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Abstract

We consider linear quadratic optimal control for a very general class of infinite-dimensional
differential-algebraic equations (namely, the class of future-resolvable input/state/output nodes)
and obtain an algebraic Riccati equation.

1 Introduction

There has been significant recent interest in infinite-dimensional differential algebraic equations
(DAEs) [6, 10, 8, 12] and particularly in linear quadratic optimal control and (differential or alge-
braic) Riccati equations for infinite-dimensional DAEs [9, 1]. In this article we show how results
and methods from [2, 13, 15] can be utilized to obtain an algebraic Riccati equation for an infinite-
horizon linear quadratic optimal control problem for a very general class of infinite-dimensional
DAEs.

This article is structured as follows. In Section 2 we review relevant notions from [2]. In
Section 3 we precisely formulate the linear quadratic optimal control problem for the class of DAEs
considered. We will utilize the (internal) Cayley transform to solve this problem. Therefore, in
Section 4 we study the Cayley transform, in Section 5 we recall the solution of the discrete-time
linear quadratic optimal control problem and reformulate this in a suitable form, and in Section
6 we relate the Cayley transform and linear quadratic optimal control as in [13, 15]. In Section 7
we present our main result: the solution to the linear quadratic optimal control problem for the
considered class of DAEs through an algebraic Riccati equation. In Section 8 we illustrate this with
a simple, but interesting, finite-dimensional example. The result in Section 7 assumes that every
initial state has finite cost. In [15] we actually considered a more general case and as already noted
in [17] for DAEs the case where not every initial state has finite cost is especially relevant. Therefore
in Section 9 we consider this more general case; for that we introduce some further concepts from
[2], we formulate a more general version of the result from Section 7, we compare that results to
[17] and we consider a finite-dimensional example for which not every initial state has finite cost.

2 Preliminaries

In this section we discuss some general notions from [2] on the input/state/output (i/s/o) node
approach to DAEs which are relevant for our later results on infinite-horizon linear quadratic
optimal control and algebraic Riccati equations.
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Definition 1. Let U , X and Y be Hilbert spaces. An i/s/o node is a multi-valued operator
S : dom(S) ⊂

[ X
U
]
→
[ X
Y
]
. The graph of the i/s/o node S is (note that the components are the

different way around than usual, this is to conform to the convention used in [2]):

gph(S) =

{[
r
q

]
: q ∈ dom(S), r ∈ Sq

}
.

The i/s/o node is called closed if S is a closed multi-valued operator (i.e. when gph(S) is a closed
subspace) and bounded if S is a bounded single-valued operator with domain

[ X
U
]
.

The definition of i/s/o node is adapted from [2, Definition 4.1.5]. Time-domain trajectories of
various kinds (classical, generalized and mild) are defined in [2, Definitions 4.1.5 and 4.1.7]. These
notions capture that in some suitable sense time-domain trajectories should satisfy

[
ẋ
y

]
∈ S

[
x
u

]
, i.e.


ẋ
y
x
u

 ∈ gph(S). (1)

Since we won’t need time-domain trajectories in the sense of [2], we will not elaborate further.

Remark 2. The connection between i/s/o nodes and the “conventional” approach to DAEs becomes
most clear from the notion of a kernel representation from [2, Definition 4.1.16] (see also [2, Lemma
4.1.15]): for a closed i/s/o node there exist a Hilbert space Z and bounded single-valued everywhere-
defined operators E : X → Z, M : X → Z, Nin : U → Z and Nout : Y → Z such that

gph(S) =



z
y
x
u

 ∈

X
Y
X
U

 : Ez +Nouty = Mx+Ninu

 ,

and conversely, the above defines the graph of a closed i/s/o node. The notion of time-domain
trajectory then means that in some suitable sense it should satisfy

Eẋ+Nouty = Mx+Ninu.

Note that compared to the usual form of a DAE, there are no separate equations for Eẋ and y,
but these instead are generally coupled. This makes i/s/o nodes more general than “conventional”
DAEs (an example of an i/s/o node which is not a conventional DAE is given in Example 26).

Example 3. Let U , X , Z and Y be Hilbert spaces and let A : X → Z, B : U → Z, C : X → Y, D :
U → Y and E : X → Z be bounded single-valued everywhere-defined operators. The conventional
DAE

Eẋ = Ax+ Bu, y = Cx+ Du,

is described by the closed i/s/o node

gph(S) =



z
y
x
u

 ∈

X
Y
X
U

 : Ez = Ax+ Bu, y = Cx+ Du

 .
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Definition 4. For λ ∈ C, the formal i/s/o resolvent of the i/s/o node S is the multi-valued
operator Ĝ(λ) from

[ X
U
]

to
[ X
Y
]

whose graph is given by

gph(Ĝ(λ)) =


0 0 1 0
0 1 0 0
−1 0 λ 0
0 0 0 1

 gph(S).

The i/s/o resolvent set ρ(S) of S consists of those λ ∈ C for which Ĝ(λ) is a bounded single-
valued operator with domain

[ X
U
]
. The i/s/o node is called resolvable if ρ(S) is non-empty and

future-resolvable if ρ(S) ∩ C+ 6= ∅. For λ ∈ ρ(S) we have

Ĝ(λ) =

[
Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)

]
,

where Â is called the state/state resolvent, B̂ is called the input/state resolvent, Ĉ is called the
state/output resolvent and D̂ is called the input/output resolvent.

The notions in Definition 4 are taken from [2, Definition 5.5.8]. For the connection with linear
quadratic optimal control, we need the notion of future-resolvable (i.e. ρ(S) contains an element
in the open right-half plane) rather than the weaker notion of resolvable.

We have

gph(S) =


λ 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

 gph(Ĝ(λ)).

Remark 5. Related to Remark 2, by [2, Lemma 5.5.5] we have for a closed i/s/o node

gph(Ĝ(λ)) =



x
y
x0

u

 ∈

X
Y
X
U

 : (λE −M)x+Nouty = Ex0 +Ninu

 .

Example 6. The i/s/o resolvent set of the conventional DAE from Example 3 consists of those
λ ∈ C for which λE−A has a (bounded single-valued everywhere-defined) inverse and the various
resolvent operators are given by

Â(λ) = (λE−A)−1E, B̂(λ) = (λE−A)−1B,

Ĉ(λ) = C(λE−A)−1E, D̂(λ) = C(λE−A)−1B + D.

Remark 7. By [2, Theorems 10.2.9 and 10.2.14], the (formal) i/s/o resolvent of a resolvable i/s/o
node is an i/s/o pseudoresolvent and conversely. Under the name resolvent linear system, i/s/o
pseudoresolvents were studied in [13] in connection with linear quadratic optimal control. The
representation results of [2] now allow us to connect the results from [13] more clearly to DAEs.
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Definition 8. Let Ω be a non-empty open subset of C. A frequency domain Ω trajectory of an
i/s/o node is a quadruple (x̂, ŷ, x0, û) where x̂, ŷ and û are holomorphic functions defined on Ω
with values in X , Y and U respectively and x0 ∈ X such that for all λ ∈ Ω

x̂(λ)
ŷ(λ)
x0

û(λ)

 ∈ gph(Ĝ(λ)).

Remark 9. The above is [2, Definition 11.1.1]. By [2, Lemma 11.1.6], for a resolvable i/s/o node
with Ω ⊂ ρ(S), for every x0 ∈ X and every holomorphic U-valued û, there exist unique x̂ and ŷ
such that the quadruple forms an Ω trajectory; namely[

x̂(λ)
ŷ(λ)

]
= Ĝ(λ)

[
x0

û(λ)

]
.

