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Abstract. We prove an operator-valued Laplace multiplier theorem for causal translation-invariant linear
operators which provides a characterization of continuity fromHα(R, U) toHβ(R, U) (fractional U -valued
Sobolev spaces, U a complex Hilbert space) in terms of a certain boundedness property of the transfer
function (or symbol), an operator-valued holomorphic function on the right-half of the complex plane. We
identify sufficient conditions under which this boundedness property is equivalent to a similar property
of the boundary function of the transfer function. Under the assumption that U is separable, the Laplace
multiplier theorem is used to derive a Fourier multiplier theorem. We provide an application to mathem-
atical control theory, by developing a novel input-output stability framework for a large class of causal
translation-invariant linear operators which refines existing input-output stability theories. Furthermore,
we show how our work is linked to the theory of well-posed linear systems and to results on polynomial
stability of operator semigroups. Several examples are discussed in some detail.
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1 Introduction

It is well known (see [36, Theorem 10.3.5], [38, Theorem 9.1 ] or [41]) that a linear operatorG : L2(R, U) →
L2(R, U) is causal, translation-invariant and continuous if, and only if, there exists a boundedB(U)-valued
holomorphic function G on the open right-half complex plane such that

Gu = L−1(GLu) for all u ∈ L2(R, U) with support in [0,∞), (1.1)

in which case, ∥∥G∥∥
B(L2(R,U))

= sup
Re s>0

∥G(s)∥.

Here, U is a complex Hilbert space, B(U) denotes the space of bounded linear operators U → U , L is the
Laplace transform, and causality of G means that if u and v coincide on an interval of the form (−∞, τ),
then so do Gu and Gv.

We remark that representations of causal translation-invariant (or right-shift invariant) operators by
holomorphic functions play an important role in mathematical systems and control theory in general
(see [28]) and in the theory of well-posed linear systems in particular (see [36]). In a control-theoretic
context, the holomorphic function G representing the operator G — the so-called symbol of G — is
referred to as the transfer function of G. The multiplier theorem [36, Theorem 10.3.5] (or [38, Theorem
9.1]) mentioned above (see representation formula (1.1)) rests on the Paley-Wiener theorem (see, for
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example, [4, Theorem 1.8.3] or [36, Theorem 10.3.4]), and the Hilbert space structure of L2(R, U) is
crucial. Indeed, it is well known that not all causal translation-invariant operators on Banach spaces
admit such a multiplier representation [29, 41].

In Section 3 of this paper, we prove the following generalization of the above result.

Laplace multiplier theorem. Let α, β ∈ R. A linear operator G : Hα(R, U) → Hβ(R, U) is bounded,
translation-invariant and causal if, and only if, there exists a B(U)-valued holomorphic function G on
the open right-half complex plane such that

Gu = L−1(GLu) for all u ∈ Hα(R, U) with support bounded on the left

and
γ := sup

Re s>0
∥(1 + s)β−αG(s)∥ <∞, (1.2)

where Hα(R, U) is the fractional Sobolev space of U -valued tempered distributions (sometimes also referred
to as a Bessel potential space). Furthermore, ∥G∥B(Hα,Hβ) = γ.

The above multiplier theorem appears as Theorem 3.1 in the paper. Its proof is based on the repres-
entation result for operators L2(R, U) → L2(R, U) and a natural scale of causal translation-invariant
isometric isomorphisms L2(R, U) → Hα(R, U). We use the Laplace multiplier theorem to derive the
following corollary.

Fourier multiplier corollary. Assume that U is separable and let α, β ∈ R. A linear operator G :
Hα(R, U) → Hβ(R, U) is bounded, translation-invariant and causal if, and only if, there exists a B(U)-
valued holomorphic function G on the open right-half complex plane such that

Gu = F−1(G0Fu) for all u ∈ Hα(R, U) and γ <∞, (1.3)

in which case
∥G∥B(Hα,Hβ) = γ = ess supy∈R∥(1 + iy)β−αG0(y)∥ <∞,

where F denotes the Fourier transform and G0(y) := limx↓0 G(x+ iy) for almost every y ∈ R.
We remark that the separability of U is crucial for the existence of the pointwise boundary limit G0. The
above Fourier multiplier corollary generalizes the L2-result in [38, Theorems 5.2 and 6.5].

Whilst a non-causal translation-invariant bounded linear operator G on L2(R, U) also admits a multiplier
representation of the form (1.3) (see [5, Theorems 71–73] and [38, Theorem 5.2]), there does not exist
a bounded holomorphic function G on the open right-half plane such that G0 is the boundary function
of G. In a more general setting (where, for example, the functions in the domain and codomain of
the operator may depend on several variables), the relationship between causality and holomorphicity
has been explored in [17]. We remark that Fourier multiplier theorems play an important role in the
abstract theory of linear and quasilinear parabolic systems [2, 3] and in the stability theory of operator
semigroups (see, for example, [32, 33]). We emphasize that our work focusses on causal operators and
note that causality does not play a role in much of the Fourier multiplier literature.

Returning to the above Laplace multiplier theorem, given a holomorphic B(U)-valued function G on
the open right-half plane, it may be difficult to check directly if the quantity γ defined in (1.2) is finite.
Usually, if the boundary function G0 exists, the imaginary axis condition

γ0 := ess supy∈R∥(1 + iy)β−αG0(y)∥ <∞

is easier to deal with. If γ < ∞, then γ = γ0; however, if γ0 < ∞, then it does in general not follow
that γ = γ0 < ∞. For applications of the above theorems (in a control theoretic context, for example),
it is important, therefore, to identify conditions which ensure that the finiteness of γ0 implies that of γ,
in which case γ = γ0. In Section 4 of this paper, inspired by certain results on distributional boundary
values of holomorphic functions from [8, 9, 10, 26], we derive several such conditions. In particular, it
is shown that if G is polynomially bounded and γ0 < ∞, then γ = γ0. We remark that the relevant
theorems in [8, 9, 10, 26] are not in a suitable form to be directly applicable in the current context and,
hence, we develop and prove bespoke versions of these results.

There is a rich history of analyzing control systems from a functional analytic perspective, see, for
instance, [13, 27, 28, 36, 43]. In the so-called input-output approach to systems and control, a system
is considered as an operator, usually referred to as the input-output operator, mapping inputs (control
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functions) to outputs (observation functions), both of which are defined on R or [0,∞) (interpreted as
the bi-lateral or uni-lateral time axis, respectively) and take values in a Hilbert space U . As causality
is a key feature of physical control systems, input-output operators are assumed to be causal. Certain
continuity or boundedness properties of the input-output operator are referred to as input-output stability,
a theory which dates back to the 1960s (see [15]), with L2-stability (finite-energy-input finite-energy-
output) and L∞-stability (bounded-input bounded-output) being the most prominent examples.� For
various classes of systems, input-output stability properties have been (i) characterized in terms of transfer
functions and (ii) linked to stability concepts in the sense of Lyapunov, see, for example, [34, Chapter
12], [36, Chapter 8], [39, Section 3.7] and [42].

In Section 5, we apply the above Laplace multiplier theorem and the results of Section 4 to develop a
novel control-theoretic input-output stability framework, referred to as Sobolev stability, for a large class
of causal translation-invariant operators (equivalently, causal convolution operators with B(U)-valued
distributional kernels). Our new concept of Sobolev (α, β)-stability relates to the boundedness of a
causal translation-invariant input-output operator G as a map from domG ⊂ Hα(R, U) to Hβ(R, U),
where α, β ∈ R. It is particulary relevant in the analysis of systems which are not L2-stable, but exhibit
certain weaker stability properties and, as we demonstrate, can be viewed as considerable refinement of
the concept of P-stability [23, 30]. In Theorem 5.4, we provide several characterizations of Sobolev (α, β)-
stability of G in terms of its transfer function G, and use these to link Sobolev stability to results on
polynomial decay of operator semigroups [1, 6, 30] in Proposition 5.9. We also make contact with the
theory of well-posed linear systems [36] by providing, in Corollary 5.7, criteria for Sobolev (α, β)-stability
of the input-output operators of well-posed linear systems.

In Section 6, we discuss several examples in detail, including a neutral functional differential equation
and a heat equation on a square with boundary control along the top edge. Using the results on Sobolev
stability from Section 5, we determine for which values of α and β the systems under consideration are
Sobolev (α, β)-stable. Finally, in Section 7, we derive a half-line version of the above Laplace multiplier
theorem which provides a characterization of right-shift invariant bounded linear operators defined on
the subspace of all u ∈ Hα(R, U) with support in [0,∞).

Apart from Sections 3–7 which we have described in some detail, the paper contains Section 2 and an
Appendix (Section 8). The former is devoted to notation, terminology, background material and prelim-
inaries, whilst the latter contains remarks on the convolution of vector-valued distributions (Appendix
1), the proofs of two results from Section 2 (Appendix 2) and the proof of Theorem 4.1 (Appendix 3).

Finally, throughout the paper, to simplify the presentation, we consider the scenario of causal translation-
invariant linear operators, the domains and codomains of which consist of vector-valued distributions with
values in the same Hilbert space U . The case of operators mapping a space of U -valued distributions
to a space of Y -valued distributions (Y another Hilbert space) can be reduced to said scenario by an
augmentation trick: if G is a causal translation-invariant linear operator mapping U -valued to Y -valued
distributions with a B(U, Y )-valued transfer function G, then, setting Ũ := U × Y ,

G̃ :=

(
0 0
G 0

)
and G̃ :=

(
0 0
G 0

)
,

the operator G̃ is causal, linear and translation invariant, maps Ũ -valued distributions to Ũ -valued
distributions, and G̃, the transfer function of G̃, has values in B(Ũ) = B(Ũ , Ũ). The results of the paper
facilitate the analysis of G̃ and G̃, and any conclusions can be used to draw corresponding conclusions
relating to G and G, the original operator and its transfer function, respectively.

2 Preliminaries

Most mathematical notation used is standard. As usual, let N, Z, R and C denote the positive integers
(natural numbers), integers, real numbers and complex numbers, respectively. Furthermore, we set

N0 := N ∪ {0}, R+ := [0,∞) and Cµ :=
{
s ∈ C : Re (s) > µ} ∀ µ ∈ R .

Let X and Z be complex Banach spaces. The space of all linear bounded operators X → Z is de-
noted by B(X,Z). Endowed with the usual induced operator norm, B(X,Z) becomes a Banach space.

�We remark that input-output stability theory is not restricted to linear systems, see, for example, [11, 15].

3



We set B(X) := B(X,X). The space of continuous functions from R → X is denoted by C(R, X),
and C∞(R, X) and C∞

c (R, X) denote the subspaces of smooth functions and smooth functions with
compact support, respectively.

For more details on the following material on spaces of vector-valued functions and distributions, we refer
to

� [13, Appendix A.5] and [22, Chapter III] for vector-valued measurability and integration;

� [31, Chapter 4] and [38] for operator-valued H∞-functions;

� [2, Chapter III: Sections 4.1 and 4.2], [3, Chapter VII], [14, Chapter XVI: Section 2], [16, Chapter
8] and [43, Chapters 3, 5 and 6] for vector-valued distributions.

Let Lp(R, X) denote the usual Bochner-Lebesgue space of functions R → X, where 1 ≤ p ≤ ∞. As
usual, Lp

loc(R, X) stands for the localized version of Lp(R, X). The subspace of functions in Lp(R, X)
with support bounded on the left is denoted by Lp

ℓ (R, X), and we set

Lp
+(R, X) := {u ∈ Lp

ℓ (R, X) : suppu ⊂ [0,∞)} ⊂ Lp
ℓ (R, X).

Let S be the Schwartz space of rapidly decreasing smooth functions R → C and let D ⊂ S be the space
of compactly supported smooth test functions R → C, endowed with their usual topologies. The spaces
of all continuous linear maps D → X and S → X are denoted by D′(X) and S′(X), respectively. We
have that S′(X) ⊂ D′(X) and the elements in D′(X) are called X-valued distributions. A distribution
in S′(X) is said to be tempered (or, slowly growing). The subspace of distributions in D′(X) with
support bounded on the left is denoted by D′

ℓ(X), and similarly, S′ℓ(X) stands for the space of tempered
distributions having support bounded on the left.

Let f ∈ L1
loc(R, X). The map D → X, φ 7→

∫∞
−∞ φ(t)f(t) dt is well defined and continuous, and we

denote the corresponding regular distribution by [f ]. If f ∈ Lp(R, X), 1 ≤ p ≤ ∞, or if there exists r > 0
such that the function t 7→ ∥f(t)∥ is polynomially bounded on the set R\[−r, r], then [f ] extends to S

and [f ] ∈ S′(X).

Moreover, set

OM := {η ∈ C∞(R,C) : η(k) is polynomially bounded for every k ∈ N0},

O+
M := {η ∈ C∞(R,C) : η(k) is polynomially bounded on [0,∞) for every k ∈ N0}

and, for τ ∈ R,

Uτ := {η ∈ C∞(R,C) : ∃ t1 < t0 < τ s.t. η(t) = 1 ∀ t ∈ (t0,∞) and η(t) = 0 ∀ t ∈ (−∞, t1)}.

We note that if ψ ∈ O+
M, then, for every τ ∈ R, ψ and its derivatives are polynomially bounded on [τ,∞).

Conversely, if ψ ∈ C∞(R,C) is such that ψ and its derivatives are polynomially bounded on [τ,∞) for
some τ ∈ R, then ψ ∈ O+

M. For our purposes, the most important functions ψ ∈ O+
M which are not

polynomially bounded on the whole real line are of the form ψ(t) = e−ct, where c > 0. If ψ ∈ OM,
then ψφ ∈ S for all φ ∈ S. Consequently, the product ψu, where ψ ∈ OM and u ∈ S′(X), defined by

(ψu)(φ) := u(ψφ) ∀φ ∈ S,

is a tempered X-valued distribution. For u ∈ S′(X) ⊂ D′(X) and ψ ∈ C∞(R,C), the product ψu is
in D′(X), but in general not in S′(X). However, if ψ ∈ O+

M and u ∈ S′(X) with suppu ⊂ [τ,∞) for
some τ ∈ R, then it is straightforward to show that the product ψu defined by

(ψu)(φ) := u(ηψφ) ∀φ ∈ S, where η ∈ Uτ is arbitrary,

does not depend on η ∈ Uτ , and ψu ∈ S′(X).

For a function f ∈ L1(R, X), we define the Fourier transform by

(Ff)(y) :=

∫ ∞

−∞
e−iytf(t) dt ∀ y ∈ R.

As F is an automorphism on S, the definition of the Fourier transform extends to S′(X) via

(Fu)(φ) := u(Fφ) ∀φ ∈ S, where u ∈ S′(X).
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It is well known that the Fourier transform F is an automorphism on S′(X) with F and F−1 being
sequentially continuous. If f ∈ L1(R, X), then F[f ] = [Ff ]. If X = U is a complex Hilbert space, then
the restriction of F to L1(R, U)∩L2(R, U)) extends to an automorphism on L2(R, U), in fact, (1/

√
2π)F

is a unitary operator on L2(R, U), and so ∥Fu∥L2(R) =
√
2π∥u∥L2(R) for every u ∈ L2(R, U).

