On linear quadratic optimal control and algebraic Riccati equations
for infinite-dimensional differential-algebraic equations

Mark R. Opmeer and Olof J. Staffans

To appear in DAFE Panel

Abstract

We consider linear quadratic optimal control for a very general class of infinite-dimensional
differential-algebraic equations (namely, the class of future-resolvable input/state/output nodes)
and obtain an algebraic Riccati equation.

1 Introduction

There has been significant recent interest in infinite-dimensional differential algebraic equations
(DAEs) [6, 10, 8, 12] and particularly in linear quadratic optimal control and (differential or alge-
braic) Riccati equations for infinite-dimensional DAEs [9, I]. In this article we show how results
and methods from [2, 13} [I5] can be utilized to obtain an algebraic Riccati equation for an infinite-
horizon linear quadratic optimal control problem for a very general class of infinite-dimensional
DAE:s.

This article is structured as follows. In Section [2| we review relevant notions from [2]. In
Section [3| we precisely formulate the linear quadratic optimal control problem for the class of DAEs
considered. We will utilize the (internal) Cayley transform to solve this problem. Therefore, in
Section {| we study the Cayley transform, in Section [5| we recall the solution of the discrete-time
linear quadratic optimal control problem and reformulate this in a suitable form, and in Section
|§| we relate the Cayley transform and linear quadratic optimal control as in [13 [I5]. In Section
we present our main result: the solution to the linear quadratic optimal control problem for the
considered class of DAEs through an algebraic Riccati equation. In Section [§ we illustrate this with
a simple, but interesting, finite-dimensional example. The result in Section [7] assumes that every
initial state has finite cost. In [15] we actually considered a more general case and as already noted
in [I7] for DAEs the case where not every initial state has finite cost is especially relevant. Therefore
in Section [9] we consider this more general case; for that we introduce some further concepts from
[2], we formulate a more general version of the result from Section (7, we compare that results to
[17] and we consider a finite-dimensional example for which not every initial state has finite cost.

2 Preliminaries

In this section we discuss some general notions from [2] on the input/state/output (i/s/o) node
approach to DAEs which are relevant for our later results on infinite-horizon linear quadratic
optimal control and algebraic Riccati equations.



Definition 1. Let ¢, X and ) be Hilbert spaces. An i/s/o node is a multi-valued operator
S :dom(S) C [§] — [3‘;] The graph of the i/s/o node S is (note that the components are the
different way around than usual, this is to conform to the convention used in [2]):

gph(S) = { m :q € dom(S), r € Sq} .

The i/s/o node is called closed if S is a closed multi-valued operator (i.e. when gph(S) is a closed
subspace) and bounded if S is a bounded single-valued operator with domain [ﬁ ]

The definition of i/s/o node is adapted from [2] Definition 4.1.5]. Time-domain trajectories of
various kinds (classical, generalized and mild) are defined in [2, Definitions 4.1.5 and 4.1.7]. These
notions capture that in some suitable sense time-domain trajectories should satisfy
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Since we won’t need time-domain trajectories in the sense of [2], we will not elaborate further.

€ gph(S). (1)
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Remark 2. The connection between i/s/o nodes and the “conventional” approach to DAEs becomes
most clear from the notion of a kernel representation from [2, Definition 4.1.16] (see also [2, Lemma
4.1.15]): for a closed i/s/o node there exist a Hilbert space Z and bounded single-valued everywhere-
defined operators £ : X - Z, M : X — Z, Nin : U — Z and Ny : YV — Z such that

X

S g}( Bz + Nowy = Mx + Nygu ),

U

gph(S) =

E 8 w

and conversely, the above defines the graph of a closed i/s/o node. The notion of time-domain
trajectory then means that in some suitable sense it should satisfy

Ezx + Nowy = Mz + Nipu.

Note that compared to the usual form of a DAE, there are no separate equations for Ex and v,
but these instead are generally coupled. This makes i/s/o nodes more general than “conventional”
DAEs (an example of an i/s/o node which is not a conventional DAE is given in Example [26)).

Example 3. Let U, X', Z and Y be Hilbert spacesandlet A: X - Z B:U—-Z,C:. X —- )Y, D:
U— Y and E: X - Z be bounded single-valued everywhere-defined operators. The conventional
DAE

Ei = Az + Bu, y = Cz + Du,
is described by the closed i/s/o node

gph(S) = :Ez=Az+ Bu, y=Cx+ Du

E 8 w
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Definition 4. For A € C, the formal i/s/o resolvent of the i/s/o node S is the multi-valued
operator &(\) from [57] to [3‘;] whose graph is given by

o O

gph(B(N)) = gph(S).
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The i/s/o resolvent set p(S) of S consists of those A € C for which 6\5()\) is a bounded single-
valued operator with domain [ ]. The i/s/o node is called resolvable if p(S) is non-empty and

future-resolvable if p(S) N Cy # (). For X € p(S) we have

AN) B
D(N)

9

where 2 is called the state[state resolvent, B is called the input/state resolvent, ¢ is called the
state/output resolvent and D is called the input/output resolvent.

The notions in Definition {4| are taken from [2 Definition 5.5.8]. For the connection with linear
quadratic optimal control, we need the notion of future-resolvable (i.e. p(S) contains an element
in the open right-half plane) rather than the weaker notion of resolvable.

We have
A0 -1 0
01 0 O -~
gph(S) =, o o ol &Ph(&).
0O 0 0 1

Remark 5. Related to Remark [2] by [2, Lemma 5.5.5] we have for a closed i/s/o node

T X
gph(@()\)) = :i/o € /.Jé : (AE — M)z + Nyyy = Ez® + Nyu
u U

Ezample 6. The i/s/o resolvent set of the conventional DAE from Example [3| consists of those
A € C for which AE — A has a (bounded single-valued everywhere-defined) inverse and the various
resolvent operators are given by

AN =(AE—-A)'E, B\ =(E-A)'B,
¢\ =COAE-A)"'E, DN =CAE-A)'B+D.
Remark 7. By [2, Theorems 10.2.9 and 10.2.14], the (formal) i/s/o resolvent of a resolvable i/s/o
node is an i/s/o pseudoresolvent and conversely. Under the name resolvent linear system, i/s/o

pseudoresolvents were studied in [I3] in connection with linear quadratic optimal control. The
representation results of [2] now allow us to connect the results from [I3] more clearly to DAEs.



Definition 8. Let 2 be a non-empty open subset of C. A frequency domain Q trajectory of an
i/s/o node is a quadruple (&,7,z" @) where &, 9 and @ are holomorphic functions defined on
with values in X', ) and U respectively and z° € X such that for all A € Q

™
(D] € eph(@).
(M)

NSRS

Remark 9. The above is [2, Definition 11.1.1]. By [2, Lemma 11.1.6], for a resolvable i/s/o node
with © C p(S), for every 2° € X and every holomorphic U-valued @, there exist unique & and 3
such that the quadruple forms an 2 trajectory; namely

:E()\)] ~ [ Y }

. =06(\)|. .