The following definition allows us to add an output to an i/s/o node. This is relevant in linear
quadratic optimal control since the optimal control can be characterized by adding a certain output
and subsequently putting that additional output equal to zero.

Definition 10. Let S be an i/s/o node, let Y0 be a Hilbert space and let C =
[
C1 C0

]
:
[ X
X
]
→ Y0

and D =
[
D1 D0

]
:
[ Y
U
]
→ Y0 be (bounded single-valued everywhere-defined) operators. The

nonstandard output extension Sext of S with observation extension C and feedthrough extension
D is defined by

gph(Sext) =




z[

C1z + C0x+D1y +D0u
y

]
x
u

 ∈

X[
Y0

Y

]
X
U

 :


z
y
x
u

 ∈ gph(S)

 .

A standard output extension is a nonstandard output extension where C1 = 0 and D1 = 0.

We equivalently have by [2, (5.1.12b)]

gph(Sext) =


1 0 0 0[
C1

0

] [
D1

1

] [
C0

0

] [
D0

0

]
0 0 1 0
0 0 0 1

 gph(S),

and we can recover S from Sext by [2, (5.1.13b)] through

gph(S) =


1 0 0 0
0
[
0 1

]
0 0

0 0 1 0
0 0 0 1

 gph(Sext).

Definition 10 is from [2, Definition 5.1.23 (ii)] and [2, Definition 5.1.33 (ii)]. If S is bounded,
then a nonstandard output extension is equivalent to a standard output extension [2, Lemma 6.2.1
(vii)].

4



Lemma 11. For any nonstandard output extension Sext of a resolvable i/s/o node S we have that
ρ(Sext) = ρ(S).

Proof. This follows from [2, Lemma 5.5.15].

3 Linear quadratic optimal control

For the purposes of linear quadratic optimal control, we restrict the set Ω in Definition 8 to be a
subset of ρ(S) ∩ C+ (as was done in [15]). In that case, for certain Ω trajectories we can give a
time-domain interpretation.

Definition 12. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of
ρ(S) ∩C+. For x0 ∈ X the set of i/o stable Ω trajectories is defined as follows. Let u ∈ L2(R+;U)
and let û be the restriction to Ω of the Laplace transform of u. Let ŷ be the output component
of the corresponding Ω trajectory. If there exists a (necessarily unique) y ∈ L2(R+;Y) whose
Laplace transform restricted to Ω equals ŷ, then we call (y, u) an i/o stable Ω trajectory with
initial condition x0.

We say that S satisfies the Ω finite cost condition if for all x0 ∈ X the corresponding set of i/o
stable Ω trajectories is non-empty.

Remark 13. The above essentially coincides with the notion of stable input/output pairs from [13].
The difference is that in [13] an additional assumption is made on the resolvent linear system (i.e.
resolvable i/s/o node) which allows for frequency domain trajectories for Ω an exponential region
to always be interpreted as Laplace transforms of distributions. By using the ideas in [15], we can
circumvent this additional assumption (and can allow for more general Ω).

Remark 14. The definition of trajectories and therefore of the optimal control problem considered
depends on the choice of Ω. In most applications, ρ(S) ∩ C+ is connected and then the choice of
Ω is immaterial (see [15]). More generally, ρ(S) ∩ C+ usually contains a subset of the form [r,∞)
for some r > 0 and the natural choice of Ω is then as (a subset of) this connected component of
ρ(S) ∩ C+ (this is the choice which is made in [13]).

Definition 15. The linear quadratic optimal control problem for a future-resolvable i/s/o node
is: for given x0 ∈ X find the i/o stable Ω trajectory with initial condition x0 of minimal norm, i.e.
minimize ‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y).

4 The internal Cayley transform

As in [15] and [13], the easiest way to approach the linear quadratic optimal control problem at this
high level of generality is through utilizing the internal Cayley transform to translate the problem
to a discrete-time linear quadratic optimal control problem.

Definition 16. For α ∈ C with Re(α) > 0, the Cayley transform of the i/s/o node S is the
multi-valued operator Sd from

[ X
U
]

to
[ X
Y
]

whose graph is given by

gph(Sd) =


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1

 gph(S).
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Definition 16 is from [2, Definition 14.9.7].
We have [2, (14.9.6(b)]

gph(S) =


α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1

 gph(Sd),

and

gph(Ĝ(α)) =


1√

2Re(α)
0 1√

2Re(α)
0

0 1 0 0

0 0
√

2Re(α) 0
0 0 0 1

 gph(Sd),

and (see [2, proof of Lemma 14.9.8])

gph(Sd) =


√

2Re(α) 0 −1√
2Re(α)

0

0 1 0 0
0 0 1√

2Re(α)
0

0 0 0 1

 gph(Ĝ(α)).

If S is future-resolvable and α ∈ ρ(S) ∩ C+, then the Cayley transform with parameter α is a
single-valued bounded operator with domain

[ X
U
]

and in particular it therefore can be written as

Sd =

[
Ad Bd
Cd Dd

]
,

for (single-valued bounded everywhere-defined) operators Ad : X → X , Bd : U → X , Cd : X → Y
and Dd : U → Y. Explicitly we have

Ad = −I + 2 Re(α) Â(α), Bd =
√

2Re(α) B̂(α), Cd =
√

2Re(α) Ĉ(α), Dd = D̂(α). (2)

The formal i/s/o resolvent of Sd (in accordance with Definition 4, but using w for the resolvent
variable) is given by

gph(Ĝd(w)) =


0 0 1 0
0 1 0 0
−1 0 w 0
0 0 0 1

 gph(Sd) =


0 0 1√

2Re(α)
0

0 1 0 0

−
√

2Re(α) 0 1+w√
2Re(α)

0

0 0 0 1

 gph(Ĝ(α)).

Using [2, (10.2.1c)] (which is basically the resolvent identity)

gph(Ĝ(α)) =


1 0 0 0
0 1 0 0

α− λ 0 1 0
0 0 0 1

 gph(Ĝ(λ)), (3)
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we obtain the following relation between the formal i/s/o resolvents

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0

−
√

2Re(α) + 1+w√
2Re(α)

(α− λ) 0 1+w√
2Re(α)

0

0 0 0 1

 gph(Ĝ(λ)).

With the following correspondence between the resolvent variables

λ =
αw − α
w + 1

, w =
α+ λ

α− λ
,

the above relation becomes

gph(Ĝd(w)) =


α−λ√
2Re(α)

0 1√
2Re(α)

0

0 1 0 0

0 0

√
2Re(α)

α−λ 0

0 0 0 1

 gph(Ĝ(λ)).

From this we can deduce the following relation between the various resolvent operators

Âd(w) =
(α− λ)2

α+ α
Â(λ) +

α− λ
α+ α

I, B̂d(w) =
α− λ√
2Re(α)

B̂(λ),

Ĉd(w) =
α− λ√
2Re(α)

Ĉ(λ), D̂d(w) = D̂(λ),

and we obtain that λ ∈ ρ(S) if and only if w ∈ ρ(Sd).

Lemma 17. The inverse Cayley transform of a nonstandard output extension of the Cayley trans-
form Sd of S is a nonstandard output extension of S; more particularly, the observation extensions
and feedthrough extensions are related by

C1 =
1√

2Re(α)
(Cd,1 − Cd,0) , D1 = Dd,1, C0 =

1√
2Re(α)

(αCd,1 + αCd,0) , D0 = Dd,0.

