
On Linear Quadratic Optimal Control and
Algebraic Riccati Equations for

Infinite-Dimensional Differential-Algebraic
Equations

Mark R. Opmeer and Olof J. Staffans

June 21, 2024

1 Introduction
There has been significant recent interest in infinite-dimensional differential algebraic
equations (DAEs) [6, 10, 8, 12] and particularly in linear quadratic optimal control and
(differential or algebraic) Riccati equations for infinite-dimensional DAEs [9, 1]. In
this article we show how results and methods from [2, 13, 15] can be utilized to obtain
an algebraic Riccati equation for an infinite-horizon linear quadratic optimal control
problem for a very general class of infinite-dimensional DAEs.

This article is structured as follows. In Section 2 we review relevant notions from
[2]. In Section 3 we precisely formulate the linear quadratic optimal control problem
for the class of DAEs considered. We will utilize the (internal) Cayley transform to
solve this problem. Therefore, in Section 4 we study the Cayley transform, in Section
5 we recall the solution of the discrete-time linear quadratic optimal control problem
and reformulate this in a suitable form, and in Section 6 we relate the Cayley transform
and linear quadratic optimal control as in [13, 15]. In Section 7 we present our main
result: the solution to the linear quadratic optimal control problem for the considered
class of DAEs through an algebraic Riccati equation. In Section 8 we illustrate this with
a simple, but interesting, finite-dimensional example. The result in Section 7 assumes
that every initial state has finite cost. In [15] we actually considered a more general case
and as already noted in [17] for DAEs the case where not every initial state has finite
cost is especially relevant. Therefore in Section 9 we consider this more general case;
for that we introduce some further concepts from [2], we formulate a more general
version of the result from Section 7, we compare that results to [17] and we consider a
finite-dimensional example for which not every initial state has finite cost.

2 Preliminaries
In this section we discuss some general notions from [2] on the input/state/output (i/s/o)
node approach to DAEs which are relevant for our later results on infinite-horizon linear
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quadratic optimal control and algebraic Riccati equations.

Definition 2.1. Let U , X and Y be Hilbert spaces. An i/s/o node is a multi-valued
operator from

[
X
U

]
to
[

X
Y

]
. The graph of the i/s/o node S is (note that the components

are the different way around than usual, this is to conform to the convention used in
[2]):

gph(S) =
{[

Sq
q

]
: q ∈ dom(S)

}
.

The i/s/o node is called closed if S is a closed multi-valued operator (i.e. when gph(S) is
a closed subspace) and bounded if S is a bounded single-valued operator with domain[

X
U

]
.

The definition of i/s/o node is adapted from [2, Definition 4.1.5]. Time-domain
trajectories of varies kinds (classical, generalized and mild) are defined in [2, Defini-
tions 4.1.5 and 4.1.7]. These notions capture that in some suitable sense time-domain
trajectories should satisfy

[
ẋ
y

]
∈ S
[

x
u

]
, i.e.


ẋ
y
x
u

 ∈ gph(S). (1)

Since we won’t need time-domain trajectories in the sense of [2], we will not elaborate
further.

Remark 2.2. The connection between i/s/o nodes and the “conventional” approach to
DAEs becomes most clear from the notion of a kernel representation from [2, Definition
4.1.16] (see also [2, Lemma 4.1.15]): for a closed i/s/o node there exist a Hilbert space
Z and bounded single-valued everywhere-defined operators E : X →Z , M : X →
Z , Nin : U →Z and Nout : Y →Z such that

gph(S) =




z
y
x
u

 ∈


X
Y
X
U

 : Ez+Nouty = Mx+Ninu

 ,

and conversely, the above defines the graph of a closed i/s/o node. The notion of time-
domain trajectory then means that in some suitable sense it should satisfy

Eẋ+Nouty = Mx+Ninu.

Note that compared to the usual form of a DAE, there are no separate equations for
Eẋ and y, but these instead are generally coupled. This makes i/s/o nodes more general
than “conventional” DAEs (an example of an i/s/o node which is not a conventional
DAE is given in Example 8.4).

Example 2.3. Let U , X , Z and Y be Hilbert spaces and let A : X →Z , B : U →
Z , C : X →Y , D : U →Y and E : X →Z be bounded single-valued everywhere-
defined operators. The conventional DAE

Eẋ = Ax+Bu, y = Cx+Du,
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is described by the closed i/s/o node

gph(S) =




z
y
x
u

 ∈


X
Y
X
U

 : Ez = Ax+Bu, y = Cx+Du

 .

Definition 2.4. For λ ∈ C, the formal i/s/o resolvent of the i/s/o node S is the multi-
valued operator Ĝ(λ ) from

[
X
U

]
to
[

X
Y

]
whose graph is given by

gph(Ĝ(λ )) =


0 0 1 0
0 1 0 0
−1 0 λ 0
0 0 0 1

gph(S).

The i/s/o resolvent set ρ(S) of S consists of those λ ∈ C for which Ĝ(λ ) is a bounded
single-valued operator with domain

[
X
U

]
. The i/s/o node is called resolvable if ρ(S) is

non-empty and future-resolvable if ρ(S)∩C+ 6= /0. For λ ∈ ρ(S) we have

Ĝ(λ ) =

[
Â(λ ) B̂(λ )

Ĉ(λ ) D̂(λ )

]
,

where Â is called the state/state resolvent, B̂ is called the input/state resolvent, Ĉ is
called the state/output resolvent and D̂ is called the input/output resolvent.

The notions in Definition 2.4 are taken from [2, Definition 5.5.8]. For the connec-
tion with linear quadratic optimal control, we need the notion of future-resolvable (i.e.
ρ(S) contains an element in the open right-half plane) rather than the weaker notion of
resolvable.

We have

gph(S) =


λ 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

gph(Ĝ(λ )).

Remark 2.5. Related to Remark 2.2, by [2, Lemma 5.5.5] we have for a closed i/s/o
node

gph(Ĝ(λ )) =




x
y
x0

u

 ∈


X
Y
X
U

 : (λE−M)x+Nouty = Ex0 +Ninu

 .

Example 2.6. The i/s/o resolvent set of the conventional DAE from Example 2.3 con-
sists of those λ ∈ C for which λE−A has a (bounded single-valued everywhere-
defined) inverse and the various resolvent operators are given by

Â(λ ) = (λE−A)−1E, B̂(λ ) = (λE−A)−1B,

Ĉ(λ ) = C(λE−A)−1E, D̂(λ ) = C(λE−A)−1B+D.
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Remark 2.7. By [2, Theorems 10.2.9 and 10.2.14], the (formal) i/s/o resolvent of
a resolvable i/s/o node is an i/s/o pseudoresolvent and conversely. Under the name
resolvent linear system, i/s/o pseudoresolvents were studied in [13] in connection with
linear quadratic optimal control. The representation results of [2] now allow us to
connect the results from [13] more clearly to DAEs.

Definition 2.8. Let Ω be a non-empty open subset of C. A frequency domain Ω tra-
jectory of an i/s/o node is a quadruple (x̂, ŷ,x0, û) where x̂, ŷ and û are holomorphic
functions defined on Ω with values in X , Y and U respectively and x0 ∈X such that
for all λ ∈Ω 

x̂(λ )
ŷ(λ )

x0

û(λ )

 ∈ gph(Ĝ(λ )).