For θ ∈ R and U a complex Hilbert space, we define the Sobolev space (sometimes also called Bessel
potential space)

Hθ(R, U) :=
{
u ∈ S′(U) :

(
y 7→ (1 + y2)θ/2(Fu)(y)

)
∈ L2(R, U)

}
,

with inner product and associated norm given by

⟨u, v⟩ := 1

2π

∫ ∞

−∞
(1 + y2)θ⟨(Fu)(y), (Fv)(y)⟩dy, ∀u, v ∈ Hθ(R, U),

and

∥u∥Hθ :=

(
1

2π

∫ ∞

−∞
(1 + y2)θ∥(Fu)(y)∥2dy

)1/2

, ∀u ∈ Hθ(R, U),

respectively. The space Hθ(R, U) is complete and hence a Hilbert space. We note that H0(R, U) =
L2(R, U) and ∥u∥H0 = ∥u∥L2 for all u ∈ L2(R, U). If θ ≥ 0, then Hθ(R, U) ⊂ L2(R, U), whilst Hθ(R, U)
contains non-regular distributions when θ < 0. We also note that if u ∈ Hθ(R, U), then Fu ∈ L2

loc(R, U)
whatever the value of θ. We will also make use of the space Hθ

ℓ (R, U) := Hθ(R, U) ∩ S′ℓ(R, U) and the
half-line Sobolev space

Hθ
+(R, U) := {u ∈ Hα(R, U) : suppu ⊂ [0,∞)} ⊂ Hθ

ℓ (R, U).

The following lemma is well known for scalar-valued Hθ-spaces. As we could not find a suitable reference
for the vector-valued case, a proof is included in Appendix 2.

Lemma 2.1. Let U be a complex Hilbert space and θ ∈ R. The following statements hold.

(1) C∞
c (R, U) is dense in Hθ(R, U).

(2) The space {u ∈ C∞
c (R, U) : suppu ⊂ (0,∞)} is dense in Hθ

+(R, U).

For the rest of this section, let X be a complex Banach space. The Laplace transform Lu of a distribu-
tion u ∈ D′(X) such that suppu ⊂ [τ,∞) and e−µ · u ∈ S′(X) for some τ, µ ∈ R is defined by

(Lu)(s) :=
(
e−µ · u

)
(ηe−(s−µ) · ) ∀ s ∈ Cµ,

where η ∈ Uτ is arbitrary. It is straightforward to show that the definition does not depend on η.
The classical Laplace transform is a special case in the sense that if f : R → X is such that f(t) = 0
for a.e. t ∈ (−∞, τ) and e−µ · f ∈ L1(R, X) for some τ, µ ∈ R, then (L[f ])(s) = (Lf)(s) for all s ∈ Cµ.
For u ∈ D′(X) with suppu bounded on the left, we define the abscissa of convergence σ(u) as the infimum
of all µ ∈ R such that e−µ · u ∈ S′(X). If no such µ exists, then we set σ(u) = ∞. If σ(u) <∞, then the
Laplace transform of u exists and is holomorphic on Cσ(u), and u is said to be Laplace transformable.

For later purposes, we state the following lemma on the vector-valued Laplace transform, the proof of
which can be found in Appendix 2.

Lemma 2.2. Let h : Cµ → X be holomorphic, where µ ∈ R. If

sup
s∈Cµ

∥s2h(s)∥ <∞,

then there exists h ∈ C(R, X) such that h(t) = 0 for all t ≤ 0, supt>0 ∥e−νtt−1h(t)∥ < ∞ and e−ν · h ∈
L1(R, X) for every ν > µ and (Lh)(s) = h(s) for all s ∈ Cµ.

For each τ ∈ R, the shift or translation operator Sτ : L1
loc(R, X) → L1

loc(R, X) is defined by (Sτf)(t) :=
f(t− τ). Letting u ∈ D′(X), the definition

(Sτu)(φ) := u(S−τφ) ∀φ ∈ D
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extends the translation operator to D′(X). A linear map T : domT ⊂ D′(X) → D′(X) is said to be
translation invariant if Sτu ∈ domT and SτTu = TSτu for all u ∈ domT and all τ ∈ R. Furthermore,
we say that T is causal if, for all τ ∈ R and all u ∈ domT , we have

suppu ⊂ [τ,∞) ⇒ supp(Tu) ⊂ [τ,∞).

It is a routine exercise to show that if T is translation invariant, then T is causal if, for all u ∈ domT ,

suppu ⊂ [0,∞) ⇒ supp(Tu) ⊂ [0,∞).

For µ ∈ R, we let H∞
µ (X) denote the Hardy space of all bounded holomorphic functions Cµ → B(X).

Equipped with the norm
∥H∥H∞

µ
:= sup

s∈Cµ

∥H(s)∥,

H∞
µ (X) is a Banach space. We set H∞(X) := H∞

0 (X).

The following result on H∞(B(U)) (known as Fatou’s theorem), U a separable complex Hilbert space,
will be frequently used in this paper. For the proof we refer to [31, Theorem B, Section 4.6] and [31,
Theorem C, Section 4.8] or [38, Theorem 6.4].

Theorem 2.3. Let U be a separable complex Hilbert space and let H ∈ H∞(B(U)). Then H has a
non-tangential limit H0(y) = lims→iy H(s) in the strong operator topology for almost everywhere y ∈ R
and

ess supy∈R∥H0(y)∥ = ∥H∥H∞ .

Furthermore, ∥H0(y)∥ = lims→iy ∥H(s)∥ non-tangentially for almost everywhere y ∈ R.

For notational simplicity, in the scalar-valued case (that is, when X = C or U = C), we shall drop X
or U from the notation of function and distribution spaces: for example, C(R), D′, S′, Hθ(R) and Hµ

stand for C(R,C), D′(C), S′(C), Hθ(R,C) and Hµ(C), respectively.

3 Operator-valued multiplier theorems

The main objective of the current section is to prove the following Laplace multiplier theorem for a class
of causal and translation-invariant operators. Throughout this section, let U be a complex Hilbert space.

Theorem 3.1. Let α, β ∈ R.

(1) If G ∈ B
(
Hα(R, U), Hβ(R, U)

)
is causal and translation invariant, then there exists a unique

holomorphic function G : C0 → B(U) such that

Gu = (L−1 ◦MG ◦ L)(u) ∀u ∈ Hα
ℓ (R, U) (3.1)

and
sup
s∈C0

∥(1 + s)β−αG(s)∥ = ∥G∥B(Hα,Hβ), (3.2)

where MG denotes multiplication by G.

(2) If G : C0 → B(U) is holomorphic and such that

sup
s∈C0

∥(1 + s)β−αG(s)∥ <∞, (3.3)

then there exists a unique causal translation-invariant operator G ∈ B
(
Hα(R, U), Hβ(R, U)

)
such

that (3.1) and (3.2) hold.

Condition (3.3) means that the function s 7→ (1+s)β−αG(s) is in the Hardy space H∞(B(U)). The norm
on the right-hand side of (3.2) is the operator norm induced by the norms of Hα(R, U) and Hβ(R, U).

As for the expression (1+s)β−α appearing in (3.2) and (3.3), the following convention applies throughout
the paper: we identify the complex power function with exponent θ ∈ R with its principal branch on the
domain C\(−∞, 0], and thus, (1 + s)β−α ∈ (0,∞) if s ∈ (−1,∞).

Theorem 3.1 is a generalisation of the following well-known result, see [36, Theorem 10.3.5], [38] or [41].
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Theorem 3.2. A linear operator G : L2(R, U) → L2(R, U) is bounded, translation-invariant and causal
if, and only if, there exists G ∈ H∞(B(U)) such that G is of the form (3.1) (with Hα

ℓ (R, U) replaced
by L2

+(R, U)). Moreover, G and G determine each other uniquely, and∥∥G∥∥
B(L2(R,U))

= ∥G∥H∞ .

The proof of Theorem 3.1 is based on Theorem 3.2 and a scale of causal translation-invariant isometric
isomorphisms L2(R, U) → Hθ(R, U), θ ∈ R, which we shall now introduce. For which purpose, let θ ∈ R,
set

rθ(s) := (1 + s)−θ ∀ s ∈ C−1 and ρθ(y) := rθ(iy) ∀ y ∈ R, (3.4)

and define a linear map Rθ : S′(U) → S′(U) by Rθ := F−1 ◦Mρθ
◦ F. Note that

Rθu := F−1(ρθFu) = (F−1ρθ) ⋆ u ∀u ∈ S′(U). (3.5)

Here we have used that ρθ ∈ OM (equivalently, F−1ρθ is a distribution of rapid decay) from which it follows
that, for every u ∈ S′(U), the products ρθFu and (F−1ρθ) ⋆ u are well-defined tempered distributions, so
that the convolution theorem (exchange formula) can be invoked to obtain the second equality in (3.5),
see Appendix 1.

The next result gathers properties of the scale of operators Rθ.

Proposition 3.3. For every θ ∈ R, the operator Rθ defined by (3.5) has the following properties.

(1) Rθ : S′(U) → S′(U) is a sequentially continuous isomorphism and R−1
θ = R−θ.

(2) Rθ is translation invariant.

(3) Rθ is causal.

(4) For every α ∈ R, Rθ(H
α(R, U)) = Hα+θ(R, U) and ∥Rθu∥Hα+θ = ∥u∥Hα , that is, the restriction

of Rθ to Hα(R, U) is an isometric isomorphism Hα(R, U) → Hα+θ(R, U).

Proposition 3.3 has some overlap with [40, Proposition 31.8] in the sense that, for the scalar-valued
case, it is shown that there exists an isometric isomorphism mapping Hα(R) onto Hβ(R). However, the
isometric isomorphism is not causal, and therefore [40, Proposition 31.8] is not suitable as a tool in the
proof of Theorem 3.1.

Before we provide a proof of Proposition 3.3, it is convenient to state and prove the following technical
lemma.

Lemma 3.4. Let θ ∈ R and let rθ and ρθ be defined as in (3.4). Then supp(F−1ρθ) ⊂ [0,∞),
e−ν ·F−1ρθ ∈ S′ for all ν ∈ (−1, 0) and

(
L(F−1ρθ)

)
(s) = rθ(s) for all s ∈ C−1.

Proof. Let θ ∈ R, ν ∈ (−1, 0) and k ∈ N0 such that k ≥ 2 − θ. Setting hθ(s) := (1 + s)−krθ(s) =
(1+ s)−(k+θ) for all s ∈ C−1, we have that s2hθ(s) is bounded on Cµ for fixed but arbitrary µ ∈ (−1, ν).
It follows from Lemma 2.2 that there exists a function hθ ∈ C(R) such that hθ(t) = 0 for all t ≤ 0,
e−ν · hθ ∈ L1(R) and (Lhθ)(s) = hθ(s) for all s ∈ Cµ. In particular,

(Fhθ)(y) = (Lhθ)(iy) = hθ(iy) ∀ y ∈ R.

Defining rθ := (1 +D)khθ ∈ S′, where D denotes differentiation (in the distributional sense), it follows
that supp rθ ⊂ [0,∞), e−ν · rθ ∈ S′, (Lrθ)(s) = rθ(s) for all s ∈ Cµ and Frθ = ρθ. Consequently,
rθ = F−1ρθ and

(
L(F−1ρθ)

)
(s) = rθ(s) for all s ∈ Cµ. The latter identity holds for every µ ∈ (−1, ν),

and hence it holds for all s ∈ C−1, completing the proof. □

It follows from (3.5), Lemma 3.4 and the convolution theorem for Laplace transforms (see Appendix 1)
that, for every θ ∈ R,

L(Rθu) = rθLu ∀u ∈ S′ℓ(U),

and, consequently,
Rθu =

(
L−1 ◦Mrθ ◦ L

)
(u) ∀u ∈ S′ℓ(U). (3.6)

We proceed to prove Proposition 3.3.
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Proof of Proposition 3.3. (1) It is immediate that RθR−θ = R−θRθ = I. Hence, Rθ is an isomorphism
and R−1

θ = R−θ. Moreover, as F, F−1 and multiplication by ρθ are sequentially continuous on S′(U), it
follows that Rθ is sequentially continuous.

(2) Let τ ∈ R and u ∈ S′(U). Then RθSτu = F−1(ρθe
−iτ ·Fu), and thus,

FRθSτu = ρθe
−iτ ·Fu = e−iτ · (ρθFu) = F

(
SτF

−1(ρθFu)
)
= F(SτRθu).

Consequently, RθSτu = SτRθu, establishing the translation invariance of Rθ.

(3) By Lemma 3.4, supp(F−1ρθ) ⊂ [0,∞). Using that Rθu = (F−1ρθ) ⋆ u for all u ∈ S′(U), causality
follows from [43, Theorem 5.11-1].

(4) For u ∈ Hα(R, U), we compute

2π∥Rθu∥2Hα+θ =

∫ ∞

−∞
(1 + y2)α+θ|ρθ(y)|2∥(Fu)(y)∥2dy =

∫ ∞

−∞
(1 + y2)α∥(Fu)(y)∥2dy = 2π∥u∥2Hα ,

where we have used that |ρθ(y)|2 = |1 + iy|−2θ = (1 + y2)−θ, showing that Rθ restricted to Hα(R, U)
maps isometrically into Hα+θ(R, U). For v ∈ Hα+θ(R, U), we have that R−θv ∈ Hα(R, U), and, by
statement (1), Rθ(R−θv) = v, showing that Rθ restricted to Hα(R, U) maps onto Hα+θ(R, U). Hence,
the restriction of Rθ to Hα(R, U) is an isometric isomorphism Hα(R, U) → Hα+θ(R, U). □

We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. (1) Assume that G ∈ B
(
Hα(R, U), Hβ(R, U)

)
is causal and translation

invariant. An application of Proposition 3.3 yields that

R−βGRα : L2(R, U) → L2(R, U)

is a causal translation-invariant bounded linear operator. Therefore, invoking Theorem 3.2, there exists
a function H ∈ H∞(B(U)) such that

R−βGRαv = L−1(HLv) ∀ v ∈ L2
+(R, U).

Appealing to (3.6) and Proposition 3.3, we conclude that

Gu = RβL
−1
(
HL(R−αu)

)
= L−1(GLu) = (L−1 ◦MG ◦ L)(u) ∀u ∈ Hα

+(R, U),

whereG(s) := (1+s)α−βH(s). As G and L−1◦MG◦L are translation invariant, it follows that (3.1) holds.
To establish uniqueness ofG, let G̃ : C0 → B(U) be holomorphic and assume thatGu = (L−1◦MG̃◦L)(u)
for all u ∈ Hα

ℓ (R, U). Then, for fixed φ ∈ D, φ(t) ̸≡ 0, it follows from (3.1) that GL(φ⊗ v) = G̃L(φ⊗ v)
for all v ∈ U , where (φ ⊗ v)(t) := φ(t)v for all t ∈ R. Consequently, (Lφ)(s)G(s)v = (Lφ)(s)G̃(s)v for
all s ∈ C0 and all v ∈ U , showing that G̃ = G.

To establish the equality of norms (3.2), we invoke Theorem 3.2 again to obtain

∥R−βGRα∥B(L2
+(R,U)) = ∥H∥H∞ = sup

s∈C0

∥(1 + s)β−αG(s)∥. (3.7)

Using Proposition 3.3 once again, the restriction ofR−β toHβ(R, U) is an isometric isomorphismHβ(R, U) →
L2(R, U), and so

∥R−βGRαu∥L2 = ∥GRαu∥Hβ ∀u ∈ L2
+(R, U).