If the output extension of the Cayley transform is standard (i.e. Cd,1 = 0 and Dd,1 = 0), then
the output extension of S need not be standard since then C1 = −1√

2Re(α)
Cd,0, which is generally

nonzero.

Proof. This follows from
α√

2Re(α)
0 −α√

2Re(α)
0

0 1 0 0
1√

2Re(α)
0 1√

2Re(α)
0

0 0 0 1




1 0 0 0[
Cd,1

0

] [
Dd,1

1

] [
Cd,0

0

] [
Dd,0

0

]
0 0 1 0
0 0 0 1




1√
2Re(α)

0 α√
2Re(α)

0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1



=


1 0 0 0[
C1

0

] [
D1

1

] [
C0

0

] [
D0

0

]
0 0 1 0
0 0 0 1

 .
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5 Discrete-time linear quadratic optimal control

For a bounded i/s/o node

Sd =

[
Ad Bd
Cd Dd

]
,

(which in our application will come from the Cayley transform) we consider the discrete-time
dynamics

(xd)n+1 = Ad(xd)n +Bd(xd)n, (yd)n = Cd(xd)n +Dd(ud)n, (4)

i.e. 
(xd)n+1

(yd)n
(xd)n
(ud)n

 ∈ gph(Sd), (5)

(this should be compared to the continuous-time case (1), noting that in discrete-time the sense in
which the equation should be understood is completely obvious). We call (x, y, u) a discrete-time
trajectory if (5) is satisfied for all n ∈ N0.

For a discrete-time system we define for a given initial condition x0 ∈ X the set of i/o stable
discrete-time trajectories as consisting of those ud ∈ `2(N0;U) and yd ∈ `2(N0;Y) for which there
exists a xd : N0 → X such that (xd)0 = x0 and (4) (or equivalently (5)) is satisfied. If for all x0 ∈ X
this set is non-empty, then it is said that the discrete-time finite cost condition holds. The discrete-
time linear quadratic optimal control problem is: for a given x0 ∈ X find the i/o stable discrete-time
trajectory with initial condition x0 of minimal norm, i.e. minimize ‖ud‖2`2(N0;U) + ‖yd‖2`2(N0;Y).

By standard discrete-time theory (see e.g. [14]), if the discrete-time finite cost condition is
satisfied, then there exist Kd, Ld and X which satisfy the (Lur’e form of the) discrete-time Riccati
equation:

A∗dXAd −X + C∗dCd = K∗dKd, (6a)

B∗dXBd +D∗dDd + I = L∗dLd, (6b)

B∗dXAd +D∗dCd = L∗dKd, (6c)

the optimal cost is given by 〈Xx0, x0〉 and the optimal control is given by

0 = Kd(xd)n + Ld(ud)n,

which noting that by the middle Lur’e equation (6b), Ld has the left-inverse (B∗dXBd + D∗dDd +
I)−1L∗d, can be explicitly written as

(ud)n = −(B∗dXBd +D∗dDd + I)−1L∗dKd(xd)n = −(B∗dXBd +D∗dDd + I)−1 (B∗dXAd +D∗dCd) (xd)n.

Similarly, Ld and Kd can be eliminated from the Lur’e equations to obtain the standard form of
the Riccati equation

A∗dXAd −X + C∗dCd − (C∗dDd +A∗dXBd)(B
∗
dXBd +D∗dDd + I)−1(B∗dXAd +D∗dCd) = 0.
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For our purposes it will be convenient to write the Lur’e form of the Riccati equation as

〈zd, Xzd〉 − 〈xd, Xxd〉+ ‖yd‖2 + ‖ud‖2 = ‖wd‖2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(Sext
d ), (7)

where

gph(Sext
d ) =




zd[
wd
yd

]
xd
ud

 :


zd
yd
xd
ud

 ∈ gph(Sd), wd = Kdxd + Ldud

 .

Using Definition 10, Sext
d is the standard output extension of Sd with observation extension

[
0 Kd

]
and feedthrough extension

[
0 Ld

]
(note that by [2, Lemma 6.2.1 (vii)] since Sd is bounded, any

nonstandard output extension is equivalent to a standard output extension).

Theorem 18. If Sd satisfies the discrete-time finite cost condition, then for all x0 ∈ X a unique
optimal control exists, the optimal cost is given by 〈Xx0, x0〉, S has a standard output extension
Sext
d with a feedthrough extension which has left-invertible standard part such that (7) holds and the

optimal control is characterized by putting the additional output in Sext
d equal to zero.

Proof. This simply summarizes the material in this section.

6 The internal Cayley transform in linear quadratic optimal con-
trol

The crucial observation (utilized in [13] and in [15]) is that stable i/o trajectories in continuous-
and discrete-time correspond to each other. Let L denote the Laplace transform and note that
by the Paley–Wiener theorem for a Hilbert space K this is an isometric isomorphism between
L2(R+;K) and the Hardy space H2(C+;K). The Z-transform Z maps a sequence (hn)n∈N0 to
the corresponding formal power series

∑∞
n=0 hnz

n and gives an isometric isomorphism between
`2(N0;K) and the Hardy space of the disc H2(D;K). Finally, for α ∈ C with Re(α) > 0, the linear
fractional transformation

(Fαg)(z) =

√
Re(2α)

1 + z
g

(
α− αz
1 + z

)
, (F−1

α f)(λ) =

√
Re(2α)

α+ λ
f

(
α− λ
α+ λ

)
,

gives an isometric isomorphism between the Hardy spaces H2(C+;K) and H2(D;K). For this latter
statement, see for example [18, Theorem 12.3.1].

Remark 19. In the above we use the discrete-time frequency domain variable z which in the stable
case belongs to the unit disc. The discrete-time resolvent parameter w relates to this z though
w = 1

z . We could have written the above in terms of w by utilizing the Hardy space of the exterior
of the unit disc as in done in for example [18, Theorem 12.3.1].
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Lemma 20. Let S be a future-resolvable i/s/o node. Let Ω be a non-empty connected open subset
of ρ(S) ∩ C+ and let α ∈ Ω. Let Sd be the Cayley transform of S with parameter α. Let x0 ∈ X .
The set of i/o stable Ω trajectories of S and the set of i/o stable discrete-time trajectories of Sd,
both with initial condition x0, are isometrically isomorphic through the map Z−1FαL.

Proof. This is essentially contained in [15, Section 4.1] and also in [13, Theorem 6.5]. Neither of
these references use the notion of a future-resolvable i/s/o node (this notion didn’t exist at the
time that those references were written), but the arguments in these references remain valid for
future-resolvable i/s/o nodes.

Proposition 21. Let X : X → X be a bounded single-valued everywhere-defined self-adjoint op-
erator. Let S̃ be a closed i/s/o node with state space X , input space U and output space

[ Y
U
]

and

let S̃d be its Cayley transform with parameter α ∈ C with Re(α) > 0. The following are equivalent:
(here Ĝ is the formal i/s/o resolvent of S̃ and λ ∈ C)

1.

〈z,Xx〉+ 〈Xx, z〉+ ‖y‖2 + ‖u‖2 = ‖w‖2 for all


z[
w
y

]
x
u

 ∈ gph(S̃);

2.