Remark 2.9. The above is [2, Definition 11.1.1]. By [2, Lemma 11.1.6], for a resolv-
able i/s/o node with Ω⊂ ρ(S), for every x0 ∈X and every holomorphic U -valued û,
there exist unique x̂ and ŷ such that the quadruple forms an Ω trajectory; namely[

x̂(λ )
ŷ(λ )

]
= Ĝ(λ )

[
x0

û(λ )

]
.

The following definition allows us to add an output to an i/s/o node. This is relevant
in linear quadratic optimal control since the optimal control can be characterized by
adding a certain output and subsequently putting that additional output equal to zero.

Definition 2.10. Let S be an i/s/o node, let Y0 be a Hilbert space and let C =
[
C1 C0

]
:[

X
X

]
→ Y0 and D =

[
D1 D0

]
:
[

Y
U

]
→ Y0 be (bounded single-valued everywhere-

defined) operators. The nonstandard output extension Sext of S with observation exten-
sion C and feedthrough extension D is defined by

gph(Sext) =




z[

C1z+C0x+D1y+D0u
y

]
x
u

 ∈


X[
Y0
Y

]
X
U

 :


z
y
x
u

 ∈ gph(S)

 .

A standard output extension is a nonstandard output extension where C1 = 0 and D1 =
0.

We equivalently have by [2, (5.1.12b)]

gph(Sext) =


1 0 0 0[

C1
0

] [
D1
1

] [
C0
0

] [
D0
0

]
0 0 1 0
0 0 0 1

gph(S),
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and we can recover S from Sext by [2, (5.1.13b)] through

gph(S) =


1 0 0 0
0
[
0 1

]
0 0

0 0 1 0
0 0 0 1

gph(Sext).

Definition 2.10 is from [2, Definition 5.1.23 (ii)] and [2, Definition 5.1.33 (ii)]. If
S is bounded, then a nonstandard output extension is equivalent to a standard output
extension [2, Lemma 6.2.1 (vii)].

Remark 2.11. From [2, Lemma 5.5.15] we infer that ρ(Sext) = ρ(S) for any nonstan-
dard output extension Sext of a resolvable i/s/o node S.

3 Linear quadratic optimal control
For the purposes of linear quadratic optimal control, we restrict the set Ω in Definition
2.8 to be a subset of ρ(S)∩C+ (as was done in [15]). In that case, for certain Ω

trajectories we can give a time-domain interpretation.

Definition 3.1. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open
subset of ρ(S)∩C+. For x0 ∈ X the set of i/o stable Ω trajectories is defined as
follows. Let u ∈ L2(R+;U ) and let û be the restriction to Ω of the Laplace transform
of u. Let ŷ be the output component of the corresponding Ω trajectory. If there exists
a (necessarily unique) y ∈ L2(R+;Y ) whose Laplace transform restricted to Ω equals
ŷ, then we call (y,u) an i/o stable Ω trajectory with initial condition x0.

We say that S satisfies the Ω finite cost condition if for all x0 ∈X the corresponding
set of i/o stable Ω trajectories is non-empty.

Remark 3.2. The above essentially coincides with the notion of stable input/output
pairs from [13]. The difference is that in [13] an additional assumption is made on the
resolvent linear system (i.e. resolvable i/s/o node) which allows for frequency domain
trajectories for Ω an exponential region to always be interpreted as Laplace trans-
forms of distributions. By using the ideas in [15], we can circumvent this additional
assumption (and can allow for more general Ω).

Remark 3.3. The definition of trajectories and therefore of the optimal control problem
considered depends on the choice of Ω. In most applications, ρ(S)∩C+ is connected
and then the choice of Ω is immaterial (see [15]). More generally, ρ(S)∩C+ usually
contains a subset of the form [r,∞) for some r > 0 and the natural choice of Ω is then as
(a subset of) this connected component of ρ(S)∩C+ (this is the choice which is made
in [13]).

Definition 3.4. The linear quadratic optimal control problem for a future-resolvable
i/s/o node is: for given x0 ∈X find the i/o stable Ω trajectory with initial condition x0

of minimal norm, i.e. minimize ‖u‖2
L2(R+;U )

+‖y‖2
L2(R+;Y )

.
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4 The internal Cayley transform
As in [15] and [13], the easiest way to approach the linear quadratic optimal con-
trol problem at this high level of generality is through utilizing the internal Cayley
transform to translate the problem to a discrete-time linear quadratic optimal control
problem.

Definition 4.1. For α ∈ C with Re(α)> 0, the Cayley transform of the i/s/o node S is
the multi-valued operator Sd from

[
X
U

]
to
[

X
Y

]
whose graph is given by

gph(Sd) =


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1

gph(S).

Definition 4.1 is from [2, Definition 14.9.7].
We have [2, (14.9.6(b)]

gph(S) =


α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1

gph(Sd),

and

gph(Ĝ(α)) =


1√

2Re(α)
0 1√

2Re(α)
0

0 1 0 0
0 0

√
2Re(α) 0

0 0 0 1

gph(Sd),

and (see [2, proof of Lemma 14.9.8])

gph(Sd) =


√

2Re(α) 0 −1√
2Re(α)

0

0 1 0 0
0 0 1√

2Re(α)
0

0 0 0 1

gph(Ĝ(α)).

If S is future-resolvable and α ∈ ρ(S)∩C+, then the Cayley transform with parameter
α is a single-valued bounded operator with domain

[
X
U

]
and in particular it therefore

can be written as

Sd =

[
Ad Bd
Cd Dd

]
,

for (single-valued bounded everywhere-defined) operators Ad : X →X , Bd : U →
X , Cd : X → Y and Dd : U → Y . Explicitly we have

Ad =−I+2Re(α) Â(α), Bd =
√

2Re(α)B̂(α), Cd =
√

2Re(α) Ĉ(α), Dd = D̂(α).
(2)
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The formal i/s/o resolvent of Sd (in accordance with Definition 2.4, but using w for
the resolvent variable) is given by

gph(Ĝd(w))=


0 0 1 0
0 1 0 0
−1 0 w 0
0 0 0 1

gph(Sd)=


0 0 1√

2Re(α)
0

0 1 0 0
−
√

2Re(α) 0 1+w√
2Re(α)

0

0 0 0 1

gph(Ĝ(α)).

Using [2, (10.2.1c)] (which is basically the resolvent identity)

gph(Ĝ(α)) =


1 0 0 0
0 1 0 0

α−λ 0 1 0
0 0 0 1

gph(Ĝ(λ )), (3)

we obtain the following relation between the formal i/s/o resolvents

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0
−
√

2Re(α)+ 1+w√
2Re(α)

(α−λ ) 0 1+w√
2Re(α)

0

0 0 0 1

gph(Ĝ(λ )).

With the following correspondence between the resolvent variables

λ =
αw−α

w+1
, w =

α +λ

α−λ
,

the above relation becomes

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0

0 0
√

2Re(α)

α−λ
0

0 0 0 1

gph(Ĝ(λ )).