Furthermore, Rα maps L2
+(R, U) isometrically onto Hα

+(R, U), and so,

sup
∥u∥L2=1, u∈L2

+(R,U)

∥GRαu∥Hβ = sup
∥v∥Hα=1, v∈Hα

+(R,U)

∥Gv∥Hβ .

Therefore,

∥R−βGRα∥B(L2
+(R,U)) = sup

∥u∥L2=1, u∈L2
+(R,U)

∥R−βGRαu∥L2 = sup
∥v∥Hα=1, v∈Hα

+(R,U)

∥Gv∥Hβ .

Hence, ∥G∥
B(Hα

+,Hβ
+) = ∥R−βGRα∥B(L2

+(R,U)), and so, by (3.7),

∥G∥
B(Hα

+,Hβ
+) = sup

s∈C0

∥(1 + s)β−αG(s)∥. (3.8)
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Finally, let u ∈ Hα(R, U), u ̸= 0. By Lemma 2.1, there exist uj ∈ C∞
c (R, U), j ∈ N, such that uj → u

in Hα(R, U) as j → ∞. Choosing τj ∈ R such that supp(Sτjuj) ⊂ [0,∞), we have that Sτjuj ∈ Hα
+(R, U)

for all j ∈ N and, by translation invariance and (3.8),

∥Guj∥Hβ

∥uj∥Hα

=
∥SτjGuj∥Hβ

∥Sτjuj∥Hα

=
∥G(Sτjuj)∥Hβ

∥Sτjuj∥Hα

≤ sup
s∈C0

∥(1 + s)β−αG(s)∥.

Consequently,
∥Gu∥Hβ

∥u∥Hα

= lim
j→∞

∥Guj∥Hβ

∥uj∥Hα

≤ sup
s∈C0

∥(1 + s)β−αG(s)∥,

which, together with (3.8) shows that (3.2) holds.

(2) Conversely, let G : C0 → B(U) be holomorphic and assume that (3.3) holds. Obviously, H defined by
H(s) := (1 + s)β−αG = rα−β(s)G(s) is in H∞(B(U)), and so, by Theorem 3.2 there exists a causal and
translation-invariant operator H ∈ B(L2(R, U)) such that Hu = (L−1 ◦MH ◦L)(u) for all u ∈ L2

+(R, U).
As H and L−1 ◦MH ◦ L are translation invariant, it follows that

Hu = (L−1 ◦MH ◦ L)(u) ∀u ∈ L2
ℓ(R, U). (3.9)

Using Proposition 3.3, it is clear that the linear operator

G := Rβ ◦H ◦R−α : Hα(R, U) → Hβ(R, U)

is causal, translation-invariant and bounded. Furthermore, by (3.6) and (3.9),

G = L−1 ◦Mrβ ◦MH ◦Mr−α ◦ L = L−1 ◦Mrβ−αH ◦ L = L−1 ◦MG ◦ L on Hα
ℓ (R, U),

showing that (3.1) holds. Finally, as Hα
ℓ (R, U) is dense in Hα(R, U), it is clear that G is the unique

operator in B
(
Hα(R, U), Hβ(R, U)

)
satisfying (3.1). □

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. If G ∈ B(L2(R, U)) is causal and translation-invariant, then, for all α > 0 (α < 0), G
restricts (extends) to a causal translation-invariant bounded linear operator Hα(R, U) → Hα(R, U).

Next we want to apply Theorem 3.1 to derive a Fourier multiplier theorem. To facilitate such an applic-
ation of Theorem 3.1, it is convenient to state and prove an auxiliary result first.

Let H2(U) be the Hardy space of all holomorphic functions C0 → U such that

∥f∥H2 := sup
x>0

(∫ ∞

−∞
∥f(x+ iy)∥2dy

)1/2

<∞.

By the Paley-Wiener theorem (see [4, Theorem 1.8.3], [31, Section 4.8] or [36, Theorem 10.3.4]), the
Laplace transform maps L2

+(R, U) isomorphically onto H2(U), and

∥Lu∥H2 =
√
2π∥u∥L2 ∀u ∈ L2

+(R, U).

For each f ∈ H2(U), the boundary limit f0(y) := limx↓0 f(x + iy) exists for almost every y ∈ R, the
boundary function f0 is in L2(R, U), the map

B : H2(U) → L2(R, U), f 7→ f0 (3.10)

is an isometry,
(B ◦ L)(u) = Fu ∀u ∈ L2

+(R, U), (3.11)

and B(H2(U)) = F(L2
+(R, U)) = {g ∈ L2(R, U) : supp(F−1g) ⊂ [0,∞)}, see [4, Theorem 1.8.3], [31,

Section 4.8] or [36, Section 10.3] for details.

The following lemma relates certain Fourier multipliers to the corresponding Laplace multipliers.

Lemma 3.6. Assume that U is separable. Let G : C0 → B(U) be holomorphic and such that sups∈C0
∥(1+

s)−kG(s)∥ <∞ for some k ∈ N0. Then the limit G0(y) := limx↓0 G(x+ iy) exists in the strong operator
topology for almost every y ∈ R and

(F−1 ◦MG0
◦ F)(u) = (L−1 ◦MG ◦ L)(u) ∀u ∈ L2

ℓ(R, U).
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Proof. Since F−1 ◦MG0
◦ F and L−1 ◦MG ◦ L are translation-invariant, it is sufficient to show that

(F−1 ◦MG0 ◦ F)(u) = (L−1 ◦MG ◦ L)(u) ∀u ∈ L2
+(R, U). (3.12)

Set H(s) := (1 + s)−kG(s) for all s ∈ C0. Then, H ∈ H∞(B(U)) and, by Theorem 2.3, there exists a
boundary function H0 such that H(x+ iy) converges to H0(y) in the strong operator topology for almost
every y ∈ R as x ↓ 0 and ess supy∈R∥H0(y)∥ = ∥H∥H∞ . Let u ∈ L2

+(R, U) and set H := L−1 ◦MH ◦ L.
As H is causal, Hu ∈ L2

+(R, U), and, invoking (3.11), we have that

F(Hu) = (B ◦ L)(Hu) = MH0B(Lu) = MH0(Fu) = (MH0 ◦ F)(u).

Consequently, Hu = (F−1 ◦MG0
◦ F)(u), and thus,

(F−1 ◦MH0
◦ F)(u) = (L−1 ◦MH ◦ L)(u) ∀u ∈ L2

+(R, U).

An application of (I+D)k (recall that D denotes differentiation in the distributional sense) to both sides
of the above equation leads to

(I +D)k(F−1 ◦MH0 ◦ F)(u) = (I +D)k(L−1 ◦MH ◦ L)(u) ∀u ∈ L2
+(R, U).

Using standard properties of the Fourier and Laplace transforms, it follows that

(F−1 ◦Mρ−kH0
◦ F)(u) = (L−1 ◦Mr−kH ◦ L)(u) ∀u ∈ L2

+(R, U),

where r−k and ρ−k are given by (3.4). As r−kH = G and ρ−kH0 = G0, equation (3.12) follows from the
above identity. □

We are now in the position to prove the following Fourier multiplier result.

Corollary 3.7. Assume that U is separable and let α, β ∈ R.

(1) If G : Hα(R, U) → Hβ(R, U) is a bounded linear causal translation-invariant operator, then there
exists a unique holomorphic function G : C0 → B(U) such that

Gu = (F−1 ◦MG0
◦ F)(u) ∀u ∈ Hα(R, U) (3.13)

and
sup
s∈C0

∥(1 + s)β−αG(s)∥ = ∥G∥B(Hα,Hβ) = ess supy∈R∥(1 + iy)β−αG0(y)∥, (3.14)

where G0(y) := limx↓0 G(x+ iy), with the limit existing in the strong operator topology for almost
every y ∈ R, and MG0 denotes the operator of multiplication by G0.

(2) Conversely, if G : C0 → B(U) is holomorphic and such that

sup
s∈C0

∥(1 + s)β−αG(s)∥ <∞, (3.15)

then G0(y) := limx↓0 G(x + iy) exists in the strong operator topology for almost every y ∈ R, G
given by (3.13) is a bounded linear causal translation-invariant operator Hα(R, U) → Hβ(R, U)
and (3.14) holds.

Proof. (1) Assume that G ∈ B
(
Hα(R, U), Hβ(R, U)

)
is causal and translation invariant. By state-

ment (1) of Theorem 3.1 there exists a unique holomorphic function G : C0 → B(U) such that Gu =
(L−1 ◦MG ◦L)(u) for all u ∈ Hα

ℓ (R, U) and the first equality in (3.14) holds. Hence, the function rα−βG
is in H∞(B(U)), and so, Theorem 2.3 yields that the boundary limit G0(y) := limx↓0 G(x+ iy) exists in
the strong operator topology for almost every y ∈ R (here separability of U is used) and

ess supy∈R∥ρα−βG0(y)∥ = ∥rα−βG∥H∞ . (3.16)

Consequently, the second equality in (3.14) also holds. Furthermore, it follows from Lemma 3.6 that

(F−1 ◦MG0
◦ F)(u) = (L−1 ◦MG ◦ L)(u) ∀u ∈ C∞

c (R, U).

Therefore,
Gu = (F−1 ◦MG0

◦ F)(u) ∀u ∈ C∞
c (R, U). (3.17)
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Next, we note that
F−1 ◦MG0

◦ F = Rβ ◦ F−1 ◦Mρα−βG0
◦ F ◦R−α. (3.18)

By (3.16), the function y 7→ ∥ρα−β(y)G0(y)∥ is essentially bounded. Combining this with Proposition 3.3,
it follows that the right-hand side of (3.18) is a bounded operator from Hα(R, U) to Hβ(R, U), and thus,
F−1◦MG0 ◦F ∈ B

(
Hα(R, U), Hβ(R, U)

)
. Therefore, since C∞

c (R, U) is dense in Hα(R, U) by Lemma 2.1,
equation (3.17) yields that Gu = (F−1 ◦MG0 ◦ F)(u) for all u ∈ Hα(R, U), establishing (3.13).

(2) Conversely, let G : C0 → B(U) be holomorphic and assume that (3.15) holds. By Theorem 3.1, there
exists a unique causal translation-invariant operator G ∈ B

(
Hα(R, U), Hβ(R, U)

)
such that

Gu = (L−1 ◦MG ◦ L)(u) ∀u ∈ Hα
ℓ (R, U)

and (3.14) holds. By (3.15),G is polynomially bounded, and thus it follows from Lemma 3.6 thatG0(y) :=
limx↓0 G(x+ iy) exists in the strong operator topology for almost every y ∈ R (here separability of U is
used) and

Gu = L−1 ◦MG ◦ L = F−1 ◦MG0
◦ F ∀u ∈ C∞

c (R, U).

Moreover, since rα−βG ∈ H∞(B(U)), it follows that (3.16) holds. Therefore, as in the proof of state-
ment (1), we have that F−1◦MG0

◦F ∈ B
(
Hα(R, U), Hβ(R, U)

)
, and, invoking the denseness of C∞

c (R, U)
inHα(R, U) (see Lemma 2.1), the above identity yields thatGu = (F−1◦MG0◦F)(u) for all u ∈ Hα(R, U),
completing the proof. □

We close this section by showing how Proposition 3.3 can be used to derive a generalization of the Paley-
Wiener theorem which provides a natural isomorphism between Hθ

+(R, U) and a suitably weighted H2-
space. To this end, we introduce the space

H2,θ(U) := rθH
2(U) = {u : C0 → U : u holomorphic and r−θu ∈ H2(U)}, where θ ∈ R

of holomorphic functions, where rθ is defined in (3.4). Endowed with the norm ∥u∥H2,θ := ∥r−θu∥H2 ,
the space H2,θ(U) is complete.

The following result contains the classical Paley-Wiener theorem as a special case.

Proposition 3.8. Let θ ∈ R. The Laplace transform maps Hθ
+(R, U) isomorphically onto H2,θ(U) and

∥Lu∥H2,θ =
√
2π∥u∥Hθ ∀u ∈ Hθ

+(R, U). (3.19)

Proof. Let θ ∈ R and u ∈ S′(U). It follows from (3.5) and Lemma 3.4 that

L(Rαu) = rαLu ∀u ∈ S′ℓ(U), ∀α ∈ R. (3.20)

Let u ∈ Hθ
+(R, U). Proposition 3.3 ensures that R−θu ∈ L2

+(R, U) and ∥u∥Hθ = ∥R−θu∥L2 , and thus,

√
2π∥u∥Hθ =

√
2π∥R−θu∥L2 = ∥L(R−θu)∥H2 , (3.21)

where, in the last equality, we have used the classical Paley-Wiener theorem. Appealing to (3.20), we see
that L(R−θu) = r−θLu, which combined with (3.21) gives

√
2π∥u∥Hθ = ∥r−θLu∥H2 = ∥Lu∥H2,θ ,

showing that L maps Hθ
+(R, U) isomorphically into H2,θ(U) and (3.19) holds.

To show surjectivity, let v ∈ H2,θ(U). By the classical Paley-Wiener theorem there exists u ∈ L2
+(R, U)

such that v = rθLu. Setting v := Rθu, we have that v ∈ Hθ
+(R, U) by Proposition 3.3. By (3.20),

Lv = L(Rθu) = rθLu = v, showing that L maps Hθ
+(R, U) onto H2,θ(U). □

4 Boundary values of vector-valued holomorphic functions defined
on the right-half plane

In this section, we explore the key hypothesis (3.3) on the holomorphic function G in Theorem 3.1 in
greater detail: in particular, under the assumption that the limit G0(y) = limx↓ G(x + iy) exists in the
strong operator topology for almost every y ∈ R, we shall consider the imaginary axis condition

ess supy∈R∥(1 + iy)β−αG0(y)∥ <∞. (4.1)
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The motivation for our interest in (4.1) is that the verification of the imaginary axis condition (4.1) is
usually considerably easier than establishing the uniform boundedness of (1 + s)β−αG(s) on the open
right-half plane. We shall identify conditions under which the existence of the strong limit G0(y) =
limx↓0 G(x + iy) together with the imaginary axis condition (4.1) is sufficient for the function s 7→
(1 + s)β−αG(s) to be in H∞(B(U)). This will involve the consideration of the boundary behaviour
of G(x+ iy) in the sense of distributions as x ↓ 0.

For a holomorphic function G : C0 → X, X a complex Banach space, set

Gx(y) := G(x+ iy) ∀ y ∈ R, where x > 0.

The following result addresses the existence and properties of boundary distributions for X-valued holo-
morphic functions defined on C0.

Theorem 4.1. Let X be a complex Banach space, G : C0 → X be holomorphic, and assume that there
exist M ≥ 0 and m, k ∈ N0 such that

∥G(s)∥ ≤M
(
1 + |s|

)m(
1 + (Re s)−k

)
∀ s ∈ C0. (4.2)

Then there exists a tempered distribution Γ ∈ S′(X) (the so-called boundary distribution of G) such
that [Gx] → Γ in S′(X) as x ↓ 0, supp(F−1Γ) ⊂ [0,∞) and L(F−1Γ) = G.

