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Abstract. We prove an operator-valued Laplace multiplier theorem for causal translation-invariant linear
operators which provides a characterization of continuity from H®(R,U) to H?(R,U) (fractional U-valued
Sobolev spaces, U a complex Hilbert space) in terms of a certain boundedness property of the transfer
function (or symbol), an operator-valued holomorphic function on the right-half of the complex plane. We
identify sufficient conditions under which this boundedness property is equivalent to a similar property
of the boundary function of the transfer function. Under the assumption that U is separable, the Laplace
multiplier theorem is used to derive a Fourier multiplier theorem. We provide an application to mathem-
atical control theory, by developing a novel input-output stability framework for a large class of causal
translation-invariant linear operators which refines existing input-output stability theories. Furthermore,
we show how our work is linked to the theory of well-posed linear systems and to results on polynomial
stability of operator semigroups. Several examples are discussed in some detail.
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1 Introduction

It is well known (see [36, Theorem 10.3.5], [38, Theorem 9.1 ] or [41]) that a linear operator G : L*(R,U) —
L?(R, U) is causal, translation-invariant and continuous if, and only if, there exists a bounded B(U)-valued
holomorphic function G on the open right-half complex plane such that

Gu=L"Y(GLu) for all u € L*(R,U) with support in [0, c0), (1.1)

in which case,
HGHB(L"’(R,U)) = Ri‘igo G (s)-

Here, U is a complex Hilbert space, B(U) denotes the space of bounded linear operators U — U, £ is the
Laplace transform, and causality of G means that if u and v coincide on an interval of the form (—oo, 7),
then so do Gu and Gu.

We remark that representations of causal translation-invariant (or right-shift invariant) operators by
holomorphic functions play an important role in mathematical systems and control theory in general
(see [28]) and in the theory of well-posed linear systems in particular (see [36]). In a control-theoretic
context, the holomorphic function G representing the operator G — the so-called symbol of G — is
referred to as the transfer function of G. The multiplier theorem [36, Theorem 10.3.5] (or [38, Theorem
9.1]) mentioned above (see representation formula (1.1)) rests on the Paley-Wiener theorem (see, for
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example, [4, Theorem 1.8.3] or [36, Theorem 10.3.4]), and the Hilbert space structure of L?(R,U) is
crucial. Indeed, it is well known that not all causal translation-invariant operators on Banach spaces
admit such a multiplier representation [29, 41].

In Section 3 of this paper, we prove the following generalization of the above result.

Laplace multiplier theorem. Let o, 3 € R. A linear operator G : H*(R,U) — HP(R,U) is bounded,
translation-invariant and causal if, and only if, there exists a B(U)-valued holomorphic function G on
the open right-half complex plane such that

Gu =LY GLu) for allu € H*(R,U) with support bounded on the left

and
vi= sup [I(1+8)*G(s)]| < o0, (1.2)
Res>0
where H*(R, U) is the fractional Sobolev space of U-valued tempered distributions (sometimes also referred
to as a Bessel potential space). Furthermore, ||G||s e ms)y ="

The above multiplier theorem appears as Theorem 3.1 in the paper. Its proof is based on the repres-
entation result for operators L?(R,U) — L?(R,U) and a natural scale of causal translation-invariant
isometric isomorphisms L?(R,U) — H*(R,U). We use the Laplace multiplier theorem to derive the
following corollary.

Fourier multiplier corollary. Assume that U is separable and let a, 5 € R. A linear operator G :
H*R,U) — HP(R,U) is bounded, translation-invariant and causal if, and only if, there evists a B(U)-
valued holomorphic function G on the open right-half complex plane such that

Gu =F 1 (GoFu) forallu € H*(R,U) and ~ < oo, (1.3)

in which case
|Gl (rre 1) = 7 = esssup,epl|(1 +iy)~*Go(y)|| < oo,
where F denotes the Fourier transform and Go(y) := limg o G(x + iy) for almost every y € R.

We remark that the separability of U is crucial for the existence of the pointwise boundary limit Gg. The
above Fourier multiplier corollary generalizes the L2-result in [38, Theorems 5.2 and 6.5].

Whilst a non-causal translation-invariant bounded linear operator G' on L?(R, U) also admits a multiplier
representation of the form (1.3) (see [5, Theorems 71-73] and [38, Theorem 5.2]), there does not exist
a bounded holomorphic function G on the open right-half plane such that Gg is the boundary function
of G. In a more general setting (where, for example, the functions in the domain and codomain of
the operator may depend on several variables), the relationship between causality and holomorphicity
has been explored in [17]. We remark that Fourier multiplier theorems play an important role in the
abstract theory of linear and quasilinear parabolic systems [2, 3] and in the stability theory of operator
semigroups (see, for example, [32, 33]). We emphasize that our work focusses on causal operators and
note that causality does not play a role in much of the Fourier multiplier literature.

Returning to the above Laplace multiplier theorem, given a holomorphic B(U)-valued function G on
the open right-half plane, it may be difficult to check directly if the quantity v defined in (1.2) is finite.
Usually, if the boundary function Gg exists, the imaginary axis condition

Yo 1= esssup,cgl/(1 + iy)ﬁf"‘Go(y)H < o0

is easier to deal with. If v < oo, then v = ~y; however, if 79 < oo, then it does in general not follow
that v = 79 < oo. For applications of the above theorems (in a control theoretic context, for example),
it is important, therefore, to identify conditions which ensure that the finiteness of 7 implies that of -,
in which case v = «y. In Section 4 of this paper, inspired by certain results on distributional boundary
values of holomorphic functions from [8, 9, 10, 26], we derive several such conditions. In particular, it
is shown that if G is polynomially bounded and 7y < oo, then v = 9. We remark that the relevant
theorems in [8, 9, 10, 26] are not in a suitable form to be directly applicable in the current context and,
hence, we develop and prove bespoke versions of these results.

There is a rich history of analyzing control systems from a functional analytic perspective, see, for
instance, [13, 27, 28, 36, 43]. In the so-called input-output approach to systems and control, a system
is considered as an operator, usually referred to as the input-output operator, mapping inputs (control



functions) to outputs (observation functions), both of which are defined on R or [0,00) (interpreted as
the bi-lateral or uni-lateral time axis, respectively) and take values in a Hilbert space U. As causality
is a key feature of physical control systems, input-output operators are assumed to be causal. Certain
continuity or boundedness properties of the input-output operator are referred to as input-output stability,
a theory which dates back to the 1960s (see [15]), with L2-stability (finite-energy-input finite-energy-
output) and L>-stability (bounded-input bounded-output) being the most prominent examples.” For
various classes of systems, input-output stability properties have been (i) characterized in terms of transfer
functions and (ii) linked to stability concepts in the sense of Lyapunov, see, for example, [34, Chapter
12], [36, Chapter 8], [39, Section 3.7] and [42].

In Section 5, we apply the above Laplace multiplier theorem and the results of Section 4 to develop a
novel control-theoretic input-output stability framework, referred to as Sobolev stability, for a large class
of causal translation-invariant operators (equivalently, causal convolution operators with B(U)-valued
distributional kernels). Our new concept of Sobolev (a, )-stability relates to the boundedness of a
causal translation-invariant input-output operator G' as a map from dom G C H*(R,U) to H?(R,U),
where a, 8 € R. It is particulary relevant in the analysis of systems which are not L2-stable, but exhibit
certain weaker stability properties and, as we demonstrate, can be viewed as considerable refinement of
the concept of P-stability [23, 30]. In Theorem 5.4, we provide several characterizations of Sobolev (o, 3)-
stability of G in terms of its transfer function G, and use these to link Sobolev stability to results on
polynomial decay of operator semigroups [1, 6, 30] in Proposition 5.9. We also make contact with the
theory of well-posed linear systems [36] by providing, in Corollary 5.7, criteria for Sobolev (a, §)-stability
of the input-output operators of well-posed linear systems.