From this we can deduce the following relation between the various resolvent operators

Âd(w) =
(α−λ )2

α +α
Â(λ )+

α−λ

α +α
I, B̂d(w) =

α−λ√
2Re(α)

B̂(λ ),

Ĉd(w) =
α−λ√
2Re(α)

Ĉ(λ ), D̂d(w) = D̂(λ ),

and we obtain that λ ∈ ρ(S) if and only if w ∈ ρ(Sd).
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Remark 4.2. It will later be important how the Cayley transform interacts with non-
standard output extensions. Since


α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1




1 0 0 0[
Cd,1

0

] [
Dd,1

1

] [
Cd,0

0

] [
Dd,0

0

]
0 0 1 0
0 0 0 1




1√
2Re(α)

0 α√
2Re(α)

0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1



=


1 0 0 0[

C1
0

] [
D1
1

] [
C0
0

] [
D0
0

]
0 0 1 0
0 0 0 1

 ,
with

C1 =
1√

2Re(α)

(
Cd,1−Cd,0

)
, D1 =Dd,1, C0 =

1√
2Re(α)

(
αCd,1 +αCd,0

)
, D0 =Dd,0,

we see that the inverse Cayley transform of a nonstandard output extension of the Cay-
ley transform of S is a nonstandard output extension of S. If the output extension of the
Cayley transform is standard (i.e. Cd,1 = 0 and Dd,1 = 0), then the output extension of
S need not be standard since then C1 =

−1√
2Re(α)

Cd,0, which is generally nonzero.

5 Discrete-time linear quadratic optimal control
For a bounded i/s/o node

Sd =

[
Ad Bd
Cd Dd

]
,

(which in our application will come from the Cayley transform) we consider the
discrete-time dynamics

(xd)n+1 = Ad(xd)n +Bd(xd)n, (yd)n =Cd(xd)n +Dd(ud)n, (4)

i.e. 
(xd)n+1
(yd)n
(xd)n
(ud)n

 ∈ gph(Sd), (5)

(this should be compared to the continuous-time case (1), noting that in discrete-time
the sense in which the equation should be understood is completely obvious). We call
(x,y,u) a discrete-time trajectory if (5) is satisfied for all n ∈ N0.

For a discrete-time system we define for a given initial condition x0 ∈ X the
set of i/o stable discrete-time trajectories as consisting of those ud ∈ `2(N0;U ) and
yd ∈ `2(N0;Y ) for which there exists a xd : N0→X such that (xd)0 = x0 and (4) (or
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equivalently (5)) is satisfied. If for all x0 ∈X this set is non-empty, then it is said that
the discrete-time finite cost condition holds. The discrete-time linear quadratic optimal
control problem is: for a given x0 ∈X find the i/o stable discrete-time trajectory with
initial condition x0 of minimal norm, i.e. minimize ‖ud‖2

`2(N0;U )
+‖yd‖2

`2(N0;Y )
.

By standard discrete-time theory (see e.g. [14]), if the discrete-time finite cost
condition is satisfied, then there exist Kd , Ld and X which satisfy the (Lur’e form of
the) discrete-time Riccati equation:

A∗dXAd−X +C∗dCd = K∗d Kd ,

B∗dXBd +D∗dDd + I = L∗dLd ,

B∗dXAd +D∗dCd = L∗dKd ,

the optimal cost is given by 〈Xx0,x0〉 and the optimal control is given by

0 = Kd(xd)n +Ld(ud)n,

which noting that by the middle Lur’e equation, Ld has the left-inverse (B∗dXBd +
D∗dDd + I)−1L∗d , can be explicitly written as

(ud)n =−(B∗dXBd +D∗dDd +I)−1L∗dKd(xd)n =−(B∗dXBd +D∗dDd +I)−1 (B∗dXAd +D∗dCd)(xd)n.

Similarly, Ld and Kd can be eliminated from the Lur’e equations to obtain the standard
form of the Riccati equation

A∗dXAd−X +C∗dCd− (C∗dDd +A∗dXBd)(B∗dXBd +D∗dDd + I)−1(B∗dXAd +D∗dCd) = 0.

For our purposes it will be convenient to write the Lur’e form of the Riccati equation
as

〈zd ,Xzd〉−〈xd ,Xxd〉+‖yd‖2 +‖ud‖2 = ‖wd‖2, for all


zd[
wd
yd

]
xd
ud

 ∈ gph(Sext
d ), (6)

where

gph(Sext
d ) =




zd[
wd
yd

]
xd
ud

 :


zd
yd
xd
ud

 ∈ gph(Sd), wd = Kdxd +Ldud

 .

Using Definition 2.10, Sext
d is the standard output extension of Sd with observation

extension
[
0 Kd

]
and feedthrough extension

[
0 Ld

]
(note that by [2, Lemma 6.2.1

(vii)] since Sd is bounded, any non-standard output extension is equivalent to a standard
output extension).
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Remark 5.1. By the above, we can therefore formulate the solution of the discrete-
time optimal control problem as follows: if Sd satisfies the discrete-time finite cost
condition, then for all x0 ∈ X a unique optimal control exists, the optimal cost is
given by 〈Xx0,x0〉, S has a standard output extension Sext

d with a feedthrough extension
which has left-invertible standard part such that (6) holds and the optimal control is
characterized by putting the additional output in Sext

d equal to zero.

6 The internal Cayley transform in linear quadratic
optimal control

The crucial observation (utilized in [13] and in [15]) is that stable i/o trajectories in
continuous- and discrete-time correspond to each other. Let L denote the Laplace
transform and note that by the Paley–Wiener theorem for a Hilbert space K this
is an isometric isomorphism between L2(R+;K ) and the Hardy space H2(C+;K ).
The Z-transform Z maps a sequence (hn)n∈N0 to the corresponding formal power se-
ries ∑

∞
n=0 hnzn and gives an isometric isomorphism between `2(N0;K ) and the Hardy

space of the disc H2(D;K ). Finally, for α ∈ C with Re(α) > 0, the linear fractional
transformation

(Fα g)(z) =

√
Re(2α)

1+ z
g
(

α−αz
1+ z

)
, (F−1

α f )(λ ) =

√
Re(2α)

α +λ
f
(

α−λ

α +λ

)
,

gives an isometric isomorphism between the Hardy spaces H2(C+;K ) and H2(D;K ).

Remark 6.1. In the above we use the discrete-time frequency domain variable z which
in the stable case belongs to the unit disc. The discrete-time resolvent parameter w
relates to this z though w = 1

z . We could have written the above in terms of w by
utilizing the Hardy space of the exterior of the unit disc.

Lemma 6.2. Let S be a future-resolvable i/s/o node. Let Ω be a non-empty connected
open subset of ρ(S)∩C+ and let α ∈ Ω. Let Sd be the Cayley transform of S with
parameter α . Let x0 ∈X . The set of i/o stable Ω trajectories of S and the set of i/o
stable discrete-time trajectories of Sd , both with initial condition x0, are isometrically
isomorphic through the map Z −1FαL .

Proof. This is essentially contained in [15, Section 4.1] and also in [13, Theorem 6.5].