An alternative to the growth bound (4.2) is given by

∥G(s)∥ ≤ N
(
1 + |s|

)n(
Re s

)−k ∀ s ∈ C0, (4.3)

where N > 0 and n ∈ N0, see, for example, [8, equation (6.60)] and [10, equation (4.7)]. Trivially,
if (4.3) holds, then so does (4.2) with M = N and m = n. Conversely, if (4.2) is satisfied, then it is
straightforward to show that (4.3) holds with N = 2M and n = m + k. Consequently, Theorem 4.1
remains valid when (4.2) is replaced by (4.3).

In the scalar-valued case, Theorem 4.1 is a special case of [8, Theorem 4.7.4]. For vector-valued functions,
the existence of tempered boundary distributions is stated, without proof, in [9, Theorem 4.1]. We refer
the reader to Appendix 3 for a proof of Theorem 4.1.

Next, we investigate under what conditions boundary distributions and pointwise boundary limits coin-
cide. In this paper, our focus will be on the situation wherein X = B(U), where U is a complex Hilbert
space. It is well known that if U is separable, then pointwise boundary limits of functions in H∞(B(U))
exist in the strong operator topology, but not necessarily in the norm topology of B(U), and the strong
limit need not be Bochner measurable (as a B(U)-valued function), but will be weakly measurable.
Therefore, it would be too restrictive to assume that the pointwise boundary limit of a holomorphic
function G : C0 → B(U) is in L1

loc(R,B(U)) (locally Bochner integrable).

Therefore, it is useful to consider the weak integral (also called Pettis integral) for B(U)-valued functions,
where U is a complex Hilbert space. Let Ω ⊂ R be a set of positive Lebesgue measure. A function F : Ω →
B(U) is said to be weakly measurable if the scalar-valued function Ω → C, t 7→ ⟨F (t)u, v⟩ is Lebesgue
measurable for all u, v ∈ U . Furthermore, if F is weakly measurable, then the function Ω → C, t 7→ ∥F (t)∥
is Lebesgue measurable (see, for example, [22, Proof of Theorem 3.5.5]). For 1 ≤ p ≤ ∞, let Lp

w(Ω,B(U))
denote the space of functions F : Ω → B(U) such that F is weakly measurable and

∥F∥Lp
w
:=

(∫
Ω

∥F (t)∥pdt
)1/p

<∞ if p <∞ and ∥F∥L∞
w

:= ess supp∥F (t)∥ <∞ if p = ∞.

It is well known that Lp
w(Ω,B(U)) is complete, and, for F ∈ L1

w(Ω,B(U)), there exists a unique integ-
ral
∫
Ω
F (t) dt ∈ B(U) such that〈(∫

Ω

F (t) dt

)
u, v

〉
=

∫
Ω

⟨F (t)u, v⟩dt ∀u, v ∈ U,

and ∥∥∥∥∫
Ω

F (t) dt

∥∥∥∥ ≤
∫
Ω

∥F (t)∥ dt = ∥F∥L1
w
,

see, for example, [13, Appendix A.5]. Under the assumption that U is separable, weak measurability
of F : Ω → B(U) implies that F is also strongly measurable, that is, the function Ω → U, t 7→ F (t)u
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is Bochner measurable for every u ∈ U , see [22, Theorem 3.5.5]. Therefore, if U is separable, then the
function t 7→ F (t)u is Bochner integrable for every F ∈ Lp

w(Ω,B(U)) and every u ∈ U , and a routine
argument shows that (∫

Ω

F (t) dt

)
u =

∫
Ω

F (t)udt ∀u ∈ U,

where the integral on the left-hand side is the weak B(U)-valued integral of F , whilst the integral on
the right-hand side is the U -valued Bochner integral of Fu. Consequently, when U is separable, the
weak B(U)-valued integral can also be considered as a strong B(U)-valued integral.

Finally, we introduce the space Lp
w,loc(R,B(U)) of all functions F : R → B(U) such that F |Ω ∈

Lp
w(Ω,B(U)) for every bounded measurable set Ω ⊂ R. It follows from the properties listed above

that, for every F ∈ L1
w,loc(R,B(U)), the functional [F ] given by

[F ](φ) :=

∫ ∞

−∞
φ(t)F (t) dt ∀φ ∈ D (4.4)

is well-defined and continuous on D, whence [F ] ∈ D′(B(U)). Similarly, if F ∈ L1
w,loc(R,B(U)) is such

that ∥F (t)∥ is polynomially bounded on a set of the form {t ∈ R : |t| ≥ τ} for some τ > 0, then the
right-hand side of (4.4) is well defined for all φ ∈ S, and [F ] ∈ S′(B(U)).

Throughout the rest of this section, let U be a complex Hilbert space. The next result provides a
sufficient condition which guarantees that the boundary distribution of a holomorphic function is equal
to the regular distribution induced by the pointwise boundary limit.

Lemma 4.2. Let G : C0 → B(U) be holomorphic. Assume that there exists Γ ∈ S′(B(U)) such
that [Gx] → Γ in S′(B(U)) as x ↓ 0, the limit G0(y) := limx↓0 Gx(y) exists in the strong operator topology
for almost every y ∈ R, and there exists x0 > 0 such that, for each a > 0, there exists ga ∈ L1(−a, a)
satisfying

∥G(x+ iy)∥ = ∥Gx(y)∥ ≤ ga(y) ∀ (x, y) ∈ (0, x0)× [−a, a]. (4.5)

Under these conditions, G0 ∈ L1
w,loc(R,B(U)) and Γ(φ) = [G0](φ) for all φ ∈ D.

We remark that condition (4.5) is equivalent to the existence of x0 > 0 and g ∈ L1
loc(R) such that

∥G(x+ iy)∥ = ∥Gx(y)∥ ≤ g(y) ∀ (x, y) ∈ (0, x0)× R.

Note that if condition (4.5) is satisfied for some x0 > 0, then it holds for all x0 > 0. Furthermore, if G is
bounded on every bounded strip of the form {x+ iy : x ∈ (0, x0), |y| ≤ a}, a > 0, then (4.5) is satisfied.

We illustrate Lemma 4.2 with a class of examples, and demonstrate that, in the absence of condition (4.5),
the conclusions of Lemma 4.2 may fail to hold.

Example 4.3. (1) Let yj ∈ R, j = 1, . . . , n, be such that yj ̸= yk if j ̸= k, and let H : C0 → B(U)
be holomorphic and polynomially bounded, where U is assumed to separable. Consider the holomorphic
function G : C0 → B(U) given by

G(s) :=

( n∏
j=1

(s− iyj)
−θj

)
H(s) ∀ s ∈ C0, where θj ∈ (0, 1), j = 1, . . . , n.

It follows from Theorem 4.1 that there exists Γ ∈ S′(B(U)) such that [Gx] → Γ in S′(B(U)) as x ↓ 0. AsH
is polynomially bounded there existsm ∈ N such that (1+s)−mH(s) is bounded on C0 and it follows from
Theorem 2.3 that there exists a boundary function H0 ∈ L∞

w,loc(R,B(U)) such that H(x+ iy) converges
to H0(y) in the strong operator topology for almost every y ∈ R as x ↓ 0. Consequently, G(x + iy)

converges to G0(y) :=
∏n

j=1

(
i(y − yj)

)−θj
H0(y) in the strong operator topology for almost every y ∈ R

as x ↓ 0. Furthermore, G satisfies (4.5), and therefore Lemma 4.2 ensures that Γ(φ) = [G0](φ) for
all φ ∈ D.

(2) For θ ∈ (0, 1), the scalar function G(s) = s−θ is an instance of the above example. Let us now
consider the case wherein θ = 1, that is, G(s) = 1/s. It is clear that condition (4.5) is not satisfied. The
existence of a distribution Γ ∈ S′ such that [Gx] → Γ in S′ as x ↓ 0 follows from Theorem 4.1. Whilst the
pointwise boundary limit G0(y) = 1/(iy) exists for every y ̸= 0, it is not in L1

loc(R,C), and hence does
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not induce a regular distribution, showing that the conclusions of Lemma 4.2 do not hold. Finally, using
calculations similar to those in [18, p. 19/20], it is not difficult to show that Γ = pvG0 + πδ, where

(pvG0)(φ) := lim
ε↓0

(∫ −ε

−∞
G0(y)φ(y)dy +

∫ ∞

ε

G0(y)φ(y)dy

)
∀φ ∈ S,

the principal-value distribution induced by G0. ♢

For T ∈ D′(B(U)) and u, v ∈ U , it is convenient to define a scalar-valued distribution Tu,v ∈ D′

by Tu,v(φ) := ⟨T (φ)u, v⟩ for all φ ∈ D. We note that if F ∈ L1
w,loc(R,B(U)), then [F ]u,v = [f ],

where f(t) := ⟨F (t)u, v⟩ for all t ∈ R.
Proof of Lemma 4.2. Trivially, Gx is weakly measurable for every x > 0, and thus G0 is also weakly
measurable. Moreover, we have that ∥Gx∥ ∈ L1

loc(R) for every x > 0, and so, for arbitrary a > 0,
the restriction of ∥Gx∥ to [−a, a] is in L1(−a, a). By hypothesis, Gx(y) converges to G0(y) in the
strong operator topology for almost every y ∈ R as x ↓ 0, that is, there exists a null set N ⊂ R such
that limx↓0 Gx(y)u = G0(y)u for all u ∈ U and all y ∈ R\N . Let y ∈ R\N and ε > 0. There exists u ∈ U
such that ∥u∥ = 1 and ∥G0(y)∥ ≤ ∥G0(y)u∥+ ε. Hence,

∥G0(y)∥ ≤ lim inf
x↓0

∥Gx(y)u∥+ ε ≤ lim inf
x↓0

∥Gx(y)∥+ ε.

This holds for every y ∈ R\N and ε > 0, and thus, we obtain that, for every a > 0,

∥G0(y)∥ ≤ lim inf
x↓0

∥Gx(y)∥ ≤ ga(y) for a.e. y ∈ [−a, a].

Consequently, G0 ∈ L1
w,loc(R,B(U)), and therefore, G0 induces a regular distribution [G0] ∈ D′(B(U)).

Let φ ∈ D, let a > 0 be such that suppφ ⊂ [−a, a] and let u, v ∈ U . It is clear that the function y 7→
⟨Gx(y)u, v⟩φ(y) is in L1(R) for every x > 0 and ⟨Gx(y)u, v⟩φ(y) → ⟨G0(y)u, v⟩φ(y) for almost every y ∈
R as x ↓ 0. Furthermore, there exists ga ∈ L1(−a, a) such that (4.5) holds, and so

|⟨Gx(y)u, v⟩φ(y)| ≤ g̃a(y)|φ(y)| ∀ (x, y) ∈ (0, x0)× R,

where g̃a(y) := ∥u∥∥v∥ga(y) for y ∈ [−a, a] and g̃a(y) := 0 for |y| > a. Trivially, the function g̃a|φ|
is in L1(R), and an application of Lebesgue’s dominated convergence theorem shows that ⟨Gxu, v⟩φ →
⟨G0u, v⟩φ in L1(R) as x ↓ 0, and so,

[Gx]
u,v(φ) =

∫ ∞

−∞
φ(y)⟨Gx(y)u, v⟩dy →

∫ ∞

−∞
φ(y)⟨G0(y)u, v⟩dy = [G0]

u,v(φ) as x ↓ 0.

On the other hand, [Gx]
u,v(φ) → Γu,v(φ) as x ↓ 0, and thus, ⟨[G0](φ)u, v⟩ = ⟨Γ(φ)u, v⟩. This holds for

all u, v ∈ U , showing that [G0](φ) = Γ(φ). The claim now follows as φ ∈ D was arbitrary. □

Corollary 4.4. Assume that U is separable and let G : C0 → B(U) be holomorphic and polynomially
bounded on C0. Then the limit G0(y) := limx↓0 Gx(y) exists in the strong operator topology for almost
every y ∈ R, G0 is weakly measurable, G0 is polynomially bounded, [G0] ∈ S′(B(U)) and [Gx] → [G0]
in S′(B(U)) as x ↓ 0.

Proof. The function G is polynomially bounded on C0, and so, there existM > 0 and m ∈ N0 such that

∥G(s)∥ ≤M |1 + s|m ≤M(1 + |s|)m ∀ s ∈ C0. (4.6)

The function H(s) := (1 + s)−mG(s) is in H∞(B(U)) and it follows from Theorem 2.3 that there exists
a boundary function H0 ∈ L∞

w (R,B(U)) such that H(x+ iy) converges to H0(y) in the strong operator
topology for almost every y ∈ R as x ↓ 0. Consequently, Gx(y) → (1+ iy)mH0(y) =: G0(y) in the strong
operator topology for almost every y ∈ R as x ↓ 0. The weak measurability of G0 follows from that of H0,
and, furthermore, G0 is polynomially bounded as H0 ∈ L∞

w (R,B(U)). Consequently, [G0] ∈ S′(B(U)).

It remains to show that [Gx] → [G0] in S′(B(U)) as x ↓ 0. To this end, we note that (4.2) holds
with k = 0 as follows from (4.6). Moreover, for arbitrary x0 > 0, G is bounded on the bounded
strip {x + iy : x ∈ (0, x0), |y| ≤ a} for every a > 0, and so (4.5) is satisfied. Invoking Theorem 4.1
and Lemma 4.2, we see that there exists Γ ∈ S′(B(U)) such that [Gx] → Γ in S′(B(U)) as x ↓ 0
and Γ(φ) = [G0](φ) for all φ ∈ D. But D is dense in S and so Γ(φ) = [G0](φ) for all φ ∈ S. Consequently,
[G0] = Γ and [Gx] → [G0] in S′(B(U)) as x ↓ 0. □

The following theorem shows that if a holomorphic function G : C0 → B(U) satisfies condition (4.2) and
the boundary distribution of G is in L∞

w (R,B(U)), then G is bounded on C0.
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Theorem 4.5. Let G : C0 → B(U) be holomorphic. Assume that there exist M > 0 and m, k ∈ N0 such
that (4.2) holds and the boundary distribution Γ ∈ S′(B(U)) of G (which exists by Theorem 4.1) is such
that Γ = [F ], where F ∈ L∞

w (R,B(U)). Then the following statements hold.

(1) G ∈ H∞(B(U)) and ∥G∥H∞ ≤ ∥F∥L∞
w
.

(2) Under the additional assumption that U is separable, Gx(y) → F (y) in the strong operator topology
for almost every y ∈ R as x ↓ 0, and ∥G∥H∞ = ∥F∥L∞

w
.