〈λẑ − x̂, Xx̂〉+ 〈X(λẑ − x̂), x̂〉+ ‖ŷ‖2 + ‖û‖2 = ‖ŵ‖2 for all


ẑ[
ŵ
ŷ

]
x̂
û

 ∈ gph(Ĝ(λ));

3.

〈zd, Xzd〉 − 〈xd, Xxd〉+ ‖yd‖2 + ‖ud‖2 = ‖wd‖2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

Proof. This follows easily from the relations between the graphs. As an example we show how the
first equation implies the third in detail. Let

zd[
wd
yd

]
xd
ud

 ∈ gph(S̃d).

10



Then there exists
z[
w
y

]
x
u

 ∈ gph(S̃), such that


zd[
wd
yd

]
xd
ud

 =


1√

2Re(α)
0 α√

2Re(α)
0

0 1 0 0
−1√

2Re(α)
0 α√

2Re(α)
0

0 0 0 1




z[
w
y

]
x
u

 .
With this the third equation then is〈

1√
2Re(α)

z +
α√

2Re(α)
x,X

(
1√

2Re(α)
z +

α√
2Re(α)

x

)〉

−

〈
−1√

2Re(α)
z +

α√
2Re(α)

x,X

(
−1√

2Re(α)
z +

α√
2Re(α)

x

)〉
+ ‖y‖2 + ‖u‖2 = ‖w‖2.

Simplifying this gives the first equation, which by assumption is satisfied, so that the third equation
is satisfied.

7 The algebraic Riccati equation for future-resolvable i/s/o nodes

The following theorem is our main result: it gives the solution of the linear quadratic optimal
control problem through an algebraic Riccati equation. In Section 9 the assumption that the Ω
finite cost condition must be satisfied will be relaxed.

Theorem 22. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open
subset of ρ(S) ∩C+. If the Ω finite cost condition is satisfied, then for every x0 ∈ X there exists a
unique optimal control, there exists a bounded single-valued everywhere-defined self-adjoint operator
X : X → X such that the optimal cost is given by 〈Xx0, x0〉, S has a nonstandard output extension
Sext with a feedthrough extension which is standard and has left-invertible standard part and is such
that

〈z,Xx〉+ 〈Xx, z〉+ ‖y‖2 + ‖u‖2 = ‖w‖2 for all


z[
w
y

]
x
u

 ∈ gph(Sext); (8)

holds and the optimal control is characterized by putting the additional output in Sext equal to zero.

Proof. Let α ∈ Ω and let Sd be the Cayley transform of S with parameter α. Since the Ω finite cost
condition is satisfied for S, it follows from Lemma 20 that the discrete-time finite cost condition is
satisfied for Sd. By Theorem 18, a unique discrete-time optimal control exists, which by Lemma
20 transforms to a unique continuous-time optimal control. By Theorem 18 the discrete-time
optimal cost is given by 〈Xx0, x0〉, which by Lemma 20 is also the continuous-time optimal cost.
By Theorem 18, Sd has a standard output extension Sext

d whose feedthrough extension has a left-
invertible standard part such that the discrete-time Riccati equation (7) holds. By Lemma 11 the
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resolvent set of Sext
d is the same as that of Sd. Define Sext as the inverse Cayley transform (with

the same parameter α) of Sext
d . By Lemma 17, this is a nonstandard output extension of S, the

feedthrough extension is standard (i.e. D1 = 0 in Lemma 17 since Dd,1 = 0 as the discrete-time
feedthrough extension is standard) and its standard part is left-invertible (since D0 = Dd,0 and the
discrete-time feedthrough Dd,0 is left-invertible). By Lemma 11 the resolvent set of Sext is the same

as that of S. By Proposition 21 (applied with S̃ = Sext and therefore S̃d = Sext
d ) we have that (8)

holds (since (7) holds as we saw above). Since in discrete-time the optimal control is characterized
by putting the additional output in Sext

d equal to zero, the equivalent is true in continuous-time
because these output are Cayley transforms of each other.

The Riccati equation (8) is representation-independent in that we can substitute any represen-
tation of S into it: for example a kernel representation from Remark 2 or (if such a representation
exists) the conventional DAE form from Example 3. A particularly attractive representation in
this respect is an image representation.

By [2, Lemma 4.1.15 and Definition 4.1.16], every closed i/s/o node S̃ has an image represen-
tation, i.e. there exist a Hilbert space V and bounded single-valued everywhere-defined operators
F : V → X , Lout : V → Y, K : V → X , Lin : V → U such that

gph(S̃) =



z
y
x
u

 ∈

X
Y
X
U

 : z = Fv, y = Loutv, x = Kv, u = Linv

 .

Applying this result with S̃ = Sext from Theorem 22, the Riccati equation (8) can be written as

F ∗XK +K∗XF + L∗out,yLout,y + L∗inLin = L∗out,wLout,w, (9)

and the optimal control is obtained from

Lout,wv = 0.

Of course, it is not always easy to explictly find an image representation of a given DAE (e.g. in
terms of the coefficients A, B, C, D, E of the conventional DAE form considered in Example 3),
but once such a represenation is obtained, (9) immediately gives the appropriate Riccati equation
very explicitly in terms of the operators appearing in the image representation.

8 An example

Example 23. We return to the example of a conventional DAE from Example 3. In that case we
have for a nonstandard output extension as in Theorem 22 with a feedthrough extension which is
standard

gph(Sext) =




z[
w
y

]
x
u

 : Ez = Ax+ Bu, y = Cx+ Du, w = K1z + K0x+ L0u

 .
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Note that setting w = 0 gives
K1z + K0x+ L0u = 0,

which since L0 is left-invertible in the context of Theorem 22 gives (here L−1
0 is a left-inverse of

L0):
u = −L−1

0 K1z − L−1
0 K0x.

We note that this feedback depends both on x and z; for trajectories this means that the optimal
control will be a feedback of both the state and its derivative (rather than only the state as is
known to be the case in the purely differential equation situation).

Example 24. We again consider the situation in Example 23. We show that in the purely differential
equation situation, the conclusions of Theorem 22 reduce to the usual ones.

Assume that E is invertible (i.e. has a bounded single-valued everywhere-defined inverse). Then
we can easily eliminate z and re-write the Riccati equation (8) as (here K := K1E

−1A + K0 and
L := L0 + K1E

−1B)

〈E−1Ax+ E−1Bu,Xx〉+ 〈Xx,E−1Ax+ E−1Bu〉+ ‖Cx+ Du‖2 + ‖u‖2 = ‖Kx+ L0u‖2.

Since u ∈ U and x ∈ X are arbitrary, this can be written as the Lur’e equations

A∗E−∗X +XE−1A + C∗C = K∗K,

D∗D + I = L∗L,

B∗E−1X + D∗C = L∗K,

which can in turn be written as the standard algebraic Riccati equation

A∗E−∗X +XE−1A + C∗C− (XE−∗B + C∗D)(D∗D + I)−1(B∗E−1X + D∗C) = 0.

The optimal control is characterized by 0 = K1z + K0x+ L0u, which is

0 = Kx+ Lu.

From this we obtain
u = −(D∗D + I)−1

(
B∗E−1X + D∗C

)
x.

Hence we have that the conclusions of Theorem 22 become the usual ones.
We note that [15] considers a more general version of this “usual” Riccati equation which allows

for example for the solution X to be unbounded (this relates to not every initial condition having
a finite cost).

