J, U) := L2(J, U), and, for m ∈ N,
we let Wm,2(J, U) be the space of all u ∈ Cm−1(J, U) such that u(m−1) is (locally) absolutely continuous
and u(k) ∈ L2(J, U) for k = 0, 1, . . . ,m, endowed with the norm

∥u∥Wm,2 :=

(
m∑

k=0

∫
J

∥u(k)(t)∥2dt

)1/2

. (2.1)

For θ ∈ R and U a complex Hilbert space, we define the Sobolev space (sometimes also called the Bessel
potential space)

Hθ(R, U) :=
{
u ∈ S′(U) :

(
y 7→ (1 + y2)θ/2(Fu)(y)

)
∈ L2(R, U)

}
,
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with inner product and associated norm given by

⟨u, v⟩ := 1

2π

∫ ∞

−∞
(1 + y2)θ⟨(Fu)(y), (Fv)(y)⟩dy ∀u, v ∈ Hθ(R, U),

and

∥u∥Hθ :=

(
1

2π

∫ ∞

−∞
(1 + y2)θ∥(Fu)(y)∥2dy

)1/2

∀u ∈ Hθ(R, U), (2.2)

respectively. The space Hθ(R, U) is complete and hence a Hilbert space. We note that H0(R, U) =
L2(R, U) and ∥u∥H0 = ∥u∥L2 for all u ∈ L2(R, U). If θ ≥ 0, then Hθ(R, U) ⊂ L2(R, U), whilst Hθ(R, U)
contains non-regular distributions when θ < 0. We remark that Hm(R, U) = Wm,2(R, U) for all m ∈ N0

and the norms (2.1) and (2.2) are equivalent. Therefore, it makes sense (and simplifies notation) to set

Hm(J, U) :=Wm,2(J, U) for all m ∈ N0 and all intervals J ⊂ R . (2.3)

Moreover, for arbitrary θ ∈ R, let Hθ
ℓ (R, U) denote the subspace of of all distributions Hθ(R, U) with sup-

port bounded on the left, whilst Hθ
+(R, U) consists of all u ∈ Hθ(R, U) such that suppu ⊂ [0,∞). For m ∈

N0 and J ⊂ R an interval, the localized version of Hm(J, U) is denoted by Hm
loc(J, U), and Hm

loc,ℓ(R, U)
stands for the subspace of all u ∈ Hm

loc(R, U) such that suppu is bounded on the left. Further, for
arbitrary θ ∈ R and J ⊂ R an open interval, we set

Hθ(J, U) :=
{
u ∈ D′(J, U) : there exists v ∈ Hθ(R, U) such that u = v|J

}
, (2.4)

where D′(J, U) is the space of continuous linear U -valued maps defined on D(J) := {ϕ ∈ D : suppϕ ⊂ J}.
When θ = m ∈ N0, the definitions (2.4) and (2.3) coincide. In the case of scalar-value Sobolev spaces (that
is, if U = C), then we write Hθ(R) for Hθ(R,C), Hθ

ℓ (R) for Hθ
ℓ (R,C), Hθ

+(R) for Hθ
+(R,C) etc.

The Laplace transform Lu of a distribution u ∈ D′(X) such that suppu ⊂ [τ,∞) and e−µ · u ∈ S′(X) for
some τ, µ ∈ R is defined by

(Lu)(s) :=
(
e−µ · u

)
(ηe−(s−µ) · ) ∀ s ∈ Cµ,

where η ∈ C∞(R,C) is an arbitrary function such that there exist t1 < t0 < τ such that η(t) = 0 for
all t < t1 and η(t) = 1 for all t > t0. It is straightforward to show that the definition does not depend on the
choice of η and extends the classical Laplace transform. For u ∈ D′

ℓ(X), the abscissa of convergence σ(u)
is defined as the infimum of all µ ∈ R such that e−µ · u ∈ S′(X). If no such µ exists, then we set σ(u) = ∞.
If σ(u) < ∞, then the Laplace transform of u exists and is holomorphic on Cσ(u), and u is said to be
Laplace transformable.

3 Sobolev input-output stability of feedback systems

In this section, we recall the Sobolev input-output stability concept, review some relevant results from [20,
Section 5], and introduce and discuss Sobolev stabilizing compensators.

3.1 Sobolev input-output stability

The class of linear, translation-invariant and causal input-output operators to which the Sobolev input-
output stability framework applies is described in terms of convolution operators with operator-valued
distributional kernels, and is reasonably general. In particular, it includes the input-output operators of
well-posed linear systems (in the sense of [36]). We refer to [20, Appendix 1] for relevant background
on convolutions of vector-valued distributions. Here we only mention that if g ∈ D′

ℓ(B(U, Y )), then the
convolution product g ⋆ u is a well-defined distribution in D′

ℓ(Y ) for all u ∈ D′
ℓ(U).

It is known (see, for example [20, Proposition 5.2] which in turn is based on results of [41, Chapter 5])
that if G : domG ⊂ D′(U) → D′(Y ) is a continuous, causal and translation-invariant linear operator
such that C∞

c (R, U) ⊂ domG, then there exists a unique g ∈ D′(B(U, Y )) such that supp g ⊂ [0,∞)
and Gu = g ⋆ u for all u ∈ D′

ℓ(U)∩ domG. Conversely, if there exists g ∈ D′(B(U, Y )) such that supp g ⊂
[0,∞) and Gu = g ⋆ u for all u ∈ C∞

c (R, U), then G is continuous, causal and translation-invariant. The
distribution g is called the kernel or impulse response of the operator G. If σ(g) < ∞ (finite abscissa
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of convergence), then G(s) := (Lg)(s) exists for all s ∈ Cσ(g) and the function G, a B(U, Y )-valued
holomorphic function defined on Cσ(g), is referred to as the transfer function of G. If u ∈ D′

ℓ(U) is such
that σ(u) <∞, then g ⋆ u is Laplace transformable and

(LGu)(s) = G(s)(Lu)(s) ∀ s ∈ Cµ,

where µ := max
(
σ(g), σ(u)

)
.

Let α, β ∈ R. A linear operator G : domG ⊂ D′(U) → D′(Y ) is said to be Sobolev (α, β)-stable
if C∞

c (R, U) ⊂ domG, G(C∞
c (R, U)) ⊂ Hβ(R, Y ), and there exists γ > 0 such that

∥Gu∥Hβ ≤ γ∥u∥Hα ∀u ∈ C∞
c (R, U) .

Throughout, we shall use the function

rα(s) := (1 + s)−α ∀ s ∈ C−1, where α ∈ R.

On the right-hand side, we identify the complex power function with its principal branch on the domain
C\(−∞, 0], and thus, rα(s) ∈ (0,∞) for all s ∈ (−1,∞).

The next theorem provides several characterizations of Sobolev (α, β)-stability in terms of transfer func-
tions, and is a combination of results in [20, Sections 3 and 5].

Theorem 3.1 ([20, Theorems 3.1 and 5.4]). Let G : domG ⊂ D′(U) → D′(Y ) be a causal translation-
invariant continuous linear operator such that C∞

c (R, U) ⊂ domG, and let g ∈ D′(B(U, Y )) be the kernel
of G. For arbitrary α, β ∈ R, the following statements are equivalent.

(1) G is Sobolev (α, β)-stable.

(2) There exists a unique causal and translation-invariant operator Ge ∈ B(Hα(R, U), Hβ(R, Y )) such
that Geu = Gu for all u ∈ Hα(R, U) ∩ domG.

(3) g is Laplace transformable, σ(g) ≤ 0 and rα−βG ∈ H∞
0 (B(U, Y )), where G is the transfer function

of G.

(4) g is Laplace transformable and there exist µ > max{0, σ(g)} and a holomorphic Ge : C0 → B(U, Y )
which coincides with the transfer function G of G on Cmax{0,σ(g)} and such that

sup
0<Re s<µ

∥rα−β(s)G
e(s)∥ <∞ .

(5) g is Laplace transformable and there exists a holomorphic Ge : C0 → B(U, Y ) which coincides with
the transfer function G of G on Cmax{0,σ(g)} and such that rα−βG

e ∈ H∞
0 (B(U, Y )).

If one of the above statements holds, then

∥Ge∥B(Hα,Hβ) = sup
u∈C∞

c , u ̸=0

∥Gu∥Hβ

∥u∥Hα

= ∥rα−βG∥H∞
0

= ∥rα−βG
e∥H∞

0
.

As an immediate consequence of the above theorem, we note that Sobolev (α, β)-stability, implies So-
bolev (α + θ, β + θ)-stability for all θ ∈ R. We emphasize that the classical input-output notion of
L2-stability is contained in the above concept as the special case of Sobolev (0, 0)-stability.

The following proposition shows that, under suitable assumptions, Sobolev (α, β)-stability follows if the
transfer function satisfies a natural boundedness condition on the imaginary axis.

Proposition 3.2 ([20, Corollary 5.6]). Let G : domG ⊂ D′(U) → D′(Y ) be a causal translation-invariant
continuous linear operator such that C∞

c (R, U) ⊂ domG, let g ∈ D′(B(U, Y )) be the kernel of G and
let α, β ∈ R. Assume that g is Laplace transformable and that there exists a holomorphic Ge : C0 →
B(U, Y ) which coincides with the transfer function G of G on Cmax{0,σ(g)}. Furthermore, assume that U
and Y are separable and Ge is polynomially bounded on the strip 0 < Re s < µ for some µ > σ(g). Under
these conditions, the limit Ge

0(y) = limx↓0 G
e(x + iy) exists in the strong operator topology for almost

every y ∈ R, and, if
ess sup

y∈R
∥rα−β(iy)G

e
0(y)∥ <∞ ,

then G is Sobolev (α, β)-stable, in which case

∥rα−βG
e∥H∞

0
= ess sup

y∈R
∥rα−β(iy)G

e
0(y)∥.
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3.2 Sobolev stabilizing feedback controllers

Following [19], we say that K ∈ H∗
µ(B(Y, U)) is an admissible feedback for P ∈ H∗

µ(B(U, Y )), where µ ∈ R,
if

S :=

(
I K

−P I

)
(3.1)

has an inverse which belongs to H∗
ν(B(U × Y )) for some ν ≥ µ, or, equivalently, the set

ΞP,K :=
{
s ∈ Cµ\

(
ΣP ∪ ΣK) : S(s) is not invertible

}
does not have any accumulation points in Cν ; in particular, the inverse

S−1(s) :=
(
S(s)

)−1
=

(
I K(s)

−P(s) I

)−1

(3.2)

exists for all s ∈ Cν such that s ̸∈ ΣP ∪ ΣK ∪ ΞP,K. This definition coincides with [19, Definition 6.15],
up to a sign change in K. A necessary and sufficient condition for K to be an admissible feedback for P
is that I + KP has an inverse in H∗

ν(B(U)) for some ν ≥ µ, or, equivalently, I + PK has an inverse
in H∗

ν(B(Y )), in which case

S−1 =

(
I K

−P I

)−1

=

(
(I +KP)−1 −K(I +PK)−1

P(I +KP)−1 (I +PK)−1

)
on Cν . (3.3)

Recall that the feedback connection of P and admissible K is called well posed if there exists ω ≥ µ such
that S−1 ∈ H∞

ω (B(U × Y )).

The following lemma shows that, under certain conditions, admissibility of the feedback K is guaranteed,
provided that S(s) is invertible at one point s = s0 in Cµ.

Lemma 3.3. Let P ∈ H∗
µ(B(U, Y )) and K ∈ H∗

µ(B(Y, U)), where µ ∈ R, and let s0 ∈ Cµ\
(
ΣP ∪ ΣK

)
.

Assume that at least one of the operators P(s) and K(s) is compact for every s ∈ Cµ\
(
ΣP ∪ ΣK

)
and

that P and K are holomorphic on Cν for some ν ≥ µ. If the inverse S−1(s) in (3.2) exists for s = s0, then
the set ΞP,K does not have any accumulation points in Cµ\

(
ΣP ∪ΣK

)
. Furthermore, S−1 is meromorphic

on Cν ; in particular, K is an admissible feedback for P.