Proof. (1) Let u, v ∈ U . It is clear that the scalar holomorphic function Gu,v defined by Gu,v(s) :=
⟨G(s)u, v⟩ satisfies (4.2) (with M replaced by ∥u∥∥v∥M) and Gu,v has Γu,v ∈ S′ as its boundary distri-
bution, that is,

[Gu,v
x ] → Γu,v = [F ]u,v = [Fu,v] in S′ as x ↓ 0, (4.7)

where Gu,v
x (y) := ⟨Gx(y)u, v⟩ for all y ∈ R and Fu,v is the scalar-valued function in L∞(R) given

by Fu,v(y) := ⟨F (y)u, v⟩ for all y ∈ R. An application of [8, Theorem 6.5.1 and commentary below (6.60)]
or [10, Theorem 5.2] shows that Gu,v ∈ H∞. Consequently, Gu,v has a boundary function gu,v ∈ L∞(R)
such that Gu,v

x (y) → gu,v(y) almost everywhere as x ↓ 0 and

∥Gu,v∥H∞ = ∥gu,v∥L∞ . (4.8)

Moreover, by [19, Theorem 3.1 (Chapter I) and Corollary 3.2 (Chapter II)], Gu,v
x converges to gu,v in the

weak∗-topology as x ↓ 0, and so, a fortiori, [Gu,v
x ] → [gu,v] in S′ as x ↓ 0. Invoking (4.7), we obtain that

there exists a null set Nu,v ⊂ R depending on u and v such that

Fu,v(y) = gu,v(y) ∀ y ∈ R\Nu,v, (4.9)

which, together with (4.8), gives

|⟨G(s)u, v⟩| ≤ ∥Gu,v∥H∞ = ∥Fu,v∥L∞ ≤ ∥F∥L∞
w
∥u∥∥v∥ ∀u, v ∈ U, ∀ s ∈ C0.

Now sup∥v∥=1 |⟨G(s)u, v⟩| = ∥G(s)u∥ for all s ∈ C0 and u ∈ U , and thus,

∥G(s)u∥ ≤ ∥F∥L∞
w
∥u∥ ∀u ∈ U, ∀ s ∈ C0,

showing that ∥G∥H∞ ≤ ∥F∥L∞
w

and G ∈ H∞(B(U)).

(2) Now assume that U is separable. By statement (1), G ∈ H∞(B(U)), and consequently, it follows
from Theorem 2.3 that there exists a boundary function G0 ∈ L∞

w (R,B(U)) such that Gx(y) converges
to G0(y) in the strong operator topology for almost every y ∈ R as x ↓ 0 and ∥G∥H∞ = ∥G0∥L∞

w
. It

remains to show that
F (y) = G0(y) for a.e. y ∈ R. (4.10)

Let the function gu,v and the set Nu,v be defined as in the proof of statement (1). We note that there

exist null sets Ñu,v ⊂ R, depending on u and v, such that

⟨G0(y)u, v⟩ = gu,v(y) ∀ y ∈ R\Ñu,v. (4.11)

Let V ⊂ U be a countable dense subset and let N be the union of all sets Nu,v and Ñu,v with u, v ∈ V .
Then, as a countable union of null sets, N is a null set and it follows from (4.9) and (4.11) that

⟨F (y)u, v⟩ = ⟨G0(y)u, v⟩ ∀u, v ∈ V, ∀ y ∈ R\N.

As V is dense in U , we conclude that

⟨F (y)u, v⟩ = ⟨G0(y)u, v⟩ ∀u, v ∈ U, ∀ y ∈ R\N,

which in turn implies that (4.10) holds. □

The next result is of particular importance for our purposes.

Proposition 4.6. Let G : C0 → B(U) be holomorphic and assume that there exist

(i) M > 0 and m, k ∈ N0 such that (4.2) is satisfied;
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(ii) x0 > 0 such that, for every a > 0, (4.5) holds for some ga ∈ L1(−a, a).

For θ ∈ R, let rθ and ρθ be as in (3.4). If the limit G0(y) = limx↓0 Gx(y) exists in the strong operator
topology for almost every y ∈ R and ρθG0 ∈ L∞

w (R,B(U)), then rθG ∈ H∞(B(U)) and ∥rθG∥H∞ ≤
∥ρθG0∥L∞

w
, with equality holding when U is separable.

Note that if U is separable and G is of so-called bounded type (that is, G is in the Nevanlinna class) [31,
Section 4.2], or equivalently, G is of the form G = N/d, where N ∈ H∞(B(U)) and d is a scalar-
valued H∞-function such that d(s) ̸= 0 for all s ∈ C0, then limx↓0 Gx(y) exists in the strong operator
topology for almost every y ∈ R, see [31, Sections 4.3 and 4.6].

Proof of Proposition 4.6. By Theorem 4.1, there exists Γ ∈ S′(B(U)) such that [Gx] ↓ Γ in S′(B(U))
as x ↓ 0. Assuming that the limit G0(y) = limx↓0 Gx(y) exists in the strong operator topology for
almost every y ∈ R, Lemma 4.2 guarantees that Γ(φ) = [G0](φ) for all φ ∈ D. By hypothesis ρθG0 ∈
L∞
w (R,B(U)), hence [G0] ∈ S′(B(U)), and therefore, Γ(φ) = [G0](φ) for all φ ∈ S. Setting H := rθG,

we have that
∥H(s)∥ ≤M

(
1 + |s|

)n
(1 +

(
Re s)−k

)
∀ s ∈ C0,

where n is the smallest non-negative integer such that n ≥ m −min{0, θ}, showing that H satisfies the
growth condition (4.2). It is clear that H(x + iy) → ρθ(y)G0(y) in the strong operator topology for
almost every y ∈ R as x ↓ 0, and ρθΓ = ρθ[G0] = [ρθG0] ∈ S′(B(U)) is the boundary distribution
of H. As ρθG0 ∈ L∞

w (R,B(U)), an application of Theorem 4.5 to H shows that rθG = H ∈ H∞(B(U))
and ∥rθG∥H∞ = ∥H∥H∞ ≤ ∥ρθG0∥L∞

w
, with equality holding under the additional assumption of separ-

ability of U . □

The following corollary is an immediate consequence of Corollary 4.4 and Proposition 4.6.

Corollary 4.7. Assume that U is separable. For θ ∈ R, let rθ and ρθ be as in (3.4). Let G : C0 → B(U)
be holomorphic and polynomially bounded on C0. Under these conditions, the limit G0(y) = limx↓0 Gx(y)
exists in the strong operator topology for almost every y ∈ R, G0 is weakly measurable, and, furthermore,
if ρθG0 ∈ L∞

w (R,B(U)), then rθG ∈ H∞(B(U)) and ∥rθG∥H∞ = ∥ρθG0∥L∞
w
.

5 Sobolev stability

In this section, we develop a new input-output stability framework for a large class of causal translation-
invariant linear operators defined on spaces of vector-valued distributions. Using Theorem 3.1, the results
of Section 4 and well-known theorems on the representation of translation-invariant operators by con-
volution kernels (impulse responses), we provide characterizations of boundedness properties of such
operators (as maps from Hα(R, U) to Hβ(R, U)) in terms of the Laplace transforms of their kernels
(transfer functions). Throughout this section, let U be a complex Hilbert space.

Before addressing the main topic of this section, it is convenient to state and prove the following lemma.

Lemma 5.1. Let α ∈ R and uk ∈ Hα(R, U), k ∈ N. If uk → u in Hα(R, U) as k → ∞, then uk → u
in S′(U) as k → ∞.

Proof. Let (uk)k∈N be a convergent sequence in Hα(R, U) with limit u. If α ≥ 0, then uk → u
in L2(R, U), and so, uk → u in S′(U) as k → ∞. Let us now assume that α < 0. By Proposition 3.3,
R−αuk → R−αu in L2(R, U) as k → ∞. Consequently, R−αuk → R−αu in S′(U) as k → ∞. Invoking
Proposition 3.3 once more, we have that R−1

−α = Rα is a sequentially continuous operator from S′(U) into
itself, and thus, uk → u in S′(U) as k → ∞. □

Recall that D′
ℓ(X) denotes the subspace of all distributions in D′(X) with support bounded on the left,

where X = U or B(U). IfK ∈ D′
ℓ(B(U)), then the convolution productK⋆u is a well-defined distribution

in D′
ℓ(U) for all u ∈ D′

ℓ(U), see Appendix 1. It is useful to recall the close relationship between causal
translation-invariant operators on D′(U) and convolution operators with kernels in D′(B(U)) supported
on [0,∞). In the following, when considering linear operators G : domG ⊂ D′(U) → D′(U), it is always
understood that domG is endowed with the relative topology induced by D′(U).

Proposition 5.2. Let G : domG ⊂ D′(U) → D′(U) be a linear operator such that C∞
c (R, U) ⊂ domG.

The following statements hold.
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(1) If G continuous, causal and translation invariant, then there exists a unique K ∈ D′(B(U)) such
that suppK ⊂ [0,∞) and Gu = K ⋆ u for all u ∈ D′

ℓ(U) ∩ domG.

(2) If there exists K ∈ D′(B(U)) such that suppK ⊂ [0,∞) and Gu = K ⋆ u for all u ∈ C∞
c (R, U),

then G is continuous, causal and translation invariant.

(3) Let α, β ∈ R. If domG = Hα(R, U), G ∈ B(Hα(R, U), Hβ(R, U)), and G is causal and translation
invariant, then there exists K ∈ D′(B(U)) such that suppK ⊂ [0,∞) and Gu = K ⋆ u for all u ∈
Hα

ℓ (R, U).

Proof. (1) Denote the restriction of G to C∞
c (R, U) by Gc. As G is assumed to be continuous, it is

clear that Gc is continuous as an operator from C∞
c (R, U) to D′(U). Consequently, it follows from [43,

Theorems 3.5-1 and 5.10-1] that there exists a unique K ∈ D′(B(U)) such that

Gu = Gcu = K ⋆ u ∀u ∈ C∞
c (R, U). (5.1)

The identity Gu = K ⋆ u extends to all u ∈ D′
ℓ(U) ∩ domG by the denseness of C∞

c (R, U) in D′(U), the
continuity assumption on G, and the continuity properties of the convolution product (see Appendix 1).
Invoking [43, Theorem 5.11-1], the causality of G, and (5.1), we conclude that suppK ⊂ [0,∞).

(2) This statement is a consequence of results in [43, Chapter 5].

(3) As G ∈ B(Hα(R, U), Hβ(R, U)), the restriction Gc of G to C∞
c (R, U) is a continuous operator

from C∞
c (R, U) to Hβ(R, U). Consequently, appealing to Lemma 5.1, Gc is continuous as an operator

from C∞
c (R, U) to D′(U). The claim now follows by arguments identical to those used in the proof of

statement (1). □

The distributionK appearing in Proposition 5.2 is called the kernel or impulse response of the operator G.
If σ(K) < ∞ (finite abscissa of convergence), then G(s) := (LK)(s) exists for all s ∈ Cσ(K) and the
function G, a B(U)-valued holomorphic function defined on Cσ(K), is referred to as the transfer function
of G. If u ∈ D′

ℓ(U) is such that σ(u) <∞, then K ⋆ u is Laplace transformable and

(LGu)(s) = G(s)(Lu)(s) ∀ s ∈ Cµ, (5.2)

where µ := max
(
σ(K), σ(u)

)
, see Appendix 1. Observe thatG is the unique function which satisfies (5.2).

Therefore, in control theoretic applications, where Gu is the output generated by the input u, the transfer
function G is often determined by computing the (necessarily unique) function which satisfies (5.2) (such
as by computing the quotient (L(Gu))(s)/(Lu)(s) when these quantities are scalar valued).

Definition 5.3. Let α, β ∈ R. A linear operatorG : domG ⊂ D′(U) → D′(U) is said to be Sobolev (α, β)-
stable if C∞

c (R, U) ⊂ domG, G(C∞
c (R, U)) ⊂ Hβ(R, U), and there exists γ > 0 such that

∥Gu∥Hβ ≤ γ∥u∥Hα ∀u ∈ C∞
c (R, U). (5.3)

The next theorem, the main result of this section, provides several characterizations of Sobolev (α, β)-
stability in terms of transfer functions.

Theorem 5.4. Let G : domG ⊂ D′(U) → D′(U) be a causal translation-invariant continuous linear
operator such that C∞

c (R, U) ⊂ domG, and let K ∈ D′(B(U)) be the kernel of G. For arbitrary α, β ∈ R,
the following statements are equivalent.

(1) G is Sobolev (α, β)-stable.

(2) There exists a unique causal and translation-invariant operator Ge ∈ B(Hα(R, U), Hβ(R, U)) such
that Geu = Gu for all u ∈ Hα(R, U) ∩ domG.

(3) K is Laplace transformable, σ(K) ≤ 0 and the transfer function G of G satisfies

sup
s∈C0

∥(1 + s)β−αG(s)∥ <∞. (5.4)

(4) K is Laplace transformable and there exist µ > max(0, σ(K)) and a holomorphic function Ge :
C0 → B(U) such that Ge and the transfer function G of G coincide on Cµ and

sup
0<Re s<µ

∥(1 + s)β−αGe(s)∥ <∞. (5.5)
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(5) K is Laplace transformable and there exists a holomorphic function Ge : C0 → B(U) such that Ge

and the transfer function G of G coincide on Cν , where ν := max(0, σ(K)), and

sup
s∈C0

∥(1 + s)β−αGe(s)∥ <∞. (5.6)

Note that if, in statements (4) and (5), σ(K) > 0, then Ge is a holomorphic extension of G.

Before we prove Theorem 5.4, we state two immediate consequences in the form of a corollary.

Corollary 5.5. Let G : domG ⊂ D′(U) → D′(U) be a causal translation-invariant continuous linear
operator such that C∞

c (R, U) ⊂ domG, and let α, β ∈ R.

(1) If G is Sobolev (α, β)-stable, then G
(
Hα(R, U) ∩ domG

)
⊂ Hβ(R, U) and ∥Gu∥Hβ ≤ γ∥u∥Hα for

all u ∈ Hα(R, U) ∩ domG, where γ > 0 is the constant appearing in (5.3).

(2) If G is Sobolev (α, β)-stable, then G is Sobolev (α+ θ, β + θ)-stable for all θ ∈ R.

Proof of Theorem 5.4. (1)⇒ (2). Assume that statement (1) holds. As C∞
c (R, U) is dense in Hα(R, U)

(by Lemma 2.1), it follows from (5.3) that there exists a unique operator Ge ∈ B(Hα(R, U), Hβ(R, U))
such that Geu = Gu for all u ∈ C∞

c (R, U). We proceed to show that Ge and G coincide on Hα(R, U) ∩
domG. To this end, let u ∈ Hα(R, U)∩domG. Lemma 2.1 guarantees the existence of a sequence (uk)k∈N
in C∞

c (R, U) such that uk → u in Hα(R, U) as k → ∞. Since Ge ∈ B(Hα(R, U), Hβ(R, U)), we have
that Geuk → Geu in Hβ(R, U) as k → ∞. Invoking Lemma 5.1, we conclude that

uk → u in S′(U) and Geuk → Geu in S′(U) as k → ∞. (5.7)

As Geuk = Guk for all k ∈ N, the second convergence gives

Guk → Geu in S′(U) as k → ∞. (5.8)

The first convergence in (5.7) implies that uk → u in D′(U) as k → ∞, whence Guk → Gu in D′(U)
as k → ∞ as G is continuous. Appealing to (5.8) shows that Gu = Geu in D′(U). In particular, the
distribution Gu extends continuously to S, and hence is tempered and coincides with Geu. As u ∈
Hα(R, U)∩ domG was arbitrary, it follows that G and Ge coincide on Hα(R, U)∩ domG. It is a routine
exercise to show that Ge inherits the properties of translation-invariance and causality from G.