In Section 6, we discuss several examples in detail, including a neutral functional differential equation
and a heat equation on a square with boundary control along the top edge. Using the results on Sobolev
stability from Section 5, we determine for which values of a and 8 the systems under consideration are
Sobolev («, §)-stable. Finally, in Section 7, we derive a half-line version of the above Laplace multiplier
theorem which provides a characterization of right-shift invariant bounded linear operators defined on
the subspace of all u € H*(R,U) with support in [0, c0).

Apart from Sections 3-7 which we have described in some detail, the paper contains Section 2 and an
Appendix (Section 8). The former is devoted to notation, terminology, background material and prelim-
inaries, whilst the latter contains remarks on the convolution of vector-valued distributions (Appendix
1), the proofs of two results from Section 2 (Appendix 2) and the proof of Theorem 4.1 (Appendix 3).

Finally, throughout the paper, to simplify the presentation, we consider the scenario of causal translation-
invariant linear operators, the domains and codomains of which consist of vector-valued distributions with
values in the same Hilbert space U. The case of operators mapping a space of U-valued distributions
to a space of Y-valued distributions (Y another Hilbert space) can be reduced to said scenario by an
augmentation trick: if G is a causal translation-invariant linear operator mapping U-valued to Y-valued
distributions with a B(U,Y)-valued transfer function G, then, setting U:=UxY,

= 0 O = 0 0
G':<G O) and G.:(G O)’

the operator G is causal, linear and translation invariant, maps U-valued distributions to U-valued
distributions, and G, the transfer function of G, has values in B(U) = B(U,U). The results of the paper
facilitate the analysis of G and G, and any conclusions can be used to draw corresponding conclusions
relating to G and G, the original operator and its transfer function, respectively.

2 Preliminaries

Most mathematical notation used is standard. As usual, let N, Z, R and C denote the positive integers
(natural numbers), integers, real numbers and complex numbers, respectively. Furthermore, we set

No:=NU{0}, R;:=[0,00) and C,:={se€C : Re(s)>pu} VpeR.

Let X and Z be complex Banach spaces. The space of all linear bounded operators X — Z is de-
noted by B(X, Z). Endowed with the usual induced operator norm, B(X, Z) becomes a Banach space.

TWe remark that input-output stability theory is not restricted to linear systems, see, for example, (11, 15].



We set B(X) := B(X,X). The space of continuous functions from R — X is denoted by C(R, X),
and C*°(R, X) and C*(R, X) denote the subspaces of smooth functions and smooth functions with
compact support, respectively.

For more details on the following material on spaces of vector-valued functions and distributions, we refer
to

13, Appendix A.5] and [22, Chapter III] for vector-valued measurability and integration;

[
e [31, Chapter 4] and [38] for operator-valued H*>°-functions;
[

2, Chapter III: Sections 4.1 and 4.2], [3, Chapter VII], [14, Chapter XVI: Section 2], [16, Chapter
8] and [43, Chapters 3, 5 and 6] for vector-valued distributions.

Let LP(R, X) denote the usual Bochner-Lebesgue space of functions R — X, where 1 < p < co. As
usual, L (R, X) stands for the localized version of LP(R, X). The subspace of functions in LP(R, X)

loc

with support bounded on the left is denoted by LY (R, X), and we set
P (R, X):={ue LR, X):suppu C [0,00)} C LY(R, X).

Let 8§ be the Schwartz space of rapidly decreasing smooth functions R — C and let D C 8 be the space
of compactly supported smooth test functions R — C, endowed with their usual topologies. The spaces
of all continuous linear maps D — X and § — X are denoted by D’(X) and 8'(X), respectively. We
have that 8'(X) C D'(X) and the elements in D’'(X) are called X-valued distributions. A distribution
in 8/(X) is said to be tempered (or, slowly growing). The subspace of distributions in D'(X) with
support bounded on the left is denoted by Dj(X), and similarly, 8,(X) stands for the space of tempered
distributions having support bounded on the left.

Let f € Ly (R,X). The map D — X, ¢ — [*_o(t)f(t)dt is well defined and continuous, and we

loc

denote the corresponding regular distribution by [f]. If f € LP(R, X), 1 < p < oo, or if there exists r > 0
such that the function ¢t — | f(t)|| is polynomially bounded on the set R\[—r,7], then [f] extends to 8
and [f] € 8'(X).

Moreover, set
Oy = {n € C®(R,C) : ¥ is polynomially bounded for every k € Ny},

03; == {n € C=(R,C) : ™ is polynomially bounded on [0, c0) for every k € Ny}
and, for 7 € R,

U, :={ne C®R,C): Ity <tp <Tst.nt)=1Vte (tg,00) and n(t) =0 Vt € (—o0,1)}.

We note that if ¢ € (91\7, then, for every 7 € R, ¢ and its derivatives are polynomially bounded on [r, c0).
Conversely, if ¢ € C*(R,C) is such that ¢ and its derivatives are polynomially bounded on [r, c0) for
some 7 € R, then v € (91\+/[. For our purposes, the most important functions v € Oﬁ which are not
polynomially bounded on the whole real line are of the form ¥ (t) = e™¢, where ¢ > 0. If ¢ € Oy,
then ¥y € 8 for all p € 8. Consequently, the product ¢u, where 1) € Oy and u € 8'(X), defined by

(Yu)(p) == u(ypp) V€S,

is a tempered X-valued distribution. For u € §'(X) C D'(X) and ¢ € C*(R,C), the product ¢u is
in D'(X), but in general not in 8'(X). However, if 1) € Of; and u € 8'(X) with suppu C [r,00) for
some 7 € R, then it is straightforward to show that the product ¢u defined by

(Yu)(p) :=u(npp) Ve €8, wheren e U, is arbitrary,

does not depend on n € U, and ¢u € 8'(X).
For a function f € L}(R, X), we define the Fourier transform by

o0

(T (y) = / e (1) At Yy € R,

As F is an automorphism on 8, the definition of the Fourier transform extends to 8'(X) via

(Fu)(p) :=u(Fp) Vo e8, whereue 8 (X).



It is well known that the Fourier transform JF is an automorphism on 8'(X) with F and F~! being
sequentially continuous. If f € L1(R, X), then F[f] = [Ff]. If X = U is a complex Hilbert space, then
the restriction of F to L' (R, U) N L?(R,U)) extends to an automorphism on L?(R,U), in fact, (1/v/27)F
is a unitary operator on L*(R,U), and so ||Ful z2r) = V27|lul|2(r) for every u € L*(R,U).

For # € R and U a complex Hilbert space, we define the Sobolev space (sometimes also called Bessel
potential space)

HR,U) = {ues8U): (y— 1+y»)"*(TFu)(y)) € L*(R,U)},

with inner product and associated norm given by

() i= o [ 4D E0W). W)y Vv e HRD),

hade o}
and

o) 1/2
o = (1 / <1+y2>9<9u><y>2dy) . Vue HRD),

2 J_ o

respectively. The space HY(R,U) is complete and hence a Hilbert space. We note that H(R,U) =
L2(R,U) and ||ul| gro = ||ul|z2 for all w € L2(R,U). If § > 0, then H*(R,U) C L2(R, U), whilst H°(R,U)
contains non-regular distributions when 6 < 0. We also note that if u € HY(R,U), then Fu € L2 (R, U)

loc

whatever the value of §. We will also make use of the space H{ (R,U) := H%(R,U) N 8,(R,U) and the
half-line Sobolev space

HY(R,U) :={uec H*(R,U) : suppu C [0,00)} C H{ (R,U).