We remark that without the compactness assumption, Lemma 3.3 is not true, see, for example, [26,
Example 4.2]. Trivially, the compactness hypothesis is satisfied whenever U or Y is finite-dimensional.

Proof of Lemma 3.3. For s ∈ Cµ\
(
ΣP ∪ ΣK

)
, the operator S(s) is invertible if, and only if, I +K(s)P(s)

is invertible (and S−1(s) is given by (3.3)). Therefore,

ΞP,K = {s ∈ Cµ\
(
ΣP ∪ ΣK

)
: I +K(s)P(s) is not invertible}.

As K(s)P(s) is compact for all s ∈ Cµ\
(
ΣP ∪ ΣK

)
, it follows from [19, Lemma 5.8] that ΞP,K does not

have any accumulation points in Cµ\
(
ΣP∪ΣK

)
and (I+KP)−1 is meromorphic on Cµ\

(
ΣP∪ΣK

)
. As P

and K are holomorphic on Cν , we have that Cν ⊂ Cµ\
(
ΣP ∪ΣK

)
, and we conclude that (I +KP)−1, and

hence S−1, are meromorphic on Cν .

Let K ∈ H∗
µ(B(Y, U)) be an admissible feedback for P ∈ H∗

µ(B(U, Y )). Then there exists a ν ≥ µ such
that ΞP,K does not have any accumulation points in Cν and S−1 ∈ H∗

ν(B(U × Y )). Setting

ξ = ξP,K := inf{ω ≤ ν : there exists E ∈ H∗
ω(B(U × Y )) extending S−1},

we define FP,K to be the uniquely determined function in H∗
ξ(B(U × Y )) such that

FP,K(s) = S−1(s) =

(
I K(s)

−P(s) I

)−1

∀ s ∈ Cν\
(
ΣP ∪ ΣK ∪ ΞP,K

)
. (3.4)

If ξ = −∞, then H∗
ξ(B(U × Y )) should be interpreted as H∗(C,B(U × Y )).
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Remark 3.4. In (3.4), ν may be replaced by any ω such that max{µ, ξ} ≤ ω ≤ ν. To see this, we observe
that, by (3.4),

S(s)FP,K(s) = FP,K(s)S(s) = I ∀ s ∈ Cν\
(
ΣP ∪ ΣK ∪ ΞP,K

)
. (3.5)

Since the set Cω\
(
ΣP ∪ ΣK ∪ ΞP,K

)
is connected, we can invoke the identity theorem for holomorphic

functions to conclude that (3.5) extends to all s ∈ Cω\
(
ΣP ∪ ΣK ∪ ΞP,K

)
. ♢

Definition 3.5. Let P ∈ H∗
µ(B(U, Y )) and K ∈ H∗

µ(B(Y,U)) for some µ ∈ R, and let α, β ∈ R. We say
that K is a Sobolev (α, β)-stabilizing feedback for P if K is an admissible feedback for P and rα−βFP,K ∈
H∞

0 (B(U × Y )). In this case, we say that the feedback connection (of P and K) is Sobolev (α, β)-stable,
or just Sobolev stable.

To explain how the above frequency-domain concept is related to the time-domain notion of Sobolev (α, β)-
stability from Subsection 3.1, assume that K is a Sobolev (α, β)-stabilizing feedback for P. Then, trivially,
FP,K is polynomially bounded on C0, and [41, Theorem 6.5-1 and Corollary 6.5-1a] guarantee that there
exists a causal translation-invariant operator F : D′

ℓ(U × Y ) → D′
ℓ(U × Y ), the transfer function of which

is FP,K. It follows from Theorem 3.1 that F is Sobolev (α, β)-stable in the sense of Subsection 3.1.

We present some immediate consequences of the above definition in the following lemma.

Lemma 3.6. Let P ∈ H∗
µ(B(U, Y )) and K ∈ H∗

µ(B(Y, U)) for some µ ∈ R, and let α, β ∈ R.

(1) K is a Sobolev (α, β)-stabilizing feedback for P if, and only if, P is a Sobolev (α, β)-stabilizing feedback
for K.

(2) Under the additional assumptions that Y = U and P and K are invertible, with inverses P−1,K−1 ∈
H∗

ν(B(U)) for some ν ≥ µ, the following statements hold.

(i) If α ≥ β, then K is a Sobolev (α, β)-stabilizing feedback for P if, and only if, K−1 is a So-
bolev (α, β)-stabilizing feedback for P−1.

(ii) If K is a Sobolev (α, β)-stabilizing feedback for P and K−1 is a Sobolev (α, β)-stabilizing feedback
for P−1, then α ≥ β.

(3) Assume that K is holomorphic on Cν for some ν ≥ µ, K(s) is compact for all s ∈ Cν and K is a
Sobolev (α, β)-stabilizing feedback for P. Then P is meromorphic on Cν .

An important scenario in which the invertibility assumption in statement (2) holds is the following: if P
and K are positive real and there exist s1 and s2 in C0 such that P(s1) and K(s2) are invertible, then
P(s) and K(s) are invertible for all s ∈ C0, and P−1 and K−1 are positive real (and hence holomorphic
on C0), see [26, Corollary 4.3].

Proof of Lemma 3.6. Statement (1) follows immediately from the equality(
I K

−P I

)
= −

(
0 I
−I 0

)(
I P

−K I

)(
0 I
−I 0

)
.

We proceed to prove part (i) of statement (2). Assume that K is a Sobolev (α, β)-stabilizing feedback
for P. As K is an admissible feedback for P, the transfer function I+PK has an inverse in H∗

ω(B(U)) for
some ω ≥ µ, and the trivial identity I +K−1P−1 = K−1P−1(I +PK) implies that K−1 is an admissible
feedback for P−1. Using (3.3) and

(I +K−1P−1)−1 = PK(I +PK)−1 = I − (I +PK)−1,

we obtain that(
I K−1

−P−1 I

)−1

=

(
I 0
0 I

)
+

(
−(I +PK)−1 −P(I +KP)−1

K(I +PK)−1 −(I +KP)−1

)
=

(
I 0
0 I

)
+

(
−I 0
0 I

)(
I P

−K I

)−1(
I 0
0 −I

)
= I − JFK,PJ , (3.6)

where J := diag(I,−I). By the hypothesis and statement (1), P is a Sobolev (α, β)-stabilizing feedback
for K and so rα−βFK,P ∈ H∞

0 (B(U × U)). As α ≥ β, we conclude that rα−β(I − JFK,P(s)J is also
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in H∞
0 (B(U × U)). It now follows from (3.6) that K−1 is a Sobolev (α, β)-stabilizing feedback for P−1.

The converse claim can be proved by a similar argument.

As for part (ii) of statement (2), we note that the equality (3.6) combined with the hypotheses yields that
the function rα−β is bounded on C0, implying that α ≥ β.

To establish statement (3), we observe that, by the hypothesis of K being Sobolev stabilizing, there exists
holomorphic Q : C0 → B(U, Y )) such that Q = P(I + KP)−1 on Cω for some ω ≥ µ. As I − KQ =
(I + KP)−1, we conclude that −K is an admissible feedback for Q. As KQ is holomorphic on Cν

and K(s)Q(s) is compact for all s ∈ Cν , [19, Lemma 5.8] then shows that (I − KQ)−1 is meromorphic
on Cν . The claim now follows since Q(I −KQ)−1 = P on Cν .

4 A mixed passivity/small-gain condition for Sobolev input-output
stability

Here we state our main result — a mixed passivity/small-gain theorem which ensures that the feedback
connection of P and K is Sobolev stable. By Theorem 3.1, it follows that it is the difference β − α,
rather than α, β which is crucial in determining Sobolev stability. As the feedback connections to be
considered do not have any smoothing properties (frequently, they are not even L2-stable), we shall focus
on Sobolev (θ, 0)-stabilizing feedbacks with θ ≥ 0. To simplify terminology, we refer to these feedbacks as
Sobolev θ-stabilizing and shall say that the corresponding feedback system is Sobolev θ-stable.

The following subsets of the complex plane shall play a key role in our main result.

Definition 4.1. Let P,K ∈ H∗
λ(B(U)), where λ ∈ R, and let Ω ⊂ Cλ\(ΣP ∪ ΣK). For θ ≥ 0, µ, ε, ν > 0

and γ ∈ (0, 1), set Πθ(P,K; Ω, µ, ε) :=
{
s ∈ Ω : ReP(s) ≥ ε|rθ(s)|I, ∥P(s)∥ ≤ µ and ReK(s) ≥ 0

}
and

Γθ(P,K; Ω, ν, γ) :=
{
s ∈ Ω : max

{
∥K(s)P(s)∥, ∥P(s)K(s)∥

}
≤ γ and ∥P(s)∥+ ∥K(s)∥ ≤ ν|r−θ(s)|

}
.

We shall be mainly interested in the cases Ω = C0 and Ω = iR, and comment that there exist µ > 0
and ε > 0 such that Π0(P,K;C0, µ, ε) = C0 if, and only if, P is L2-stable and strongly positive real and
K is positive real. Roughly speaking, the sets Πθ(P,K;C0, µ, ε) are subsets of C0 where P and K have
desirable properties from the perspective of the passivity theorem — stability (that is, boundedness) and
a positive-realness property which is “between” positive real and strongly positive real in the case of P
and positive realness in the case of K. Similarly, on the set Γθ(P,K;C0, ν, γ), the functions P and K are
jointly well-behaved on C0 from a small-gain perspective.

The following theorem, the main result of the paper, provides sufficient conditions for the feedback connec-
tion of positive real functions to be well-posed or Sobolev stable, in terms of inclusion conditions involving
certain unions of the Πθ and Γθ sets. For the presentation of the theorem, it is convenient to define

Φ(x1, . . . , x6) := 2max

{
1 +

x1
x2
, 1 +

x3
x4
,
x21
x2
,
x23
x4
,
1

x2
,
1

x4
,

x5
1− x6

,
1

1− x6

}
, x1, . . . , x5 > 0, x6 ∈ (0, 1).

Theorem 4.2. Let µ ≤ 0, η ≥ 0, θ ≥ 0 and let P,K ∈ H∗
µ(B(U)) be such that P and K are holomorphic

on C0.

(1) Assume that there exist µP, εP, µK, εK, ν > 0 and γ ∈ (0, 1) such that

Cη ⊆ Πθ(P,K;C0, µP, εP) ∪Πθ(K,P;C0, µK, εK) ∪ Γθ(P,K;C0, ν, γ). (4.1)

The following statements hold.

(i) The transfer function I+KP has an inverse in H∗
η(B(U)); in particular, FP,K ∈ H∗

η(B(U×U))
and K is an admissible feedback for P.

(ii) If θ = 0, then FP,K ∈ H∞
η (B(U × U)).

(iii) If η = 0, then K is a Sobolev θ-stabilizing feedback for P, and, furthermore,

∥rθFP,K∥H∞
0

≤ Φ(µP, εP, µK, εK, ν, γ). (4.2)
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(2) Set Σ := ΣP ∪ ΣK, and assume that U is separable, µ < 0, I + KP has an inverse in H∗
0(B(U))

and FP,K is polynomially bounded on C0. If there exist µP, εP, µK, εK, ν > 0, γ ∈ (0, 1) and a null
set E ⊂ R such that

i(R\E) ⊂ Πθ(P,K; iR\Σ, µP, εP) ∪Πθ(K,P; iR\Σ, µK, εK) ∪ Γθ(P,K; iR\Σ, ν, γ), (4.3)

then K is a Sobolev θ-stabilizing feedback for P and (4.2) holds.

Before we come to the proof of Theorem 4.2 (given below, towards the end of this section), we provide
some commentary and draw some conclusions.

Condition (4.1) involves a “mix” of positive real and small-gain properties (specified by Πθ and Γθ sets,
respectively). If θ = η = 0, then the inclusion in (4.1) becomes an equality, and the conclusion is that the
feedback connection of P and K is L2-stable.