Example 25. We consider an example from [5] (see also [3, 11, 7]). Although this is a seemingly
simple finite-dimensional example, it is interesting since the “naive” algebraic Riccati equation

A∗ZE + E∗ZA + C∗C− (E∗ZB + C∗D)(I + D∗D)−1(B∗ZE + D∗C) = 0,

does not have a solution (see [3]). The example is of the conventional DAE form from Example 3
with

E =

[
1 0
0 0

]
, A =

[
0 1
1 0

]
, B =

[
0
1

]
, C =

[
1 0
0 1

]
, D =

[
0
0

]
.
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Here

λE−A =

[
λ −1
−1 0

]
, (λE−A)−1 =

[
0 −1
−1 −λ

]
,

so that the i/s/o resolvent set equals C (which implies that the choice of Ω is immaterial; we choose
Ω equal to the open right half-plane C+ since this works nicely with Laplace transforms). We
further have

gph(S) =



z
y
x
u

 : z1 = x2, 0 = x1 + u, y = x

 ,

and

Â(λ) =

[
0 0
−1 0

]
, B̂(λ) =

[
−1
−λ

]
, Ĉ(λ) =

[
0 0
−1 0

]
, D̂(λ) =

[
−1
−λ

]
.

Therefore the equations for Ω trajectories from Remark 9 are

ŷ(λ) = x̂(λ) =

[
−û(λ)

−x0
1 − λû(λ)

]
.

From this we see that the Ω finite-cost condition is satisfied. We can choose u(t) = −x0
1e−t (which

is in L2(R+)) so that

û =
−x0

1

λ+ 1
, ŷ =

[
1
−1

]
x0

1

λ+ 1
,

and we see that ŷ is the Laplace transform of

y(t) =

[
1
−1

]
x0

1e−t,

which is in L2(R+).
In this example it is easy to obtain an image representation (the idea is that z2, x2 and u can

be chosen as “free” variables which determine the others):

F =

[
0 1 0
1 0 0

]
, Lout,y = K =

[
0 0 −1
0 1 0

]
, Lin =

[
0 0 1

]
.

Writing (using that X is symmetric):

X =

[
X1 X0

X0 X2

]
, Lout,w =

[
L1 L2 L3

]
,

the image representation form (9) of the Riccati equation is 0 X2 −X0

X2 2X0 + 1 −X1

−X0 −X1 2

 =

 L2
1 L1L2 L1L3

L1L2 L2
2 L2L3

L1L3 L2L3 L2
3

 .
From the top-left entry we obtain L1 = 0, from which we deduce using the first row that X0 =
X2 = 0. The bottom right 2-by-2 matrix then is[

1 −X1

−X1 2

]
=

[
L2

2 L2L3

L2L3 L2
3

]
.
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From the diagonal entries we then obtain L2 = ±1 and L3 = ±
√

2. Since X1 ≥ 0 (because X is
positive semi-definite) L2 and L3 must have opposite signs. We choose L2 = 1 and L3 = −

√
2 (this

sign choice is immaterial) and obtain

X =

[√
2 0

0 0

]
, L =

[
0 1 −

√
2
]
.

Hence the optimal cost is 〈Xx0, x0〉 =
√

2(x0
1)2 and the optimal control is determined by

[
0 1 −

√
2
] z2

x2

u

 = 0,

i.e.

u =
1√
2
x2,

as is also obtained in the above references using various different methods. Note that we can
equivalently write this as the output feedback

u =
1√
2
y2.

Example 26. The computations in Example 25 can be simplified by choosing a smaller state space.
To write the relation between the input, the (relevant part of the) initial state and the output
in conventional DAE form, a two-dimensional state is needed. However, because i/s/o nodes are
more general than conventional DAEs, it is possible to described the same relation using a one-
dimensional state space using i/s/o nodes. Consider the i/s/o node with X and U one-dimensional
and Y two-dimensional given by

gph(S) =



z
y
x
u

 : z = y2, y1 = −u, x = −u

 .

We have that the i/s/o resolvent set equals C and that

Â(λ) = 0, B̂(λ) = −1, Ĉ(λ) =

[
0
−1

]
, D̂(λ) =

[
−1
−λ

]
.

We in particular see that D̂ is the same as in Example 25 and that Ĉx1 = ĈE [ x1
x2 ], where Ĉ is

the state/output resolvent from Example 25. Since E [ x1
x2 ] is the “relevant part” of the initial state

[ x1
x2 ], we see that the state/output resolvents therefore also essentially coincide. Hence the i/s/o

node from this example and the one from Example 25 are from the linear quadratic optimal control
perspective equivalent.

A kernel representation (as in Remark 2) is (here the space Z is three-dimensional)

E =

1
0
0

 , Nout =

0 −1
1 0
0 0

 , M =

0
0
1

 , Nin =

 0
−1
1

 .
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An image representation is (the idea is that y2 and u are “free”)

F =
[
1 0

]
, Lout,y =

[
0 −1
1 0

]
, K =

[
0 −1

]
, Lin =

[
0 1

]
.

The image representation form (9) of the Riccati equation is[
1 −X
−X 2

]
=

[
L2

1 L1L2

L1L2 L2
2

]
.

From this we obtain that L1 and L2 must have opposite signs (since their product equals −X) and
picking an arbitrary sign convention gives L1 = −1, L2 =

√
2, X =

√
2. Hence the optimal cost is√

2(x0)2 and the optimal control is determined by

−y2 +
√

2u = 0,

i.e.

u =
1√
2
y2.

This solution is consistent with what we obtained in Example 25 noting that x0 here corresponds
to x0

1 there.
Note that the above cannot be written as a state feedback. Equivalently, the optimal output

extension is necessarily nonstandard: we can re-write the equation determining the optimal control
as

−z +
√

2u = 0.

Therefore the observation extension is
[
−1 0

]
(i.e. C1 = −1 and C0 = 0, so this is nonstandard)

and the feedthrough extension is
[
0 0

√
2
]

(which is standard). Alternatively, from

−y2 +
√

2u = 0,

we have the standard observation extension
[
0 0

]
and the nonstandard feedthrough extension[

0 −1
√

2
]

(i.e. D1 =
[
0 −1

]
and D0 =

√
2). We however cannot have both a standard

observation extension and a standard feedthrough extension at the same time.

The construction of the i/s/o node in Example 26 from that in Example 25 can be done generally
based on obtaining a minimal i/s/o node with the same input/output resolvent as a given i/s/o
node, see [2].

Example 27. It is possible to further simplify Example 26 by considering y2 as the input and y1 and
u as the outputs (this is related to the notion of canonical input space from [2, Definition 2.1.23]).
We therefore define

ũ = y2, ỹ =

[
y1

u

]
.

This change in perspective does not alter the cost function (or the state), but the dynamics instead
become

ẋ = ũ, ỹ =

[
1
−1

]
x,
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i.e. we have a standard state-space system with (E = 1 and)

A = 0, B = 1, C =

[
1
−1

]
, D =

[
0
0

]
.

The usual Riccati equation is 2−X2 = 0 and gives X =
√

2 and the state feedback F = −
√

2. The
optimal control is therefore determined by

ũ = −
√

2x,

which noting that ũ = y2 and x = −ỹ2 = −u gives

y2 =
√

2u,

which is the same as what was obtained before.

9 Beyond the finite cost condition

To consider the case where not all initial conditions are required to have finite cost, we need some
further notions from [2].