The following lemma is well known for scalar-valued H%-spaces. As we could not find a suitable reference
for the vector-valued case, a proof is included in Appendix 2.

Lemma 2.1. Let U be a complex Hilbert space and 8 € R. The following statements hold.

(1) C*(R,U) is dense in H?(R,U).
(2) The space {u € C>*(R,U) : suppu C (0,00)} is dense in HI (R, U).

For the rest of this section, let X be a complex Banach space. The Laplace transform Lu of a distribu-
tion u € D’(X) such that suppu C [r,00) and e # u € §'(X) for some 7, € R is defined by

(Lu)(s) :== (e7" u) (ne=C=H") VseC,,

where n € U, is arbitrary. It is straightforward to show that the definition does not depend on 7.
The classical Laplace transform is a special case in the sense that if f : R — X is such that f(¢t) = 0
for a.e. t € (—oo,7) and e # f € LY(R, X) for some 7, € R, then (L[f])(s) = (£f)(s) for all s € C,,.
For u € D'(X) with supp u bounded on the left, we define the abscissa of convergence o(u) as the infimum
of all i € R such that e ™ u € 8/(X). If no such p exists, then we set o(u) = co. If o(u) < oo, then the
Laplace transform of u exists and is holomorphic on C,,), and u is said to be Laplace transformable.

For later purposes, we state the following lemma on the vector-valued Laplace transform, the proof of
which can be found in Appendix 2.

Lemma 2.2. Leth:C, — X be holomorphic, where i € R. If

sup [|s*h(s)]| < oo,
seC,

then there exists h € C(R,X) such that h(t) = 0 for all t < 0, sup,~q ||e"""t " h(t)|| < 00 and e™ h €
LY (R, X) for every v > p and (Lh)(s) = h(s) for all s € C,,.

For each 7 € R, the shift or translation operator S; : Ll (R, X) — L}

loc (R, X)) is defined by (S, f)(t) :=
f(t — 7). Letting u € D'(X), the definition

(Sru)(p) =u(S—rp) Vo €D



extends the translation operator to D'(X). A linear map T : domT C D'(X) — D’/(X) is said to be
translation invariant if S;u € domT and S, Tu = T'S;u for all u € domT and all 7 € R. Furthermore,
we say that T is causal if, for all 7 € R and all u € dom T, we have

suppu C [1,00) = supp(Tu) C [7,00).
It is a routine exercise to show that if 7" is translation invariant, then T is causal if, for all u € dom T,
suppu C [0,00) = supp(Tu) C [0, 00).

For p € R, we let 3;°(X) denote the Hardy space of all bounded holomorphic functions C,, — B(X).
Equipped with the norm
IH][s¢ze == sup [[H(s)],

seC,

372 (X) is a Banach space. We set 3H>°(X) := Hg°(X).

The following result on H>(B(U)) (known as Fatou’s theorem), U a separable complex Hilbert space,
will be frequently used in this paper. For the proof we refer to [31, Theorem B, Section 4.6] and [31,
Theorem C, Section 4.8] or [38, Theorem 6.4].

Theorem 2.3. Let U be a separable complex Hilbert space and let H € H>®(B(U)). Then H has a
non-tangential limit Ho(y) = lims_,;, H(s) in the strong operator topology for almost everywhere y € R
and

ess supyeg|[Ho(y)[| = [[H[[3c>

Furthermore, ||Ho(y)|| = limg—y |H(s)|| non-tangentially for almost everywhere y € R.

For notational simplicity, in the scalar-valued case (that is, when X = C or U = C), we shall drop X
or U from the notation of function and distribution spaces: for example, C(R), D', 8', H(R) and ¥,
stand for C(R,C), D'(C), 8'(C), H?(R,C) and ¥, (C), respectively.

3 Operator-valued multiplier theorems

The main objective of the current section is to prove the following Laplace multiplier theorem for a class
of causal and translation-invariant operators. Throughout this section, let U be a complex Hilbert space.

Theorem 3.1. Let o, 3 € R.

(1) If G € B(H*(R,U),H*(R,U)) is causal and translation invariant, then there exists a unique
holomorphic function G : Co — B(U) such that

Gu= (L 'oMgoL)(u) Yue HIR,U) (3.1)
and
Sup 11+ )" *G(s)| = 1G]l B (o) (3.2)
sclo

where Mg denotes multiplication by G.
(2) If G: Cy — B(U) is holomorphic and such that

sup ||(1+ s)B*O‘G(s)H < 00, (3.3)
s€Cop

then there exists a unique causal translation-invariant operator G € B(H“ (R,U), H?(R, U)) such
that (3.1) and (3.2) hold.

Condition (3.3) means that the function s +— (14 5)%~*G(s) is in the Hardy space 3>°(B(U)). The norm
on the right-hand side of (3.2) is the operator norm induced by the norms of H*(R,U) and H?(R,U).

As for the expression (1+s)°~% appearing in (3.2) and (3.3), the following convention applies throughout
the paper: we identify the complex power function with exponent 6 € R with its principal branch on the
domain C\(—o0,0], and thus, (1+ s)?~* € (0,00) if s € (—1, 00).

Theorem 3.1 is a generalisation of the following well-known result, see [36, Theorem 10.3.5], [38] or [41].



Theorem 3.2. A linear operator G : L*(R,U) — L?(R,U) is bounded, translation-invariant and causal
if, and only if, there exists G € H>(B(U)) such that G is of the form (3.1) (with H*(R,U) replaced
by L2 (R,U)). Moreover, G and G determine each other uniquely, and

||GHB(L2(]R,U)) = |Gl
The proof of Theorem 3.1 is based on Theorem 3.2 and a scale of causal translation-invariant isometric

isomorphisms L?(R,U) — H?(R,U), § € R, which we shall now introduce. For which purpose, let 6 € R,

set
ro(s):=(14+s)7% VseC_; and pg(y) :=re(iy) Yy <R, (3.4)

and define a linear map Ry : 8'(U) — 8'(U) by Rp := F~!1 oM, o F. Note that
Rou := F 1 (pgFu) = (Fpg) xu Yu e 8 (U). (3.5)

Here we have used that py € Oy (equivalently, F~1py is a distribution of rapid decay) from which it follows
that, for every u € 8'(U), the products pgFu and (F~1pg) x u are well-defined tempered distributions, so
that the convolution theorem (exchange formula) can be invoked to obtain the second equality in (3.5),
see Appendix 1.

The next result gathers properties of the scale of operators Ry.

Proposition 3.3. For every 0 € R, the operator Ry defined by (3.5) has the following properties.

1) Ry:8'(U) — 8 (U) is a sequentially continuous isomorphism and R, = R_.

2) Ry is translation invariant.

3) Ry is causal.

(1)
(2)
3)
(4) For every a € R, Rg(H*(R,U)) = H*T(R,U) and ||Rou||go+e = ||ul|me, that is, the restriction
of Rp to H*(R,U) is an isometric isomorphism H*(R,U) — H (R, U).

Proposition 3.3 has some overlap with [40, Proposition 31.8] in the sense that, for the scalar-valued
case, it is shown that there exists an isometric isomorphism mapping H®(R) onto H”(R). However, the
isometric isomorphism is not causal, and therefore [40, Proposition 31.8] is not suitable as a tool in the
proof of Theorem 3.1.

Before we provide a proof of Proposition 3.3, it is convenient to state and prove the following technical

lemma.