0] =80 ity

The following definition allows us to add an output to an i/s/o node. This is relevant in linear

quadratic optimal control since the optimal control can be characterized by adding a certain output
and subsequently putting that additional output equal to zero.

Definition 10. Let S be an i/s/o node, let ) be a Hilbert space and let C' = [Cl C’O] : [ﬁ] —
and D = [Dl Do] : [2{} ] — Yo be (bounded single-valued everywhere-defined) operators. The
nonstandard output extension S of S with observation extension C' and feedthrough extension

D is defined by

z X
Ciz + Cor + D1y + Dou} [yo} N
gph(5*) = y €|lYy g € gph(S)
T X
U U v

A standard output extension is a nonstandard output extension where C7 =0 and Dy = 0.

We equivalently have by [2, (5.1.12b)]
1 0 0 0

s~ | [o] (3] 5] [5]] s

0 0 1 0
0 0 0 1

and we can recover S from S™' by [2, (5.1.13b)] through

1 0 00
0 [0 1 00 o
gph(9) = || : 0 ] L ol &Ph(S™).
0 0 01

Definition [10] is from [2, Definition 5.1.23 (ii)] and [2, Definition 5.1.33 (ii)]. If S is bounded,
then a nonstandard output extension is equivalent to a standard output extension [2, Lemma 6.2.1

(vii)].



Lemma 11. For any nonstandard output extension S of a resolvable i/s/o node S we have that
p(S) = p(S).
Proof. This follows from [2, Lemma 5.5.15]. O

3 Linear quadratic optimal control

For the purposes of linear quadratic optimal control, we restrict the set {2 in Definition [§| to be a
subset of p(S) N C, (as was done in [I5]). In that case, for certain Q) trajectories we can give a
time-domain interpretation.

Definition 12. Let S be a future-resolvable i/s/o node and let 2 be a non-empty open subset of
p(S)NC,. For 2° € X the set of i/o0 stable §) trajectories is defined as follows. Let u € L2(R*;U)
and let @ be the restriction to €2 of the Laplace transform of u. Let ¢ be the output component
of the corresponding ) trajectory. If there exists a (necessarily unique) y € L?(R*;)) whose
Laplace transform restricted to €2 equals ¢, then we call (y,u) an i/o stable Q trajectory with
initial condition z°.

We say that S satisfies the Q finite cost condition if for all 2° € X the corresponding set of i/o

stable ) trajectories is non-empty.

Remark 13. The above essentially coincides with the notion of stable input/output pairs from [13].
The difference is that in [I3] an additional assumption is made on the resolvent linear system (i.e.
resolvable i/s/o node) which allows for frequency domain trajectories for {2 an exponential region
to always be interpreted as Laplace transforms of distributions. By using the ideas in [I5], we can
circumvent this additional assumption (and can allow for more general ).

Remark 14. The definition of trajectories and therefore of the optimal control problem considered
depends on the choice of 2. In most applications, p(S) N C, is connected and then the choice of
2 is immaterial (see [15]). More generally, p(S) N CL usually contains a subset of the form [r, o)
for some r > 0 and the natural choice of € is then as (a subset of) this connected component of
p(S) N Cy4 (this is the choice which is made in [13]).

Definition 15. The linear quadratic optimal control problem for a future-resolvable i/s/o node
is: for given 2° € X find the i/o stable  trajectory with initial condition 2° of minimal norm, i.e.
minimize Hu||%2(R+;u) + HyH%2(R+;y)‘

4 The internal Cayley transform

As in [I5] and [13], the easiest way to approach the linear quadratic optimal control problem at this
high level of generality is through utilizing the internal Cayley transform to translate the problem
to a discrete-time linear quadratic optimal control problem.

Definition 16. For a € C with Re(a) > 0, the Cayley transform of the i/s/o node S is the
multi-valued operator Sy from [5 ] to B,(] whose graph is given by

1
v/ 2Re(a)
0

gph(Sa) = | a
\/QRe(a) \/QRe(a)
0 0 0 1

v/ 2Re(a)
1 0 0

gph(S).

[an}




Definition [16] is from [2, Definition 14.9.7].
We have [2] (14.9.6(b)]

2Re(a) 0 2;{6(04) 0
0 1 0
gph(S) = 1L g 1 ]| eph(S),
2Re(a) 2Re(a)
0 0 0 1

and

gph(&(a)) =

o O O
o O = O

[N}

=

D

—~

Q

~

and (see [2l, proof of Lemma 14.9.8])

Vv2Re(a) 0 o) 0
0 1 0 0 ~
gph(Sy) = 0 0 1 o| 8Ph(B(a)).
2Re(a)
0 0 0 1

If S is future-resolvable and a € p(S) N C4, then the Cayley transform with parameter « is a

single-valued bounded operator with domain [5 ] and in particular it therefore can be written as

for (single-valued bounded everywhere-defined) operators Ay : X — X, By :U - X, Cy: X — Y
and Dy : U — Y. Explicitly we have

Ag=—I+2Re(a)A(e), By=+/2Re(a)B(a), Cy=+/2Re(a)&(a), Dgq=2D(a). (2)

The formal i/s/o resolvent of Sy (in accordance with Definition [4] but using w for the resolvent
variable) is given by

1
0 0 1 0 0 0 T °
-~ 0 1 0 0 0 1 0 0 ~
gph(Ga(w)) = | | ., of Ph(S) = Me(a) 0 it o &PR(SB(@)):
0 0 0 1 2Re(e)
0 0 0 1
Using [2, (10.2.1c)] (which is basically the resolvent identity)
1 000
~ 0 100 ~
gph(&(a)) = |\ o 1 (| 8Ph(&W), (3)
0 00 1



we obtain the following relation between the formal i/s/o resolvents

a—A\ 1
2Re(a) 0 2Re(a) 0
h(B4(w)) = ! L0 D eph(®(n)
EPRDAT) =1 oRe(a) + -2 (a—A) 0 —u_ | &P ‘
2Re(a) 2Re(a)
0 0 0 1
With the following correspondence between the resolvent variables
\_ aw — w— a+ A
w1 Ca— )\
the above relation becomes
a—)\ 0 1 0
\/QRe(a) \/QRe(a)
ph(@w)) = | ! \/ﬂ?ew O\ eph(B().
0 0 Y 0

0 0 0 1

From this we can deduce the following relation between the various resolvent operators

~ 7(0[—)\)2/\ o— A N L a—A 4
Aow) = LA + 520 Balw) = Tm%(x),
Cofw) = 2= F(),  Da(w) =D,

v/2Re(a)

and we obtain that A € p(5) if and only if w € p(Sy).