(2)⇒ (3). Invoking Theorem 3.1, we conclude that there exists a holomorphic function Ge : C0 → B(U)
such that

sup
s∈C0

∥(1 + s)β−αGe(s)∥ <∞, (5.9)

and Geu =
(
L−1 ◦ MGe

0
◦ L
(
u) for all u ∈ Hα

ℓ (R, U). By [43, Theorem 6.5-1] there exists a Laplace
transformable Ke ∈ D′(B(U)) with suppKe ⊂ [0,∞), σ(Ke) ≤ 0 and (LKe)(s) = Ge(s) for all s ∈ C0.
Invoking the convolution theorem (exchange formula) for the Laplace transform (see Appendix 1), we
obtain

Geu = (L−1 ◦MGe ◦ L)u = (L−1 ◦MLKe ◦ L)u = Ke ⋆ u ∀u ∈ C∞
c (R, U).

Therefore,
K ⋆ u = Gu = Geu = Ke ⋆ u ∀u ∈ C∞

c (R, U). (5.10)

To establish that statement (3) holds, it is sufficient to prove that K = Ke. Indeed, in this case it
follows from (5.9) that inequality (5.4) is satisfied. To show that K = Ke, let φ ∈ D and v ∈ U , and
set ψ := φ̌ ∈ D, where the superscript “ˇ” denotes reflection, that is, φ̌(t) := φ(−t) for all t ∈ R.
Then K ⋆ ψ ∈ C∞(R,B(U)), K ⋆ (ψ ⊗ v) ∈ C∞(R, U) and

K(φ)v = K(ψ̌)v = (K ⋆ ψ)(0)v = (K ⋆ (ψ ⊗ v))(0).

Similarly, Ke(φ)v = (Ke ⋆ (ψ⊗ v))(0). Together with an application of (5.10) with u = ψ⊗ v this shows
that K(φ)v = Ke(φ)v. This holds for all φ ∈ D and all v ∈ U , and thus K = Ke.

(3)⇒ (4). This implication is trivially true.

(4)⇒ (5). Since K is Laplace transformable, suppK ⊂ [0,∞) (by Proposition 5.2) and µ > σ(K), it
follows that the function G is polynomially bounded on Cµ (see, for example, [43, Theorem 6.5-1]).
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Now Ge|Cµ
= G|Cµ

, and so, it follows from (5.5) that Ge is polynomially bounded on C0. An application
of Corollary 4.7 to Ge shows that (5.6) is satisfied.

(5)⇒ (1). Assume that statement (5) holds, that is, there exists a holomorphic function Ge : C0 → B(U)
of G such that Ge(s) = G(s) for all s ∈ Cν and (5.6) is satisfied. To show that G is Sobolev (α, β)-
stable, we note that, by Theorem 3.1, there exists a translation-invariant and causal operator Ge ∈
B(Hα(R, U), Hβ(R, U)) such that

Geu =
(
L−1 ◦MGe ◦ L

(
u) ∀u ∈ Hα

ℓ (R, U).

Consequently,(
L(Gu)

)
(s) = G(s)(Lu)(s) = Ge(s)(Lu)(s) =

(
L(Geu)

)
(s) ∀u ∈ C∞

c (R, U), ∀ s ∈ Cν ,

showing that Gu = Geu for all u ∈ C∞
c (R, U), and thereby completing the proof. □

The following corollary shows that, under suitable assumptions, Sobolev (α, β)-stability follows if the
transfer function satisfies a natural boundedness condition on the imaginary axis.

Corollary 5.6. Let G : domG ⊂ D′(U) → D′(U) be a causal translation-invariant continuous linear
operator such that C∞

c (R, U) ⊂ domG and let K ∈ D′(B(U)) be the kernel of G. Assume that K is
Laplace transformable and there exists a holomorphic function Ge : C0 → B(U) such that Ge(s) = G(s)
for all s ∈ Cν , where G is the transfer function of G and ν := max

(
0, σ(K)

)
. Then, for α, β ∈ R, the

following statements hold.

(1) Under the assumption that the following three conditions are satisfied:

(i) there exist M > 0, m, k ∈ N0 and µ > ν such that

∥Ge(s)∥ ≤M
(
1 + |s|m

)(
1 + (Re s

)−k
) for all s ∈ C such that 0 < Re s < µ,

(ii) there exist x0 > 0 such that, for every a > 0, there exists ga ∈ L1(−a, a) satisfying

∥Ge(x+ iy)∥ ≤ ga(y) ∀ (x, y) ∈ (0, x0)× [−a, a],

(iii) the limit Ge
0(y) = limx↓0 G

e
x(y) exists in the strong operator topology for almost every y ∈ R,

the operator G is Sobolev (α, β)-stable, provided that

ess supy∈R∥(1 + iy)β−αGe
0(y)∥ <∞. (5.11)

(2) Assume that U is separable and Ge is polynomially bounded on the strip 0 < Re s < µ for some µ >
ν. Under these conditions, the limit Ge

0(y) = limx↓0 G
e
x(y) exists in the strong operator topology

for almost every y ∈ R, and, if (5.11) holds, then G is Sobolev (α, β)-stable.

Proof. (1) By Proposition 5.2, suppK ⊂ [0,∞), and so, the function G = LK is polynomially bounded
on Cµ as follows from [43, Theorem 6.5-1]. Thus, by condition (i), there existN ≥M and an integer n ≥ m
such that

∥Ge(s)∥ ≤ N
(
1 + |s|n

)(
1 + (Re s)−k

)
∀ s ∈ C0.

Hence, Ge satisfies the hypotheses of Proposition 4.6 (with θ = α− β). Consequently, if ess supy∈R∥(1 +
iy)β−αGe

0(y)∥ <∞, then Proposition 4.6 guarantees that sups∈C0
∥(1+s)β−αGe(s)∥ <∞. Sobolev (α, β)-

stability of G now follows from Theorem 5.4.

(2) Assume that U is separable and the function Ge is polynomially bounded on the strip 0 < Re s < µ
for some µ > ν. As in the proof of statement (1), we have that G is polynomially bounded on Cµ, and
thus, Ge is polynomially bounded on C0. It follows that conditions (i) and (ii) of statement (1) hold.
Moreover, there exists k ∈ N0 such that H(s) := (1+ s)−kGe(s) is bounded on C0 and therefore, as U is
assumed to be separable, the limit H0(y) = limx↓0 H(x + iy) exists in the strong operator topology for
almost every y ∈ R, implying that condition (iii) of statement (1) is also satisfied. As a consequence, the
claim now follows from statement (1). □
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Next, we make contact with the theory of well-posed linear state-space systems, see, for example, the
monograph [36]. Each of these systems has a translation-invariant and causal input-output operator
G ∈ B(L2

µ(R, U)) for some µ ∈ R, where the Hilbert space L2
µ(R, U) is defined by

L2
µ(R, U) := {u ∈ L2

loc(R, U) : e−µ · u ∈ L2(R, U)} and ⟨u, v⟩L2
µ
:= ⟨e−µ · u, e−µ · v⟩L2 .

Conversely, for every translation-invariant and causal operator G belonging to B(L2
µ(R, U)) for some µ ∈

R, there exists a well-posed state-space system which has G as its input-output operator. If G ∈
B(L2

µ(R, U)) is translation invariant and causal, then, invoking Proposition 5.2, there exists a ker-
nel K ∈ D′(B(U)) such that suppK ⊂ [0,∞) and Gu = K ⋆ u for all u ∈ L2

µ, ℓ(R, U), where L2
µ,ℓ(R, U)

denotes the subspace of L2
µ(R, U) all functions with support bounded on the left. Furthermore, the causal

translation-invariant operator Gµ ∈ B(L2(R, U)) given by

Gµu = e−µ ·G
(
eµ · u

)
∀u ∈ L2(R, U)

has kernel Kµ := e−µ ·K ∈ D′(B(U)), and an application of Theorem 5.4 to Gµ with α = β = 0 shows
that σ(Kµ) ≤ 0 and sups∈C0

∥(LKµ)(s)∥ < ∞. Consequently, σ(K) ≤ µ and the transfer function G =
LK of G satisfies that sups∈Cµ

∥G(s)∥ <∞, that is, G ∈ H∞
µ (B(U)).

The above discussion shows that Theorem 5.4 is applicable to the input-output operators of well-posed
linear systems. The following corollary is an immediate consequence of Theorem 5.4 and Corollary 5.6.

Corollary 5.7. Let µ ≥ 0, α, β ∈ R and let G ∈ B(L2
µ(R, U)) be causal and translation-invariant with

transfer function G ∈ H∞
µ (B(U)). The following statements hold.

(1) The operator G is Sobolev (α, β)-stable if, and only if, there exists a holomorphic extension Ge :
C0 → B(U) of G such that sup0<Re s<µ ∥(1 + s)β−αGe(s)∥ <∞.

(2) Assume that there exists a holomorphic extension Ge : C0 → B(U) of G satisfying the condi-
tions (i)-(iii) of statement (1) of Corollary 5.6. If ess supy∈R∥(1 + iy)β−αGe

0(y)∥ < ∞, then G is
Sobolev (α, β)-stable.

(3) Assume that U is separable and there exists a holomorphic extension Ge : C0 → B(U) of G such
that Ge is polynomially bounded on the strip 0 < Re s < µ. If ess supy∈R∥(1 + iy)β−αGe

0(y)∥ <∞,
then G is Sobolev (α, β)-stable.

Statements (1) and (2) can be understood as a substantial generalization of [30, Theorem 6]. To explain
this, we recall the concept of P-stability [23, 30]: a holomorphic function H : Ω → B(U), where Ω ⊂ C
is open and such that C0 ⊂ Ω, is said to be P-stable of order α ≥ 0 if the following two conditions are
satisfied:

(i) sups∈Cµ
∥H(s)∥ <∞ for all µ > 0;

(ii) there exists M > 0 such that ∥H(iy)∥ ≤M(1 + |y|α) for all y ∈ R.
Let µ ∈ R and let G ∈ B(L2

µ(R, U)) be causal and translation-invariant. The growth bound ω(G) of G is
defined by

ω(G) := inf{ν ≤ µ : G ∈ B(L2
ν,ℓ(R, U))}.

We note that the definition is meaningful because L2
ν,ℓ(R, U) ⊂ L2

µ,ℓ(R, U) ⊂ L2
µ(R, U) for all ν ≤ µ.

Furthermore, we say that G is regular if its transfer function G has the property that G(x) converges
in B(U) with respect to the strong operator topology as x→ ∞, where x ∈ (0,∞).

Whilst [30, Theorem 6] is formulated in a state-space setting with time-domain [0,∞), an inspection
of the proofs of [30, Theorem 6 and Lemma 7] shows that [30, Theorem 6] can be rephrased in our
double-time axis input-output framework as follows.�

Proposition 5.8. Let µ ≥ 0 and let G ∈ B(L2
µ(R, U)) be causal, translation-invariant and regular

with transfer function G ∈ H∞
µ (B(U)). Assume that G has a holomorphic extension Ge : Ω → B(U),

where Ω ⊂ C is open and such that C0 ⊂ Ω. For α ≥ 0, the following statements hold.

�It has been pointed out in [20] that [30, Theorem 6] is not correct as stated, but can be rectified by replacing the
interpolation space W 2,α(0,∞;U) used in [30] by Hα

+(R, U).
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(1) If Ge is P-stable of order α and there exist M > 0 and k ∈ N0 such that

∥Ge(s)∥ ≤M(Re s)−k for all s ∈ C such that 0 < Re s < 1,

then G is Sobolev (α, 0)-stable.

(2) If ω(G) = 0 and G is Sobolev (α, 0)-stable, then Ge is P-stable of order α.

Proof. The hypotheses of statement (1) imply that Ge satisfies the conditions (i)-(iii) of statement (1) of
Corollary 5.6, and thus, statement (1) is a special case of of statement (2) of Corollary 5.7. Statement (2)
is an immediate consequence of Theorem 5.4. □

As for statement (2), it is clear that, in the absence of the condition ω(G) = 0, Sobolev stability does
not necessarily imply P-stability (see Examples 6.1, 6.2 and 6.4 below).

We close this section, by linking Sobolev stability to certain results on polynomial decay of strongly
continuous semigroups [1, 6, 30].

Proposition 5.9. Let T (t) be a strongly continuous semigroup on U , denote its generator by A, and
let α > 0. Assume that supt≥0 ∥T (t)∥ < ∞ and the intersection of the spectrum of A with iR is empty.
The following statements are equivalent.

(1) supt≥0 ∥t1/αT (t)A−1∥ <∞.

(2) supy∈R ∥(1 + iy)−α(iyI −A)−1∥ <∞.

(3) sups∈C0
∥(1 + s)−α(sI −A)−1∥ <∞.

(4) The convolution operator L2
ℓ(R, U) → L2

loc(R, U), u 7→
∫ ·
−∞ T ( · −τ)u(τ) dτ is Sobolev (α, 0)-stable.

Proof. The equivalence (1)⇔ (2) follows from [6, Theorem 2.4]. The implication (3)⇒ (2) holds trivially,
whilst the implication (2)⇒ (3) follows from the fact that, by the Hille-Yosida theorem, there existsM > 0
such that

∥(sI −A)−1∥ ≤M(Re s)−1 ∀ s ∈ C0

combined with an application of Proposition 4.6 with G(s) = (sI − A)−1. Finally, the transfer function
of the convolution operator in statement (4) is (sI − A)−1, and thus, the equivalence (3)⇔ (4) is a
consequence of Theorem 5.4. □

6 Examples

To illustrate the results in the previous sections, we discuss five examples.

Example 6.1. (Rational functions) Let U be a complex Hilbert space. Following [31], a B(U)-valued
function G is called rational if it is meromorphic on C ∪ {∞}. The Laurent expansion of G at ∞ is of
the form

G(s) =

∞∑
j=d

Gjs
−j , Gj ∈ B(U), d ∈ Z, Gd ̸= 0 (6.1)

and converges in a neighbourhood of ∞. The integer d is said to be the relative degree of G. It is not
difficult to see that G is rational if, and only if, G = P/q, where P is a B(U)-valued polynomial and q is
a scalar-valued polynomial. For the relative degree d of G we have that d = degq−degP. Furthermore,
a B(U)-valued functionG is rational if, and only if, it is the Laplace transform of a distributionK = Φ+∆,
where Φ and ∆ are of the form

Φ(t) :=


n∑

j=0

tljeλjtFj , t ≥ 0

0, t < 0

, ∆ :=

m∑
j=0

δ(j)Dj , Fj , Dj ∈ B(U), n,m, lj ∈ N0, λj ∈ C.

Let G be a B(U)-valued rational function with relative degree d, set K := L−1G, let µ ∈ R be such
that G is holomorphic on Cµ and let Gµ be the convolution operator with kernel e−µ ·K. Note that
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the transfer function Gµ of Gµ is given by Gµ(s) = G(s + µ). It follows from Theorem 5.4 that Gµ is
Sobolev (0, β)-stable for every β ≤ d. Moreover, the relative degree of G can be characterized in terms
of Sobolev stability of Gµ as follows:

d = max{β ∈ R : Gµ is Sobolev (0, β)-stable}. (6.2)

The above identity is an immediate consequence of Theorem 5.4 and the fact that the relative degrees of
the functions G and Gµ coincide.

The concept of relative degree and the identity (6.2) extend to B(U)-valued functions which are mero-
morphic at ∞, that is, functions G which can be represented by a Laurent series of the form (6.1)
on some neighbourhood of ∞. The resolvents of bounded linear operators provide a class of examples
of B(U)-valued functions which are meromorphic at ∞.