Lemma 3.4. Let § € R and let vy and py be defined as in (3.4). Then supp(F~1py) C [0, 00),
e " Flpg €8 forallv e (—1,0) and (L(F1pg))(s) =ro(s) for all s € C_;.

Proof. Let §# € R, v € (—1,0) and k € Ny such that & > 2 — . Setting hg(s) := (1 + s) Frg(s) =

L,
It follows from Lemma 2.2 that there exists a function hy € C(R) such that hg(t) = 0 for all ¢ < 0,
e hg € L'(R) and (Lhg)(s) = hy(s) for all s € C,. In particular,

(Fhe)(y) = (Lhe)(iy) = he(iy) VyeR.

Defining 7¢ := (1 4+ D)*hg € §', where D denotes differentiation (in the distributional sense), it follows
that suppry C [0,00), e 19 € 8, (Lrg)(s) = rg(s) for all s € C, and Fry = pg. Consequently,
rg = Fpg and (L(F~'pg))(s) = re(s) for all s € C,. The latter identity holds for every p € (—1,v),
and hence it holds for all s € C_;, completing the proof. |

It follows from (3.5), Lemma 3.4 and the convolution theorem for Laplace transforms (see Appendix 1)
that, for every 0 € R,
L(Rou) =rglu Vu € §)(U),

and, consequently,
Rou= (L7 oMy, 0L)(u) Yu e 8y U). (3.6)

We proceed to prove Proposition 3.3.



Proof of Proposition 3.3. (1) It is immediate that RyR_9 = R_gRy = I. Hence, Ry is an isomorphism
and R, ' = R_4. Moreover, as F, ¥~ and multiplication by py are sequentially continuous on 8’ U), it
follows that Ry is sequentially continuous.

(2) Let 7 € R and u € 8'(U). Then RyS,u = F(pge™" Fu), and thus,
FRyS;u = pge” " Fu=e"" (pgTFu) = ?(ST?_l(pgffu)) = F(S;Rou).

Consequently, RyS-u = S; Rpu, establishing the translation invariance of Ry.

(3) By Lemma 3.4, supp(F~1pg) C [0,00). Using that Rou = (FLpg) x u for all u € 8'(U), causality
follows from [43, Theorem 5.11-1].

(4) For u € H*(R,U), we compute

o0 o0

27| Roul|37a+0 = / (1 +4%)* s () | (Fu) ()| *dy = / (1 + ) (Fu)@)l*dy = 27 |lulle

— 0o — 00

where we have used that |pg(y)|? = |1 + iy|=2’ = (1 + 3?)7?, showing that Ry restricted to H*(R,U)
maps isometrically into H*T?(R,U). For v € H*T(R,U), we have that R_gv € H*(R,U), and, by
statement (1), Ryp(R_gv) = v, showing that Ry restricted to H*(R,U) maps onto H*+%(R,U). Hence,
the restriction of Ry to H*(R,U) is an isometric isomorphism H®(R,U) — H**9(R,U). O
We are now in a position to prove Theorem 3.1.

Proof of Theorem 3.1. (1) Assume that G € B(H*(R,U),H’(R,U)) is causal and translation
invariant. An application of Proposition 3.3 yields that

R_3GR, : L*(R,U) — L*(R,U)

is a causal translation-invariant bounded linear operator. Therefore, invoking Theorem 3.2, there exists
a function H € H*>°(B(U)) such that

R_gGR,v =L ' (HLv) Vve LA (RU).
Appealing to (3.6) and Proposition 3.3, we conclude that
Gu=RgL ' (HL(R_qu)) = L7 (GLu) = (L o Mg o L)(u) Vue HS(R,U),

where G(s) 1= (1+s5)* PH(s). As G and £L™!oMgoXL are translation invariant, it follows that (3.1) holds.
To establish uniqueness of G, let G : Cy — B(U) be holomorphic and assume that Gu = (£~ !oMgoL)(u)
for all u € HZ(R,U). Then, for fixed ¢ € D, p(t) # 0, it follows from (3.1) that GL(p@v) = GL(p ®v)
for all v € U, where (¢ ® v)(t) := p(t)v for all t € R. Consequently, (L¢)(s)G(s)v = (L) (s)G(s)v for
all s € Cy and all v € U, showing that G = G.

To establish the equality of norms (3.2), we invoke Theorem 3.2 again to obtain

IR-5GRall5 (22 m.0y) = [Hllsc= = sup (1 + )" *G(s)]. (3.7)

2
+ s€Co

Using Proposition 3.3 once again, the restriction of R_s to H?(R, U) is an isometric isomorphism H? (R, U) —
L*(R,U), and so
|R-_sGRaul 12 = |GRaul|gs Yu € L3 (R,U).

Furthermore, R, maps L% (R,U) isometrically onto H$ (R, U), and so,

sup IGRyul s = sup |GVl gs-
llull,2=1, u€L? (R,V) vl ga=1,veHS(R,U)
Therefore,
IR-sGRall5 (12 ®,v)) = sup |R-pGRaul 2 = sup Gl -
llull L2=1,ueL? (R,U) vl a=1, vEHS (R,U)

Hence, HG”B(Hi,Hﬁ) = ”R—BGRaHB(Lﬁr(R,U)): and so, by (3.7),

1G5 sge 2y = sup [|(1+ )"~ *G(s)]. (3.8)
+7 seCop



Finally, let v € H*(R,U), u # 0. By Lemma 2.1, there exist u; € C°(R,U), j € N, such that u; — u
in H*(R,U) as j — oo. Choosing 7; € R such that supp(Sr,u;) C [0, 00), we have that S u; € H}(R,U)
for all j € N and, by translation invariance and (3.8),

Gu; Sr. Gu; G(S; u;
H uj||H5 — || SJ ]Hfﬂ’z — H FS J ])”Hﬁ S Sup ||(1+S)B_QG(S)||
llw; |l e (157w || mre |S7;ujll e s€Co

Consequently,

|Gullgs _ . 1Gujlle

= lim < sup [|(1+ )77 G(s)ll,
ullza d=oo flujllae ~ secy

which, together with (3.8) shows that (3.2) holds.

(2) Conversely, let G : Cy — B(U) be holomorphic and assume that (3.3) holds. Obviously, H defined by
H(s) == (1+5)°7*G = ro_ps(s)G(s) is in H>(B(U)), and so, by Theorem 3.2 there exists a causal and
translation-invariant operator H € B(L?*(R,U)) such that Hu = (£~ oMgo L)(u) for all u € L2 (R, U).
As H and £~ o My o £ are translation invariant, it follows that

Hu= (L' oMyol)(u) Yue LZ(R,U). (3.9)
Using Proposition 3.3, it is clear that the linear operator
G:=RgoHoR_,:H*R,U) —» H*(R,U)
is causal, translation-invariant and bounded. Furthermore, by (3.6) and (3.9),
G=L"oM;,oMugoM, ,oL=L""oM,, mol=L"oMgoLl on H}RU),

showing that (3.1) holds. Finally, as H*(R,U) is dense in H*(R,U), it is clear that G is the unique
operator in B(H*(R,U), H?(R,U)) satisfying (3.1). O
The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.5. If G € B(L*(R,U)) is causal and translation-invariant, then, for all a > 0 (a < 0), G
restricts (extends) to a causal translation-invariant bounded linear operator H*(R,U) — H*(R,U).

Next we want to apply Theorem 3.1 to derive a Fourier multiplier theorem. To facilitate such an applic-

ation of Theorem 3.1, it is convenient to state and prove an auxiliary result first.