Definition 4.3. (i) We say that P ∈ H∗
0(B(U)) is Sobolev positive real with exponent θ ≥ 0 if there

exists ε > 0 such that
ReP(s) ≥ ε|rθ(s)|I = ε|1 + s|−θI ∀ s ∈ C0\ΣP.

(ii) P and K in H∗
0(B(U)) are said to satisfy a Sobolev small-gain condition with exponent θ ≥ 0 if there

exist ν > 0 and γ ∈ (0, 1) such that Γθ(P,K;C0, ν, γ) = C0.

Trivially, Sobolev positive realness implies positive realness, and Sobolev positive realness with exponent 0
is the same as strong positive realness.

The following immediate corollaries of Theorem 4.2 are generalizations of the passivity and small-gain
theorems, respectively.

Corollary 4.4. Let P ∈ H∞
0 (B(U)) be Sobolev positive real with exponent θ ≥ 0. Then every positive

real K ∈ H∗
0(B(U)) is a Sobolev θ-stabilizing feedback for P .

Corollary 4.5. Let P ∈ H∗
0(B(U)). If K ∈ H∗

0(B(U)) is such that P and K satisfy a Sobolev small-gain
condition with exponent θ for some θ ≥ 0, then K is a Sobolev θ-stabilizing feedback for P .

In the following, for notational convenience, we shall suppress the dependence of the sets Πθ and Γθ

on µ, ε, ν and γ when the values of these constants involved are unimportant. We remark that the
sets Πθ(P,K; Ω) and Γθ(P,K; Ω) have certain, obvious, monotonicity properties, for example,

Πθ1(P,K; Ω, µ, ε) ⊂ Πθ2(P,K; Ω, µ, ε) and Γθ1(P,K; Ω, ν, γ) ⊂ Γθ2(P,K; Ω, ν, γ) for 0 ≤ θ1 ≤ θ2 .

Consequently, if, for some θ1, θ2, θ3 ≥ 0,

Cη ⊂ Πθ1(P,K;C0, µP, εP) ∪Πθ2(K,P;C0, µK, εK) ∪ Γθ3(P,K;C0, ν, γ), (4.4)

then (4.1) holds with θ := max{θ1, θ2, θ3}. Moreover, an inspection of the proof Theorem 4.2 shows
that there is nothing to be gained (such as, for example, Sobolev θ-stability for a smaller value of θ) by
using (4.4) instead of (4.1).

Statement (2) of Theorem 4.2 replaces (4.1) by an imaginary axis condition (which is typically simpler
to check), at the expense of imposing an additional polynomial-boundedness hypothesis on the feedback
connection. The hypothesis that P,K ∈ H∗

µ(B(U)) for µ < 0 gives that P and K are defined on iR with
the exception of possible imaginary axis singularities in ΣP and ΣK, so that the right-hand side of (4.3)
is meaningful. In fact, if condition (4.1) holds with η = 0 and for some θ = θ0 ≥ 0, then the hypothesis in
statement (2) that FP,K is polynomially bounded on C0 is satisfied. Therefore, the feedback connection is
Sobolev θ1-stable if the imaginary axis condition (4.3) holds with θ = θ1, which may yield a smaller (and
hence “improved”) θ1 < θ0.

Before we come to the proof of Theorem 4.2, we provide a comparison between Theorem 4.2 and other
results available in the literature. In particular, [28, Section 3] contains several results which are of a similar
nature to Theorem 4.2 in that a frequency-dependent lower bound on the real part of a transfer function
is considered and some type of stability is concluded. However, a detailed comparison is difficult as [28]
develops a state-space theory based on the concept of a regular infinite-dimensional linear system (see,
for example, [36]). We note that the class of transfer functions considered in Theorem 4.2 is very general
and contains transfer functions which do not admit regular (or even well-posed) state-space realizations.
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Furthermore, we point out that [42, Theorem 4.2] is essentially a special case of Theorem 4.2. Indeed, the
hypotheses of [42, Theorem 4.2] ensure the existence of {ω1, . . . , ωn} ⊂ R and r > 0 such that

n⋂
j=1

{
s ∈ C0 : |s− iωj | ≥ r

}
⊂ Π0(K,P;C0) and

n⋃
j=1

{
s ∈ C0 : |s− iωj | ≤ r

}
⊂ Γ0(P,K;C0),

and thus, an application of part of statement (1) (iii) of Theorem 4.2 (with θ = 0) shows that K stabilizes P
in the sense of L2-stability. Finally, we mention the papers [11, 18], which derive mixed small gain and
passivity theorems guaranteeing L2-stability (in incremental form in the case of [11]) for certain classes of
nonlinear feedback systems.

The remainder of the section is dedicated to proving Theorem 4.2. We start with three technical results
which will facilitate the proof of Theorem 4.2. The following lemma is an immediate consequence of [28,
Lemma A.1].

Lemma 4.6. Let A,B ∈ B(U) and δA, δB > 0. The following statements hold.

(1) If ReA ≥ 0 and ReB ≥ δBI, then I +AB is invertible and

∥B(I +AB)−1∥ ≤ ∥B∥2

δB
, (4.5)

(2) If ReA ≥ δAI and ReB ≥ 0, then I +AB is invertible and

∥B(I +AB)−1∥ ≤ 1

δA
. (4.6)

From the above lemma we obtain the following corollary.

Corollary 4.7. Let S, T ∈ B(U) and let δS , δT > 0. The following statements hold.

(1) If ReT ≥ δT I, then ∥∥∥∥∥
(
I S
−T I

)−1
∥∥∥∥∥ ≤ 2max

{
1 +

∥T∥
δT

,
∥T∥2

δT
,
1

δT

}
.

whenever ReS ≥ 0.

(2) If ReS ≥ δSI, then ∥∥∥∥∥
(
I S
−T I

)−1
∥∥∥∥∥ ≤ 2max

{
1 +

∥S∥
δS

,
∥S∥2

δS
,
1

δS

}
,

whenever ReT ≥ 0.

Note that the right-hand sides of the inequalities in statements (1) and (2) are independent of S and T ,
respectively.

Proof. To prove statement (1), we note that, by Lemma 4.6, I +ST is invertible. Therefore I +TS is also
invertible, and so,(

I S
−T I

)
is invertible, and

(
I S
−T I

)−1

=

(
(I + ST )−1 −S(I + TS)−1

T (I + ST )−1 (I + TS)−1

)
. (4.7)

Using (4.5) with A = S and B = T yields that

∥T (I + ST )−1∥ ≤ ∥T∥2

δT
. (4.8)

From (4.6) with A = T and B = S we have that

∥S(I + TS)−1∥ ≤ 1

δT
. (4.9)
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As (I + ST )−1 = I − S(I + TS)−1T and (I + TS)−1 = I − TS(I + TS)−1, it follows from (4.9) that

∥(I + ST )−1∥ ≤ 1 +
∥T∥
δT

and ∥(I + TS)−1∥ ≤ 1 +
∥T∥
δT

. (4.10)

Setting

c := max

{
1 +

∥T∥
δT

,
∥T∥2

δT
,
1

δT

}
<∞ ,

we apply (4.7)–(4.10) to obtain that, for u1, u2 ∈ U ,∥∥∥∥∥
(
I S
−T I

)−1(
u1
u2

)∥∥∥∥∥
2

=
∥∥(I + ST )−1u1 − S(I + TS)−1u2

∥∥2 + ∥∥T (I + ST )−1u1 + (I + TS)−1u2
∥∥2

≤
(∥∥(I + ST )−1

∥∥∥u1∥+ ∥∥S(I + TS)−1
∥∥∥u2∥)2

+
(∥∥T (I + ST )−1

∥∥∥u1∥+ ∥∥(I + TS)−1
∥∥∥u2∥)2

≤ 4c2(∥u1∥2 + ∥u2∥2) ,

since (∥u1∥+ ∥u2∥)2 ≤ 2(∥u1∥2 + ∥u2∥2). Hence∥∥∥∥∥
(
I S
−T I

)−1
∥∥∥∥∥ = sup

u1,u2∈U
∥u1∥2+∥u2∥2=1

∥∥∥∥∥
(
I S
−T I

)−1(
u1
u2

)∥∥∥∥∥ ≤ 2c ,

as required.

The second statement follows from the identity(
I S
−T I

)−1

=

(
0 I
−I 0

)(
I T
−S I

)−1(
0 −I
I 0

)
combined with an application of statement (1) (with the roles of S and T interchanged) to the second
operator matrix on the right-hand side.

Lemma 4.8. Let S, T ∈ B(U). If max{∥ST∥, ∥TS∥} ≤ ρ < 1, then I + ST and I + TS are invertible,(
I S
−T I

)
is invertible, and

∥∥∥( I S
−T I

)−1 ∥∥∥ ≤ 2

1− ρ
max

{
1, ∥S∥, ∥T∥

}
. (4.11)

Proof. It follows from the hypotheses that I + ST and I + TS is invertible, with each inverse given in
terms of a Neumann series, and

max
{
∥(I + ST )−1∥, ∥(I + TS)−1∥

}
≤ 1/(1− ρ) .

The inequality in (4.11) now follows from the identity in (4.7).

Proof of Theorem 4.2. For notational convenience, we set

Πθ(P,K) := Πθ(P,K;C0, µP, εP), Πθ(K,P) := Πθ(K,P;C0, µK, εK), Γθ(P,K) := Γθ(P,K;C0, ν, γ).

(1) To prove part (i), let θ, η ≥ 0 be such that (4.1) holds. As ReK(s) ≥ 0 and ReP(s) ≥ εP|rθ(s)|
for s ∈ Πθ(P,K), it follows from Lemma 4.6 that I + K(s)P(s) is invertible for all s ∈ Πθ(P,K).
Similarly, I +K(s)P(s) is invertible for all s ∈ Πθ(K,P). An application of Lemma 4.8 with S = K(s)
and T = P(s) yields that I + K(s)P(s) is invertible for all s ∈ Γθ(P,K). Invoking (4.1), we conclude
that I +K(s)P(s) is invertible for all s ∈ Cη. Therefore, (I +KP)−1 ∈ H∗

η(B(U)), showing that K is an
admissible feedback for P.

To prove parts (ii) and (iii), assume that (4.1) holds with θ, η ≥ 0. Part (i) gives that K is an admissible
feedback for P and FP,K ∈ H∗

η(B(U × U)). Invoking statement (1) of Corollary 4.7 with S = K(s)
and T = P(s), it follows that

∥∥rθ(s)FP,K(s)
∥∥ ≤ 2max

{
|rθ(s)|+

µP

εP
,
µ2
P

εP
,
1

εP

}
≤ Φ(µP, εP, µK, εK, ν, γ) ∀ s ∈ Π0(P,K).

11



Similarly, applying statement (2) of Corollary 4.7 with S = P(s) and T = K(s), we obtain∥∥rθ(s)FP,K(s)
∥∥ ≤ 2max

{
|rθ(s)|+

µK

εK
,
µ2
K

εK
,
1

εK

}
≤ Φ(µP, εP, µK, εK, ν, γ) ∀ s ∈ Π0(K,P).

Furthermore, an application of Lemma 4.8 with S = K(s) and T = P(s) shows that∥∥rθ(s)FP,K(s)
∥∥ ≤ 2

1− γ
max{|rθ(s)|, ν} ≤ Φ(µP, εP, µK, εK, ν, γ) ∀ s ∈ Γ0(P,K) .

The last three estimates together with (4.1) yield that∥∥rθ(s)FP,K(s)
∥∥ ≤ Φ(µP, εP, µK, εK, ν, γ) ∀ s ∈ Cη .

Parts (ii) and (iii) now follow by considering the special cases θ = 0 and η = 0.