Lemma 17. The inverse Cayley transform of a nonstandard output extension of the Cayley trans-
form Sq of S is a nonstandard output extension of S; more particularly, the observation extensions
and feedthrough extensions are related by

1 1
Ci=———(Cyq1—Cyo), Dy =Dyq, Co= —— (aCy1 +aCyyp), Do = Dyp.
(Can 2.0) 1 a1 0 2Re(a)( a1 4.0) 0 4,0

b v/ 2Re(a)

If the output extension of the Cayley transform is standard (i.e. Cq1 = 0 and Dg; = 0), then

the output extension of S need not be standard since then C = ——=L Ca,0, which is generally

v/ 2Re(a)

nonzero.

Proof. This follows from

a 0 —=2— 0 1 0 0 0 1 0 o 0
\/2186(04) 1 \/2136(04) 0 |:Cd,1:| |:Dd,1:| |:Cd,0:| |:Dd,0:| Q%e(a) 1 2186(&) 0
L 0 L 0 0 L 0 0 —1 0 a 0
\/ZRe(oa) \/ZRe(a) 0 0 1 0 2Re(a) 2Re(a)
0 0 0 1 0 0 0 1 | 0 0 0 1_
1 0 0 0
[Cy Dq Cy Dy
=10 1 0 0




5 Discrete-time linear quadratic optimal control

For a bounded i/s/o node

_|Aq Bqg
(which in our application will come from the Cayley transform) we consider the discrete-time
dynamics
(Za)nt1 = Aa(@a)n + Ba(@a)n,  (Ya)n = Ca(za)n + Da(ud)n, (4)
i.e.
(xd)n—i—l
(yd)n
€ gph(Sy), 5
(id)n gp ( d) ( )
(ud)n

(this should be compared to the continuous-time case , noting that in discrete-time the sense in
which the equation should be understood is completely obvious). We call (z,y,u) a discrete-time
trajectory if is satisfied for all n € Ny.

For a discrete-time system we define for a given initial condition 20 € X the set of i/o stable
discrete-time trajectories as consisting of those ug € ¢?(No;U) and yq € £2(Np; V) for which there
exists a 24 : Ng — X such that (z4)o = 2° and () (or equivalently () is satisfied. If for all 2 € X
this set is non-empty, then it is said that the discrete-time finite cost condition holds. The discrete-
time linear quadratic optimal control problem is: for a given #° € X find the i/o stable discrete-time
trajectory with initial condition z° of minimal norm, i.e. minimize Hud”%?(No;u) + ||yd||ZQ(NO;y).

By standard discrete-time theory (see e.g. [I4]), if the discrete-time finite cost condition is
satisfied, then there exist K4, Ly and X which satisfy the (Lur’e form of the) discrete-time Riccati
equation:

A:}XAd - X+ C;Cd = K;Kd, (6&)
B;;XBd + DZDd + 1= LZLd, (6b)
BZXAC[ + DZCd = LZKd, (6(3)

the optimal cost is given by (X2, %) and the optimal control is given by
0= Kq(®a)n + La(ud)n,

which noting that by the middle Lur’e equation , L4 has the left-inverse (BjX By + D;Dq +
I)71L%, can be explicitly written as

(ug)n = —(B3XBg+ DiDg+ 1) 'L Kg(24)n = —(BiXBg+ DiDg+ 1)1 (B X Ag + D5Cyq) (24)n.

Similarly, Ly and K4 can be eliminated from the Lur’e equations to obtain the standard form of
the Riccati equation

AZX Ay — X +C5Cy — (ChDyg + A5XBy) (B3 X By + DDy + 1) YB3 X Ag + DiCy) = 0.



For our purposes it will be convenient to write the Lur’e form of the Riccati equation as

Zd
wq
(24, X24) — (@g, Xza) + |lyal® + l|uall® = lwal|* for all {yd] € gph(S5), (7)
Tq
ug
where
Zd
HIRE
gph(S§) = Yd ij € gph(Sq), wg = Kqxq + Lquq
Tq
Ud Ud

Using Deﬁnition Se¥t is the standard output extension of S; with observation extension [0 Kd]
and feedthrough extension [0 Lg| (note that by [2, Lemma 6.2.1 (vii)] since Sy is bounded, any
nonstandard output extension is equivalent to a standard output extension).

Theorem 18. If S; satisfies the discrete-time finite cost condition, then for all z° € X a unique
optimal control exists, the optimal cost is given by (Xz% 2°), S has a standard output extension
St with a feedthrough extension which has left-invertible standard part such that holds and the
optimal control is characterized by putting the additional output in Ss"t equal to zero.

Proof. This simply summarizes the material in this section. O

6 The internal Cayley transform in linear quadratic optimal con-
trol

The crucial observation (utilized in [13] and in [I5]) is that stable i/o trajectories in continuous-
and discrete-time correspond to each other. Let £ denote the Laplace transform and note that
by the Paley—Wiener theorem for a Hilbert space I this is an isometric isomorphism between
L*(R4;K) and the Hardy space H?(C,;K). The Z-transform Z maps a sequence (hp)nen, to
the corresponding formal power series Y~ h,z" and gives an isometric isomorphism between
??(Np; K) and the Hardy space of the disc H?(ID; K). Finally, for a € C with Re(a) > 0, the linear
fractional transformation

(Fag)(2) = Re(zo‘)g@‘”), <Fg1f><A>=“mf<“‘A),

1+2 142 a+ A a+ A

gives an isometric isomorphism between the Hardy spaces H2(C,; K) and H?(D; K). For this latter
statement, see for example [I8, Theorem 12.3.1].

Remark 19. In the above we use the discrete-time frequency domain variable z which in the stable
case belongs to the unit disc. The discrete-time resolvent parameter w relates to this z though
w = % We could have written the above in terms of w by utilizing the Hardy space of the exterior
of the unit disc as in done in for example [I8, Theorem 12.3.1].



Lemma 20. Let S be a future-resolvable i/s/o node. Let Q2 be a non-empty connected open subset
of p(S) NC, and let a € Q. Let Sy be the Cayley transform of S with parameter o.. Let z° € X.
The set of i/o stable § trajectories of S and the set of i/o stable discrete-time trajectories of Sq,
both with initial condition z°, are isometrically isomorphic through the map Z~'F, L.