Let 32(U) be the Hardy space of all holomorphic functions Cy — U such that

S 1/2
e =sup ([ 1o+ inlPay) <o

By the Paley-Wiener theorem (see [4, Theorem 1.8.3], [31, Section 4.8] or [36, Theorem 10.3.4]), the
Laplace transform maps L3 (R, U) isomorphically onto H?*(U), and
| Lullgez = V2r|ullz: YVue Li(R,U).

For each f € H?(U), the boundary limit fo(y) := lim, o f(z + iy) exists for almost every y € R, the
boundary function fy is in L?(R, U), the map

B:H*(U) — L*(R,U), f+ fo (3.10)
is an isometry,
(BoL)(u) =Fu VYue Li(R,U), (3.11)

and B(H*(U)) = F(LA(R,U)) = {g € L*(R,U) : supp(F~'g) C [0,00)}, see [4, Theorem 1.8.3], 31,
Section 4.8] or [36, Section 10.3] for details.

The following lemma relates certain Fourier multipliers to the corresponding Laplace multipliers.

Lemma 3.6. Assume that U is separable. Let G : Co — B(U) be holomorphic and such that sup ec, ||(14
$)7*G(s)|| < oo for some k € Ng. Then the limit Go(y) := lim, o G(z +1iy) exists in the strong operator
topology for almost every y € R and

(FroMg, oF)(u) = (L P oMgoL)(u) Yue LI(R,U).



Proof. Since ¥~ 1o Mg, o F and L1 o Mg o £ are translation-invariant, it is sufficient to show that
(FloMg, 0o F)(u) = (L' oMgoL)(u) Yue Li(R,U). (3.12)

Set H(s) := (1 + s)"F¥G(s) for all s € Cy. Then, H € H>(B(U)) and, by Theorem 2.3, there exists a
boundary function Hy such that H(z 4 iy) converges to Hy(y) in the strong operator topology for almost
every y € R as x | 0 and esssup,ep|[Ho(y)|| = [[H]|5¢~. Let u € L3 (R,U) and set H := L~ o My o L.
As H is causal, Hu € L3 (R,U), and, invoking (3.11), we have that

F(Hu) = (BoL)(Hu) = My, B(Lu) = My, (Fu) = (Mg, o F)(u).
Consequently, Hu = (571 o Mg, o F)(u), and thus,
(F L oMp, 0 F)(u) = (L oMy oL)(u) Yue LL(R,U).

An application of (I + D)* (recall that D denotes differentiation in the distributional sense) to both sides
of the above equation leads to

(I+D)*(F ' oMu, 0 F)(u) = (I + D)*(L ™ oMuoL)(u) Yue LA(R,U).
Using standard properties of the Fourier and Laplace transforms, it follows that
(T oMy im0 F)(w) = (L7 o Mmoo L)(u) Yue L (R,U),

where r_j and p_j, are given by (3.4). Asr_;H = G and p_;Hy = Gy, equation (3.12) follows from the
above identity. O

We are now in the position to prove the following Fourier multiplier result.

Corollary 3.7. Assume that U is separable and let o, 5 € R.

(1) If G: H*(R,U) — HP(R,U) is a bounded linear causal translation-invariant operator, then there
exists a unique holomorphic function G : Co — B(U) such that

Gu= (F'oMg, o F)(u) Yuec H*R,U) (3.13)

and

sup [+ )" G(5) | = [Gllnrae o) = esssmpyell (1 +i9)**Golw)l,  (314)
s 0

where Go(y) = limg, 0 G(z + iy), with the limit existing in the strong operator topology for almost
every y € R, and Mg, denotes the operator of multiplication by Go.

(2) Conwversely, if G : Co — B(U) is holomorphic and such that

sup ||(1 4+ s)ﬁf"‘G(s)H < 0, (3.15)
seCyp

then Go(y) := limg o G(x + iy) exists in the strong operator topology for almost every y € R, G
given by (3.13) is a bounded linear causal translation-invariant operator H*(R,U) — HP(R,U)
and (3.14) holds.

Proof. (1) Assume that G € B(H*(R,U),H?(R,U)) is causal and translation invariant. By state-
ment (1) of Theorem 3.1 there exists a unique holomorphic function G : Cy — B(U) such that Gu =
(L7 oMgoL)(u) for all u € Hy(R,U) and the first equality in (3.14) holds. Hence, the function r,_gG
is in H*>°(B(U)), and so, Theorem 2.3 yields that the boundary limit Go(y) := lim, o G(z + iy) exists in
the strong operator topology for almost every y € R (here separability of U is used) and

esssupy e [ Pa—sGo(y) | = [Ta_pGlste. (3.16)
Consequently, the second equality in (3.14) also holds. Furthermore, it follows from Lemma 3.6 that
(T toMg, 0 F)(u) = (Lt oMgoL)(u) YuecCXR,U).
Therefore,

Gu= (F'oMg, 0F)(u) YueCTR,U). (3.17)
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Next, we note that
FloMg,0F=RgoF oM, ,a,oFoR ,. (3.18)

By (3.16), the function y — ||pa—g(y)Go(y)|| is essentially bounded. Combining this with Proposition 3.3,
it follows that the right-hand side of (3.18) is a bounded operator from H®(R,U) to H?(R,U), and thus,
FloMg,0F € B (HQ(R, U), H?(R, U)) Therefore, since C°(R, U) is dense in H*(R, U) by Lemma 2.1,
equation (3.17) yields that Gu = (F~! o Mg, o F)(u) for all u € H*(R, U), establishing (3.13).

(2) Conversely, let G : Cyg — B(U) be holomorphic and assume that (3.15) holds. By Theorem 3.1, there
exists a unique causal translation-invariant operator G € B(H*(R,U), H?(R,U)) such that
Gu= (L' oMgol)(u) Yue H}R,U)

and (3.14) holds. By (3.15), G is polynomially bounded, and thus it follows from Lemma 3.6 that Gg(y) :=
lim, o G(z + iy) exists in the strong operator topology for almost every y € R (here separability of U is
used) and

Gu=L"'oMgoL=F'1oMg,0F VYuecCTR,U).

Moreover, since ro_gG € H>*(B(U)), it follows that (3.16) holds. Therefore, as in the proof of state-
ment (1), we have that F~'oMg,oF € B(H*(R,U), H*(R,U)), and, invoking the denseness of C°(R, U)
in H*(R, U) (see Lemma 2.1), the above identity yields that Gu = (F~toMg,0F)(u) for allu € H*(R,U),
completing the proof. O

We close this section by showing how Proposition 3.3 can be used to derive a generalization of the Paley-
Wiener theorem which provides a natural isomorphism between Hﬁ(R, U) and a suitably weighted JH2-
space. To this end, we introduce the space

H2O(U) == ryH?*(U) = {u: Cy — U : u holomorphic and r_su € H>(U)}, where § € R

of holomorphic functions, where rg is defined in (3.4). Endowed with the norm |jul|gcz.6 := ||r_gul|s¢2,
the space H%?(U) is complete.

The following result contains the classical Paley-Wiener theorem as a special case.

Proposition 3.8. Let 8 € R. The Laplace transform maps Hﬂ(R, U) isomorphically onto H*%(U) and
[ Lullgez0 = Vor|ullge  Yu e H(R,U). (3.19)

Proof. Let # € R and u € 8'(U). It follows from (3.5) and Lemma 3.4 that
L(Rou) =roLlu YVueS8)(U), Ya € R. (3.20)
Let uw € H] (R,U). Proposition 3.3 ensures that R_gu € L% (R, U) and |Ju||go = ||[R_gul|2, and thus,
V2rullge = V2rl|R-gu| 2 = | £(R-gu)||s¢2, (3.21)

where, in the last equality, we have used the classical Paley-Wiener theorem. Appealing to (3.20), we see
that £L(R_pu) = r_gLu, which combined with (3.21) gives

Var|ullge = [[r-eLullscz = [[Lullgcae,

showing that £ maps H (R,U) isomorphically into H>¢(U) and (3.19) holds.