(2) Assume that U is separable and µ < 0. As P,K ∈ H∗
µ(B(U)) and both functions are holomorphic on

C0, it follows that C0 ∩ Σ = ∅, and there exists an open set Ω ⊂ C such that
(
C0\Σ

)
⊂ Ω ⊂ Cµ and S is

holomorphic on Ω, where S is given by (3.1). By definition, F := FP,K is an extension of S−1. As (I +
KP)−1 ∈ H∗

0(B(U)) by hypothesis, we have that S−1 ∈ H∗
0(B(U × U)), and thus, F ∈ H∗

−δ(B(U × U))
for some δ ≥ 0 (but, of course, there is no guarantee that δ > 0). Polynomial boundedness of F on C0

implies that F is holomorphic on C0, in particular, S(s) is invertible for every s ∈ C0. Furthermore, it
follows from an application of Proposition 3.2 (with Ge = F) that there exists a set B ⊂ R such that R\B
is a null set and the limit F0(y) := limx↓0 F(x+ iy) exists in the strong operator topology for every y ∈ B.
Let a > 0 and note that, by polynomial boundedness on C0, fy := supx∈(0,a) ∥F(x + iy)∥ < ∞ for every
y ∈ R. Setting B′ := {y ∈ B : iy ̸∈ Σ}, we observe that

F(x+ iy)S(iy)u = u+ F(x+ iy)
(
S(iy)u− S(x+ iy)u

)
∀u ∈ U, ∀x ∈ (0, a), ∀ y ∈ B′.

Consequently, for all u ∈ U and all y ∈ B′,

∥F(x+ iy)S(iy)u− u∥ ≤ fy∥S(iy)u− S(x+ iy)u∥ → 0 as x ↓ 0,

showing that F0(y) is a left inverse of S(iy) for every y ∈ B′. A similar argument shows that, for
each y ∈ B′, F0(y) is also a right inverse of S(iy). Therefore,

F0(y) = (S(iy))−1 =

(
I K(iy)

−P(iy) I

)−1

∀ y ∈ B′. (4.12)

Defining B′′ := B′\E, we have that if y ∈ B′′, then iy is contained in the right-hand side of the set
inclusion (4.3). Together with (4.12), this means that the estimates in the proof of parts (ii) and (iii) of
statement (1) can be used to show that

∥rθ(iy)F0(y)∥ ≤ Φ(µP, εP, µK, εK, ν, γ) ∀ y ∈ B′′.

As R\B′′ is a null set, we conclude that

ess sup
y∈R

∥rθ(iy)F0(y)∥ ≤ Φ(µP, εP, µK, εK, ν, γ) <∞ . (4.13)

Proposition 3.2 together with Theorem 3.1 yield that rθF ∈ H∞
0 (B(U×U)), showing that K is a Sobolev θ-

stabilizing feedback for P. Furthermore,

∥rθF∥H∞
0

= sup
s∈C0

∥rθ(s)F(s)∥ = ess sup
y∈R

∥rθ(iy)F0(y)∥,

and it follows from (4.13) that (4.2) holds.

Remark 4.9. (i) An inspection of the above proof shows that statement (1) of Theorem 4.2 remains valid
without the a priori assumption of holomorphicity of P and K on C0, provided that (4.1) is replaced by

Cη\Σ ⊆ Πθ(P,K;C0\Σ, µP, εP) ∪Πθ(K,P;C0\Σ, µK, εK) ∪ Γθ(P,K;C0\Σ, ν, γ), (4.14)

where Σ := ΣP ∪ΣK. However, this does not enlarge the class of transfer functions which can be handled,
because it can be proved (by invoking arguments similar to those used in [19, Proof of Proposition 3.3])
that if (4.14) holds, then Σ ∩ C0 = ∅.
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(ii) The above proof suggests that Theorem 4.2 may be viewed as a special case of a broader principle.
Roughly speaking, the principle is that if C0 can be divided into sets on which positive-real or small-gain
type conditions hold for P and K, in the sense of (4.1) with (η = 0), then some resulting stability property
of the feedback connection of P and K may be inferred. Indeed, routine modifications to Lemma 4.8 and
the proof of Theorem 4.2 yield that the conclusions of Theorem 4.2 remain true if the set Γθ(P,K; ν, γ)
in (4.1) is replaced by

Γ′
θ(P,K; Ω, ν, γ) :=

{
s ∈ Ω : ∥K(s)P(s)∥ ≤ γ, ∥K(s)∥ ≤ ν, ∥P(s)∥ ≤ ν|r−θ(s)|

}
.

We expect that other suitable modifications of the Πθ and Γθ sets are possible. For brevity, we do not give
formal statements. ♢

5 Sobolev stability for output regulation and disturbance rejec-
tion

In this section, we invoke the concept of Sobolev stability in the context of output-regulation and disturbance-
rejection problems. For which purpose, consider the following feedback system expressed in the frequency
domain

ŷ = Pû, ẑ = Kê ,

u = d− z, e = y − r ,

}
(5.1)

where y, z, e, u, r and d denote the plant output, the controller output, the tracking error, the plant input,
the reference and the disturbance, respectively, which we also refer to as signals. The hat -̂notation in
(5.1) denotes the bilateral Laplace transform, and the signals are all assumed to be functions on the real
axis R (or distributions) with support bounded to the left (where we assume that input-output operators
associated with P, K and the feedback connection of P and K are causal).

Given a plant P, the objective is to design a controller K such that the error e = y − r is in L2(R) (or
preferably better, in H1(R), for example) for a class of persistent reference and disturbance signals. This is
a fundamental control problem (sometimes also referred to as the servo problem) and is consequently well-
studied, with numerous papers on the subject including, but by no means limited to, [22, 25, 28, 38, 39].
The well known internal model principle (see, for example, [17], [24], [25] or [37, Section 7.5]) plays a
key role in the servo problem. In the internal model principle, it is assumed that the signals r and d
are generated by two signal generators (or exo-systems), see the configuration shown in Figure 5.1, and
the principle says, roughly speaking, that K is a robust solution to the servo problem if, and only if, K
is stabilizing and “contains” so-called internal models of D and R (essentially meaning that all unstable
poles of D and R are also poles of K).

P

K R

D
+

−

+

ŷ

ê

−

ẑ

û

ĝrr̂

d̂ĝd

Figure 5.1: Feedback connection of plant P and controller K with signal generators D and R.

Inspired by the frequency-domain theory of the internal model principle [24, 25, 37], a sufficient condition
for a Sobolev stabilizing controller to solve the servo problem is given in Theorem 5.1.

In following result, we shall assume that the transfer functions D ∈ H∗
µ((B(V,U)) and R ∈ H∗(B(W,Y ))

of the signal generators are polynomially bounded on some right-half plane, where V and W are complex
Hilbert spaces, the spaces in which the functions gd and gr take their values, respectively. Then, by [41,
Theorem 6.5-1 and Corollary 6.5-1a], D and R are the transfer functions of causal translation-invariant
operators D : D′

ℓ(V ) → D′
ℓ(U) and R : D′

ℓ(W ) → D′
ℓ(Y ), respectively.

Theorem 5.1. Consider the feedback system (5.1) for given P ∈ H∗
µ(B(U, Y )) and K ∈ H∗

µ(B(Y,U)),
where µ ≤ 0, and let D ∈ H∗

µ(B(V,U)) and R ∈ H∗
µ(B(W,Y )) be polynomially bounded on some right-half

plane. Assume that there exist a function q ∈ H0(C), q(s) ̸≡ 0, and ρ ∈ R such that rρqD ∈ H∞
0 (B(V,U))
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and rρqR ∈ H∞
0 (B(W,Y )). Furthermore assume that there exist an open set Ω ⊂ C0 and σ ∈ R such that

rσ/q is bounded on C0\Ω. Let κ ∈ R and θ ≥ 0. If K satisfies the two conditions:

(a) K is a Sobolev θ-stabilizing feedback for P,

(b) K has a left-inverse K# ∈ H∗(Ω,B(U, Y )) such that (rσ/q)K
# ∈ H∞(Ω,B(U, Y )),

then e ∈ Hκ−α
ℓ (R, Y ) for all d ∈ {Dg : g ∈ Hκ

ℓ (R, V )} + Hκ
ℓ (R, U) and r ∈ {Rg : g ∈ Hκ

ℓ (R,W )} +

Hκ
ℓ (R, Y ), where α := max{θ, ρ + σ + θ}. Furthermore, e ∈ H

κ−(ρ+σ+θ)
ℓ (R, Y ) whenever d ∈ {Dg : g ∈

Hκ
ℓ (R, V )} and r ∈ {Rg : g ∈ Hκ

ℓ (R,W )}.

In the case wherein U = Y and P and K are holomorphic on C0, Theorem 4.2 provides a sufficient
condition for condition (a) to hold.

Remark 5.2. (i) The above result guarantees that e ∈ L2(R, U), whenever κ ≥ α, implying tracking in
measure in the sense that limT→∞ meas

(
{t ≥ T : ∥e(t)∥ ≥ ε}

)
= 0 for every ε > 0, where meas denotes

the Lebesgue measure. Furthermore, e(t) → 0 as t→ ∞ (asymptotic tracking), whenever κ ≥ α+ 1.

(ii) Set Zq := {z ∈ C0 : lim infs→z,s∈C0
q(s) = 0}. Clearly, Zq ∩ C0 = {z ∈ C0 : q(z) = 0}. Moreover,

if q has a holomorphic extension (also denoted by q) to an open set containing C0, then Zq = {z ∈ C0 :
q(z) = 0}. The boundedness of rσ/q on C0\Ω, implies that dist(z,C0\Ω) > 0 for every z ∈ Zq. Thus,
Zq ⊂ Ω, Zq ∩ C0 ⊂ Ω and, for every z ∈ Zq, there exists εz > 0 such that {s ∈ C0 : |s| < εz} ⊂ Ω.

(iii) Let z ∈ C0 be such that lim sups→z,s∈C0

(
∥D(s)∥ + ∥R(s)∥

)
= ∞ (z is a pole of D or R if z ∈ C0).

Since rρqD ∈ H∞
0 (B(V,U)) and rρqR ∈ H∞

0 (B(W,Y )), we see that z ∈ Zq, and condition (b) implies
that lim sups→z,s∈C0

∥K(s)∥ = ∞. Furthermore, if µ < 0, then it follows that every pole of D or R in C0

is also a pole of the controller K. Consequently, condition (b) can be viewed as a version of the internal
model principle.

(iv) Assume that U = Y and there exists δ > 0 such that

|r−σ(s)q(s)|∥K(s)v∥ ≥ δ∥v∥ and |r−σ(s)q(s)|∥K∗(s)v∥ ≥ δ∥v∥ ∀ s ∈
(
C0 ∩ Ω

)
\ΣK, ∀ v ∈ U.

Then it follows from [30, Proposition 3.2.6] that K(s) is invertible for all s ∈
(
C0 ∩ Ω

)
\ΣK and the first

inequality guarantees that (rσ/q)K
−1 ∈ H∞(Ω,B(U)). Consequently, condition (b) holds in this case

with K# = K−1. ♢

Proof of Theorem 5.1. By hypothesis, K is a Sobolev θ-stabilizing feedback for P and µ ≤ 0. Hence,
ΞP,K ∩ C0 = ∅ and it follows from Remark 3.4 that

FP,K(s) = S−1(s) =

(
I K(s)

−P(s) I

)−1

∀ s ∈ C0\
(
ΣP ∪ ΣK

)
. (5.2)

Let d = Dgd + hd and r = Rgr + hr, where gd ∈ Hκ
ℓ (R, V ), gr ∈ Hκ

ℓ (R,W ), hd ∈ Hκ
ℓ (R, U) and

hr ∈ Hκ
ℓ (R, Y ). System (5.1) can be expressed as(

I K
−P I

)(
û
ê

)
=

(
d̂
−r̂

)
=

(
D 0
0 R

)(
ĝd
−ĝr

)
+

(
ĥd
−ĥr

)
.

Routine calculations invoking (3.3) and (5.2) yield that

ê =
(
0 I

)( I K
−P I

)−1((
D 0
0 R

)(
ĝd
−ĝr

)
+

(
ĥd
−ĥr

))
=
(
P(I +KP)−1D, (I +PK)−1R

)( ĝd
−ĝr

)
+ (0, I)FP,K

(
ĥd
−ĥr

)
.