Definition 28. Let S be an i/s/o node and let X1 ⊂ X be continuously embedded. Then the part
Spart of S in X1 is defined by

gph(Spart) = gph(S) ∩


X1

Y
X1

U

 .
Definition 28 is adapted from [2, Definition 5.1.10 (i)] where it was assumed that X1 is a closed

subspace of X .

Remark 29. It is easy to see that the Cayley transform of the part of S in X1 equals the part in
X1 of the Cayley transform of S (i.e. taking the Cayley transform and taking the part commute).

9.1 The discrete-time case

We reconsider the situation of a bounded i/s/o node Sd with discrete-time dynamics from Section
5.

Definition 30. The initial state x0 ∈ X is said to have discrete-time finite cost if the corresponding
set of i/o stable trajectories is non-empty. We denote the subspace of discrete-time finite cost initial
states by Xd,finite.

By [14, Section 2], for every element x0 of Xd,finite, a unique minimal norm i/o stable trajectory
(umin
d , ymin

d ) exists. This defines a closed nonnegative sesquilinear symmetric form q on X with
domain Xd,finite given by

q[x0
1, x

0
2] :=

〈[
umin
d,1

ymin
d,1

]
,

[
umin
d,2

ymin
d,2

]〉
,

17



which we call the discrete-time optimal cost sequilinear form. We will consider Xd,finite with the
inner-product

〈x0
1, x

0
2〉Xd,finite

:= 〈x0
1, x

0
2〉X + q[x0

1, x
0
2],

(this is called the graph inner product in [14, Section 4]). With this, Xd,finite is a Hilbert space
which is continuously embedded in X .

Definition 31. The bounded i/s/o node Sd satisfies the discrete-time input finite future cost
condition if all initial states in im(Bd) have discrete-time finite cost, i.e. if im(Bd) ⊂ Xd,finite.

Remark 32. The above definition is adapted from [14, Definition 3.3] where the equivalent concept
was called the finite future incremental cost condition. See [14, Lemma 3.4] for this equivalence
and for the fact that AdXd,finite ⊂ Xd,finite.

Definition 33. Let S and S1 be two bounded i/s/o nodes with the same input and output spaces
and where X1 ⊂ X . We call S1 a restriction of S to X1 if the following two conditions hold

1. Every discrete-time trajectory of S1 is also a discrete-time trajectory of S;

2. If (x, y, u) is a discrete-time trajectory of S with x(0) ∈ X1, then xn ∈ X1 for all n ∈ N and
(x, y, u) is a discrete-time trajectory of S1.

Definition 33 is adapted from [2, Definition 5.4.37] (which is in continuous-time) as indicated
in [2, Definition 6.5.7]. Moreover, we do not assume that X1 is a closed subspace of X as was done
in [2, Definition 5.4.37].

Lemma 34. Let Sd be a bounded i/s/o node and let X1 ⊂ X be continuously embedded. The
following are equivalent:

1. Sd has a discrete-time restriction to X1;

2. Sd has a unique discrete-time restriction to X1;

3. AdX1 ⊂ X1 and im(Bd) ⊂ X1;

4. The part of Sd in X1 is bounded.

If these equivalent conditions hold, then the part of Sd in X1 is the unique discrete-time restriction
to X1 from (ii).

Proof. This is part of [2, Theorem 6.3.19] (the discrete-time version of which holds by [2, Lemma
6.5.8]). There it was assumed that X1 ⊂ X is closed (rather than continuously embedded), but a
continuous embedding suffices for the proof.

If the discrete-time input finite future cost condition holds for Sd, then with X1 := Xd,finite the
condition (iii) in Lemma 34 is satisfied by Remark 32. Therefore by Lemma 34 we can restrict Sd
to the space of discrete-time finite cost states. Conversely, we see from Lemma 34 that the discrete-
time input finite future cost condition (which is implied by (iii)) is necessary for the restriction of
Sd to the space of discrete-time finite cost states to make sense.
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Definition 35. Let Sd be a bounded i/s/o node. Let q be a closed nonnegative sesquilinear
symmetric form on X with domain X1 and equip X1 with the inner-product q[x1, x2] + 〈x1, x2〉X
(so that X1 is a Hilbert space which is continuously embedded in X ). We say that q satisfies the
discrete-time Riccati equation for Sd if

1. the part Sd,part of Sd in X1 is bounded;

2. Sd,part has a standard output extension Sext
d,part with a feedthrough extension which has left-

invertible standard part and is such that

q[zd, zd]− q[xd, xd] + ‖yd‖2 + ‖ud‖2 = ‖wd‖2 for all


zd[
wd
yd

]
xd
ud

 ∈ gph(Sext
d,part). (10)

Sesquilinear symmetric forms can be ordered as follows: q1 ≤ q2 means that dom(q1) ⊃ dom(q2)
and q1[x, x] ≤ q2[x, x] for all x ∈ dom(q2).

Theorem 36. Let Sd be a bounded i/s/o node for which the discrete-time input finite cost condition
holds. Then the discrete-time optimal cost sequilinear form is the smallest solution of the discrete-
time Riccati equation. The optimal control is characterized by putting the additional output in
Sext
d,part equal to zero.

Proof. This is [14, Theorem 3.14] once translated to the current terminology.

9.2 The continuous-time case

Definition 37. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of
ρ(S) ∩ C+. The initial state x0 ∈ X is said to have Ω finite cost if the corresponding set of i/o
stable Ω trajectories is non-empty. We denote the subspace of Ω finite cost initial states by Xfinite.

By [15, Section 3.1], for every element x0 of Xfinite, a unique minimal norm i/o stable Ω trajectory
(umin, ymin) exists. This defines a closed nonnegative sesquilinear symmetric form q on X with
domain Xfinite given by

q[x0
1, x

0
2] :=

〈[
umin

1

ymin
1

]
,

[
umin

2

ymin
2

]〉
,

which we call the Ω optimal cost sequilinear form. We will consider Xfinite with the inner-product

〈x0
1, x

0
2〉Xfinite

:= 〈x0
1, x

0
2〉X + q[x0

1, x
0
2].

With this, Xfinite is a Hilbert space which is continuously embedded in X .

Remark 38. If Ω is connected, α ∈ Ω and Sd is the Cayley transform with parameter α of S, then
by Lemma 20 we have that the Ω finite cost initial states for S and the discrete-time finite cost
initial states of Sd are the same, i.e. that Xfinite = Xd,finite.

Definition 39. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset of
ρ(S)∩C+. Then S satisfies the Ω input finite future cost condition if for all λ ∈ Ω, all initial states
in im(B̂(λ)) have Ω finite cost.
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Remark 40. The above definition is adapted from [15, Definition 5.7] where the corresponding
concept is defined with respect to a fixed α ∈ Ω (by [15, Theorem 5.9] this is equivalent to it
holding for all λ ∈ Ω if Ω is connected).

Lemma 41. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open
subset of ρ(S) ∩ C+. Then Â(λ)Xfinite ⊂ Xfinite for all λ ∈ Ω.

Proof. Let α ∈ Ω and let Sd be the Cayley transform of S with parameter α. By Remark 38 we
have Xfinite = Xd,finite. By Remark 32 we have AdXd,finite ⊂ Xd,finite, which by (2) is equivalent to

Â(α)Xfinite ⊂ Xfinite. Since α ∈ Ω was arbitrary, we get the desired result.