To show surjectivity, let v € H*?(U). By the classical Paley-Wiener theorem there exists v € L% (R, U)
such that v = rygLu. Setting v := Rpu, we have that v € Hf_(]R, U) by Proposition 3.3. By (3.20),
Lv = L(Rgu) = roLu = v, showing that £ maps HY (R,U) onto H>%(U). O

4 Boundary values of vector-valued holomorphic functions defined
on the right-half plane

In this section, we explore the key hypothesis (3.3) on the holomorphic function G in Theorem 3.1 in
greater detail: in particular, under the assumption that the limit Go(y) = lim,| G(x + iy) exists in the
strong operator topology for almost every y € R, we shall consider the imaginary axis condition

esssup, ep||(1 +iy)”*Go(y)|| < oo. (4.1)
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The motivation for our interest in (4.1) is that the verification of the imaginary axis condition (4.1) is
usually considerably easier than establishing the uniform boundedness of (1 + s)’~*G(s) on the open
right-half plane. We shall identify conditions under which the existence of the strong limit Go(y) =
lim, 0 G(z + iy) together with the imaginary axis condition (4.1) is sufficient for the function s —
(1 + 5)P~*G(s) to be in H>(B(U)). This will involve the consideration of the boundary behaviour
of G(z + ty) in the sense of distributions as x | 0.

For a holomorphic function G : Cy — X, X a complex Banach space, set
G;(y) ==G(z+1iy) VyeR, wherez>0.

The following result addresses the existence and properties of boundary distributions for X-valued holo-
morphic functions defined on Cy.

Theorem 4.1. Let X be a complex Banach space, G : Co — X be holomorphic, and assume that there
exist M >0 and m,k € Ny such that

IG(s)[| < M(1+|s])™ (1 + (Res)™") Vs e Co. (4.2)

Then there exists a tempered distribution T' € 8'(X) (the so-called boundary distribution of G) such
that [G,] = T in 8'(X) as z | 0, supp(F~IT') C [0,0) and L(F~IT) = G.

An alternative to the growth bound (4.2) is given by
IG(s)| < N(1+|s|)"(Res) ™ Vs eCy, (4.3)

where N > 0 and n € Ny, see, for example, [8, equation (6.60)] and [10, equation (4.7)]. Trivially,
if (4.3) holds, then so does (4.2) with M = N and m = n. Conversely, if (4.2) is satisfied, then it is
straightforward to show that (4.3) holds with N = 2M and n = m + k. Consequently, Theorem 4.1
remains valid when (4.2) is replaced by (4.3).

In the scalar-valued case, Theorem 4.1 is a special case of [8, Theorem 4.7.4]. For vector-valued functions,
the existence of tempered boundary distributions is stated, without proof, in [9, Theorem 4.1]. We refer
the reader to Appendix 3 for a proof of Theorem 4.1.

Next, we investigate under what conditions boundary distributions and pointwise boundary limits coin-
cide. In this paper, our focus will be on the situation wherein X = B(U), where U is a complex Hilbert
space. It is well known that if U is separable, then pointwise boundary limits of functions in H>(B(U))
exist in the strong operator topology, but not necessarily in the norm topology of B(U), and the strong
limit need not be Bochner measurable (as a B(U)-valued function), but will be weakly measurable.
Therefore, it would be too restrictive to assume that the pointwise boundary limit of a holomorphic
function G : Co — B(U) is in L (R, B(U)) (locally Bochner integrable).

loc
Therefore, it is useful to consider the weak integral (also called Pettis integral) for B(U)-valued functions,
where U is a complex Hilbert space. Let Q C R be a set of positive Lebesgue measure. A function F' :  —
B(U) is said to be weakly measurable if the scalar-valued function Q — C, t — (F(t)u,v) is Lebesgue
measurable for all u, v € U. Furthermore, if F' is weakly measurable, then the function Q — C, t — || F(t)]|
is Lebesgue measurable (see, for example, [22, Proof of Theorem 3.5.5]). For 1 < p < oo, let L2 (2, B(U))
denote the space of functions F': Q@ — B(U) such that F' is weakly measurable and

1/p
| F e = (/ ||F(t)||pdt> <oo ifp<oo and ||F| s := esssupp||F(t)| < oo if p=oo.
Q

It is Well known that LP (2, B(U)) is complete, and, for F' € LL (9, B(U)), there exists a unique integ-
ral [, F(t)dt € B(U) such that

<</Q F(t) dt) u,v> = /Q<F(t)u, v)dt Yu,veU,

‘/QF“) dtH < /Q I dt = [|F 2y,

see, for example, [13, Appendix A.5]. Under the assumption that U is separable, weak measurability
of F: Q — B(U) implies that F' is also strongly measurable, that is, the function @ — U, t — F(t)u

and
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is Bochner measurable for every u € U, see [22, Theorem 3.5.5]. Therefore, if U is separable, then the
function ¢t — F(t)u is Bochner integrable for every F' € L% (Q,B(U)) and every u € U, and a routine

argument shows that
</ F(t) dt> u = / F(t)udt YueU,
Q Q

where the integral on the left-hand side is the weak B(U)-valued integral of F, whilst the integral on
the right-hand side is the U-valued Bochner integral of Fu. Consequently, when U is separable, the
weak B(U)-valued integral can also be considered as a strong B(U)-valued integral.

Finally, we introduce the space L}  (R,B(U)) of all functions F' : R — B(U) such that Flo €

L2 (92, B(U)) for every bounded measurable set @ C R. It follows from the properties listed above
that, for every F € L! | (R, B(U)), the functional [F] given by

w,loc

[F](¢) = / T GWF®dt VeeD (4.4)

— 00

is well-defined and continuous on D, whence [F] € D'(B(U)). Similarly, if F € Ly, (R, B(U)) is such

that [|F'(¢)|| is polynomially bounded on a set of the form {¢t € R : |t| > 7} for some 7 > 0, then the
right-hand side of (4.4) is well defined for all ¢ € 8, and [F] € 8'(B(U)).

Throughout the rest of this section, let U be a complex Hilbert space. The next result provides a
sufficient condition which guarantees that the boundary distribution of a holomorphic function is equal
to the regular distribution induced by the pointwise boundary limit.

Lemma 4.2. Let G : Co — B(U) be holomorphic. Assume that there exists T' € 8'(B(U)) such
that [Gz] = T in 8'(B(U)) asz | 0, the limit Go(y) := limy 0 G, (y) exists in the strong operator topology
for almost every y € R, and there exists xg > 0 such that, for each a > 0, there exists g, € L'(—a,a)
satisfying

1G(z +iy)ll = 1G (W) < galy) V(2,9) € (0,20) X [—a,a]. (4.5)
Under these conditions, Gg € L;)lOC(R,B(U)) and T'(¢) = [Gol(p) for all ¢ € D.

We remark that condition (4.5) is equivalent to the existence of xg > 0 and g € L{ _(R) such that

loc
1G(z +iy)ll = IG= ()l < g(y) V(z,9) € (0,20) X R.

Note that if condition (4.5) is satisfied for some z¢ > 0, then it holds for all g > 0. Furthermore, if G is
bounded on every bounded strip of the form {z + iy : z € (0,2¢), |y| < a}, a > 0, then (4.5) is satisfied.

We illustrate Lemma 4.2 with a class of examples, and demonstrate that, in the absence of condition (4.5),
the conclusions of Lemma 4.2 may fail to hold.