The hypothesis on D and R imply that there exist HD ∈ H0(B(V,U)) and HR ∈ H0(B(W,Y )) such
that D = HD/q, R = HR/q, rρHD ∈ H∞

0 (B(V,U)) and rρHR ∈ H∞
0 (B(W,Y )). Defining F1 :=

P(I +KP)−1D and F2 := P(I +PK)−1R, we have that

F1 = (1/q)P(I +KP)−1HD, F2 = (1/q)(I +PK)−1HR on C0 ⊃ C0\Ω
F1 = (K#/q)

(
I − (I +KP)−1

)
HD and F2 = (K#/q)(I +KP)−1KHR on Ω.

}
(5.3)
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The function ê can be expressed in the form

ê =
(
F1,F2

)( ĝd
−ĝr

)
+ (0, I)FP,K

(
ĥd
−ĥr

)
. (5.4)

Set β := ρ + σ + θ, so that α = max{θ, β}. As K is Sobolev θ-stabilizing for P, rρHD ∈ H∞
0 (B(V,U)),

rρHR ∈ H∞
0 (B(W,Y )), rσK

#/q ∈ H∞(Ω,B(U, Y )) and rσ/q is bounded on C0\Ω, it follows from
(5.3) that rβ(F1,F2) ∈ H∞

0 (B(V ×W,Y )). Furthermore, rθ(0, I)FP,K ∈ H∞
0 (B(U × Y, Y )). Appealing

to Theorem 3.1, we conclude that the causal translation-invariant operators which have (F1,F2) and
(0, I)FP,K as transfer functions are Sobolev β-stable and Sobolev θ-stable, respectively, in the sense of
Subsection 3.1. Hence, e ∈ Hκ−α

ℓ (R, Y ). Finally, if hr = hd = 0, then, invoking (5.4), it follows that e is

in the image of Hκ
ℓ (R, V ×W ) under a Sobolev β-stable operator, whence e ∈ Hκ−β

ℓ (R, Y ), completing
the proof.

Next we apply Theorem 5.1 in the context of repetitive control, in which the controller

Kτ (s) :=
1

1− e−τs
I ∀ s ∈ C0, where τ > 0 (5.5)

plays a key role. Since, for x > 0 and y ∈ R,

Re
1

1− e−τ(x+iy)
=

1− e−τx cos(τy)

1 + e−2τx − 2e−τx cos(τy)
≥ 1− e−τx cos(τy)

2(1− e−τx cos(τy))
=

1

2
, (5.6)

it follows that Kτ is strongly positive real.

We remark that Kτ qualifies as a so-called repetitive controller in the sense of [22]. Repetitive controllers
have been considered across numerous papers on output regulation and we refer the reader to, for ex-
ample, [38] for more information. It was noted in [22, Proposition 2] that L2-input-output stability of the
feedback system (5.1) is impossible when P(s) → 0 as |s| → ∞ in C0 and K has infinitely many imaginary
axis poles which accumulate at ∞ (pole-zero cancelation at ∞). However, using Theorem 4.2, we show for
several examples in Section 6 that these feedback systems may well be Sobolev stable.

The lemma below establishes that, in a certain the sense, Kτ generates τ -periodic functions from compactly
supported functions in certain Sobolev spaces.

Lemma 5.3. Let f ∈ Hk
loc(R+, U) be τ -periodic, where k ∈ N0. Then there exist wf ∈ Hk

loc,ℓ(R, U) and a

compactly supported g ∈ Hk(R, U) such that Kτ ĝ = ŵf and wf = f on R+.

For the definition of the Sobolev spaces Hk(R, U), Hk
loc(R+, U) and Hk

loc,ℓ(R, U), see Subsection 2.3.

Proof of Lemma 5.3. Fix λ ∈ (0, τ) and let ψ ∈ C∞(R,R) be such that ψ(t) = 0 for all t ≤ −λ/2
and ψ(t) = 1 for all t ≥ −λ/4. Setting ϕ(t) := ψ(t)f(t+ τ) for all t ∈ [−λ, 0], we have that

ϕ(m)(−λ) = 0 and ϕ(m)(0) = f (m)(τ) = f (m)(0) ∀m ∈ {0, 1, . . . , k − 1} . (5.7)

Define

g(t) :=



0 t ≤ −τ − λ

ϕ(t+ τ) t ∈ [−τ − λ,−τ ]
f(t+ τ) t ∈ [−τ,−λ]
f(t+ τ)− ϕ(t) t ∈ [−λ, 0]
0 t ≥ 0

and wf (t) :=


0 t ≤ −τ − λ

ϕ(t+ τ) t ∈ [−τ − λ,−τ ]
f(t+ τ) t ≥ −τ .

Clearly, g is compactly supported, wf has support bounded to the left, and wf = f on R+ as f is τ -periodic.
Invoking (5.7), it is routine to also verify that g ∈ Hk(R, U), wf ∈ Hk

loc,ℓ(R, U) and that

wf (t)− wf (t− τ) = g(t) ∀ t ∈ R . (5.8)

Taking the (bilateral) Laplace transform of both sides of (5.8) shows Kτ ĝ = ŵf .
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We comment that a simpler construction is available if either k = 0 or f (j)(0) = 0 for all j ∈ {0, . . . , k− 1}
when k ≥ 1. Indeed, in this case, the function g : R → U defined by

g(t) = f(t) if t ∈ [0, τ ] and g(t) = 0 if t ̸∈ [0, τ ]

satisfies g ∈ L2(R, U) (if k = 0) and g ∈ Hk(R, U) (if k ≥ 1), is compactly supported, and Kτ ĝ = f̂ ,
showing that Lemma 5.3 holds with wf given by wf (t) = 0 for t < 0 and wf (t) = f(t) for t ≥ 0.

In the following corollary, we consider the feedback system (5.1), where we assume that U = Y and the
signals r and d are in

Pk
τ (U) :=

{
h1 + h2 : h1 ∈ Hk

loc,ℓ(R, U) such that h1 is τ -periodic on R+ and h2 ∈ Hk
ℓ (R, U)

}
(5.9)

for some k ∈ N0.

Corollary 5.4. Consider the feedback system (5.1) for P ∈ H∗
µ(B(U)) and K = KτH1 + H2 with Kτ

given by (5.5) and H1,H2 ∈ H∗
µ(B(U)), where µ ≤ 0 and τ > 0. Let open Ω ⊂ C0 and σ ∈ R be such

that rσKτ is bounded on C0\Ω. Let k ∈ N0 and σ, θ ≥ 0. If K is a Sobolev θ-stabilizing feedback for P,
H1+K−1

τ H2 is invertible in H∗(Ω,B(U)), and rσ(H1+K−1
τ H2)

−1 ∈ H∞(Ω,B(U)), then e ∈ Hk−α
ℓ (R, U)

for all d, r ∈ Pk
τ (U), where α := max{θ, σ + θ}.

As rσKτ is bounded on C0\Ω, we see that the poles pk := (i2πk)/τ of Kτ satisfy pk ∈ Ω for every k ∈ Z.
The repetitive controller model originally considered in [22] is of the form K(s) = e−τsKτ (s) +A(s) with
A ∈ H∞

0 (B(U)) (that is, in the notation of the above corollary, H1(s) = e−τsI and H2 = A): it is
straightforward to show that the condition on H1 +K−1

τ H2 = e−τ · I +K−1
τ A is satisfied with σ = 0 and

Ω = {s ∈ C0 : Re s < a} provided that a > 0 is sufficiently small and ∥A∥H∞
0
< 1/2.

Proof of Corollary 5.4. The idea is to apply Theorem 5.1 with U = V = W = Y , D = R = Kτ ,
q(s) = 1 − e−τs and ρ = 0. To this end, we note that qG = qKτ = I ∈ H∞

0 (B(U)) and that rσ/q is
bounded on C0\Ω since (rσ/q)I = rσKτ . Furthermore, K = (H1 + qH2)/q, and thus,

rσ
q
K−1 = rσ

(
H1 + qH2

)−1
= rσ

(
H1 +K−1

τ H2

)−1 ∈ H∞(Ω,B(U)),

showing that condition (b) of Theorem 5.1 holds. As K is a Sobolev θ-stabilizing feedback for P, condition
(a) of Theorem 5.1 is also satisfied. Consequently, by Theorem 5.1, it is now sufficient to show that

Pk
τ (U) ⊂ {Kτg + h : g, h ∈ Hk

ℓ (R, U)}, (5.10)

where Kτ denotes the causal translation-invariant operator with transfer function Kτ . To establish (5.10),
let f ∈ Pk

τ (U). Then f = f1 + f2 with f1 ∈ Hk
loc,ℓ(R, U) such that f1 is τ -periodic on R+ and f2 ∈

Hk
ℓ (R, U). By Lemma 5.3, there exists (compactly supported) g ∈ Hk

ℓ (R, U) such that Kτg ∈ Hk
loc,ℓ(R, U)

and (Kτg)|R+ = f1|R+ . Consequently, setting h := f1 + f2 −Kτg, we have that h ∈ Hk
ℓ (R, U) and f =

Kτg + h, showing that (5.10) holds.

Remark 5.5. In this remark on Corollary 5.4, we assume, for simplicity, that d = 0, that is, we focus on the
tracking problem. Corollary 5.4 guarantees that, for any given τ -periodic function r̃ ∈ Hk

loc,ℓ(R+, U) on

the half-line, the output y of the feedback system (5.1), driven by any reference signal r ∈ Hk
loc,ℓ(R, U) such

that r = r̃ on R+, satisfies (y−r̃)|(0,∞) ∈ Hk−α
(
(0,∞), U

)
; in particular, if k ≥ α+1, then ∥y(t)−r̃(t)∥ → 0

as t → ∞ for any such r. Furthermore, in the case wherein r̃(0) ̸= 0, α > 0 and r is defined by r(t) = 0
for t < 0 and r(t) = r̃(t) for t ≥ 0 (r ∈ P0

τ (U), but r ̸∈ P1
τ (U)), then e ∈ H−α

ℓ (R, U), and so, e may not be
square integrable. ♢

We conclude this section by discussing the relation between the results in this subsection to those in [25]
and [28]. Both of these papers consider the output-regulation problem when a polynomial stability con-
dition is imposed on the closed-loop system, referred to as P-stability. Roughly speaking, adopting an
algebraic approach inspired by the factorization approach to control system synthesis [37], the paper [25]
establishes, in frequency-domain terms, an internal model principle which guarantees that the Laplace
transform of the error is bounded on Cδ for every δ > 0 and polynomially bounded on the imaginary
axis. We note that P-stability imposes growth bound equal to zero (that is, FP,K is bounded on Cδ for
every δ > 0) which is not a requirement of Sobolev stability. For a comparison of Sobolev stability and
P-stability, we refer to [20, Proposition 5.8]. Positive realness does not play a role in [25]. The paper [28]
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invokes the state-space theory of regular infinite-dimensional linear systems to analyze the robust output-
regulation problem for passive systems, with reference and disturbance signals being contained in various
classes of trigonometric polynomials. In particular, closed-loop exponential stability is ensured under an
assumption on the plant which resembles strong positive realness [28, Theorem 5.2]. In the absence of this
property, only strong stability of the closed-loop system is possible in general, see [28, Theorem 5.11] and
the error is shown to satisfy a certain polynomial convergence rate [28, Theorem 5.4]. As already noted, the
class of transfer functions considered in the current paper is very general and contains transfer functions
which do not admit regular (or even well-posed) state-space realizations. Finally, a direct comparison
between the our results to those in [25] or [28] is difficult owing to the different approaches adopted: whilst
there is some overlap, the theories developed in [25] and [28] are not suitable to derive Theorem 5.1 and/or
Corollary 5.4.

6 Examples

We illustrate the results in Sections 4 and 5 with six examples.

In Examples 6.2 and 6.5, the following simple lemma will be used.

Lemma 6.1. Consider the transfer functions J(s) := 1/s and Tω(s) := ω/(s2 + ω2), where ω > 0, and
denote the corresponding causal translation-invariant operators by J and Tω, respectively. Let k ∈ N0.

(1) If ζ ∈ Hk(R) has compact support in (−∞, 0) and
∫ 0

−∞ ζ(t)dt = 1, then Jζ ∈ Hk
ℓ (R) and (Jζ)(t) = 1

for all t ≥ 0.