We close this example by remarking that the notion of relative degree plays an important role in classical
and adaptive control of finite-dimensional systems. Whilst attempts (see, for example, [12]) have been
made to extend it to systems with irrational transfer functions, a fully adequate generalization is still
missing. We feel that the concept of Sobolev stability (or some localised version of it) might be a suitable
tool to facilitate such a generalization, and we are planning to pursue this in future research. ♢

Example 6.2. (Series connection of a rational transfer function and a delay line) Let G be a B(U)-
valued rational function, where U is a complex Hilbert space, assume that G is holomorphic on C0, and
let G be the convolution operator on D′

ℓ(U) with kernel L−1G. Define the operator H by Hu := δτ ⋆(Gu)
for all u ∈ D′(U), where δτ is the Dirac distribution supported at τ > 0. Then the transfer function H
of H is given by H(s) = e−τsG(s). It follows from Theorem 5.4 and Example 6.1 that

max{β ∈ R : H is Sobolev (0, β)-stable} = relative degree of G.

This is not surprising since convolution with δτ leaves any regularity properties unchanged. ♢

Example 6.3. (A neutral functional differential equation) Consider the controlled and observed neutral
functional differential equation

ẇ(t)− ẇ(t− r) = −aw(t) + u(t), z(t) = w(t), (6.3)

where a, τ > 0 are positive parameters, u is the control function or input and z is the observation or
output. We assume that u has support bounded on the left. Taking Laplace transforms (under zero
initial conditions) of (6.3) and computing (Lz)(s)/(Lu)(s) shows that the transfer function of (6.3) is
given by

G(s) =
1

s(1− e−τs) + a
,

see equation (5.2) and the subsequent commentary. It follows from [24] that the function G has the
following properties:

(i) sups∈Cµ
|G(s)| <∞ for every µ > 0;

(ii) there exists an open set Ω containing C0 such that G is holomorphic on Ω;

(iii) there exist poles sj (j ∈ N) of G such that Re sj < 0, Re sj → 0 and |sj | → ∞ as j → ∞;

(iv) G is not bounded on C0, that is, G ̸∈ H∞;

(v) G(s)/(1 + s) is bounded on C0.

In particular, it follows that the causal and translation-invariant input-output operator G of (6.3) (that
is, the map u 7→ z under zero initial conditions) maps L2

µ,ℓ(R) boundedly into itself for every µ > 0. An
application of Theorem 5.4 guarantees that G is Sobolev (1, 0)-stable. ♢

Example 6.4. (A 1-dimensional heat equation) Consider the following heat equation on the unit interval
with Dirichlet control and Neumann observation at the right end point:

∂w

∂t
(ξ, t) =

∂2w

∂ξ2
(ξ, t),

∂w

∂ξ
(0, t) = 0, w(1, t) = u(t), ξ ∈ (0, 1),

z(t) =
∂w

∂ξ
(1, t).

 (6.4)
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As in Example 6.3, u is the input and z is output, both of which take values in U = C. We assume that u
has support bounded on the left. Calculating (Lz)(s)/(Lu)(s) (under zero initial conditions) is routine
and shows that the transfer function G is given by

G(s) =
√
s tanh(

√
s) ∀ s ∈ C0 ,

see equation (5.2) and the subsequent commentary. The function G is not bounded on any right-half
complex plane (and thus is not the transfer function of a well-posed state-space system [36]), but evidently
satisfies

sup
s∈C0

∣∣(1 + s)−
1
2G(s)

∣∣ <∞. (6.5)

Therefore, the input-output operator G of (6.4) (that is, the convolution operator with kernel L−1G)
is (1/2, 0)-Sobolev stable by Theorem 5.4. Corollary 5.5 yields that G is (1/2 + θ, θ)-Sobolev stable for
all θ ∈ R. ♢

Example 6.5. (A 2-dimensional heat equation) Consider the following controlled and observed heat
equation on the unit square Ω := (0, 1)× (0, 1):

∂w

∂t
(ξ1, ξ2, t) =

∂2w

∂ξ21
(ξ1, ξ2, t) +

∂2w

∂ξ22
(ξ1, ξ2, t),

w(0, ξ2, t) = 0, w(1, ξ2, t) = 0,

∂w

∂ξ2
(ξ1, 0, t) = 0,

∂w

∂ξ2
(ξ1, 1, t) = ũ(ξ1, t),

z̃(ξ1, t) = w(ξ1, κ, t) ,


(ξ1, ξ2) ∈ Ω , (6.6)

where κ ∈ [0, 1) is a parameter which specifies the ξ2-position at which the observation is taken. We
choose as input and output space U = L2(0, 1), and the U -valued input and output functions u and z
are given by u(t) := ũ( · , t) and z(t) := z̃( · , t). The control function u acts via a Neumann boundary
condition along the top edge of the square, and is assumed to have support bounded to the left. For
each t ≥ 0, the output z(t) corresponds to the observation of the profile w( · , κ, t). As may be shown by
arguments analogous to those used in [7], the mapping L2

ℓ(R, U) → L2
ℓ(R, U) , u 7→ z determined by (6.6)

under zero initial conditions is well-defined and continuous. The present example is based on [20, Section
4, Example (7)], which in turn is inspired by [21, Example 7.14], and we refer the reader to [7] for more
details of controlled and observed heat equations on bounded domains in Rn.

The transfer function G is given by

G(s)v =
√
2

∞∑
n=1

hn(s;κ)ζn(v) sin(nπ ·) ∀ v ∈ L2(0, 1) ,

where ζn are the Fourier sine coefficients of v, namely,

ζn(v) =
√
2⟨v, sin(nπ ·)⟩L2(0,1) =

√
2

∫ 1

0

v(η) sin(nπη) dη ∀ n ∈ N ,

and

hn(s;κ) :=
cosh(κ

√
s+ n2π2)√

s+ n2π2 sinh(
√
s+ n2π2)

∀ s ∈ C−π2 , ∀ n ∈ N .

The function G belongs to H∞(B(U)) and so, by Theorem 3.1, the input-output operator of (6.6) extends
to a causal translation-invariant operator G ∈ B(L2(R, U)).

We claim that s 7→ (1 + s)θG(s) is bounded on C0 for all θ ∈ R, so that G is (α, β)-Sobolev stable
for all (α, β) ∈ R2 by Theorem 5.4. Since G is bounded on C0, the claim for non-positive θ is trivial,
and so we focus on the case that θ > 0. By statement (2) of Corollary 5.6 it suffices to show that y 7→
(1 + iy)θG0(y) = (1 + iy)θG(iy) is bounded on R.

For which purpose, let y ∈ R, set sn = sn(y) :=
√
iy + n2π2 ̸= 0 for all n ∈ N, and note that

sn = (y2 + n4π4)
1
4 ei arg(sn) and Re sn = (y2 + n4π4)

1
4 cos(arg(sn)) .
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Standard hyperbolic identities give that

cosh(κsn) = cosh(κRe sn) cos(κ Im sn) + i sinh(κRe sn) sin(κ Im sn)

and |cosh(κsn)|2 = cosh2(κRe sn)− sin2(κ Im sn) ≤ cosh2(κRe sn) .

Similarly,

sinh(sn) = sinh(Re sn) cos(Im sn) + i cosh(Re sn) sin(Im sn)

and |sinh(sn)|2 = sinh2(Re sn) + sin2(Im sn) ≥ sinh2(Re sn) .

Consequently, there exists a constant k > 0 such that∣∣∣∣cosh(κsn)sinh(sn)

∣∣∣∣ ≤ cosh(κRe sn)

sinh(Re sn)
≤ k exp

(
(κ− 1)(y2 + n4π4)

1
4 cos(arg(sn))

)
≤ k exp

(
(1/

√
2)(κ− 1)(y2 + n4π4)

1
4

)
∀ y ∈ R, ∀ n ∈ N,

where we have used that κ− 1 < 0 and arg(sn) ∈ (−π/4, π/4). Therefore,

|hn(iy;κ)| ≤
k

nπ
exp

(
(1/

√
2)(κ− 1)(y2 + n4π4)

1
4

)
∀ y ∈ R, ∀ n ∈ N.

It is straightforward to show that, for each fixed θ > 0, there exist y∗ > 0 and y∗n ∈ [0, y∗] for every n ∈ N
such that

max
y>0

|(1 + iy)θhn(iy;κ)| = |(1 + iy∗n)
θhn(iy

∗
n;κ)| .

In particular, there exist constants l, λ > 0 such that

max
y>0

|(1 + iy)θhn(iy;κ)| ≤ le−λn ∀ n ∈ N .

Since

∥(1 + iy)θG(iy)v∥L2(0,1) ≤
( ∞∑

n=1

|(1 + iy)θhn(iy;κ)|
)
∥v∥L2(0,1) ∀ v ∈ L2(0, 1), ∀ y ∈ R ,

the claim is proven. ♢

7 Remarks on right-shift invariant operators on the half line

In this section, we indicate how the results in Sections 3-5 can be used to obtain corresponding res-
ults for right-shift invariant operators acting on functions defined on the half line. Recall the half-line
space Hα

+(R, U), α ∈ R, defined in Section 2. By Lemma 2.1, Hα
+(R, U) is the closure of the subspace

{u ∈ C∞(R, U) : suppu ⊂ (0,∞)} with respect to the norm topology of Hα(R, U). Throughout this
section, U denotes a complex Hilbert space.

An operator G ∈ B(Hα
+(R, U), Hβ

+(R, U)) is said to be right-shift invariant if SτG = GSτ for all τ ≥ 0. It
is straightforward to show that right-shift invariance of G implies causality, in the sense that, for all τ ≥ 0
and all u ∈ Hα

+(R, U),
suppu ⊂ [τ,∞) ⇒ supp(Gu) ⊂ [τ,∞).

The following lemma shows that a right-shift invariant operator in B(Hα
+(R, U), Hβ

+(R, U)) has a unique
causal and translation-invariant bilateral extension belonging to B(Hα(R, U), Hβ(R, U)).

Lemma 7.1. Let α, β ∈ R.

(1) If G ∈ B(Hα
+(R, U), Hβ

+(R, U)) is right-shift invariant, then there exists a unique causal and
translation-invariant operator Gb ∈ B(Hα(R, U), Hβ(R, U)) such that

Gb|Hα
+(R,U) = G and ∥Gb∥B(Hα,Hβ) = ∥G∥

B(Hα
+,Hβ

+) .
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(2) If G is a causal and translation-invariant operator in B(Hα(R, U), Hβ(R, U)), then the restric-

tion G+ := G|Hα
+(R,U) is a right-shift invariant operator in B(Hα

+(R, U), Hβ
+(R, U)) and, further-

more, ∥G+∥B(Hα
+,Hβ

+) = ∥G∥B(Hα,Hβ).

The above lemma is a generalization of [38, Theorem 6.2] which addresses the L2-case (α = β = 0). The
arguments used in [38] extend to the case of arbitrary α and β, and therefore, we do not include a proof
of Lemma 7.1.

The following corollary, a right-half line version of Theorem 3.1, provides a characterization of right-shift
invariant bounded operators G : Hα

+(R, U) → Hβ
+(R, U). It is an immediate consequence of Theorem 3.1

and Lemma 7.1.

Corollary 7.2. Let α, β ∈ R.

(1) If G : Hα
+(R, U) → Hβ

+(R, U) is a bounded linear right-shift invariant operator, then there exists a
unique holomorphic function G : C0 → B(U) such that

sup
s∈C0

∥(1 + s)β−αG(s)∥ = ∥G∥
B(Hα

+,Hβ
+) and Gu = (L−1 ◦MG ◦ L)(u) ∀u ∈ Hα

+(R, U).

(2) Conversely, if G : C0 → B(U) is holomorphic and such that sups∈C0
∥(1 + s)β−αG(s)∥ < ∞,

then G := L−1 ◦ MG ◦ L is a right-shift invariant bounded operator Hα
+(R, U) → Hβ

+(R, U) and
∥G∥

B(Hα
+,Hβ

+) = sups∈C0
∥(1 + s)β−αG(s)∥.

The above corollary is a generalization of a well-known result for the L2-case (α = β = 0), see, for
example, [41]. For the special case wherein α = β = 1 and U = C, statement (1) can also be found
in [29]. Whilst Corollary 7.2 is essentially identical to [20, Theorem 3.1], we mention that it has been
derived here by somewhat different means.

The half-line space Hα
+(R, U) is a so-called zero-trace space because, for α > 1/2, it can be shown

that if u ∈ Hα
+(R, U), then u(j)(0) = 0 for all j ∈ N0 such that j < α − 1/2 (see, for example, [3,

Chapter VIII, Theorem 1.6.8]). Another half-line version of Hα(R, U) (when α ≥ 0) is the space of
restrictions {u|[0,∞) : u ∈ Hα(R, U)} equipped with the norm ∥u∥ := inf{∥v∥Hα : v|[0,∞) = u}. This is a
bigger space than Hα

+(R, U) and a characterization of right-shift invariant bounded linear operators on
this space is more difficult and is addressed in [20].

Finally, by an argument very similar to that leading to Corollary 7.2, a right-half line version of the Fourier
multiplier result in Corollary 3.7 can derived. Furthermore, Lemma 7.1 and Corollary 7.2 together with
the results in Sections 4 and 5 can be used to develop a theory of Sobolev stability for right-shift invariant
operators defined on half-line spaces.

8 Appendix

The purpose of the appendix is twofold: to present some background material on the convolution of
vector-valued distributions (Appendix 1) and to provide proofs of Lemmas 2.1 and 2.2 (Appendix 2) and
Theorem 4.1 (Appendix 3).

Appendix 1: Remarks on the convolution of vector-valued distributions

Let X be a complex Banach spaces and let Z = X or Z = B(X). The subspace of all distributions
in D′(Z) with support bounded on the left is denoted by D′

ℓ(Z). As usual, we set D′
ℓ := D′

ℓ(C). In the
following, when using the term “convolution product”, we mean a bilinear mapping which is continuous
in each argument. It is well known that there exists a unique convolution product

D′
ℓ(B(X))×D′

ℓ(X) → D′
ℓ(X), (K,u) 7→ K ⋆ u (8.1)

satisfying
(k ⊗ T ) ⋆ (f ⊗ x) = (k ⋆ f)⊗ (Tx) ∀ k, f ∈ D′

ℓ, ∀T ∈ B(X), ∀x ∈ X,
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where k ⋆ f is the standard convolution product of the scalar-valued distributions k and f , see [3, p.
432/433], [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 5].

If K and u are Laplace transformable, then the convolution theorem (exchange formula) for Laplace
transforms holds:(

L(K ⋆ u)
)
(s) = (LK)(s)(Lu)(s) for all s ∈ C such that Re s > max{σ(K), σ(u)},

see [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 6].