Example 4.3. (1) Let y; € R, j = 1,...,n, be such that y; # yi if j # k, and let H : Cy — B(U)
be holomorphic and polynomially bounded, where U is assumed to separable. Consider the holomorphic
function G : Cy — B(U) given by

G(s) := <H(s - iyj)_ef)H(s) Vs e Cy, where 0;€(0,1),j=1,...,n.

J=1

It follows from Theorem 4.1 that there exists I' € 8'(B(U)) such that [G,] —» Tin &' (B(U)) asz | 0. AsH
is polynomially bounded there exists m € N such that (14 s)"™H(s) is bounded on Cy and it follows from
Theorem 2.3 that there exists a boundary function Ho € L3y, (R, B(U)) such that H(z + iy) converges
to Ho(y) in the strong operator topology for almost every y € R as « | 0. Consequently, G(z + iy)

converges to Go(y) := H?:1 (i(y — yj))_ej Hy(y) in the strong operator topology for almost every y € R
as = | 0. Furthermore, G satisfies (4.5), and therefore Lemma 4.2 ensures that I'(p) = [Go](yp) for

all p € D.

(2) For 6 € (0,1), the scalar function G(s) = s~? is an instance of the above example. Let us now
consider the case wherein 6 = 1, that is, G(s) = 1/s. It is clear that condition (4.5) is not satisfied. The
existence of a distribution I' € 8’ such that [G,] — ' in 8 as = | 0 follows from Theorem 4.1. Whilst the
pointwise boundary limit Go(y) = 1/(iy) exists for every y # 0, it is not in L{ (R, C), and hence does

loc
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not induce a regular distribution, showing that the conclusions of Lemma 4.2 do not hold. Finally, using
calculations similar to those in [18, p. 19/20], it is not difficult to show that I = pv Gg + 78, where

(pv Go)(p) := laifg ( _: Go(y)p(y)dy + /:O Go(y)w(y)dy) Vo eSs,

the principal-value distribution induced by Gg. O

For T € D'(B(U)) and w,v € U, it is convenient to define a scalar-valued distribution 7% € D’
by T%"(p) = (T(p)u,v) for all ¢ € D. We note that if F' € L%VJOC(]R,B(U)), then [F]“" = [f],
where f(t) := (F(t)u,v) for all t € R.

Proof of Lemma 4.2. Trivially, G, is weakly measurable for every x > 0, and thus Gy is also weakly
measurable. Moreover, we have that |G,| € Li_(R) for every x > 0, and so, for arbitrary a > 0,
the restriction of |G| to [—a,a] is in L!'(—a,a). By hypothesis, G.(y) converges to Go(y) in the
strong operator topology for almost every y € R as x | 0, that is, there exists a null set N C R such
that lim, 0 G, (y)u = Go(y)u forallu € U and ally € R\N. Let y € R\N and ¢ > 0. There exists u € U

such that ||u]| =1 and ||Go(v)|| < ||Go(y)u|| + €. Hence,
1GoW)Il < lim inf || Go (y)ul| + & < Tim inf ||Ga (y)[| +&.

This holds for every y € R\NN and € > 0, and thus, we obtain that, for every a > 0,

[Go(y)]l < 1irgLiOnflle(y)|| < galy) forae. y e [—a,al.

Consequently, G € L | (R, B(U)), and therefore, G¢ induces a regular distribution [Gg] € D’(B(U)).

w,loc
Let ¢ € D, let a > 0 be such that suppp C [—a,a] and let u,v € U. It is clear that the function y
(G (y)u,v)p(y) is in LY(R) for every x > 0 and (G, (y)u, v)o(y) = (Go(y)u, v)¢(y) for almost every y €
R as x | 0. Furthermore, there exists g, € L*(—a, a) such that (4.5) holds, and so

(Ga(y)u, )W) < Ga(W)lp(y)] Y (2,y) € (0,20) X R,

where Gq(y) = |lulll|v|lga(y) for y € [—a,a] and g,(y) := 0 for |y| > a. Trivially, the function g.|¢]
is in L'(R), and an application of Lebesgue’s dominated convergence theorem shows that (G u,v)p —
(Gou,v)p in L'(R) as z | 0, and so,

G0 = [ ewCalu o)y > [ ew)(Galwuv)dy = [Gal""(p) as L0,
On the other hand, [Gz]""(p) — I'*?(p) as x | 0, and thus, ([Go](¢)u,v) = (I'(p)u, v). This holds for
all u,v € U, showing that [Go](¢) = I'(¢). The claim now follows as ¢ € D was arbitrary. O

Corollary 4.4. Assume that U is separable and let G : Co — B(U) be holomorphic and polynomially
bounded on Cy. Then the limit Go(y) := lim, 0 G, (y) exists in the strong operator topology for almost
every y € R, G is weakly measurable, Go is polynomially bounded, [Go] € 8'(B(U)) and [G.] — [Go)
in 8'(B(U)) as x| 0.

Proof. The function G is polynomially bounded on Cy, and so, there exist M > 0 and m € Ny such that
IG(s)|| < M1+ s < M(1+1s)™ Vs e C,. (4.6)

The function H(s) := (1 + s) 7™ G(s) is in H*°(B(U)) and it follows from Theorem 2.3 that there exists
a boundary function Hy € L (R, B(U)) such that H(x + iy) converges to Ho(y) in the strong operator
topology for almost every y € R as « | 0. Consequently, G, (y) — (1+1iy)™Ho(y) =: Go(y) in the strong
operator topology for almost every y € R as « | 0. The weak measurability of Gg follows from that of Hy,
and, furthermore, Gg is polynomially bounded as Hy € L (R, B(U)). Consequently, [Go] € 8'(B(U)).

It remains to show that [G,] — [Go] in 8'(B(U)) as = | 0. To this end, we note that (4.2) holds
with k& = 0 as follows from (4.6). Moreover, for arbitrary zo > 0, G is bounded on the bounded
strip {z + iy : € (0,x0), ly| < a} for every a > 0, and so (4.5) is satisfied. Invoking Theorem 4.1
and Lemma 4.2, we see that there exists I' € 8'(B(U)) such that [G;] — I in 8'(B(U)) as = | 0
and I'(¢) = [Go](p) for all ¢ € D. But D is dense in 8 and so I'(¢) = [Gy](p) for all ¢ € 8. Consequently,
[Go] =T and [G;] — [Go] in §'(B(U)) as = |} 0. O

The following theorem shows that if a holomorphic function G : Cy — B(U) satisfies condition (4.2) and
the boundary distribution of G is in LS (R, B(U)), then G is bounded on C.
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Theorem 4.5. Let G : Co — B(U) be holomorphic. Assume that there exist M > 0 and m,k € Ny such
that (4.2) holds and the boundary distribution I' € 8'(B(U)) of G (which exists by Theorem 4.1) is such
that T' = [F), where F' € L (R, B(U)). Then the following statements hold.