Proposition 6.3. Let X : X → X be a bounded single-valued everywhere-defined
self-adjoint operator. Let S̃ be a closed i/s/o node with state space X , input space U
and output space

[
Y
U

]
and let S̃d be its Cayley transform with parameter α ∈ C with

Re(α)> 0. The following are equivalent: (here Ĝ is the formal i/s/o resolvent of S̃ and
λ ∈ C)
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(i)

〈z,Xx〉+ 〈Xx,z〉+‖y‖2 +‖u‖2 = ‖w‖2, for all


z[
w
y

]
x
u

 ∈ gph(S̃);

(ii)

〈λ ẑ− x̂,Xx̂〉+〈X(λ ẑ− x̂), x̂〉+‖ŷ‖2+‖û‖2 = ‖ŵ‖2, for all


ẑ[
ŵ
ŷ

]
x̂
û

∈ gph(Ĝ(λ ));

(iii)

〈zd ,Xzd〉−〈xd ,Xxd〉+‖yd‖2 +‖ud‖2 = ‖wd‖2, for all


zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

Proof. This follows easily from the relations between the graphs. As an example we
show how the first equation implies the third in detail. Let

zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

Then there exists
z[
w
y

]
x
u

 ∈ gph(S̃), such that


zd[
wd
yd

]
xd
ud

=


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1




z[
w
y

]
x
u

 .
With this the third equation then is〈

1√
2Re(α)

z+
α√

2Re(α)
x,X

(
1√

2Re(α)
z+

α√
2Re(α)

x

)〉

−

〈
−1√

2Re(α)
z+

α√
2Re(α)

x,X

(
−1√

2Re(α)
z+

α√
2Re(α)

x

)〉
+‖y‖2 +‖u‖2 = ‖w‖2.

Simplifying this gives the first equation, which by assumption is satisfied, so that the
third equation is satisfied.
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7 The algebraic Riccati equation for future-resolvable
i/s/o nodes

Theorem 7.1. Let S be a future-resolvable i/s/o node and let Ω be a non-empty con-
nected open subset of ρ(S)∩C+. If the Ω finite cost condition is satisfied, then for ev-
ery x0 ∈X there exists a unique optimal control, there exists a bounded single-valued
everywhere-defined self-adjoint operator X : X →X such that the optimal cost is
given by 〈Xx0,x0〉, S has a non-standard output extension Sext with a feedthrough ex-
tension which is standard and has left-invertible standard part and is such that

〈z,Xx〉+ 〈Xx,z〉+‖y‖2 +‖u‖2 = ‖w‖2, for all


z[
w
y

]
x
u

 ∈ gph(Sext); (7)

holds and the optimal control is characterized by putting the additional output in Sext

equal to zero.

Proof. Let α ∈Ω and let Sd be the Cayley transform of S with parameter α . Since the
Ω finite cost condition is satisfied for S, it follows from Lemma 6.2 that the discrete-
time finite cost condition is satisfied for Sd . By Remark 5.1, a unique discrete-time
optimal control exists, which by Lemma 6.2 transforms to a unique continuous-time
optimal control. By Remark 5.1 the discrete-time optimal cost is given by 〈Xx0,x0〉,
which by Lemma 6.2 is also the continuous-time optimal cost. By Remark 5.1, Sd
has a standard output extension Sext

d whose feedthrough extension has a left-invertible
standard part such that the discrete-time Riccati equation (6) holds. By Remark 2.11
the resolvent set of Sext

d is the same as that of Sd . Define Sext as the inverse Cayley
transform (with the same parameter α) of Sext

d . By Remark 4.2, this is a non-standard
output extension of S, the feedthrough extension is standard (i.e. D1 = 0 in Remark
4.2 since Dd,1 = 0 as the discrete-time feedthrough extension is standard) and its stan-
dard part is left-invertible (since D0 = Dd,0 and the discrete-time feedthrough Dd,0 is
left-invertible). By Remark 2.11 the resolvent set of Sext is the same as that of S. By
Proposition 6.3 (applied with S̃ = Sext and therefore S̃d = Sext

d ) we have that (7) holds
(since (6) holds as we saw above). Since in discrete-time the optimal control is char-
acterized by putting the additional output in Sext

d equal to zero, the equivalent is true in
continuous-time because these output are Cayley transforms of each other.

The Riccati equation (7) is representation-independent in that we can substitute
any representation of S into it: for example a kernel representation from Remark 2.2
or (if such a representation exists) the conventional DAE form from Example 2.3. A
particularly attractive representation in this respect is an image representation.

By [2, Lemma 4.1.15 and Definition 4.1.16], every closed i/s/o node S̃ has an
image representation, i.e. there exist a Hilbert space V and bounded single-valued
everywhere-defined operators F : V →X , Lout : V → Y , K : V →X , Lin : V →U
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such that

gph(S̃) =




z
y
x
u

 ∈


X
Y
X
U

 : z = Fv, y = Loutv, x = Kv, u = Linv

 .

Applying this result with S̃ = Sext from Theorem 7.1, the Riccati equation (7) can be
written as

F∗XK +K∗XF +L∗out,yLout,y +L∗inLin = L∗out,wLout,w, (8)

and the optimal control is obtained from

Lout,wv = 0.

Of course, it is not always easy to explictly find an image representation of a given
DAE (e.g. in terms of the coefficients A, B, C, D, E of the conventional DAE form
considered in Example 2.3), but once such a represenation is obtained, (8) immedi-
ately gives the appropriate Riccati equation very explicitly in terms of the operators
appearing in the image representation.

8 An example
Example 8.1. We return to the example of a conventional DAE from Example 2.3.
In that case we have for a nonstandard output extension as in Theorem 7.1 with a
feedthrough extension which is standard

gph(Sext) =




z[
w
y

]
x
u

 : Ez = Ax+Bu, y = Cx+Du, w = K1z+K0x+L0u

 .

Note that setting w = 0 gives

K1z+K0x+L0u = 0,

which since L0 is left-invertible in the context of Theorem 7.1 gives (here L−1
0 is a

left-inverse of L0):
u =−L−1

0 K1z−L−1
0 K0x.

We note that this feedback depends both on x and z; for trajectories this means that the
optimal control will be a feedback of both the state and its derivative (rather than only
the state as is known to be the case in the purely differential equation situation).

Example 8.2. We again consider the situation in Example 8.1. We show that in the
purely differential equation situation, the conclusions of Theorem 7.1 reduce to the
usual ones.

13



Assume that E is invertible (i.e. has a bounded single-valued everywhere-defined
inverse). Then we can easily eliminate z and re-write the Riccati equation (7) as (here
K := K1E−1A+K0 and L := L0 +K1E−1B)

〈E−1Ax+E−1Bu,Xx〉+ 〈Xx,E−1Ax+E−1Bu〉+‖Cx+Du‖2+‖u‖2 = ‖Kx+L0u‖2.

Since u ∈U and x ∈X are arbitrary, this can be written as the Lur’e equations

A∗E−∗X +XE−1A+C∗C = K∗K,

D∗D+ I = L∗L,

B∗E−1X +D∗C = L∗K,

which can in turn be written as the standard algebraic Riccati equation

A∗E−∗X +XE−1A+C∗C− (XE−∗B+C∗D)(D∗D+ I)−1(B∗E−1X +D∗C) = 0.

The optimal control is characterized by 0 = K1z+K0x+L0u, which is

0 = Kx+Lu.

From this we obtain

u =−(D∗D+ I)−1 (B∗E−1X +D∗C
)

x.

Hence we have that the conclusions of Theorem 7.1 become the usual ones.
We note that [15] considers a more general version of this “usual” Riccati equation

which allows for example for the solution X to be unbounded (this relates to not every
initial condition having a finite cost).