Definition 42. Let S1 and S be two i/s/o nodes with the same input and output spaces and
where X1 ⊂ X and let Ω be a non-empty open subset of C. We call S1 an Ω-restriction of S if the
following two conditions hold

1. Every frequency domain Ω trajectory of S1 is also a frequency domain Ω trajectory of S;

2. If (x̂, ŷ, x0, û) is a frequency domain Ω trajectory of S with x0 ∈ X1, then x̂(λ) ∈ X1 for all
λ ∈ Ω and (x̂, ŷ, x0, û) is a frequency domain Ω trajectory of S1.

Definition 42 is adapted from [2, Definition 11.1.44] where it was assumed that X1 is a closed
subspace of X .

Lemma 43. Let S be a resolvable i/s/o node, let Ω ⊂ ρ(S) and let X1 ⊂ X be continuously
embedded. Then the following are equivalent:

1. S has an Ω-restriction to X1;

2. S has a unique resolvable Ω-restriction to X1 whose resolvent set includes Ω;

3. Â(λ)X1 ⊂ X1 and B̂(λ)U ⊂ X1 for all λ ∈ Ω;

4. Spart is resolvable and Ω ⊂ ρ(Spart).

If these equivalent conditions hold, then the part of S in X1 is the unique Ω-restriction to X1 from
(ii).

Proof. This is part of [2, Theorem 11.1.51]. There is was assumed that X1 ⊂ X is closed (rather
than continuously embedded), but a continuous embedding suffices for the proof.

If the Ω input finite future cost condition holds for S and Ω is connected, then with X1 := Xfinite

the condition (iii) in Lemma 43 is satisfied by Lemma 41. Therefore by Lemma 43 we can restrict
S to the space of Ω finite cost states. Conversely, we see from Lemma 43 that the Ω input finite
future cost condition (which is implied by (iii)) is necessary.

Definition 44. Let S be a future-resolvable i/s/o node and let Ω be a non-empty open subset
of ρ(S) ∩ C+. Let q be a closed nonnegative sesquilinear symmetric form on X with domain X1

and equip X1 with the inner-product q[x1, x2] + 〈x1, x2〉X (so that X1 is a Hilbert space which is
continuously embedded in X ). We say that q satisfies the Ω-Riccati equation for S if

1. the part Spart of S in X1 is resolvable and satisfies Ω ⊂ ρ(Spart);
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2. Spart has a nonstandard output extension Sext
part with a feedthrough extension which is standard

and has left-invertible standard part and is such that

q[z, x] + q[x, z] + ‖y‖2 + ‖u‖2 = ‖w‖2 for all


z[
w
y

]
x
u

 ∈ gph(Sext
part); (11)

Theorem 45. Let S be a future-resolvable i/s/o node and let Ω be a non-empty connected open
subset of ρ(S) ∩ C+ for which the Ω input finite future cost condition holds. Then the Ω optimal
cost sequilinear form is the smallest solution of the Ω-Riccati equation. The optimal control is
characterized by putting the additional output in Sext

part equal to zero.

Proof. This is proven similarly to Theorem 22 using Remark 29.

9.3 Impulse controllability

To relate our results to available results on Riccati equations for DAEs, we briefly discuss the
concept of impulse controllability in the i/s/o node framework.

Definition 46. The classical state space X0 of the i/s/o node S equals

X0 :=

x ∈ X : ∃ z, y, u such that


z
y
x
u

 ∈ gph(S)

 =

{
x ∈ X : ∃u such that

[
x
u

]
∈ dom(S)

}
.

The above definition is adapted from [2, Definition 2.1.15].

Remark 47. We have for λ ∈ C

X0 =

x ∈ X : ∃ z, y, u such that


x
y

−z − λ
u

 ∈ gph(Ĝ(λ))


=

x ∈ X : ∃ z̃, y, u such that


x
y
z̃
u

 ∈ gph(Ĝ(λ))


= im

[
Â(λ) B̂(λ)

]
.

Remark 48. From [4, Remark 4.1] for a finite-dimensional conventional DAE with det(sE−A) not
the zero polynomial (i.e. the corresponding i/s/o node is resolvable), the DAE being controllable

at infinity is equivalent to im
[
E B

]
= X . This in turn is equivalent to im

[
Â(λ) B̂(λ)

]
= X .

Combining this with Remark 47 we see that the condition X0 = X coincides with controllability at
infinity.

21



Definition 49. The multivalued part Z0 of the i/s/o node S equals

Z0 :=

z ∈ X :


z
0
0
0

 ∈ gph(S)

 .

The above definition is adapted from [2, Definition 2.1.15].
We have for λ ∈ C

Z0 =

x ∈ X :


0
0
x
0

 ∈ gph(Ĝ(λ))

 = N

([
Â(λ)

Ĉ(λ)

])
.

From this we see that x0 ∈ Z0 precisely when (0, 0, x0, 0) is a frequency domain Ω trajectory of the
i/s/o node. In particular, every initial condition in Z0 has zero optimal cost.

For a conventional DAE we have Z0 = N(E). Therefore for a conventional DAE we have
Z0 = N(Â(λ)) (which is not true for a general i/s/o node). From [4, Remark 4.6] for a finite-
dimensional conventional DAE with det(sE −A) not the zero polynomial (i.e. the corresponding

i/s/o node is resolvable), the DAE being impulse controllable is equivalent to im
[
Â(λ) B̂(λ)

]
+

N(Â(λ)) = X . Using also Remark 48, this is X0 + Z0 = X . Since for a general i/s/o node this
notion also involves the output (for example though the state/output resolvent Ĉ(λ) which appears
in the characterization of Z0), referring to this as a controllability property would in general be a
misnomer.

For an input/state system (i.e. with output space Y = {0}) we have that X0 + Z0 = X is

equivalent to im
[
Â(λ) B̂(λ)

]
+ N(Â(λ)) = X , i.e. to impulse controllability of the input/state

system.

9.4 Comparison with [17]

We compare Theorem 45 to the Riccati equation obtained in [17]. We first note that [17] is for
finite-dimensional conventional DAEs whereas our results hold more generally for (possibly infinite-
dimensional) i/s/o nodes. Another difference is that [17] considers the linear quadratic optimal
control problem “with state stability” whereas we do not consider stability of the state. Also [17]
considers more general quadratic cost functionals than ‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y) (our methods
would allow for such more general quadratic cost functionals if the corresponding discrete-time
results had been available).

In [17] the Riccati equation is considered on the “system space” Vsys. Using [16, Proposition
3.3] we can describe this space inductively in i/s/o node terms. Let S1 = S and define Sk+1 as
the part of Sk in the classical state space of Sk. It follows from [16, Proposition 3.3] that (for a
finite-dimensional conventional DAE) there exists a k0 such that Sk = Sk0 for all k ≥ k0 and that
dom(Sk0) = Vsys. The restriction of S to Vsys has graph (here Z0 is the multi-valued part of S)

gph(Sk0) +


Z0

0
0
0

 .
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In [17] it is this restriction which is considered rather than the part Sk0 . However, since elements
in the second component of the above sum contribute zero terms to the Riccati equation (11), this
difference is immaterial.

By [16, Proposition 2.9], without loss of generality, a conventional DAE can be considered in
feedback equivalence form. Focusing on the non-differential part only, and making the dimension
the smallest integer large enough so that the system is not impulse controllable (in the sense of
[4, Definition 2.1]) we arrive at the examples in Section 9.5 which further illustrate the connection
with [17].