Proof. This is essentially contained in [I5, Section 4.1] and also in [I3, Theorem 6.5]. Neither of
these references use the notion of a future-resolvable i/s/o node (this notion didn’t exist at the
time that those references were written), but the arguments in these references remain valid for
future-resolvable i/s/o nodes. O

Proposition 21. Let X : X — X be a bounded single-valued everywhere-defined self-adjoint op-

erator. Let S be a closed i/s/o node with state space X, input space U and output space [gj] and

let Sy be its Cayley transform with parameter a € C with Re(a) > 0. The following are equivalent:
(here & is the formal i/s/o resolvent of S and X\ € C)

1.
z
o] comis
(2, Xa) + (Xa,2) + ylI* + |[ul® = [[w|* forall ||y]| € eph(S);
X
u
2.
Z
/lz) ~
(A2 =2, X&) + (X(A2 = 2),2) + [|9I1° + [[a]> = || for all | [§]]| € eph(B(N));
z
U
3.
24
] -
(2d, X za) = (wa, Xaa) + |lyall* + luall® = [lwall®  for all | |ya]| € gph(Sa).
Tq
Uq

Proof. This follows easily from the relations between the graphs. As an example we show how the
first equation implies the third in detail. Let

2d
)| <
ya| | € gph(Saq).

Lq
Uq

10



Then there exists

1 a
Z) j}i \/ZRe(oz) 0 \/2Re(a) 0 5}
[y} € gph(g), such that [yd] = _01 (1) 2 8 [y}
X Tdq 2Re(a) 2Re(a) X
u Ug 0 0 0 1 u

With this the third equation then is

1 a 1 [}
< \/2Re(a)z - \/2Re(a)$’ * <\/2Re(04) o \/2Re(oz)x> >

—1 % —1 «
_ z JJ,X z €T
< 2Re(a) * 2Re(a) ( 2Re(a) i 2Re(a) >>

+ 1yl + llull? = flw]?.

Simplifying this gives the first equation, which by assumption is satisfied, so that the third equation
is satisfied. O

7 The algebraic Riccati equation for future-resolvable i/s/o nodes

The following theorem is our main result: it gives the solution of the linear quadratic optimal
control problem through an algebraic Riccati equation. In Section [J] the assumption that the Q
finite cost condition must be satisfied will be relaxed.

Theorem 22. Let S be a future-resolvable i/s/o node and let Q2 be a non-empty connected open
subset of p(S) N C. If the Q finite cost condition is satisfied, then for every ¥ € X there erists a
unique optimal control, there exists a bounded single-valued everywhere-defined self-adjoint operator
X : X — X such that the optimal cost is given by (Xx°,2%), S has a nonstandard output extension
St with a feedthrough extension which is standard and has left-invertible standard part and is such

that
z

w

(z, Xa) + (X, 2) + |lyl* + [[u])® = |lw]®  for all M € gph(5); (8)
xr
u

holds and the optimal control is characterized by putting the additional output in St equal to zero.

Proof. Let a € (2 and let Sy be the Cayley transform of S with parameter .. Since the €2 finite cost
condition is satisfied for 5, it follows from Lemma [20| that the discrete-time finite cost condition is
satisfied for S;. By Theorem a unique discrete-time optimal control exists, which by Lemma
transforms to a unique continuous-time optimal control. By Theorem the discrete-time
optimal cost is given by (Xx°, 2°), which by Lemma [20| is also the continuous-time optimal cost.
By Theorem Sy has a standard output extension S$** whose feedthrough extension has a left-
invertible standard part such that the discrete-time Riccati equation holds. By Lemma 11| the

11



resolvent set of S$** is the same as that of Sy. Define S®™* as the inverse Cayley transform (with

the same parameter o) of S§*'. By Lemma this is a nonstandard output extension of S, the
feedthrough extension is standard (i.e. D; = 0 in Lemma since Dy 1 = 0 as the discrete-time
feedthrough extension is standard) and its standard part is left-invertible (since Dy = Dy and the
discrete-time feedthrough Dy is left-invertible). By Lemma the resolvent set of S is the same
as that of S. By Proposition [21] (applied with S = $°t and therefore Sy = S¢¥%) we have that
holds (since holds as we saw above). Since in discrete-time the optimal control is characterized
by putting the additional output in S§** equal to zero, the equivalent is true in continuous-time
because these output are Cayley transforms of each other. O

The Riccati equation is representation-independent in that we can substitute any represen-
tation of S into it: for example a kernel representation from Remark |2 or (if such a representation
exists) the conventional DAE form from Example A particularly attractive representation in
this respect is an image representation. ~

By [2, Lemma 4.1.15 and Definition 4.1.16], every closed i/s/o node S has an image represen-
tation, i.e. there exist a Hilbert space V and bounded single-valued everywhere-defined operators
F:V>X, Lowt:V—>Y, K:V— X, Li, : YV — U such that

gph(S5) =

cz2=Fv, y= Loywv, v = Kv, u= Ljyv

2 8 €

NG

Applying this result with S = §°xt from Theorem , the Riccati equation can be written as

F*XK 4+ K*XF + L} o Louty + Ly Lin = Ly wLout,w (9)

out,y out,w

and the optimal control is obtained from
Loumwv =0.

Of course, it is not always easy to explictly find an image representation of a given DAE (e.g. in
terms of the coefficients A, B, C, D, E of the conventional DAE form considered in Example |3)),
but once such a represenation is obtained, @D immediately gives the appropriate Riccati equation
very explicitly in terms of the operators appearing in the image representation.

8 An example

Ezxample 23. We return to the example of a conventional DAE from Example [3] In that case we
have for a nonstandard output extension as in Theorem [22] with a feedthrough extension which is
standard

z
w

gph(S%) = [y] :Ez=Az+Bu, y=Cx+Du, w=Kiz+Kpzr+ Lou
x
u

12



Note that setting w = 0 gives
Kiz+ Kol‘ + Lou = 0,

which since Ly is left-invertible in the context of Theorem [22] gives (here Ly ! is a left-inverse of
Lo)Z
u=-Ly'Kiz — Ly Koz.

We note that this feedback depends both on = and z; for trajectories this means that the optimal
control will be a feedback of both the state and its derivative (rather than only the state as is
known to be the case in the purely differential equation situation).

Ezample 24. We again consider the situation in Example[23] We show that in the purely differential
equation situation, the conclusions of Theorem [22| reduce to the usual ones.

Assume that E is invertible (i.e. has a bounded single-valued everywhere-defined inverse). Then
we can easily eliminate z and re-write the Riccati equation as (here K := KiE7'A + K and
L =L+ K,E'B)

(E7'Az + E7'Bu, Xz) + (X2, E"'Az + E7'Bu) + ||Cz 4+ Dul|? + ||u|?* = | Kz + Loul|*.
Since u € U and = € X are arbitrary, this can be written as the Lur’e equations
A*E*X + XE'A + C*'C = K*K,
D*D + I = L*L,
B*E"!X + D*C = L*K,

which can in turn be written as the standard algebraic Riccati equation
A'E*X + XE'A+C'C - (XE*B+C*D)(D*'D+ 1) '(B*E"'X + D*C) = 0.
The optimal control is characterized by 0 = Kz + Kgx + Lgu, which is
0 =Kz + Lu.