Example 8.3. We consider an example from [5] (see also [3, 11, 7]). Although this
is a seemingly simple finite-dimensional example, it is interesting since the “naive”
algebraic Riccati equation

A∗ZE+E∗ZA+C∗C− (E∗ZB+C∗D)(I +D∗D)−1(B∗ZE+D∗C) = 0,

does not have a solution (see [3]). The example is of the conventional DAE form from
Example 2.3 with

E =

[
1 0
0 0

]
, A =

[
0 1
1 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
.

Here

λE−A =

[
λ −1
−1 0

]
, (λE−A)−1 =

[
0 −1
−1 −λ

]
,

so that the i/s/o resolvent set equals C (which implies that the choice of Ω is immaterial;
we choose Ω equal to the open right half-plane C+ since this works nicely with Laplace
transforms). We further have

gph(S) =




z
y
x
u

 : z1 = x2, 0 = x1 +u, y = x

 ,
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and

Â(λ ) =

[
0 0
−1 0

]
, B̂(λ ) =

[
−1
−λ

]
, Ĉ(λ ) =

[
0 0
−1 0

]
, D̂(λ ) =

[
−1
−λ

]
.

Therefore the equations for Ω trajectories from Remark 2.9 are

ŷ(λ ) = x̂(λ ) =
[
−û(λ )

−x0
1−λ û(λ )

]
.

From this we see that the Ω finite-cost condition is satisfied. We can choose u(t) =
−x0

1e−t (which is in L2(R+)) so that

û =
−x0

1
λ +1

, ŷ =
[

1
−1

]
x0

1
λ +1

,

and we see that ŷ is the Laplace transform of

y(t) =
[

1
−1

]
x0

1e−t ,

which is in L2(R+).
In this example it is easy to obtain an image representation (the idea is that z2, x2

and u can be chosen as “free” variables which determine the others):

F =

[
0 1 0
1 0 0

]
, Lout,y = K =

[
0 0 −1
0 1 0

]
, Lin =

[
0 0 1

]
.

Writing (using that X is symmetric):

X =

[
X1 X0
X0 X2

]
, Lout,w =

[
L1 L2 L3

]
,

the image representation form (8) of the Riccati equation is 0 X2 −X0
X2 2X0 +1 −X1
−X0 −X1 2

=

 L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

 .
From the top-left entry we obtain L1 = 0, from which we deduce using the first row that
X0 = X2 = 0. The bottom right 2-by-2 matrix then is[

1 −X1
−X1 2

]
=

[
L2

2 L2L3
L2L3 L2

3

]
.

From the diagonal entries we then obtain L2 = ±1 and L3 = ±
√

2. Since X1 ≥ 0
(because X is positive semi-definite) L2 and L3 must have opposite signs. We choose
L2 = 1 and L3 =−

√
2 (this sign choice is immaterial) and obtain

X =

[√
2 0

0 0

]
, L =

[
0 1 −

√
2
]
.
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Hence the optimal cost is 〈Xx0,x0〉 =
√

2(x0
1)

2 and the optimal control is determined
by [

0 1 −
√

2
]z2

x2
u

= 0,

i.e.
u =

1√
2

x2,

as is also obtained in the above references using various different methods. Note that
we can equivalently write this as the output feedback

u =
1√
2

y2.

Example 8.4. The computations in Example 8.3 can be simplified by choosing a
smaller state space. To write the relation between the input, the (relevant part of
the) initial state and the output in conventional DAE form, a two-dimensional state
is needed. However, because i/s/o nodes are more general than conventional DAEs, it
is possible to described the same relation using a one-dimensional state space using
i/s/o nodes. Consider the i/s/o node with X and U one-dimensional and Y two-
dimensional given by

gph(S) =




z
y
x
u

 : z = y2, y1 =−u, x =−u

 .

We have that the i/s/o resolvent set equals C and that

Â(λ ) = 0, B̂(λ ) =−1, Ĉ(λ ) =

[
0
−1

]
, D̂(λ ) =

[
−1
−λ

]
.

We in particular see that D̂ is the same as in Example 8.3 and that Ĉx1 = ĈE [ x1
x2 ], where

Ĉ is the state/output resolvent from Example 8.3. Since E [ x1
x2 ] is the “relevant part” of

the initial state [ x1
x2 ], we see that the state/output resolvents therefore also essentially

coincide. Hence the i/s/o node from this example and the one from Example 8.3 are
from the linear quadratic optimal control perspective equivalent.

A kernel representation (as in Remark 2.2) is (here the space Z is three-
dimensional)

E =

1
0
0

 , Nout =

0 −1
1 0
0 0

 , M =

0
0
1

 , Nin =

 0
−1
1

 .
An image representation is (the idea is that y2 and u are “free”)

F =
[
1 0

]
, Lout,y =

[
0 −1
1 0

]
, K =

[
0 −1

]
, Lin =

[
0 1

]
.
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The image representation form (8) of the Riccati equation is[
1 −X
−X 2

]
=

[
L2

1 L1L2
L1L2 L2

2

]
.

From this we obtain that L1 and L2 must have opposite signs (since their product equals
−X) and picking an arbitrary sign convention gives L1 =−1, L2 =

√
2, X =

√
2. Hence

the optimal cost is
√

2(x0)2 and the optimal control is determined by

−y2 +
√

2u = 0,

i.e.
u =

1√
2

y2.

This solution is consistent with what we obtained in Example 8.3 noting that x0 here
corresponds to x0

1 there.
Note that the above cannot be written as a state feedback. Equivalently, the optimal

output extension is necessarily nonstandard: we can re-write the equation determining
the optimal control as

−z+
√

2u = 0.

Therefore the observation extension is
[
−1 0

]
(i.e. C1 = −1 and C0 = 0, so this

is nonstandard) and the feedthrough extension is
[
0 0

√
2
]

(which is standard).
Alternatively, from

−y2 +
√

2u = 0,

we have the standard observation extension
[
0 0

]
and the nonstandard feedthrough

extension
[
0 −1

√
2
]

(i.e. D1 =
[
0 −1

]
and D0 =

√
2). We however cannot have

both a standard observation extension and a standard feedthrough extension at the
same time.

The construction of the i/s/o node in Example 8.4 from that in Example 8.3 can
be done generally based on obtaining a minimal i/s/o node with the same input/output
resolvent as a given i/s/o node, see [2].

Example 8.5. It is possible to further simplify Example 8.4 by considering y2 as the
input and y1 and u as the outputs (this is related to the notion of canonical input space
from [2, Definition 2.1.23]). We therefore define

ũ = y2, ỹ =
[

y1
u

]
.

This change in perspective does not alter the cost function (or the state), but the dy-
namics instead become

ẋ = ũ, ỹ =
[

1
−1

]
x,

i.e. we have a standard state-space system with (E = 1 and)

A = 0, B = 1, C =

[
1
−1

]
, D =

[
0
0

]
.
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The usual Riccati equation is 2−X2 = 0 and gives X =
√

2 and the state feedback
F =−

√
2. The optimal control is therefore determined by

ũ =−
√

2x,

which noting that ũ = y2 and x =−ỹ2 =−u gives

y2 =
√

2u,

which is the same as what was obtained before.

9 Beyond the finite cost condition
To consider the case where not all initial conditions are required to have finite cost, we
need some further notions from [2].

Definition 9.1. Let S be an i/s/o node and let X1 ⊂X be continuously embedded.
Then the part Spart of S in X1 is defined by

gph(Spart) = gph(S)∩


X1
Y
X1
U

 .
Definition 9.1 is adapted from [2, Definition 5.1.10 (i)] where it was assumed that

X1 is a closed subspace of X .