(2) If ϕ, ψ ∈ Hk(R) have compact support in (−∞, 0) and satisfy∫ 0

−∞
cos(ωt)ϕ(t)dt = 1,

∫ 0

−∞
sin(ωt)ϕ(t)dt =

∫ 0

−∞
cos(ωt)ψ(t)dt = 0,

∫ 0

−∞
sin(ωt)ψ(t)dt = −1,

(6.1)
then Tωϕ, Tωψ ∈ Hk

ℓ (R) and (Tωϕ)(t) = sin(ωt) and (Tωψ)(t) = cos(ωt) for all t ≥ 0.

Whilst the proof of the above lemma is elementary, we have, for completeness, included it in the Appendix.

Example 6.2. We consider as plant the following controlled and observed heat equation on the unit spatial
domain (0, 1)

wt = wξξ, w(0, t) = 0, wξ(1, t) = u(t), y(t) = w(1, t) + κwξ(1, t) ,

where κ ≥ 0 and u and y denote the input and output, respectively. The transfer function P is given
by P(s) = κ+ tanh(

√
s)/

√
s which belongs to H∞

0 and is positive real.

If κ > 0, then P is strongly positive real, so that Π0(P,K;C0) = C0 whenever K is positive real.
Consequently, Theorem 4.2 shows that any positive real K is a Sobolev 0-stabilizing feedback for P (in
this scenario, Theorem 4.2 reduces to the passivity theorem for L2-stability).

Let us now assume that κ = 0. Then P is positive real, but not strongly positive real. However, it is
straightforward to establish that P is Sobolev positive real with exponent 1/2. Consequently, as P is also
in H∞

0 , Corollary 4.4 ensures that every positive real K is a Sobolev (1/2)-stabilizing feedback for P. We
shall consider the positive real transfer function K given by

K(s) :=
1

s
+

s

s2 + ω2
1

+
s

s2 + ω2
2

, where ω1, ω2 > 0, ω1 ̸= ω2. (6.2)

An application of Theorem 5.1 with U = V = Y = C, W = C2, D = J, R = (Tω1
,Tω2

), ρ = σ = 0,
θ = 1/2, q(s) = s(s2 + ω2

1)(s
2 + ω2

2)/(s+ 1)4 and

Ω =
⋃

ω∈{0,±ω1,±ω2}

{s ∈ C0 : |s− iω| < a}, where a > 0 is sufficiently small,

shows that the error e of the feedback system (5.1) satisfies

e ∈ H
κ−1/2
ℓ (R) ∀ d ∈ {Jg : g ∈ Hκ

ℓ (R)}, ∀ r ∈ {Tω1g1 + Tω2g2 : g1, g2 ∈ Hκ
ℓ (R)}. (6.3)
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Finally, let ϕ0, ϕ1, ϕ2, ψ1, ψ2 ∈ H2(R) be compactly supported in (−∞, 0) and such that
∫ 0

−∞ ϕ0(t)dt = 1
and (6.1) holds for ω = ωj , ϕ = ϕj and ψ = ψj for j = 1, 2. Let a0, a1, a2, b1, b2 ∈ R and consider
d := a0Jϕ0 and r = Tω1

(a1ϕ1 + b1ψ1) + Tω2
(a2ϕ2 + b2ψ2). Appealing to Lemma 6.1, we see that d(t) = a0

and r(t) = a1 sin(ω1t) + b1 cos(ω1t) + a2 sin(ω2t) + b2 cos(ω2t) for all t ≥ 0. It follows from (6.3) that

e ∈ H
3/2
ℓ (R). In particular, e ∈ H1

ℓ (R), and thus,

e(t) = y(t)− r(t) = y(t)−
(
a1 sin(ω1t) + b1 cos(ω1t) + a2 sin(ω2t) + b2 cos(ω2t)

)
→ 0 as t→ ∞

in the presence of constant disturbances. By increasing the regularity of the input functions of the signal

generators, the error e becomes more regular. If, for example, ϕ0, ϕ1, ϕ2, ψ1, ψ2 ∈ H3(R), then e ∈ H
5/2
ℓ (R),

and we have that e(t) → 0 and ė(t) → 0 as t→ ∞. ♢

Example 6.3. To illustrate Corollary 5.4, consider again P(s) = κ + tanh(
√
s)/

√
s, κ ≥ 0, the transfer

function of the heat equation from Example 6.2. As was noted in Example 6.2, P ∈ H∞
0 and P is Sobolev

positive real with exponent 1/2 (strongly positive real if κ > 0). Let Kτ , τ > 0, be the repetitive controller
given by (5.5) and recall that Kτ is (strongly) positive real.

If κ > 0, it follows from Corollary 4.4 that Kτ is a Sobolev 0-stabilizing (equivalently, L2-stabilizing)
feedback for P, and thus, invoking Corollary 5.4 (with U = C, K = Kτ and σ = 0), we conclude that
the feedback system (5.1) with K = Kτ satisfies e ∈ Hk

ℓ (R) whenever d, r ∈ Pk
τ (C), k ∈ N0, where the

space Pk
τ (C) is defined in (5.9).

Let us assume now that κ = 0. Applying Corollary 4.4 once more, we obtain that Kτ is a Sobolev (1/2)-
stabilizing feedback for P, and Corollary 5.4 (with U = C, K = Kτ and σ = 0) guarantees that e ∈
H

k−1/2
ℓ (R) whenever d, r ∈ Pk

τ (C), k ∈ N0. For a numerical example, we consider the case where, in
Corollary 5.4, U = C, K = Kτ , σ = 0, d(t) ≡ 0 and r is given by

r(t) =

∞∑
j=0

r0(t− jτ), where r0(t) :=


at t ∈ [0, τ/2]

a(τ − t) t ∈ (τ/2, τ ]

0 t ∈ R\[0, τ ] ,
(6.4)

and a > 0 is an amplitude parameter. We see that r(t) = 0 for all t ≤ 0, and, on R+, the function r is a
τ -periodic non-negative triangular wave obtained by periodic extension of r0, see Figure 6.1a. Obviously,

r ∈ P1
τ (C) (but r ̸∈ Pk

τ (C) for k ≥ 2), whence e ∈ H
1/2
ℓ (R). A routine calculation shows that

r̂0(s) =

∫ τ

0

e−str0(t)dt =
a

s2
(1− e−τs/2)2 ∀ s ∈ C,

where we note that r̂0 has a removable singularity at s = 0. Consequently,

r̂(s) =

∫ ∞

0

e−str(t)dt =

∞∑
j=0

e−jτsr̂0(s) =
r̂0(s)

1− e−τs
= Kτ (s)r̂0(s) ∀ s ∈ C0.

The tracking error e = y − r satisfies

ê(s) = ŷ(s)− r̂(s) = − Kτ (s)r̂0(s)

1 +P(s)Kτ (s)
= − a(1− e−τs/2)2

s2
[
1− e−τs + tanh(

√
s)/

√
s
] ∀ s ∈ C0.

Computing the inverse Laplace transform of ê above analytically seems intractable. We numerically com-
pute e by using a standard result from the L2-theory of the Fourier transform according to which

1

2π

∫ ω

−ω

eiy · ê(iy) dy =
1

2π

∫ ω

−ω

eiy · (Fe)(y) dy → e in L2(R) as ω → ∞, (6.5)

where (Fe)(y) :=
∫∞
−∞ e−iyte(t) dt is the Fourier transform of e. For τ = 2 and a = 1, Figure 6.1b shows a

plot of the error e(t) against t where convergence of the error to zero over time is observed. The integral
in (6.5) was computed in Matlab using the numerical integration command quadgk. The optional error
bound output of quadgk returned values of orders between 10−8 and 10−12, varying over t ≥ 0. ♢

The next example involves an operator-valued transfer function.
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Figure 6.1: Graphical illustration and numerical computation for Example 6.3 with parameter values a = 1
and τ = 2. (a) Graph of r(t) given by (6.4) against t. (b) Graph of error e(t) against t.

Example 6.4. Consider the following heat equation on the square (0, 1)× (0, 1):

wt = wξ1ξ1 + wξ2ξ2 , w(0, ξ2, t) = w(1, ξ2, t) = wξ2(ξ1, 0, t) = 0,

wξ2(ξ1, 1, t) = u(ξ1, t), y(ξ1, t) = w(ξ1, 1, t).

Choosing U := L2(0, 1), we have that t 7→ u( · , t) and t 7→ y( · , t) are U -valued functions. It is shown in
[19, Example 7.14] that the transfer function P of the above system, given by

P(s)v =

∞∑
k=1

√
2γk(v) sin(kπ ·)√

s+ k2π2 tanh(
√
s+ k2π2)

∀ v ∈ U, where γk(v) :=
√
2

∫ 1

0

v(ξ) sin(kπξ)dξ

is positive real. Furthermore, P ∈ H∞
0 (B(U)) and lim|s|→∞, s∈C0

∥P(s)∥ = 0. If K ∈ H∞
0 (B(U)) has the

property that for every bounded set B ⊂ C0, there exists ε > 0 such that Re K(s) ≥ εI for all s ∈ B (for
example, if K(s) = K̃(s) + 1/(s + 1), where K̃ ∈ H∞

0 (B(U)) is positive real), then, for given γ ∈ (0, 1),
there exist ε > 0 and r > 0 such that

{s ∈ C0 : |s| < r} ⊂ Π0(K,P;C0, µ, ε) and {s ∈ C0 : |s| ≥ r} ⊂ Γ0(P,K;C0, ν, γ),

where µ := ∥K∥H∞ and ν := ∥P∥H∞ + ∥K∥H∞ . It follows from Theorem 4.2 that K is a L2-stabilizing
feedback for P.

In the following example, the plant is a fractional derivative, and hence, not well-posed (in the sense of
[36]).

Example 6.5. We consider the feedback system (5.1) with P and K given by

P(s) = sδ and K(s) =
s

s2 + ω2
, where 0 < δ < 1 and ω > 0.

We claim that K is a Sobolev δ-stabilizing feedback for P. To this end, set

Aη := {s ∈ C0 : |s| < η} ∪ {s ∈ C0 : |s| > 1/η} where η ∈ (0, 1).

It is clear that Aη ⊂ Γδ(P,K;C0, 2, 1/2) for sufficiently small η ∈ (0, 1). Moreover,

ReP(s) ≥ ηδ cos(πδ/2) =: ε > 0, ∥P(s)∥ ≤ 1/ηδ and ReK(s) ≥ 0 ∀ s ∈ C0\Aη,

showing that C0\Aη ⊂ Π0(P,K;C0, 1/η
δ, ε). Consequently,

C0 ⊂ Πδ(P,K;C0, 1/η
δ, ε) ∪ Γδ(P,K;C0, 2, 1/2)

and Sobolev δ-stability follows from Theorem 4.2. It is easy to see that this stability result is optimal in
the sense that K is not Sobolev θ-stabilizing for P for any θ < δ.
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An application of Theorem 5.1 with U = V = W = Y = C, D = R = Tω, ρ = σ = 0, θ = δ,
q(s) = (s2 + ω2)/(s+ 1)2 and

Ω = {s ∈ C0 : |s− iω| < a} ∪ {s ∈ C0 : |s+ iω| < a} , where a > 0 is sufficiently small

shows that, for all d, r ∈ {Tωg : g ∈ Hκ
ℓ (R)} + Hκ

ℓ (R), the error e of the feedback system (5.1) satisfies
e ∈ Hκ−δ

ℓ (R). Now let d, r ∈ H2
loc,ℓ(R) be such that

d(t) = ad sin(ωt) + bd cos(ωt) and r(t) = ar sin(ωt) + br cos(ωt) ∀ t ≥ 0

for given constants ad, bd, ar, br ∈ R. It follows from Lemma 6.1 that there exist gd, gr ∈ H2
ℓ (R) with

support in (−∞, 0) such that the functions d−Tωgd and r−Tωgr are inH2
ℓ (R). Consequently, e ∈ H2−δ

ℓ (R).
In particular, as 2− δ > 1, it follows that

y(t)−
(
ar sin(ωt) + br cos(ωt)

)
= e(t) → 0 as t→ ∞

in the presence of the persistent oscillating disturbance d. ♢

In our final two examples, we study stability problems involving a controlled and observed wave equation.