From this we obtain
u=—-(D*D+1)""(B*E"'X + D*C) z.

Hence we have that the conclusions of Theorem 22| become the usual ones.

We note that [15] considers a more general version of this “usual” Riccati equation which allows
for example for the solution X to be unbounded (this relates to not every initial condition having
a finite cost).

Ezample 25. We consider an example from [5] (see also [3, [IT], [7]). Although this is a seemingly
simple finite-dimensional example, it is interesting since the “naive” algebraic Riccati equation

A*ZE + E*ZA + C*C — (E*ZB + C*D)(I + D*D) }(B*ZE + D*C) = 0,

does not have a solution (see [3]). The example is of the conventional DAE form from Example
with
10 0 1 0 10 0
it R E e (N E Rl O
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Here
A -1 1|0 -1
woac [t aeeano]0 )
so that the i/s/o resolvent set equals C (which implies that the choice of € is immaterial; we choose
Q equal to the open right half-plane C, since this works nicely with Laplace transforms). We
further have

gph(S) = ra=a2, 0=+, y=x 0,

E 8 W

and ﬁ(A)I[_Ol 8] %(A):[:ﬂ’ Tc(A)z[_Ol 8] 6(A>=[:ﬂ.

Therefore the equations for Q trajectories from Remark [J] are

SN Ay —a(A)
=400 = |_g "]
From this we see that the (2 finite-cost condition is satisfied. We can choose u(t) = —z9e~! (which
is in L2(R1)) so that
. —33(1) . 1 x(l)
u = ) y = )
A+1 -1 A+1

and we see that g is the Laplace transform of
1 _
v = | 1] ote,
which is in L2(R1).

In this example it is easy to obtain an image representation (the idea is that zo, 22 and u can
be chosen as “free” variables which determine the others):

010 0 0 -1
F:L 0 0]’ Lout,y:K:{O . 0], Lin=[0 0 1].
Writing (using that X is symmetric):
X1 X

X = [X; Xg] . Loww = [L1 Ly Lg],

the image representation form @D of the Riccati equation is
0 Xo —Xo L? L1Ly LiLs3
Xy 2Xo+1 —Xi| = |L1Ly L3 LoLs
-Xo X 2 LiLs LoLs L3

From the top-left entry we obtain L; = 0, from which we deduce using the first row that Xg =
X9 = 0. The bottom right 2-by-2 matrix then is

1 —X1 - L% L2L3
~Xy 2 | |LeLs L} |

14



From the diagonal entries we then obtain Lo = +1 and L3 = ++1/2. Since X; > 0 (because X is
positive semi-definite) Ly and L3 must have opposite signs. We choose Ly = 1 and L3 = —+/2 (this
sign choice is immaterial) and obtain

X:[\f 8], L=[0 1 —V2].

Hence the optimal cost is (X0, 2°) = v/2(29)? and the optimal control is determined by
P 1

Z2
0 1 —v2] |22] =0,
u
i.e.
1
u = x2,

as is also obtained in the above references using various different methods. Note that we can
equivalently write this as the output feedback

1
U= ——=1y9.
\/§y2

Ezample 26. The computations in Example [25| can be simplified by choosing a smaller state space.
To write the relation between the input, the (relevant part of the) initial state and the output
in conventional DAE form, a two-dimensional state is needed. However, because i/s/o nodes are
more general than conventional DAEs, it is possible to described the same relation using a one-
dimensional state space using i/s/o nodes. Consider the i/s/o node with & and U one-dimensional
and ) two-dimensional given by

z
_ Yyl ., _ _ _
gph(s) = 2| Z2=Y2, Y1 =—U, T= U
u

We in particular see that ® is the same as in Example [25| and that ¢z = CE [%5], where ¢ is
the state/output resolvent from Example Since E [71] is the “relevant part” of the initial state
[73], we see that the state/output resolvents therefore also essentially coincide. Hence the i/s/o
node from this example and the one from Example [25|are from the linear quadratic optimal control
perspective equivalent.

A kernel representation (as in Remark [2)) is (here the space Z is three-dimensional)

1 0 —1 0 0
E=10l, Nyw=11 0|, M=]|0|, DNun=|-1
0 0 0 1 1

15



An image representation is (the idea is that yo and u are “free”)

0 -1

F=[1 0], %sz 0

}, K=1[0 -1, Lwn=1[0 1].

The image representation form @D of the Riccati equation is

1 —-X| [IL} LiLy
-X 2| |LWLy L3 |°

From this we obtain that L; and Lo must have opposite signs (since their product equals —X) and
picking an arbitrary sign convention gives L; = —1, Ly = v/2, X = v/2. Hence the optimal cost is
v2(2%)? and the optimal control is determined by

_y2+\/§u:07

i.e.
1

U= —1.
\/592

This solution is consistent with what we obtained in Example [25| noting that x° here corresponds
to ¥ there.

Note that the above cannot be written as a state feedback. Equivalently, the optimal output
extension is necessarily nonstandard: we can re-write the equation determining the optimal control
as

—24+V2u=0.

Therefore the observation extension is [—1 0} (i.,e. C1 = —1 and Cy = 0, so this is nonstandard)
and the feedthrough extension is [0 0 /2] (which is standard). Alternatively, from

—Z/2+\f2U:07

we have the standard observation extension [0 O] and the nonstandard feedthrough extension

[0 -1 \/ﬂ (ie. D = [O —1} and Dy = \@) We however cannot have both a standard
observation extension and a standard feedthrough extension at the same time.

The construction of the i/s/o node in Example 26| from that in Example 25|can be done generally
based on obtaining a minimal i/s/o node with the same input/output resolvent as a given i/s/o
node, see [2].

Example 27. 1t is possible to further simplify Example 26| by considering yo as the input and y; and
u as the outputs (this is related to the notion of canonical input space from [2, Definition 2.1.23]).
We therefore define

~ _ ~_ |

s

u

This change in perspective does not alter the cost function (or the state), but the dynamics instead
become

. _ F]
r = Uu, Yy = 11‘,

16



i.e. we have a standard state-space system with (E =1 and)
im0 mon =[] o=l

The usual Riccati equation is 2 — X2 = 0 and gives X = /2 and the state feedback F = —/2. The
optimal control is therefore determined by

u=—V2x,

which noting that u = yo and x = —y» = —u gives
y2 = V2u,

which is the same as what was obtained before.

9 Beyond the finite cost condition

To consider the case where not all initial conditions are required to have finite cost, we need some
further notions from [2].

Definition 28. Let S be an i/s/o node and let X1 C & be continuously embedded. Then the part
Spart of S in &7 is defined by
X

N
gph(Spart) = gph(S) N Xl

u

Definition [28)is adapted from [2], Definition 5.1.10 (i)] where it was assumed that A} is a closed
subspace of X.