If K and u have supports which are bilaterally unbounded, then it is still possible to define a convolution
product of K and u, provided certain assumptions are satisfied. For the current purposes, it is sufficient
to consider the case wherein K is of the form K = k ⊗ I, where k is a scalar-valued distribution. We
set O′

C := F−1OM ⊂ S′ (distributions of rapid decay) and recall that there exists a well-defined scalar
convolution product

O′
C × S′ → S′, (k, f) 7→ k ⋆ f,

see [35, Théorème XI (Chapitre VII)] or [40, Definition 30.2]. By [35, Théorème XV (Chapitre VII)]
or [40, Theorem 30.4], the convolution theorem (exchange formula) for Fourier transforms holds:

F(k ⋆ f) = (Fk)(Ff) ∀ k ∈ O′
C, ∀ f ∈ S′. (8.2)

Note that the multiplication on the right-hand side of (8.2) is well defined because Fk ∈ OM and Ff ∈ S′.
An application of [3, Appendix: Theorem 1.5.3] together with arguments similar to those used in the
proof of [3, Appendix: Theorem 1.9.1] shows that there exists a unique convolution product

O′
C × S′(X) → S′(X), (k, u) 7→ k ⋆ u (8.3)

satisfying
k ⋆ (f ⊗ x) = (k ⋆ f)⊗ x ∀ k ∈ O′

C, ∀ f ∈ S′, ∀x ∈ X. (8.4)

It is a routine exercise to show that if the supports of k ∈ O′
C and u ∈ S′(X) are bounded on the left,

then k ⋆ u in the sense of (8.3) coincides with (k ⊗ I) ⋆ u in the sense of (8.1).

The identity (8.4), together with (8.2), the denseness of S′⊗X in S′(X) [3, Appendix: Theorem 1.3.6] and
continuity properties of the Fourier transform and the convolution product (8.3), shows that convolution
theorem for Fourier transforms (8.2) carries over to the vector-valued case, that is,

F(k ⋆ u) = (Fk)(Fu) ∀ k ∈ O′
C, ∀u ∈ S′(X). (8.5)

Appendix 2: Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. In the following, let V = U or V = C. By statements (3) and (4) of Pro-
position 3.3, the restriction of the operator Rθ to L2(R, V ) is a causal isomorphism from L2(R, V )
onto Hθ(R, V ) (for every θ ∈ R). To avoid awkward notation, we use the same symbol Rθ to denote the
scalar- and vector-valued versions of the operator. As usual, the tensor product F (R,C)⊗U ⊂ F (R, U),
where F = L2, F = C∞

c or F = Hθ, is defined as the vector space spanned by all finite linear combinations∑n
j=1 fj ⊗ uj , where fj ∈ F (R,C), uj ∈ U and (fj ⊗ uj)( · ) := fj( · )uj .

(1) As Rθ(L
2(R, V )) = Hθ(R, V ) for V = U,C, L2(R,C)⊗ U is dense in L2(R, U) and

Rθ(L
2(R,C)⊗ U) = Rθ(L

2(R,C))⊗ U = Hθ(R,C)⊗ U,

it follows that Hθ(R,C) ⊗ U is dense in Hθ(R, U). Now C∞
c (R,C) is dense in Hθ(R,C) (see, for ex-

ample, [37, Lemma 15.10]), implying that C∞
c (R,C)⊗ U is dense Hθ(R, U)⊗ U , and thus, C∞

c (R, U) is
dense in Hθ(R, U).

(2) Invoking the causality of Rθ and R−1
θ = R−θ, it follows that Rθ(L

2
+(R, V )) = Hθ

+(R, V ) for V = U,C.
By an argument similar to that used in the proof of statement (1), we obtain that Hθ

+(R,C)⊗U is dense
in Hθ

+(R, U). Consequently, as Hθ
+(R,C) is the closure of the subspace {u ∈ C∞(R,C) : suppu ⊂ (0,∞)}

with respect to the norm topology of Hθ(R, U) (see [25, Theorem 3.29]), the space {u ∈ C∞
c (R, U) :

suppu ⊂ (0,∞)} is dense in Hθ
+(R, U). □

Proof of Lemma 2.2. We proceed in two steps.
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Step 1: µ ≥ 0. In this case, it follows from an application of [4, Theorem 2.5.1] (with, in the notation
of [4], ω = µ, q(s) = sh(s) and b = 1) that there exists h ∈ C(R, X) such that h(t) = 0 for all t ≤ 0,
supt>0 ∥e−νtt−1h(t)∥ <∞ for every ν > µ and (Lh)(s) = h(s) for all s ∈ Cµ. Furthermore, letting ν > µ,
and choosing 0 < ε < ν − µ, we have that

M := sup
t>0

∥e−(ν−ε)tt−1h(t)∥ <∞.

Consequently, ∥e−νth(t)∥ ≤ Mte−εt for all t ≥ 0, showing that e−ν · h ∈ L1(R, X) and completing the
proof of the claim when µ ≥ 0.

Step 2: µ < 0. Set g(s) := h(s + µ) for all s ∈ C0. Then g is a holomorphic X-valued function on C0

such that sups∈C0
∥s2g(s)∥ < ∞. By Step 1, there exists g ∈ C(R, X) such that g(t) = 0 for all t ≤ 0,

supt>0 ∥e−ωtt−1g(t)∥ < ∞ and e−ω · g ∈ L1(R, X) for every ω > 0 and (Lg) = g(s) for all s ∈ C0.
Routine arguments show that the function h : R → X, t 7→ eµtg(t) has all the required properties. □

Appendix 3: Proof of Theorem 4.1

Before we prove Theorem 4.1, we develop some auxiliary material which will play a key role in the proof.

For n ∈ N0, we define hn : C\(iR) → R+ by

hn(s) :=

{
(1 + |s|2)n(Re s)−n, 0 < |Re s| ≤ 1

(1 + |s|2)n, |Re s| > 1.

Throughout this appendix, let X be a complex Banach space. The following result is a special case of [26,
Lemma 2] (translated from the upper/lower- to the right/left-half plane setting).

Lemma 8.1. Let F : C\(iR) → X be holomorphic, and, for x ∈ R, x ̸= 0, set Fx(y) := F(x + iy) for
all y ∈ R. If there exist n ∈ N0 and L > 0 such that

∥F(s)∥ ≤ Lhn(s) ∀ s ∈ C\(iR), (8.6)

then there exists Φ ∈ S′(X) such that
(
[Fx]− [F−x]

)
→ Φ in S′(X) as x ↓ 0.

Next we relate the growth conditions (8.6) and (4.2). In view of the condition (4.2), we set

gm,k(s) := (1 + |s|)m(1 + (Re s)−k) ∀ s ∈ C0,

where k,m ∈ N0.

Lemma 8.2. Let k,m ∈ N0. The exists C > 0 such that, for all s ∈ C0,

gm,k(s) ≤ C

{
hk(s), if k ≥ m

hm(s), if k < m.

Proof. Let s ∈ C0 and write s = x+ iy, where x > 0 and y ∈ R.
Case 1: k ≥ m. If x > 1, then |s| > 1, and so,

gm,k(s) ≤ 2(1 + |s|)m ≤ 2(1 + |s|)k ≤ 2(1 + |s|2)k.

If 0 < x ≤ 1, then

gm,k(s) ≤ 2(1 + |s|)mx−k ≤ 2(1 + |s|)kx−k ≤ 2γk(1 + |s|2)kx−k,

where γ := maxa≥0(1 + a)(1 + a2)−1 = 1/
(
2(
√
2− 1)

)
. We conclude that in this case

gm,k(s) ≤ 2γkhk(s) ∀ s ∈ C0.

Case 2: k < m. If x > 1, then |s| > 1, and so,

gm,k(s) ≤ 2(1 + |s|)m ≤ 2(1 + |s|2)m.
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Furthermore, if 0 < x < 1, then

gm,k(s) ≤ 2(1 + |s|)mx−k ≤ 2(1 + |s|)mx−m ≤ 2γm(1 + |s|2)mx−m.

Consequently, we have that
gm,k(s) ≤ 2γmhm(s) ∀ s ∈ C0.

The claim now follows with C = 2γmax(k,m). □

We are now in the position to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed in three steps.

Step 1: Existence of the boundary distribution Γ.
To use Lemma 8.1, we define a holomorphic function F : C\(iR) → X by setting F(s) := G(s)
when Re s > 0 and F(s) := 0 when Re s < 0. As G satisfies the growth bound (4.2), it follows from
Lemma 8.2 that (8.6) holds for F with n = max(k,m) and L = MC. The existence of Γ ∈ S′(X) such
that [Gx] → Γ in S′(X) as x ↓ 0 is now guaranteed by Lemma 8.1.

Step 2: suppF−1Γ ⊂ [0,∞).
We note that, for every µ > 0, there exists a constant Mµ > 0 such that

∥G(s)∥
|s|m+2

≤ Mµ

|s|2
∀ s ∈ Cµ,

as follows from (4.2). Defining the holomorphic X-valued function H by

H(s) :=
1

sm+2
G(s) ∀ s ∈ C0,

we see that sups∈Cµ
∥s2H(s)∥ ≤ Mµ for every µ > 0. Invoking Lemma 2.2 shows that there exists H ∈

C(R, X) such that H(t) = 0 for all t ≤ 0, e−µ ·H ∈ L1(R, X) for every µ > 0 and

H(s) =

∫ ∞

−∞
e−stH(t) dt ∀ s ∈ C0.

Therefore,

H(x+ iy) =

∫ ∞

−∞
e−iyt

(
e−xtH(t)

)
dt =

(
F(e−x ·H)

)
(y) ∀x > 0, ∀ y ∈ R.

Let now x > 0 be fixed, but arbitrary. Setting Hx(y) := H(x + iy) for all y ∈ R, the above can be
expressed as

Hx = F(e−x ·H).

Obviously, (x+ iy)m+2Hx(y) = Gx(y) for all y ∈ R. Defining b(y) := (x+ iy)m+2 for all y ∈ R, this can
be written as bHx = Gx. Noting that b[Hx] = [bHx], we obtain

F
(
(xI +D)m+2[e−x ·H]

)
= bF[e−x ·H] = b[F(e−x ·H)] = b[Hx] = [bHx] = [Gx], (8.7)

where D denotes distributional differentiation. Since H(t) = 0 for all t < 0, it follows that supp
(
(xI +

D)m+2[e−x ·H]
)
⊂ [0,∞), and so,

supp
(
F−1[Gx]

)
⊂ [0,∞).

This holds for all x > 0, and, since [Gx] → Γ in S′(X) as x ↓ 0, the continuity of F−1 then guarantees
that suppF−1Γ ⊂ [0,∞).

Step 3: L(F−1Γ) = G.
Note that, by (8.7),

(xI +D)m+2[e−x ·H] = F−1[Gx]. (8.8)

Next, we let x go to 0. As we do not know that [H] ∈ S′(X), it cannot be concluded that the left-hand
side of (8.8) converges to Dm+2[H] in S′(X) as x ↓ 0. However, [H] ∈ D′(X), and so it is clear that

(xI +D)m+2[e−x ·H] → Dm+2[H] in D′(X) as x ↓ 0.

Together with (8.8) and the convergence of [Gx] to Γ in S′(X) as x ↓ 0, this implies

(Dm+2[H])(φ) = (F−1Γ)(φ) ∀φ ∈ D.
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Hence, for c > 0, (
e−c ·Dm+2[H]

)
(φ) =

(
e−c · (F−1Γ)

)
(φ) ∀φ ∈ D. (8.9)

Obviously, as the distribution F−1Γ is tempered and has support in [0,∞), it is Laplace transformable.
Since e−c · ∈ O+

M, the distribution e−c · (F−1Γ) is also tempered, and hence Laplace transformable. It is
sufficient to prove that (

L(e−c · (F−1Γ))
)
(s) = G(s+ c) ∀ s ∈ C0. (8.10)

Indeed, as c > 0 is arbitrary, it then follows that
(
L(F−1Γ)

)
(s) = G(s) for all s ∈ C0.

We proceed to establish (8.10). Using an induction argument, it can be shown that

(
e−c ·Dn[H]

)
(φ) =

n∑
k=0

(
n

k

)
ck
(
Dn−k(e−c · [H])

)
(φ) ∀n ∈ N0, ∀φ ∈ D. (8.11)

We postpone the derivation of (8.11) to the end of the proof.

As e−c · [H] = [e−c ·H] and e−c ·H ∈ L1(R, X), we have that e−c · [H] ∈ S′(X). Consequently,Dj(e−c · [H])
is in S′(X) for every j ∈ N0, and it follows from (8.9), (8.11) and the denseness of D in S that

(
e−c · (F−1Γ)

)(
φ) =

m+2∑
k=0

(
m+ 2

k

)
ck
(
Dm+2−k(e−c · [H])

)
(φ) ∀φ ∈ S.

Taking Laplace transforms on both sides of the above identity yields

(
L(e−c · (F−1Γ))

)
(s) =

(
m+2∑
k=0

(
m+ 2

k

)
cksm+2−k

)
H(s+ c) = (s+ c)m+2H(s+ c) ∀ s ∈ C0,

whence (
L(e−c · (F−1Γ))

)
(s) = G(s+ c) ∀ s ∈ C0,

which is (8.10).

It remains to derive (8.11). Trivially, (8.11) is valid for n = 0. Assume now that (8.11) holds for
some n ∈ N0. Setting ψ := e−c · and T (k) := DkT for T ∈ S′(X) and k ∈ N0, the induction hypothesis
takes the form

ψ[H](n) =

n∑
k=0

(
n

k

)
ck(ψ[H])(n−k) on D.

As ψ[H](n+1) = (ψ[H](n))′ + cψ[H](n) (on D), it follows from the induction hypothesis and a straightfor-
ward calculation that

ψ[H](n+1) =

n∑
k=0

(
n

k

)
ck(ψ[H])(n+1−k) +

n+1∑
k=1

(
n

k − 1

)
ck(ψ[H])(n+1−k) on D.

As(
n

0

)
= 1 =

(
n+ 1

0

)
,

(
n

n

)
= 1 =

(
n+ 1

n+ 1

)
and

(
n

k − 1

)
+

(
n

k

)
=

(
n+ 1

k

)
∀ k ∈ {1, . . . , n},

we conclude that

ψ[H](n+1) =

n+1∑
k=0

(
n+ 1

k

)
ck(ψ[H])(n+1−k) on D,

completing the induction argument. □
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[36] O.J. Staffans, Well-Posed Linear Systems, Cambridge University Press, Cambridge, 2005.

[37] L. Tartar, An Introduction to Sobolev and Interpolation Spaces, Springer, Berlin, 2007.

[38] E.G.F. Thomas, Vector-valued integration with applications to the operator-valued H∞- space, IMA
J. Math. Control Inform., 14 (1997), 109–136.

[39] H.L. Trentelman, A.A. Stoorvogel and M. Hautus, Control Theory for Linear Systems, Springer,
London, 2001.

[40] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.

[41] G. Weiss, Representation of shift-invariant operators on L2 by H∞ transfer functions: an elementary
proof, a generalization to Lp, and a counterexample for L∞, Math. Control, Signals, Syst., 4 (1991),
193–203.

[42] G. Weiss and R. Rebarber, Optimizability and estimatability for infinite-dimensional linear systems,
SIAM J. Control Optimiz., 39 (2001), 1204–1232.

[43] A.H. Zemanian, Realizability Theory for Continuous Linear Systems, Academic Press, New York,
1972 (reprint available as Dover edition, Mineola, N.Y., 1995).

31


	Introduction
	Preliminaries
	Operator-valued multiplier theorems
	Boundary values of vector-valued holomorphic functions defined on the right-half plane
	Sobolev stability
	Examples
	Remarks on right-shift invariant operators on the half line
	Appendix