Remark 9.2. It is easy to see that the Cayley transform of the part of S in X1 equals
the part in X1 of the Cayley transform of S (i.e. taking the Cayley transform and taking
the part commute).

9.1 The discrete-time case
We reconsider the situation of a bounded i/s/o node Sd with discrete-time dynamics
from Section 5.

Definition 9.3. The initial state x0 ∈X is said to have discrete-time finite cost if the
corresponding set of i/o stable trajectories is non-empty. We denote the subspace of
discrete-time finite cost initial states by Xd,finite.

By [14, Section 2], for every element x0 of Xd,finite, a unique minimal norm i/o sta-
ble trajectory (umin

d ,ymin
d ) exists. This defines a closed nonnegative sesquilinear sym-

metric form q on X with domain Xd,finite given by

q[x0
1,x

0
2] :=

〈[
umin

d,1
ymin

d,1

]
,

[
umin

d,2
ymin

d,2

]〉
,
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which we call the discrete-time optimal cost sequilinear form. We will consider
Xd,finite with the inner-product

〈x0
1,x

0
2〉Xd,finite := 〈x0

1,x
0
2〉X +q[x0

1,x
0
2],

(this is called the graph inner product in [14, Section 4]). With this, Xd,finite is a Hilbert
space which is continuously embedded in X .

Definition 9.4. The bounded i/s/o node Sd satisfies the discrete-time input finite fu-
ture cost condition if all initial states in im(Bd) have discrete-time finite cost, i.e. if
im(Bd)⊂Xd,finite.

Remark 9.5. The above definition is adapted from [14, Definition 3.3] where the equiv-
alent concept was called the finite future incremental cost condition. See [14, Lemma
3.4] for this equivalence and for the fact that AdXd,finite ⊂Xd,finite.

Definition 9.6. Let S and S1 be two bounded i/s/o nodes with the same input and output
spaces and where X1 ⊂X . We call S1 a restriction of S to X1 if the following two
conditions hold

(i) Every discrete-time trajectory of S1 is also a discrete-time trajectory of S;

(ii) If (x,y,u) is a discrete-time trajectory of S with x(0) ∈X1, then xn ∈X1 for all
n ∈ N and (x,y,u) is a discrete-time trajectory of S1.

Definition 9.6 is adapted from [2, Definition 5.4.37] (which is in continuous-time)
as indicated in [2, Definition 6.5.7]. Moreover, we do not assume that X1 is a closed
subspace of X as was done in [2, Definition 5.4.37].

Lemma 9.7. Let Sd be a bounded i/s/o node and let X1 ⊂X be continuously embed-
ded. The following are equivalent:

(i) Sd has a discrete-time restriction to X1;

(ii) Sd has a unique discrete-time restriction to X1;

(iii) AdX1 ⊂X1 and im(Bd)⊂X1;

(iv) The part of Sd in X1 is bounded.

If these equivalent conditions hold, then the part of Sd in X1 is the unique discrete-time
restriction to X1 from (ii).

Proof. This is part of [2, Theorem 6.3.19] (the discrete-time version of which holds
by [2, Lemma 6.5.8]). There is was assumed that X1 ⊂ X is closed (rather than
continuously embedded), but the result remains true (with essentially the same proof)
under our weaker assumption.

If the discrete-time input finite future cost condition holds for Sd , then with X1 :=
Xd,finite the condition (iii) in Lemma 9.7 is satisfied by Remark 9.5. Therefore by
Lemma 9.7 we can restrict Sd to the space of discrete-time finite cost states. Conversely,
we see from Lemma 9.7 that the discrete-time input finite future cost condition (which
is implied by (iii)) is necessary for the restriction of Sd to the space of discrete-time
finite cost states to make sense.
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Definition 9.8. Let Sd be a bounded i/s/o node. Let q be a closed nonnegative sesquilin-
ear symmetric form on X with domain X1 and equip X1 with the inner-product
q[x1,x2] + 〈x1,x2〉X (so that X1 is a Hilbert space which is continuously embedded
in X ). We say that q satisfies the discrete-time Riccati equation for Sd if

(i) the part Sd,part of Sd in X1 is bounded;

(ii) Sd,part has a standard output extension Sext
d,part with a feedthrough extension which

has left-invertible standard part and is such that

q[zd ,zd ]−q[xd ,xd ]+‖yd‖2+‖ud‖2 = ‖wd‖2, for all


zd[
wd
yd

]
xd
ud

∈ gph(Sext
d,part).

(9)

Sesquilinear symmetric forms can be ordered as follows: q1 ≤ q2 means that
dom(q1)⊃ dom(q2) and q1[x,x]≤ q2[x,x] for all x ∈ dom(q2).

Theorem 9.9. Let Sd be a bounded i/s/o node for which the discrete-time input finite
cost condition holds. Then the discrete-time optimal cost sequilinear form is the small-
est solution of the discrete-time Riccati equation. The optimal control is characterized
by putting the additional output in Sext

d,part equal to zero.

Proof. This is [14, Theorem 3.14] once translated to the current terminology.

9.2 The continuous-time case
Definition 9.10. Let S be a future-resolvable i/s/o node and let Ω be a non-empty
open subset of ρ(S)∩C+. The initial state x0 ∈X is said to have Ω finite cost if the
corresponding set of i/o stable Ω trajectories is non-empty. We denote the subspace of
Ω finite cost initial states by Xfinite.

By [15, Section 3.1], for every element x0 of Xfinite, a unique minimal norm i/o
stable Ω trajectory (umin,ymin) exists. This defines a closed nonnegative sesquilinear
symmetric form q on X with domain Xfinite given by

q[x0
1,x

0
2] :=

〈[
umin

1
ymin

1

]
,

[
umin

2
ymin

2

]〉
,

which we call the Ω optimal cost sequilinear form. We will consider Xfinite with the
inner-product

〈x0
1,x

0
2〉Xfinite := 〈x0

1,x
0
2〉X +q[x0

1,x
0
2].

With this, Xfinite is a Hilbert space which is continuously embedded in X .

Remark 9.11. If Ω is connected, α ∈Ω and Sd is the Cayley transform with parameter
α of S, then by Lemma 6.2 we have that the Ω finite cost initial states for S and the
discrete-time finite cost initial states of Sd are the same, i.e. that Xfinite = Xd,finite.

20



Definition 9.12. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open
subset of ρ(S)∩C+. Then S satisfies the Ω input finite future cost condition if for all
λ ∈Ω, all initial states in im(B̂(λ )) have Ω finite cost.

Remark 9.13. The above definition is adapted from [15, Definition 5.7] where the
corresponding concept is defined with respect to a fixed α ∈ Ω (by [15, Theorem 5.9]
this is equivalent to it holding for all λ ∈Ω if Ω is connected).

Lemma 9.14. Let S be a future-resolvable i/s/o node and let Ω be a non-empty con-
nected open subset of ρ(S)∩C+. Then Â(λ )Xfinite ⊂Xfinite for all λ ∈Ω.

Proof. Let α ∈Ω and let Sd be the Cayley transform of S with parameter α . By Remark
9.11 we have Xfinite = Xd,finite. By Remark 9.5 we have AdXd,finite ⊂Xd,finite, which
by (2) is equivalent to Â(α)Xfinite ⊂Xfinite. Since α ∈ Ω was arbitrary, we get the
desired result.