Remark 29. It is easy to see that the Cayley transform of the part of S in X} equals the part in
X of the Cayley transform of S (i.e. taking the Cayley transform and taking the part commute).
9.1 The discrete-time case

We reconsider the situation of a bounded i/s/o node Sy with discrete-time dynamics from Section

Gl

Definition 30. The initial state 2° € X is said to have discrete-time finite cost if the corresponding
set of i/o stable trajectories is non-empty. We denote the subspace of discrete-time finite cost initial
states by X finite-

By [14) Section 2], for every element 20 of X4 finite, @ unique minimal norm i/o stable trajectory

(uglin,yglin) exists. This defines a closed nonnegative sesquilinear symmetric form ¢ on X with

domain Xy finite given by
min min
[ 0 0} /%41 Ug o
q|ry1, T = min | min ’
Ya,1 Yd,2

17



which we call the discrete-time optimal cost sequilinear form. We will consider Xy fnite With the
inner-product
0 .,.0 I 0 ,.0 0 ,.0
<x17x2>Xd,ﬁnite = <m1a$2>X + q[xlaxZ]a

(this is called the graph inner product in [I4, Section 4]). With this, Xy gnite is a Hilbert space
which is continuously embedded in X.

Definition 31. The bounded i/s/o node Sy satisfies the discrete-time input finite future cost
condition if all initial states in im(B,;) have discrete-time finite cost, i.e. if im(By) C Xy finite-

Remark 32. The above definition is adapted from [14, Definition 3.3] where the equivalent concept
was called the finite future incremental cost condition. See [14, Lemma 3.4] for this equivalence
and for the fact that Az finite C X finite-

Definition 33. Let S and S; be two bounded i/s/o nodes with the same input and output spaces
and where X7 C X. We call S a restriction of S to Xj if the following two conditions hold

1. Every discrete-time trajectory of Sy is also a discrete-time trajectory of S;

2. If (z,y,u) is a discrete-time trajectory of S with z(0) € &}, then z,, € X} for all n € N and
(z,y,u) is a discrete-time trajectory of Sj.

Definition [33] is adapted from [2, Definition 5.4.37] (which is in continuous-time) as indicated
in [2, Definition 6.5.7]. Moreover, we do not assume that X is a closed subspace of X as was done
in [2, Definition 5.4.37].

Lemma 34. Let Sy be a bounded i/s/o node and let X1 C X be continuously embedded. The
following are equivalent:

1. S4 has a discrete-time restriction to Xp;

2. Syq has a unique discrete-time restriction to Xi;
3. AgX) C Xy and im(By) C Xy

4. The part of Sy in Xy is bounded.

If these equivalent conditions hold, then the part of Sq in X1 is the unique discrete-time restriction
to Xy from (ii).

Proof. This is part of [2 Theorem 6.3.19] (the discrete-time version of which holds by [2] Lemma
6.5.8]). There it was assumed that X} C X is closed (rather than continuously embedded), but a
continuous embedding suffices for the proof. O

If the discrete-time input finite future cost condition holds for Sy, then with & := &} nite the
condition (iii) in Lemma [34] is satisfied by Remark Therefore by Lemma |34 we can restrict Sy
to the space of discrete-time finite cost states. Conversely, we see from Lemma [34] that the discrete-
time input finite future cost condition (which is implied by (iii)) is necessary for the restriction of
S4 to the space of discrete-time finite cost states to make sense.

18



Definition 35. Let S; be a bounded i/s/o node. Let ¢ be a closed nonnegative sesquilinear
symmetric form on X with domain &} and equip A; with the inner-product g[z1,z2] + (1, 22)x
(so that A is a Hilbert space which is continuously embedded in X’). We say that ¢ satisfies the
discrete-time Riccati equation for Sy if

1. the part Sgpary of Sg in X7 is bounded;

2. Sgpart has a standard output extension gext

d part with a feedthrough extension which has left-
invertible standard part and is such that

Zd
Wq

qlzd, zd) — q[a, xa) + |yall* + Jugl® = ||wal*>  for all [yd] € gph (ST art)- (10)
T4
Uuq

Sesquilinear symmetric forms can be ordered as follows: ¢; < g2 means that dom(gq;) D dom(g2)
and ¢ [z, z] < gz, z] for all x € dom(g2).

Theorem 36. Let Sy be a bounded i/s/o node for which the discrete-time input finite cost condition
holds. Then the discrete-time optimal cost sequilinear form is the smallest solution of the discrete-
time Riccati equation. The optimal control is characterized by putting the additional output in
Sf}f‘;art equal to zero.

Proof. This is [I4, Theorem 3.14] once translated to the current terminology. O

9.2 The continuous-time case

Definition 37. Let S be a future-resolvable i/s/o node and let € be a non-empty open subset of
p(S) N Cy. The initial state 20 € X is said to have ) finite cost if the corresponding set of i/o
stable 2 trajectories is non-empty. We denote the subspace of € finite cost initial states by Xgpite-

By [15], Section 3.1], for every element 2° of Xgpite, a unique minimal norm i/o stable §2 trajectory
(u™in yminy exists. This defines a closed nonnegative sesquilinear symmetric form ¢ on X with

domain Afgpite given by
0,0 wt] fugt
Q[xhxﬂ = <|:yin1n:| ) |:y§1in:| > 3

which we call the Q0 optimal cost sequilinear form. We will consider AXfgpite with the inner-product
0 .0 0 .0 0 ,.0
<:L'1, x2>Xﬁnite = <$17 $2>X + q[xlv .732].

With this, Xanite is a Hilbert space which is continuously embedded in X.

Remark 38. If € is connected, a € €2 and Sy is the Cayley transform with parameter « of .S, then
by Lemma [20| we have that the € finite cost initial states for S and the discrete-time finite cost
initial states of Sy are the same, i.e. that Xgnite = Xa finite-

Definition 39. Let S be a future-resolvable i/s/o node and let © be a non-empty open subset of
p(S)N C4. Then S satisfies the Q input finite future cost condition if for all A € €2, all initial states
in im(B (X)) have 2 finite cost.
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Remark 40. The above definition is adapted from [I5, Definition 5.7] where the corresponding
concept is defined with respect to a fixed @ € Q (by [15, Theorem 5.9] this is equivalent to it
holding for all A €  if 2 is connected).

Lemma 41. Let S be a future-resolvable i/s/o node and let Q be a non-empty connected open
subset of p(S) N Cy. Then A(N) Xnite C Xanite for all X € Q.