9.5 An example

Example 50. Consider the conventional DAE (with no output, i.e. Y = {0}) with X = R3 and
U = R

E =

0 1 0
0 0 1
0 0 0

 , A =

1 0 0
0 1 0
0 0 1

 , B =

1
0
0

 .
This gives

gph(S) =


zx
u

 : z2 = x1 + u, z3 = x2, x3 = 0

 .

Then ρ(S) = C (and we choose Ω = C+) and

(λE−A)−1 =

−1 −λ −λ2

0 −1 −λ
0 0 −1

 , Â(λ) =

0 1 −λ
0 0 −1
0 0 0

 , B̂(λ) =

−1
0
0

 .
We have

X0 =


x1

x2

0

 : x1, x2 ∈ R

 , Z0 =


z1

0
0

 : z1 ∈ R

 .

Since X0 + Z0 6= X , this system is not impulse controllable. Since this system is in feedback
equivalence form, the system space from [16] can be calculated using [16, (3.2)] and equals

Vsys =



x1

x2

x3

u

 : x2 = x3 = 0, x1 = −u

 .

However, it is instructive to calculate this inductively as in Section 9.4. The part of S in its classical
state space equals (compared to gph(S) we have z3 = 0 since z must belong to the classical state
space)

gph(S2) =


zx
u

 : z2 = x1 + u, 0 = z3 = x2, x3 = 0

 .

23



The classical state space of S2 is

X2 =


x1

0
0

 : x1 ∈ R

 ,

and the part of S2 in X2 equals (compared to gph(S2) we have z2 = 0 since z ∈ X2)

gph(S3) =


zx
u

 : 0 = z2 = x1 + u, 0 = z3 = x2, x3 = 0

 .

The classical state space X3 of S3 equals X2 and therefore the induction stops. We have

dom(S3) =

{[
x
u

]
: 0 = x1 + u, x2 = x3 = 0

}
,

which is indeed Vsys as determined above.

Example 51. We continue Example 50. We now consider Y = R3 and the output y = x. With
this output, the cost being finite implies stability of the state, so there is no difference between the
problem “with state stability” and without this stability requirement. Let

C =

1 0 0
0 1 0
0 0 1

 , D =

0
0
0

 .
Then

Ĉ(λ) = Â(λ), D̂(λ) = B̂(λ).

Frequency domain trajectories satisfy

ŷ1(λ) = x0
2 − λx0

3 − û(λ), ŷ2(λ) = −x0
3, ŷ3(λ) = 0. (12)

The condition that ŷ1 and û are Laplace transforms of L2(0,∞) functions implies that x0
2 − λx0

3

must be as well; this implies x0
2 = x0

3 = 0. Therefore the space of finite cost states is

Xfinite =


x1

0
0

 : x1 ∈ R

 .

Since im(B̂(λ)) ⊂ Xfinite, the input finite future cost condition is satisfied (but the finite future cost
condition is not). The part of S in Xfinite is

gph(Sfinite) =


zx
u

 : 0 = z2 = x1 + u, 0 = z3 = x2, x3 = 0

 .

We see that Sfinite equals S3 from Example 50 and that dom(Sfinite) = Vsys (as expected since
y = x).
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For an initial condition in Xfinite we have from (12) that y1 = −u, y2 = y3 = 0 no matter what
the initial condition in Xfinite is. Therefore clearly u = 0 is the optimal control and the optimal cost
equals zero. We indeed see that q = 0 is a solution of the Riccati equation (11) with the standard
output extension w =

√
2u. From Theorem 45 we then indeed conclude (since zero must be the

smallest solution) that the optimal cost is zero and the optimal control satisfies
√

2u = 0 (i.e. is
zero).

More generally than just verifying that the obvious candidate solution solves the Riccati equa-
tion, we can write down the Riccati equation using an image representation of Sfinite. Since many
components are known to be zero, we only need to consider z1, x1, y1 and u. We then obtain the
image representation (the idea being that z1 and u are “free” and uniquely determine the other
variables)

F =
[
1 0

]
, K = Lout =

[
0 −1

]
, Lin =

[
1 0

]
.

This gives the Riccati equation (as in (9))[
0 −X
−X 2

]
=

[
L2

1 L1L2

L1L2 L2
2

]
,

which gives L1 = 0, X = 0 and L2 =
√

2, which is consistent with what we obtained above.
Using that

Vsys = im


−1
0
0
1

 ,
the Riccati equation in [17] is

[
−1 0 0 1

] [A∗PE + E∗PA + C∗C E∗PB + C∗D
B∗PE + D∗C I + D∗D

]
−1
0
0
1

 =
[
−1 0 0 1

] [K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
which gives

[
−1 0 0 1

] 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



−1
0
0
1

 =
[
−1 0 0 1

] [K∗K K∗L
L∗K L∗L

]
−1
0
0
1

 ,
which has as solution P ∈ R3×3 an arbitrary symmetric matrix and

K =
[
0 0 0

]
, L =

√
2.

The stability condition from [17] is also satisfied for this solution since for all λ ∈ C

rank

[
−λE + A B

K L

]
= rank


1 −λ 0 1
0 1 −λ 0
0 0 1 0

0 0 0
√

2

 = 4.
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According to [17, Theorem 5.7(a)] the optimal cost equals 〈PEx0,Ex0〉 for all x0 ∈ Vdiff . In this
example Vdiff = Xfinite and we therefore see that the optimal cost equals zero (independent of the
initial condition x0 ∈ Vdiff). According to [17, Theorem 5.7(a)] the optimal control and optimal
state satisfy Kx + Lu = 0, which gives u = 0. We conclude that (as should be the case) we have
consistency between our results and those of [17].

Example 52. We continue Example 50 with a different output than in Example 51. Consider now
Y = R and y = x3. Then

C =
[
0 0 1

]
, D = 0,

and
Ĉ(λ) =

[
0 0 0

]
, D̂(λ) = 0.

We see that for all initial conditions and all inputs the output is zero. Therefore the space of finite
cost states equals the whole state space: Xfinite = X . It is also clear that the optimal cost is zero
and the optimal control is zero (independent of the initial condition). We indeed see that q = 0 is
a solution of the Riccati equation (11) with the standard output extension w = u. From Theorem
45 we then indeed conclude (since zero must be the smallest solution) that the optimal cost is zero
and the optimal control satisfies u = 0 (i.e. is zero). Note that the system space Vsys plays no role
in this example and [17] is not applicable.

10 Conclusion

We considered linear quadratic optimal control for infinite dimensional differential-algebraic equa-
tions (more specifically, for future-resolvable input/state/output nodes) and obtained an algebraic
Riccati equation for the quadratic form which gives the optimal cost and which characterizes the
optimal control.

For simplicity of exposition, we only considered the most standard cost function for the linear
quadratic optimal control problem and the associated algebraic Riccati equation, however the
method is applicable to general quadratic cost functions.

Also for simplicity of exposition, we considered input/state/output nodes rather than state/signal
nodes (i.e. we assumed that the signal component is a priori split into an input and an output).
However, the cost in linear quadratic optimal control is an input/output invariant notion in the
sense of [2, Section 5.6.1] and therefore does not depend on the decomposition of the signal compo-
nent into an input and an output. The objective of writing the input as a state feedback is however
not an input/output invariant notion and as illustrated in Example 27, it can be beneficial to take
a state/signal perspective. With the relevant input/state/output results from [2] replaced by the
corresponding state/signal results from [2], state/signal equivalents of our results can be obtained.
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