Definition 9.15. Let S1 and S be two i/s/o nodes with the same input and output spaces
and where X1 ⊂X and let Ω be a non-empty open subset of C. We call S1 an Ω-
restriction of S if the following two conditions hold

(i) Every frequency domain Ω trajectory of S1 is also a frequency domain Ω trajec-
tory of S;

(ii) If (x̂, ŷ,x0, û) is a frequency domain Ω trajectory of S with x0 ∈X1, then x̂(λ ) ∈
X1 for all λ ∈Ω and (x̂, ŷ,x0, û) is a frequency domain Ω trajectory of S1.

Definition 9.15 is adapted from [2, Definition 11.1.44] where it was assumed that
X1 is a closed subspace of X .

Lemma 9.16. Let S be a resolvable i/s/o node, let Ω ⊂ ρ(S) and let X1 ⊂ X be
continuously embedded. Then the following are equivalent:

(i) S has an Ω-restriction to X1;

(ii) S has a unique resolvable Ω-restriction to X1 whose resolvent set includes Ω;

(iii) Â(λ )X1 ⊂X1 and B̂(λ )U ⊂X1 for all λ ∈Ω;

(iv) Spart is resolvable and Ω⊂ ρ(Spart).

If these equivalent conditions hold, then the part of S in X1 is the unique Ω-restriction
to X1 from (ii).

Proof. This is part of [2, Theorem 11.1.51]. There is was assumed that X1 ⊂X is
closed (rather than continuously embedded), but the result remains true (with essen-
tially the same proof) under our weaker assumption.

If the Ω input finite future cost condition holds for S and Ω is connected, then with
X1 := Xfinite the condition (iii) in Lemma 9.16 is satisfied by Lemma 9.14. Therefore
by Lemma 9.16 we can restrict S to the space of Ω finite cost states. Conversely, we
see from Lemma 9.16 that the Ω input finite future cost condition (which is implied by
(iii)) is necessary.
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Definition 9.17. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open
subset of ρ(S)∩C+. Let q be a closed nonnegative sesquilinear symmetric form on X
with domain X1 and equip X1 with the inner-product q[x1,x2]+ 〈x1,x2〉X (so that X1
is a Hilbert space which is continuously embedded in X ). We say that q satisfies the
Ω-Riccati equation for S if

(i) the part Spart of S in X1 is resolvable and satisfies Ω⊂ ρ(Spart);

(ii) Spart has a nonstandard output extension Sext
part with a feedthrough extension which

is standard and has left-invertible standard part and is such that

q[z,x]+q[x,z]+‖y‖2 +‖u‖2 = ‖w‖2, for all


z[
w
y

]
x
u

 ∈ gph(Sext
part); (10)

Theorem 9.18. Let S be a future-resolvable i/s/o node and let Ω be a non-empty con-
nected open subset of ρ(S)∩C+ for which the Ω input finite future cost condition holds.
Then the Ω optimal cost sequilinear form is the smallest solution of the Ω-Riccati equa-
tion. The optimal control is characterized by putting the additional output in Sext

part equal
to zero.

Proof. This is proven similarly to Theorem 7.1 using Remark 9.2.

9.3 Impulse controllability
To relate our results to available results on Riccati equations for DAEs, we briefly
discuss the concept of impulse controllability in the i/s/o node framework.

Definition 9.19. The classical state space X0 of the i/s/o node S equals

X0 :=

x ∈X : ∃z,y,u such that


z
y
x
u

 ∈ gph(S)

=

{
x ∈X : ∃u such that

[
x
u

]
∈ dom(S)

}
.

The above definition is adapted from [2, Definition 2.1.15].

Remark 9.20. We have for λ ∈ C

X0 =

x ∈X : ∃z,y,u such that


x
y

−z−λ

u

 ∈ gph(Ĝ(λ ))


=

x ∈X : ∃z̃,y,u such that


x
y
z̃
u

 ∈ gph(Ĝ(λ ))


= im

[
Â(λ ) B̂(λ )

]
.
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Remark 9.21. From [4, Remark 4.1] for a finite-dimensional conventional DAE with
det(sE−A) not the zero polynomial (i.e. the corresponding i/s/o node is resolvable),
the DAE being controllable at infinity is equivalent to im

[
E B

]
= X . This in turn is

equivalent to im
[
Â(λ ) B̂(λ )

]
= X . Combining this with Remark 9.20 we see that

the condition X0 = X coincides with controllability at infinity.

Definition 9.22. The multivalued part Z0 of the i/s/o node S equals

Z0 :=

z ∈X :


z
0
0
0

 ∈ gph(S)

 .

The above definition is adapted from [2, Definition 2.1.15].
We have for λ ∈ C

Z0 =

x ∈X :


0
0
x
0

 ∈ gph(Ĝ(λ ))

= N

([
Â(λ )

Ĉ(λ )

])
.

From this we see that x0 ∈ Z0 precisely when (0,0,x0,0) is a frequency domain Ω

trajectory of the i/s/o node. In particular, every initial condition in Z0 has zero optimal
cost.

For a conventional DAE we have Z0 =N(E). Therefore for a conventional DAE we
have Z0 = N(Â(λ )) (which is not true for a general i/s/o node). From [4, Remark 4.6]
for a finite-dimensional conventional DAE with det(sE−A) not the zero polynomial
(i.e. the corresponding i/s/o node is resolvable), the DAE being impulse controllable
is equivalent to im

[
Â(λ ) B̂(λ )

]
+N(Â(λ )) = X . Using also Remark 9.21, this is

X0 +Z0 = X . Since for a general i/s/o node this notion also involves the output (for
example though the state/output resolvent Ĉ(λ ) which appears in the characterization
of Z0), referring to this as a controllability property would in general be a misnomer.

For an input/state system (i.e. with output space Y = {0}) we have that X0+Z0 =

X is equivalent to im
[
Â(λ ) B̂(λ )

]
+N(Â(λ )) =X , i.e. to impulse controllability

of the input/state system.

9.4 Comparison with [17]
We compare Theorem 9.18 to the Riccati equation obtained in [17]. We first note
that [17] is for finite-dimensional conventional DAEs whereas our results hold more
generally for (possibly infinite-dimensional) i/s/o nodes. Another difference is that [17]
considers the linear quadratic optimal control problem “with state stability” whereas we
do not consider stability of the state.

In [17] the Riccati equation is considered on the “system space” Vsys. Using [16,
Proposition 3.3] we can describe this space inductively in i/s/o node terms. Let S1 = S
and define Sk+1 as the part of Sk in the classical state space of Sk. It follows from [16,
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Proposition 3.3] that (for a finite-dimensional conventional DAE) there exists a k0 such
that Sk = Sk0 for all k ≥ k0 and that dom(Sk0) = Vsys. The restriction of S to Vsys has
graph (here Z0 is the multi-valued part of S)

gph(Sk0)+


Z0
0
0
0

 .
In [17] it is this restriction which is considered rather than the part Sk0 . However, since
elements in the second component of the above sum contribute zero terms to the Riccati
equation (10), this difference is immaterial.

By [16, Proposition 2.9], without loss of generality, a conventional DAE can be
considered in feedback equivalence form. Focusing on the non-differential part only,
and making the dimension the smallest integer large enough so that the system is not
impulse controllable (in the sense of [4, Definition 2.1]) we arrive at the examples in
Section 9.5 which further illustrate the connection with [17].