Proof. Let a € Q and let Sy be the Cayley transform of S with parameter o. By Remark [38 we
have Xfpite = X finite- By Remark [32| we have AgAXy gnite C X4 finite, Which by is equivalent to
A() Xginite C Xanite- Since a € ) was arbitrary, we get the desired result. O

Definition 42. Let S; and S be two i/s/o nodes with the same input and output spaces and
where X7 C X and let Q be a non-empty open subset of C. We call S; an Q-restriction of S if the
following two conditions hold

1. Every frequency domain € trajectory of S7 is also a frequency domain ) trajectory of S

2. If (2,9,2% 4) is a frequency domain Q trajectory of S with z° € A3, then #()\) € A7 for all
A€ Qand (2,9,2° 1) is a frequency domain Q trajectory of Sj.

Definition [42]is adapted from [2], Definition 11.1.44] where it was assumed that X} is a closed
subspace of X.

Lemma 43. Let S be a resolvable i/s/o node, let Q@ C p(S) and let X1 C X be continuously
embedded. Then the following are equivalent:

1. S has an Q-restriction to Xp;

2. S has a unique resolvable Q)-restriction to X1 whose resolvent set includes §;
3. AN)XL C Xy and BNU C Xy for all X € Q;

4. Spart 15 resolvable and 2 C p(Spart)-

If these equivalent conditions hold, then the part of S in X1 is the unique Q-restriction to X1 from
(i3).

Proof. This is part of [2, Theorem 11.1.51]. There is was assumed that X; C X is closed (rather
than continuously embedded), but a continuous embedding suffices for the proof. O

If the € input finite future cost condition holds for S and €2 is connected, then with X} := Xjpite
the condition (iii) in Lemma [43|is satisfied by Lemma Therefore by Lemma 43| we can restrict
S to the space of Q finite cost states. Conversely, we see from Lemma [43] that the Q input finite
future cost condition (which is implied by (iii)) is necessary.

Definition 44. Let S be a future-resolvable i/s/o node and let © be a non-empty open subset
of p(S)NC,. Let g be a closed nonnegative sesquilinear symmetric form on X with domain X}
and equip X7 with the inner-product q[z1,z2] + (x1,z2)x (so that A} is a Hilbert space which is
continuously embedded in X'). We say that ¢ satisfies the Q-Riccati equation for S if

1. the part Spare of S in A is resolvable and satisfies Q C p(Spart);
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2. Spart has a nonstandard output extension Sg;‘ﬁt with a feedthrough extension which is standard

and has left-invertible standard part and is such that

z
H
qlz, 2] + qlz, 2] + |yl + |ull® = |w]|* forall ||y]|| € gph(S); (11)
X
u

Theorem 45. Let S be a future-resolvable i/s/o node and let 2 be a non-empty connected open
subset of p(S) N Cy for which the Q input finite future cost condition holds. Then the Q optimal

cost sequilinear form is the smallest solution of the Q-Riccati equation. The optimal control is

characterized by putting the additional output in Sgﬁt equal to zero.

Proof. This is proven similarly to Theorem [22] using Remark O

9.3 Impulse controllability

To relate our results to available results on Riccati equations for DAEs, we briefly discuss the
concept of impulse controllability in the i/s/o node framework.

Definition 46. The classical state space Xy of the i/s/o node S equals

Xo: =< xe€X:3dzy,u such that € gph(S) » = {x € X : Ju such that [ﬂ € dom(S)} .

2 8 € W

The above definition is adapted from [2, Definition 2.1.15].
Remark 47. We have for A € C

x
Xo =1z € X :3zy,u such that —zy— NE gph(@(/\))
| w
[z
=< x € X :3Z,y,u such that g € gph(QAS()\))
u

~

—im [A(N) B

Remark 48. From [4, Remark 4.1] for a finite-dimensional conventional DAE with det(sE — A) not
the zero polynomial (i.e. the corresponding i/s/o node is resolvable), the DAE being controllable

at infinity is equivalent to im [E B] = X. This in turn is equivalent to im [é\l()\) ‘%(A)} = X.
Combining this with Remark [47] we see that the condition Ay = X coincides with controllability at
infinity.
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Definition 49. The multivalued part Zy of the i/s/o node S equals

Zpi=(z€eX: € gph(95)

O O W

0

The above definition is adapted from [2, Definition 2.1.15].
We have for A € C

Zo={zecXx:| | cgph(B(\) 3 = (

o8 OO

From this we see that 2° € Zj precisely when (0,0, 2", 0) is a frequency domain  trajectory of the
i/s/o node. In particular, every initial condition in Zj has zero optimal cost.

For a conventional DAE we have Z; = N(E). Therefore for a conventional DAE we have
2y = N(QAI()\)) (which is not true for a general i/s/o node). From [4, Remark 4.6] for a finite-
dimensional conventional DAE with det(sE — A) not the zero polynomial (i.e. the corresponding

i/s/o node is resolvable), the DAE being impulse controllable is equivalent to im [QAl()\) ‘f%(/\)} +

N(é\l()\)) = X. Using also Remark this is Xy + Zp = A" Since for a general i/s/o node this
notion also involves the output (for example though the state/output resolvent €(\) which appears
in the characterization of Zj), referring to this as a controllability property would in general be a
misnomer.

For an input/state system (i.e. with output space J = {0}) we have that Xy + Zyp = X is

~

equivalent to im [QAI(/\) %()\)} + N(2(\)) = X, i.e. to impulse controllability of the input/state
system.

9.4 Comparison with [17]

We compare Theorem 45| to the Riccati equation obtained in [I7]. We first note that [17] is for
finite-dimensional conventional DAEs whereas our results hold more generally for (possibly infinite-
dimensional) i/s/o nodes. Another difference is that [I7] considers the linear quadratic optimal
control problem “with state stability” whereas we do not consider stability of the state. Also [17]
considers more general quadratic cost functionals than ]]u\\%Q(R+;u) + |’?JH%2(R+;3;) (our methods
would allow for such more general quadratic cost functionals if the corresponding discrete-time
results had been available).

In [I7] the Riccati equation is considered on the “system space” V. Using [16, Proposition
3.3] we can describe this space inductively in i/s/o node terms. Let S; = S and define Sy as
the part of Sy in the classical state space of Si. It follows from [I6] Proposition 3.3] that (for a
finite-dimensional conventional DAE) there exists a ko such that Sy = Sk, for all k¥ > ko and that
dom(Sk,) = Vsys. The restriction of S to Vsys has graph (here Zj is the multi-valued part of S)

gph(Sko) +

o ool
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In [I7] it is this restriction which is considered rather than the part Si,. However, since elements
in the second component of the above sum contribute zero terms to the Riccati equation , this
difference is immaterial.

By [16, Proposition 2.9], without loss of generality, a conventional DAE can be considered in
feedback equivalence form. Focusing on the non-differential part only, and making the dimension
the smallest integer large enough so that the system is not impulse controllable (in the sense of
[4, Definition 2.1]) we arrive at the examples in Section [9.5| which further illustrate the connection
with [17].