Example 6.6. Consider the following wave equation on the unit spatial domain (0, 1)

wtt = wξξ, w(0, t) = 0, wt(1, t) = u(t), y(t) = wξ(1, t). (6.6)

The transfer function Q is given by

Q(s) =
1

tanh(s)
, (6.7)

and we note that Q is positive real. Let P(s) := κ + tanh(
√
s)/

√
s, κ ≥ 0, that is, P(s) is the transfer

function of the heat equation of Example 6.2. As pointed out in Example 6.2, the function P is Sobolev
positive real with exponent 1/2 and in H∞

0 , and thus, an application of Corollary 4.4 shows that Q is
a Sobolev (1/2)-stabilizing feedback for P when κ = 0. Furthermore, if κ > 0, then Q is a Sobolev 0-
stabilizing feedback. ♢

Next we consider repetitive control of the wave equation from Example 6.6.

Example 6.7. We consider again the wave equation (6.6) and its positive real transfer function Q given
by (6.7). For τ > 0, consider the repetitive controller Kτ given by (5.5). The objective is to investigate
the stability properties of the feedback connection of Q and Kτ . As we shall see, this will crucially depend
on the value of τ . It is more convenient to apply our results to 1/Q and 1/Kτ , and invoke part (i) of
statement (2) of Lemma 3.6 to infer stability properties of the original feedback connection. Accordingly,
we define

G(s) :=
1

Q(s)
= tanh(s) =

sinh(s)

cosh(s)
, Hτ (s) :=

1

Kτ (s)
= 1− e−τs.

The poles pk of G and the zeros zk of Hτ are given by

pk := i
π

2

(
1 + 2k) and zk = zk(τ) := i

2kπ

τ
∀ k ∈ Z

and we set P := {pk : k ∈ Z} and Zτ := {zk(τ) : k ∈ Z}. To outline what follows, the feedback
connection of G and Hτ exhibits a range of stability properties (or lack thereof), depending crucially
on whether dist (Zτ , P ) = 0 or dist (Zτ , P ) > 0, and so ultimately on the value of τ . More precisely, the
following three cases are possible: Zτ∩P ̸= ∅, dist (Zτ , P ) > 0, or, finally, dist (Zτ , P ) = 0 whilst Zτ∩P = ∅.
Case 1: Zτ ∩ P ̸= ∅.
There exist k, l ∈ Z such that pk = zl(τ), trivially implying that τ is rational. As G and Hτ have a pole-
zero cancellation at pk, it follows that G/(1 +HτG) has a pole at pk. This in turn shows that there does
not exist θ ≥ 0 such that (1 + s)−θFG,Hτ

is bounded on C0. We conclude that Hτ is not a θ-stabilizing
feedback for G no matter what the value of θ is.

Case 2: dist (Zτ , P ) > 0.
In this case, there exists ρ > 0 such that the disc of radius ρ centred at zk(τ) intersected with C0 is a subset
of Γ0(G,Hτ ;C0) for every k ∈ Z. The complement of the union of these semidiscs with respect to C0 is
included in Π0(Hτ ,G;C0). Hence, C0 = Π0(Hτ ,G;C0)∪Γ0(G,Hτ ;C0), and it follows from Theorem 4.2
that Hτ is a Sobolev 0-stabilizing feedback for G, that is, the feedback system is L2-stable.
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Case 3: Zτ ∩ P = ∅ and dist (Zτ , P ) = 0.
The above conditions can be expressed in the following equivalent form

dist (zk(τ), P ) > 0 ∀ k ∈ Z and lim inf
|k|→∞

dist (zk(τ), P ) = 0. (6.8)

It is straightforward to show that, in this case, τ must be irrational. For given θ ≥ 0, there are two possible
scenarios:

lim inf
|k|→∞

|k|θdist (zk(τ), P ) > 0 (S1) and lim inf
|k|→∞

|k|θdist (zk(τ), P ) = 0 (S2) .

It is shown in the Appendix that if (S1) holds, then Hτ is a Sobolev (2θ)-stabilizing feedback for G, and
if (S2) is satisfied, then Hτ is not a Sobolev θ-stabilizing feedback.

Discussion. We provide some comments and observations relating to the above three cases.

• As already mentioned, Case 3 requires τ to be irrational. We claim that, conversely, if τ is irrational,
then (6.8) holds. To see this, assume that τ is irrational. Then, trivially, dist (zk(τ), P ) > 0 for all k ∈ Z.
Furthermore, by [35], there exist infinitely many k ∈ Z and l ∈ N0 such that∣∣∣∣τ2 − 2k

1 + 2l

∣∣∣∣ < 1

(1 + 2l)2
.

Together with

|zk(τ)− pl| =
π

τ
|1 + 2l|

∣∣∣∣τ2 − 2k

1 + 2l

∣∣∣∣ ∀ k, l ∈ Z, (6.9)

this shows that lim inf |k|→∞ dist (zk(τ), P ) = 0. Consequently, we have the following equivalences

τ ∈ Q ⇔
(
Zτ ∩ P ̸= ∅ ∨ dist (Zτ , P ) > 0

)
and τ ∈ R\Q ⇔

(
Zτ ∩ P = ∅ ∧ dist (Zτ , P ) = 0

)
.

• The conditions Zτ ∩ P ̸= ∅ and dist (Zτ , P ) > 0 are equivalent to

τ ∈ I :=

{
4k

1 + 2l
: k, l ∈ N

}
⊂ Q ∩ (0,∞) and τ ∈ Ic :=

(
Q ∩ (0,∞)

)
\I,

respectively. As I and Ic are dense in (0,∞), we see that, in every neighbourhood of a given τ > 0, there
exist τ1 ∈ I and τ2 ∈ Ic such that Hτ1 is not Sobolev θ-stabilizing for any θ ≥ 0 whilst Hτ2 is a Sobolev 0-
stabilizing feedback for G (that is, the closed-loop system is L2-stable), and hence Sobolev θ-stabilizing
for every θ ≥ 0. We conclude that the stability properties of the feedback connection of G and Hτ are
extremely sensitive to variations in τ .

• To connect the scenarios (S1) and (S2) in Case 3 more directly to τ , we recall that the irrationality
exponent µ(ω) of a real number ω (also known as the irrationality measure) is the supremum of all ν > 0
such that the inequality

0 <

∣∣∣∣ω − m

q

∣∣∣∣ < 1

qν

has infinitely many solutions in integers m ∈ Z and q ∈ N, see, for example, [8, Appendix E]. Equivalently,
µ(ω) is the infimum of all ν > 0 for which there exists qν ∈ N such that∣∣∣∣ω − m

q

∣∣∣∣ ≥ 1

qν

for all integers m and q ≥ qν . It is well-known that µ(ω) = 1 for rational ω, µ(ω) ≥ 2 for irrational ω
and µ(ω) = 2 for almost every ω ∈ R (in the sense of Lebesgue measure), see [8, Theorems E.1 and
E.2]. Furthermore, Roth’s theorem, a deep result from Diophantine approximation theory, guarantees
that µ(ω) = 2 for every irrational algebraic number ω (see [8, Theorem E.7] for a statement of Roth’s
theorem and [34, Chapter V] for a detailed treatment). There exist ω ∈ R, the so-called Liouville numbers,
such that µ(ω) = ∞. The even/odd irrationality exponent µeo(ω) of a real number ω is defined in the
same way, but restricting m and q to be even and odd, respectively. Clearly, µeo(ω) ≤ µ(ω) for all ω ∈ R.
If µ(ω) = 2, then µeo(ω) = 2, as follows from [35]. In particular, µeo(ω) = 2 for almost every ω ∈ R.
We claim that (

1 + θ > µeo(τ/2)
)
⇒ (S1) and

(
1 + θ < µeo(τ/2)

)
⇒ (S2). (6.10)
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To show this, choose, for each k ∈ Z, a number l(k) ∈ Z such that

|zk(τ)− pl(k)| = dist (zk(τ), P ) > 0.

There may be two choices for l(k), but it is irrelevant which one we make. It is clear that

|zk(τ)− pl(k)| ≤ π/2 ∀ k ∈ Z.

Combining this with (6.9), we conclude that

0 < inf
k∈Z, k ̸=0

|k|
|1 + 2l(k)|

≤ sup
k∈Z, k ̸=0

|k|
|1 + 2l(k)|

<∞ .

Consequently, invoking (6.9) once more, there exists a constant c > 0 such that

|k|θ|zk(τ)− pl(k)| ≥ c|1 + 2l(k)|1+θ

∣∣∣∣τ2 − 2k

1 + 2l(k)

∣∣∣∣ ∀ k ∈ Z, k ̸= 0. (6.11)

To establish the first implication in (6.10), assume that 1+θ > µeo(τ/2). Then, for all sufficiently large |k|,∣∣∣∣τ2 − 2k

1 + 2l(k)

∣∣∣∣ ≥ 1

(1 + 2l(k))1+θ
.

It follows from (6.11) that
lim inf
|k|→∞

|k|θ |zk(τ)− pl(k)| > 0,

showing that (S1) holds.

To prove the second implication in (6.10), assume that 1 + θ < µeo(τ/2). Letting ν be such that 1 + θ <
ν < µeo(τ/2), there exist kj , lj ∈ N, j ∈ N, such that lj → ∞ and∣∣∣∣τ2 − 2kj

1 + 2lj

∣∣∣∣ ≤ 1

|1 + 2lj |ν
∀ j ∈ N. (6.12)

It follows that there exists c > 0 such that |kj | ≤ c|1 + 2lj | for all j ∈ N. Hence, by (6.9) and (6.12),

|kj |θ |zkj
(τ)− pl(kj)| ≤ |kj |θ |zkj

(τ)− plj | =
π

τ

|kj |θ

|1 + 2lj |ν−1
≤ cθπ

τ
|1 + 2lj |1+θ−ν → 0 as j → ∞,

showing that (S2) holds.

• We close our discussion with the consideration of two specific irrational values for τ , namely (i) τ =
√
2

(or, more generally, τ = arbitrary irrational algebraic number) and (ii) τ = 4
∑∞

n=1 3
−n!.

(i) When τ is an irrational algebraic number, then so is τ/2, and, by the above commentary, µ(τ/2) = 2 =
µeo(τ/2). Consequently, Hτ is a Sobolev θ-stabilizing feedback for G whenever θ > 2.

(ii) Let τ = 4
∑∞

n=1 3
−n!. Defining even and odd numbers mj := 2

∑j
n=1 3

j!−n! and qj := 3j!, respectively,
we have that ∣∣∣∣τ2 − mj

qj

∣∣∣∣ = 2

∞∑
n=j+1

1

3n!
≤ 2

3(j+1)!

∞∑
n=0

1

3n
=

3

qj+1
j

∀ j ∈ N,

implying that µeo(τ/2) = ∞. We conclude that there does not exist any θ ≥ 0 such that Hτ is a
Sobolev θ-stabilizing feedback for G.