9.5 An example
Example 9.23. Consider the conventional DAE (with no output, i.e. Y = {0}) with
X = R3 and U = R

E =

0 1 0
0 0 1
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1
0
0

 .
This gives

gph(S) =


z

x
u

 : z2 = x1 +u, z3 = x2, x3 = 0

 .

Then ρ(S) = C (and we choose Ω = C+) and

(λE−A)−1 =

−1 −λ −λ 2

0 −1 λ

0 0 −1

 , Â(λ ) =

0 1 −λ

0 0 −1
0 0 0

 , B̂(λ ) =

−1
0
0

 .
We have

X0 =


x1

x2
0

 : x1,x2 ∈ R

 , Z0 =


z1

0
0

 : z1 ∈ R

 .

Since X0 +Z0 6= X , this system is not impulse controllable. Since this system is in
feedback equivalence form, the system space from [16] can be calculated using [16,
(3.2)] and equals

Vsys =




x1
x2
x3
u

 : x2 = x3 = 0,x1 =−u

 .
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However, it is instructive to calculate this inductively as in Section 9.4. The part of S
in its classical state space equals (compared to gph(S) we have z3 = 0 since z must
belong to the classical state space)

gph(S2) =


z

x
u

 : z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

The classical state space of S2 is

X2 =


x1

0
0

 : x1 ∈ R

 ,

and the part of S2 in X2 equals (compared to gph(S2) we have z2 = 0 since z ∈X2)

gph(S3) =


z

x
u

 : 0 = z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

The classical state space X3 of S3 equals X2 and therefore the induction stops. We
have

dom(S3) =

{[
x
u

]
: 0 = x1 +u, x2 = x3 = 0

}
,

which is indeed Vsys as determined above.

Example 9.24. We continue Example 9.23. We now consider Y = R3 and the output
y = x. With this output, the cost being finite implies stability of the state, so there
is no difference between the problem “with state stability” and without this stability
requirement. Let

C =

1 0 0
0 1 0
0 0 1

 , D =

0
0
0

 .
Then

Ĉ(λ ) = Â(λ ), D̂(λ ) = B̂(λ ).

Frequency domain trajectories satisfy

ŷ1(λ ) = x0
2−λx0

3− û(λ ), ŷ2(λ ) =−x0
3, ŷ3(λ ) = 0. (11)

The condition that ŷ1 and û are Laplace transforms of L2(0,∞) functions implies that
x0

2−λx0
3 must be as well; this implies x0

2 = x0
3 = 0. Therefore the space of finite cost

states is

Xfinite =


x1

0
0

 : x1 ∈ R

 .
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Since im(B̂(λ ))⊂Xfinite, the input finite future cost condition is satisfied (but the finite
future cost condition is not). The part of S in Xfinite is

gph(Sfinite) =


z

x
u

 : 0 = z2 = x1 +u, 0 = z3 = x2, x3 = 0

 .

We see that Sfinite equals S3 from Example 9.23 and that dom(Sfinite) =Vsys (as expected
since y = x).

For an initial condition in Xfinite we have from (11) that y1 = −u, y2 = y3 = 0 no
matter what the initial condition in Xfinite is. Therefore clearly u = 0 is the optimal
control and the optimal cost equals zero. We indeed see that q = 0 is a solution of the
Riccati equation (10) with the standard output extension w=

√
2u. From Theorem 9.18

we then indeed conclude (since zero must be the smallest solution) that the optimal cost
is zero and the optimal control satisfies

√
2u = 0 (i.e. is zero).

More generally than just verifying that the obvious candidate solution solves the
Riccati equation, we can write down the Riccati equation using an image representa-
tion of Sfinite. Since many components are known to be zero, we only need consider z1,
x1, y1 and u. We then obtain the image representation (the idea being that z1 and u are
“free” and uniquely determine the other variables)

F =
[
1 0

]
, K = Lout =

[
0 −1

]
, Lin =

[
1 0

]
.

This gives the Riccati equation (as in (8))[
0 −X
−X 2

]
=

[
L2

1 L1L2
L1L2 L2

2

]
,

which gives L1 = 0, X = 0 and L2 =
√

2, which is consistent with what we obtained
above.

Using that

Vsys = im


−1
0
0
1

 ,
the Riccati equation in [17] is

[
−1 0 0 1

][A∗PE+E∗PA+C∗C E∗PB+C∗D
B∗PE+D∗C I +D∗D

]
−1
0
0
1

=
[
−1 0 0 1

][K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
which gives

[
−1 0 0 1

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−1
0
0
1

=
[
−1 0 0 1

][K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
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which has as solution P ∈ R3×3 an arbitrary symmetric matrix and

K =
[
0 0 0

]
, L =

√
2.

The stability condition from [17] is also satisfied for this solution since for all λ ∈ C

rank
[
−λE+A B

K L

]
= rank


1 −λ 0 1
0 1 −λ 0
0 0 1 0
0 0 0

√
2

= 4.

According to [17, Theorem 5.7(a)] the optimal cost equals 〈PEx0,Ex0〉 for all x0 ∈
Vdiff. In this example Vdiff = Xfinite and we therefore see that the optimal cost equals
zero (independent of the initial condition x0 ∈Vdiff). According to [17, Theorem 5.7(a)]
the optimal control and optimal state satisfy Kx +Lu = 0, which gives u = 0. We
conclude that (as should be the case) we have consistency between our results and
those of [17].

Example 9.25. We continue Example 9.23 with a different output than in Example
9.24. Consider now Y = R and y = x3. Then

C =
[
0 0 1

]
, D = 0,

and
Ĉ(λ ) =

[
0 0 0

]
, D̂(λ ) = 0.

We see that for all initial conditions and all inputs the output is zero. Therefore the
space of finite cost states equals the whole state space: Xfinite = X . It is also clear
that the optimal cost is zero and the optimal control is zero (independent of the initial
condition). We indeed see that q = 0 is a solution of the Riccati equation (10) with
the standard output extension w = u. From Theorem 9.18 we then indeed conclude
(since zero must be the smallest solution) that the optimal cost is zero and the optimal
control satisfies u = 0 (i.e. is zero). Note that the system space Vsys plays no role in
this example and [17] is not applicable.

10 Conclusion
We considered linear quadratic optimal control for infinite dimensional differential-
algebraic equations (more specifically, for future-resolvable input/state/output nodes)
and obtained an algebraic Riccati equation for the quadratic form which gives the op-
timal cost and which characterizes the optimal control.

For simplicity of exposition, we only considered the most standard cost function
for the linear quadratic optimal control problem and the associated algebraic Riccati
equation, however the method is applicable to general quadratic cost functions.

Also for simplicity of exposition, we considered input/state/output nodes rather
than state/signal nodes (i.e. we assumed that the signal component is a priori split into
an input and an output). However, the cost in linear quadratic optimal control is an
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input/output invariant notion in the sense of [2, Section 5.6.1] and therefore does not
depend on the decomposition of the signal component into an input and an output. The
objective of writing the input as a state feedback is however not an input/output invari-
ant notion and as illustrated in Example 8.5, it can be beneficial to take a state/signal
perspective. With the relevant input/state/output results from [2] replaced by the cor-
responding state/signal results from [2], state/signal equivalents of our results can be
obtained.
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