9.5 An example

Ezample 50. Consider the conventional DAE (with no output, i.e. Y = {0}) with X = R? and
U=R

0 1 0] 100 1
E=(0 0 1|, A=|0 1 0|, B=|0
0 0 0] 0 01 0
This gives
E
gph(S) = | izm=x1+u, 23=1o9, v3=0
u—
Then p(S) = C (and we choose 2 = C4) and
-1 =X =X 01 =X -1
ME-A)'=]0 -1 x|, AN =10 0 1|, BN =10
0o 0 -1 00 0 0
We have
I <1
Xy = To| :x1, 22 ER Zy = Ol :z21€eR
0 0

Since Xy + Zp # X, this system is not impulse controllable. Since this system is in feedback
equivalence form, the system space from [16] can be calculated using [16, (3.2)] and equals

Vesys = tx9 =23 =0,21 = —u

However, it is instructive to calculate this inductively as in Section[9.4, The part of S in its classical
state space equals (compared to gph(S) we have z3 = 0 since z must belong to the classical state
space)
z
gph(Sg): T :Z2:1‘1+U,0:Z3:$2, :L‘3:0
u
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The classical state space of Sy is

1
Xo=<{|0]|:meR},
0

and the part of Sy in X5 equals (compared to gph(S2) we have zo = 0 since z € A»)

z
gph(S3) = x| :0=2=x1+u, 0=23=x9, 23=0
u

The classical state space X3 of S3 equals X5 and therefore the induction stops. We have

dom(sg):{[ﬂ 10 =11+ u, mz=w3=0},

which is indeed Vyys as determined above.

Ezample 51. We continue Example We now consider Y = R3 and the output y = z. With
this output, the cost being finite implies stability of the state, so there is no difference between the
problem “with state stability” and without this stability requirement. Let

1 00 0
CcC=1]0 1 0], D= |0
0 0 1 0
Then

CA) =AN), D) =BO).

Frequency domain trajectories satisfy
g1(\) =25 — Axd —a(\), 9\ =-29,  g3(\) =0. (12)

The condition that ¢; and @ are Laplace transforms of L?(0,00) functions implies that 2 — )\:z:g
0 _

must be as well; this implies 23 = 3 = 0. Therefore the space of finite cost states is
x1
Xﬁnite = 0 A R
0

~

Since im(*B(A)) C Xfnite, the input finite future cost condition is satisfied (but the finite future cost
condition is not). The part of S in Xgpjte is

z
gph(Snite) = | :0=29=21+u, 0=23=1x9, z3=0
U

We see that Sgpite equals S5 from Example and that dom(Sgnite) = Vsys (as expected since
y=u1x).
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For an initial condition in Xfpte We have from that y; = —u, y2 = y3 = 0 no matter what
the initial condition in Xfgpie is. Therefore clearly u = 0 is the optimal control and the optimal cost
equals zero. We indeed see that ¢ = 0 is a solution of the Riccati equation with the standard
output extension w = V2 u. From Theorem we then indeed conclude (since zero must be the
smallest solution) that the optimal cost is zero and the optimal control satisfies v2u = 0 (i.e. is
zZero).

More generally than just verifying that the obvious candidate solution solves the Riccati equa-
tion, we can write down the Riccati equation using an image representation of Sgpjte. Since many
components are known to be zero, we only need to consider z;, x1, y1 and u. We then obtain the
image representation (the idea being that z; and w are “free” and uniquely determine the other
variables)

F=[10], K=Lw=[0 —-1], Ln=[1 0].

This gives the Riccati equation (as in (9))

0 -X| [ L} LiL
-X 2| |LiLy L3 |’

which gives L1 =0, X =0 and Ly = \/5, which is consistent with what we obtained above.
Using that
-1
. 0
Vsys =1 0|’
1

the Riccati equation in [I7] is

~1 -1
10 0 1] A'PE +E"PA+G'C E'PB+C'D] | 0 10 0 1] K'K K'L] | 0|
B*PE + D*C I+ D*D 0 LK L*L| | 0
1 1
which gives
100 0][-1 ~1
010 0[]0 KK K'L] | 0
SO0y 01 o] o [_1001][L*K L*L] 01’
000 1] |1 1

which has as solution P € R3*3 an arbitrary symmetric matrix and
K=[0 0 0], L=v2

The stability condition from [I7] is also satisfied for this solution since for all A € C

1 =X 0 1
-AE+A B| 0O 1 —-x 0| _
rank [ K L} = rank 0 0 = 4.

1 0
0 0 0 2
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According to [I7, Theorem 5.7(a)] the optimal cost equals (PEz", Ex®) for all 2° € Vgig. In this
example Viir = Xgnite and we therefore see that the optimal cost equals zero (independent of the
initial condition 2° € V). According to [I7, Theorem 5.7(a)] the optimal control and optimal
state satisfy Kz + Lu = 0, which gives u = 0. We conclude that (as should be the case) we have
consistency between our results and those of [17].

Ezample 52. We continue Example [50| with a different output than in Example Consider now
Y =R and y = x3. Then
c=[ 0 1], D =0,

and

e =10 0 0, DN=0.

We see that for all initial conditions and all inputs the output is zero. Therefore the space of finite
cost states equals the whole state space: Xgpite = X. It is also clear that the optimal cost is zero
and the optimal control is zero (independent of the initial condition). We indeed see that ¢ = 0 is
a solution of the Riccati equation with the standard output extension w = u. From Theorem
we then indeed conclude (since zero must be the smallest solution) that the optimal cost is zero
and the optimal control satisfies u = 0 (i.e. is zero). Note that the system space Vsys plays no role
in this example and [I7] is not applicable.

10 Conclusion

We considered linear quadratic optimal control for infinite dimensional differential-algebraic equa-
tions (more specifically, for future-resolvable input/state/output nodes) and obtained an algebraic
Riccati equation for the quadratic form which gives the optimal cost and which characterizes the
optimal control.

For simplicity of exposition, we only considered the most standard cost function for the linear
quadratic optimal control problem and the associated algebraic Riccati equation, however the
method is applicable to general quadratic cost functions.

Also for simplicity of exposition, we considered input/state/output nodes rather than state/signal
nodes (i.e. we assumed that the signal component is a priori split into an input and an output).
However, the cost in linear quadratic optimal control is an input/output invariant notion in the
sense of |2 Section 5.6.1] and therefore does not depend on the decomposition of the signal compo-
nent into an input and an output. The objective of writing the input as a state feedback is however
not an input/output invariant notion and as illustrated in Example it can be beneficial to take
a state/signal perspective. With the relevant input/state/output results from [2] replaced by the
corresponding state/signal results from [2], state/signal equivalents of our results can be obtained.
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