Summary. The stability properties of the feedback connection of G and Hτ are extremely sensitive to
variations in τ , the sensitivity being caused by both the plant and the controller having infinitely many
poles/zeros on the imaginary axis (compare this to the feedback system considered in Example 6.3 which
is Sobolev stable for all τ > 0). If dist (Zτ , P ) > 0, then the feedback Hτ is Sobolev 0-stabilizing,
and if dist (Zτ , P ) = 0 without G and Hτ having any pole-zero cancellations, then Hτ is Sobolev θ-
stabilizing provided that θ > 2(µeo(τ/2) − 1). In particular, as mentioned above, µeo(τ/2) = 2 for
almost every τ ∈ (0,∞), and thus, the feedback Hτ is Sobolev θ-stabilizing for G for almost every τ ∈
(0,∞), whenever θ > 2. Whilst the example is purely mathematical, without much relevance in a control
engineering context, it demonstrates that Theorem 4.2 can be successfully applied in a situation which
does not lack subtlety. ♢
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7 Conclusions

The concept of Sobolev stabilizing feedback compensators has been introduced and studied, based on
the Sobolev input-output stability concept from [20]. A mixed passivity/small-gain condition has been
presented, and shown to be sufficient for the feedback connection of two time-invariant linear (possibly
infinite-dimensional) systems to be Sobolev input-output stable. The result contains the well-known passiv-
ity and small-gain theorems for L2-stability as special cases. We have considered scenarios in which it is
impossible to achieve L2-stability (for example, if there is a “pole-zero cancelation” at ∞ due to an infinite
number of poles in the controller and vanishing gain of the plant at high frequencies), but the mixed
passivity/small-gain theorem may be applied to establish Sobolev stability. It has been demonstrated how
Sobolev stabilizing feedback compensators can be used in the context of a general version of the servo
problem. We have shown that if a controller K is Sobolev θ-stabilizing controller, then the tracking error
is in Hβ

ℓ (R, U), provided that K satisfies a condition which is reminiscent of the internal model principle,
where β depends on θ, the regularity of the reference and disturbance signals r and d, and properties of
the stable parts of the signal generators. In particular, smaller θ and higher regularity of r and d, gives
a larger β. The servo result has been applied to a repetitive control problem which features a controller
with infinitely many poles on the imaginary axis.
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A Appendix

In this Appendix we give a proof of Lemma 6.1 and provide details for Example 6.7.

A.1 Proof of Lemma 6.1

The proof of statement (1) is trivial. To prove statement (2), we note that the existence of ϕ, ψ ∈ Hk(R,C)
having compact support in (−∞, 0) and satisfying (6.1) follows from an inspection of the graphs of t 7→
sin(ωt) and t 7→ cos(ωt) (a formal proof is a routine exercise which we leave to the interested reader). For
g ∈ Hk

ℓ (R,C), we have that

(Tωg)(t) =

∫ t

−∞
sin
(
ω(t− τ)

)
g(τ)dτ = sin(ωt)

∫ t

−∞
cos(ωτ)g(τ)dτ − cos(ωt)

∫ t

−∞
sin(ωτ)g(τ)dτ ∀ t ∈ R.

Let ϕ, ψ ∈ Hk(R,C) have compact support in (−∞, 0) and such that (6.1) is satisfied. The claim now
follows by invoking the above identity with g = ϕ and g = ψ. □

A.2 Details for Example 6.7

Here we prove the following claim made in Case 3.

Claim. Assume that Zτ ∩ P = ∅ and dist (Zτ , P ) = 0.

(a) If (S1) holds, then Hτ is a Sobolev (2θ)-stabilizing feedback for G.

(b) If (S2) is satisfied, then Hτ is not a Sobolev θ-stabilizing feedback.

Proof. For ease of notation, we write zk := zk(τ). For k ∈ Z, let l(k) ∈ Z be such that |zk − pl(k)| =
dist (zk, P ). Defining

K := {k ∈ Z : |zk − pl(k)| ≤ π/4} ⊂ Z and Kc := Z\K,

it follows from (6.8) that K is infinite.

(a) Assume that (S1) holds. Then there exists η > 0 such that

|k|θdist (zk, P ) ≥ η ∀ k ∈ Z, k ̸= 0.
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The set
B :=

⋃
k∈Kc

(
zk + {s ∈ C0 : | Im s| ≤ π/8}

)
has the property that dist (B,P ) ≥ π/8 > 0 and the function G is bounded on B. Consequently, there
exists ρ ∈ (0, π/8) such that

|Hτ (s)G(s)| ≤ 1/2 ∀ s ∈
⋃

k∈Kc

(
zk + {s ∈ C0 : | Im s|, Re s ≤ ρ}

)
. (A.1)

Set

κ := min

{
ρ,
η

2
,

1

2τ
√
2(1 + 4/η2)

}
<
π

8
, (A.2)

and define, for all k ∈ Z, rectangles Rk in C0 by

Rk := zk +

{
{s ∈ C0 : | Im s|, Re s ≤ κ(1 + |k|)−θ}, k ∈ K

{s ∈ C0 : | Im s|, Re s ≤ κ}, k ∈ Kc.

Setting R :=
⋃

k∈ZRk, we claim that

λ := sup
s∈R

|G(s)|
|1 + s|θ

<∞ (A.3)

and
|Hτ (s)G(s)| ≤ 1/2 ∀ s ∈ R, (A.4)

which, when combined, yield that

R ⊆ Γθ(G,Hτ ;C0, ν, γ) ∀ k ∈ Z, (A.5)

where ν := ∥Hτ∥H∞ + λ = 2 + λ and γ := 1/2. We additionally claim that

inf
s∈C0\R

|1 + s|2θ ReHτ (s) > 0, (A.6)

so that there exists ε > 0 such that

C0\R ⊆ Π2θ(Hτ ,G;C0, 2, ε). (A.7)

The conjunction of (A.5) and (A.7) entails condition (4.1) with δ = 0 and θ there replaced by 2θ. An
application of part (iii) of statement (1) of Theorem 4.2 yields that H is a Sobolev (2θ)-stabilizing feedback
for G.

It remains to prove (A.3), (A.4) and (A.6). To this end, it is convenient to define the horizontal strip

Hk := zk + {s ∈ C0 : | Im s| ≤ (1 + 1/τ)π/2} ∀ k ∈ Z.

It is clear that there exists c > 0 such that

1 + |k| ≤ c|1 + s| ∀ s ∈ Hk, ∀ k ∈ Z. (A.8)

As Rk ⊂ Hk, the above bound applies to all s ∈ Rk for every k ∈ Z.
Proof of (A.3). As Rk ⊂ B for all k ∈ Kc, we have that

sup
k∈Kc

(
sup
s∈Rk

|G(s)|
)
<∞ .

Thus, it suffices to show that

sup
k∈K

(
sup
s∈Rk

|G(s)|
|1 + s|θ

)
<∞ . (A.9)

Therefore, let k ∈ K. Invoking the addition formula for the hyperbolic tangent we obtain for ω ∈ R
and x ≥ 0,

|G(pk + iω + x)|2 = | tanh(pk + iω + x)|2 =

∣∣∣∣ tanh(x) + i tan(Im pk + ω)

1 + i tanh(x) tan(Im pk + ω)

∣∣∣∣2 .
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Bounding the denominator from below by 1 gives

|G(pk + iω + x)|2 ≤ tanh2(x) + tan2(Im pk + ω).

Using that | tanh(x)| ≤ 1 and tan2(π/2 + ω) ≤ 1/ω2 for ω ∈ (−π/2, π/2) \{0} (and periodicity) gives

|G(pk + iω + x)|2 ≤ 1 + 1/ω2, 0 < |ω| < π/2 . (A.10)

Consider
ωy := Im zk − Im pl(k) + y, |y| ≤ κ(1 + |k|)−θ,

and note that

|ωy| ≥ |zk − pl(k)| − |y| ≥ η − κ

(1 + |k|)θ
≥ η

2(1 + |k|)θ
, |y| ≤ κ

(1 + |k|)θ
.

Furthermore, as k ∈ K,

|ωy| ≤ |zk − pl(k)|+ |y| ≤ π

4
+ κ ≤ 3

π/8
, |y| ≤ κ

(1 + |k|)θ
.

Therefore, invoking (A.10), we obtain

|G(zk + iy + x)|2 = |G(pl(k) + iωy + x)|2 ≤ 1 +
4(1 + |k|)2θ

η2
, |y| ≤ κ

(1 + |k|)θ
,

and hence,

|G(s)|2 ≤ 1 +
4(1 + |k|)2θ

η2
∀ s ∈ Rk, ∀ k ∈ K. (A.11)

Invoking (A.8) yields

|G(s)|2 ≤ 1 +
4c2θ

η2
|1 + s|2θ ∀ s ∈ Rk, ∀ k ∈ K,

showing that (A.9) holds.

Proof of (A.4). By (A.1), |Hτ (s)G(s)| ≤ 1/2 for all s ∈ Rk whenever k ∈ Kc. Therefore, it suffices to
show that

|Hτ (s)G(s)| ≤ 1/2 ∀ s ∈ Rk, ∀ k ∈ K. (A.12)

For x ≥ 0 and y ∈ R we have that

|Hτ (zk + iy + x)|2 ≥
(
1− e−τx

)2
+ 2e−τx

(
1− cos(τy)).

Using that 1− e−ξ ≤ ξ for ξ ≥ 0 and 1− cos(ξ) ≤ ξ2/2 for ξ ∈ R, we obtain

|Hτ (zk + iy + x)|2 ≤ τ2(x2 + y2) ∀x ≥ 0, ∀ y ∈ R,

and thus

|Hτ (s)|2 ≤ 2τ2κ2

(1 + |k|)2θ
∀ s ∈ Rk, ∀ k ∈ K. (A.13)

It now follows from (A.2), (A.11) and (A.13) that (A.12) holds.

Proof of (A.6). Let s ∈ C0\R. There exists k ∈ Z such that s = zk(τ) + iy + x, where x = Re s
and y ∈ R is such that |y| ≤ π/τ . We note that

ReHτ (zk(τ) + iy + x) = 1− e−τx cos(τy) . (A.14)

Then either (1) |y| ≥ π/(2τ) or (2) |y| ≤ π/(2τ).

(1) If |y| ≥ π/(2τ), then, by (A.14),

ReHτ (s) = ReHτ (zk(τ) + iy + x) ≥ 1.

(2) If |y| ≤ π/(2τ), then we distinguish the subcases (i) x > κ(1 + |k|)−θ and (ii) x ≤ κ(1 + |k|)−θ.
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(i) If x > κ(1 + |k|)−θ, then it follows from (A.14) that

ReHτ (s) = ReHτ (zk(τ) + iy + x) ≥ 1− e−τκ(1+|k|)−θ

. (A.15)

For all 0 ≤ ξ ≤ ξ0, ξ0 > 0, we have that 1− e−ξ ≥ e−ξ0ξ as follows from an application of the mean-value
theorem. Using this estimate on the right-hand side of (A.15), we obtain that

ReHτ (s) ≥ τκe−τκ(1 + |k|)−θ ≥ τκc−θe−τκ|1 + s|−θ,

where we have used (A.8).

(ii) If x ≤ κ(1 + |k|)−θ, then, since s ̸∈ Rk, it follows that |y| > κ(1 + |k|)−θ. As cos(ξ) ≤ 1 − (2/π2)/ξ2

for ξ ∈ [−π, π], it follows from (A.14) that

ReHτ (s) = ReHτ (zk(τ) + iy + x) ≥ 2τ2

π2
y2 ≥ 2τ2κ2

π2
(1 + |k|)−2θ ≥ 2τ2κ2

c2θπ2
|1 + s|−2θ,

where, once again, we have used (A.8).

The above analysis shows that infs∈C0\R |1 + s|2θ ReHτ (s) > 0, establishing (A.6).

(b) Assume that (S2) is satisfied. Then there exist kj , lj ∈ Z, j ∈ N, such that that |kj | → ∞ and |lj | → ∞
as j → ∞ and

|kj |θ|zkj − plj | → 0 as j → ∞.

Since tan2(π/2 + ξ) ≥ 1/(4ξ2) for all ξ ∈ (−1, 1), ξ ̸= 0, and G(iy) = tanh(iy) = i tan(y) for all y ∈ R, it
follows that

|G(zkj |2 = tan2(Im zkj ) = tan2(π/2 + Im zkj − Im plj ) ≥
1

4|zkj
− plj |2

for all sufficiently large j.

Consequently,

|zkj
|−θ

∣∣∣∣ G(zkj )

1 +Hτ (zkj
)G(zkj

)

∣∣∣∣ = |zkj
|−θ|G(zkj

| ≥ τθ

21+θπθ|kj |θ|zkj
− plj |

→ ∞ as j → ∞,

implying that Hτ is not a Sobolev θ-stabilizing feedback for G.
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[3] H. Amann. Linear and Quasilinear Parabolic Problems Vol. II: Function Spaces, Birkhäuser, Basel, 2019.
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