(1) G eXH*(BU)) and [|Gllsc= < [[FllLe-

(2) Under the additional assumption that U is separable, G (y) — F(y) in the strong operator topology
for almost every y € R as x| 0, and ||G||sc~ = || F[| Lo

Proof. (1) Let u,v € U. It is clear that the scalar holomorphic function G*¥ defined by G*?(s) :=
(G(s)u,v) satisfies (4.2) (with M replaced by ||ul|/||v]|M) and G** has T*? € § as its boundary distri-
bution, that is,

[GEY] = TV = [F]** =[F*"] in8 asxzl0, (4.7

where G¥V(y) = (Gg(y)u,v) for all y € R and F*? is the scalar-valued function in L*°(R) given
by F*“"(y) := (F(y)u,v) for all y € R. An application of [8, Theorem 6.5.1 and commentary below (6.60)]
or [10, Theorem 5.2] shows that G** € H>°. Consequently, G** has a boundary function g, ., € L>(R)
such that G (y) — gu.»(y) almost everywhere as z | 0 and

1G* l3cee = | gu,oll Lo (4.8)

Moreover, by [19, Theorem 3.1 (Chapter I) and Corollary 3.2 (Chapter II)], G converges to gy, in the
weak*-topology as z | 0, and so, a fortiori, [G%"] — [gu,»] in 8" as z | 0. Invoking (4.7), we obtain that
there exists a null set N, , C R depending on u and v such that

FU%Y) = guw(y) Yy € R\Nuy, (4.9)
which, together with (4.8), gives
(G(s)u, v)| <G™lacee = [[F*" Lo < [|Fllzgellulllloll Vu,v €U, Vs € Co.
Now supj, =1 [{G(s)u, v)| = [|G(s)ul| for all s € Co and u € U, and thus,
1G(s)ull < [[Fllrgllull VueU, Vs e Co,

showing that [|Gllsc~ < [Flze and G € H=(B(U)).

(2) Now assume that U is separable. By statement (1), G € H>(B(U)), and consequently, it follows
from Theorem 2.3 that there exists a boundary function Gg € L2 (R, B(U)) such that G, (y) converges
to Go(y) in the strong operator topology for almost every y € R as x | 0 and [|G||3= = |[|Gollre. It
remains to show that

F(y) = Go(y) fora.e yeR. (4.10)

Let the function g, , and the set N, , be defined as in the proof of statement (1). We note that there
exist null sets N, , C R, depending on u and v, such that

<G0(y)uav> = gu,v(y) Vy S R\Nu,v- (411)

Let V C U be a countable dense subset and let N be the union of all sets N, , and Nu,v with u,v € V.
Then, as a countable union of null sets, N is a null set and it follows from (4.9) and (4.11) that

(F(y)u,v) = (Go(y)u,v) Yu,v €V, VyeR\N.
As V is dense in U, we conclude that
(F(y)u,v) = (Go(y)u,v) Yu,veU Vy e R\N,

which in turn implies that (4.10) holds. |

The next result is of particular importance for our purposes.

Proposition 4.6. Let G : Co — B(U) be holomorphic and assume that there exist

(i) M >0 and m,k € Ny such that (4.2) is satisfied;
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(ii) zo > 0 such that, for every a > 0, (4.5) holds for some g, € L'(—a,a).

For 6 € R, let rg and pg be as in (3.4). If the limit Go(y) = limg 0 G4 (y) exists in the strong operator
topology for almost every y € R and pgGo € LL (R, B(V)), then rgG € H*(B(U)) and |roGllgc= <
lpoGoll Lo, with equality holding when U is separable.

Note that if U is separable and G is of so-called bounded type (that is, G is in the Nevanlinna class) [31,
Section 4.2], or equivalently, G is of the form G = N/d, where N € H>(B(U)) and d is a scalar-
valued F>°-function such that d(s) # 0 for all s € Cy, then lim, o G,(y) exists in the strong operator
topology for almost every y € R, see [31, Sections 4.3 and 4.6].

Proof of Proposition 4.6. By Theorem 4.1, there exists I' € 8/(B(U)) such that [G,] | T in 8'(B(U))
as = | 0. Assuming that the limit Go(y) = lim, o G,(y) exists in the strong operator topology for
almost every y € R, Lemma 4.2 guarantees that T'(¢) = [Gg](¢) for all ¢ € D. By hypothesis pgGg €
LE (R, B(U)), hence [Gy] € 8'(B(U)), and therefore, I'(p) = [Go](p) for all ¢ € 8. Setting H := ryG,
we have that

[H(s)|| < M(1+|s])"(1+ (Res)™¥) Vs e Cy,

where n is the smallest non-negative integer such that n > m — min{0, 6}, showing that H satisfies the
growth condition (4.2). It is clear that H(z + iy) — ps(y)Go(y) in the strong operator topology for
almost every y € R as = | 0, and pgI’ = pg[Go] = [peGo] € 8'(B(U)) is the boundary distribution
of H. As pgGo € L (R, B(U)), an application of Theorem 4.5 to H shows that rgG = H € H>*(B(U))
and [[rgG||3cc = [|H||3¢ < [|poGollLse, with equality holding under the additional assumption of separ-
ability of U. |

The following corollary is an immediate consequence of Corollary 4.4 and Proposition 4.6.

Corollary 4.7. Assume that U is separable. For § € R, let rg and pp be as in (3.4). Let G : Co — B(U)
be holomorphic and polynomially bounded on Cy. Under these conditions, the limit Go(y) = limg 0 Gz (y)

exists in the strong operator topology for almost every y € R, Gg is weakly measurable, and, furthermore,
if poGo € Ly (R, B(U)), then rgG € H>*(B(U)) and ||rgGllsc~ = |[poGol| Lo -

5 Sobolev stability

In this section, we develop a new input-output stability framework for a large class of causal translation-
invariant linear operators defined on spaces of vector-valued distributions. Using Theorem 3.1, the results
of Section 4 and well-known theorems on the representation of translation-invariant operators by con-
volution kernels (impulse responses), we provide characterizations of boundedness properties of such
operators (as maps from H(R,U) to H?(R,U)) in terms of the Laplace transforms of their kernels
(transfer functions). Throughout this section, let U be a complex Hilbert space.

Before addressing the main topic of this section, it is convenient to state and prove the following lemma.

Lemma 5.1. Let a« € R and up € H*(R,U), k € N. Ifup, — u in H*(R,U) as k — oo, then up — u
in 8 (U) as k — oo.

Proof. Let (ux)ren be a convergent sequence in H*(R,U) with limit w. If o > 0, then up — u
in L?(R,U), and so, ux — u in 8'(U) as k — oo. Let us now assume that o < 0. By Proposition 3.3,
R_oup — R_,u in L3(R,U) as k — oco. Consequently, R_,ur — R_,u in 8'(U) as k — oo. Invoking
Proposition 3.3 once more, we have that R:iY = R, is a sequentially continuous operator from &'(U) into
itself, and thus, uy — u in 8'(U) as k — oc. O

Recall that D}(X) denotes the subspace of all distributions in D’(X’) with support bounded on the left,
where X = U or B(U). If K € D}(B(U)), then the convolution product K *u is a well-defined distribution
in Dy(U) for all u € D)(U), see Appendix 1. It is useful to recall the close relationship between causal
translation-invariant operators on D’(U) and convolution operators with kernels in D’(B(U)) supported
on [0,00). In the following, when considering linear operators G : dom G C D'(U) — D’ (U), it is always
understood that dom G is endowed with the relative topology induced by D’(U).

Proposition 5.2. Let G : dom G C D'(U) — D'(U) be a linear operator such that CX(R,U) C domG.
The following statements hold.
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(1) If G continuous, causal and translation invariant, then there exists a unique K € D'(B(U)) such
that supp K C [0,00) and Gu = K *u for all uw € Dy(U) NdomG.

(2) If there exists K € D'(B(U)) such that supp K C [0,00) and Gu = K xu for all uw € C°(R,U),
then G is continuous, causal and translation invariant.

(3) Let a,B € R. Ifdom G = H¥(R,U), G € B(H*(R,U), H?(R,U)), and G is causal and translation
invariant, then there exists K € D'(B(U)) such that supp K C [0,00) and Gu = K *u for all u €
HY(R,U).

Proof. (1) Denote the restriction of G to C°(R,U) by G.. As G is assumed to be continuous, it is
clear that G, is continuous as an operator from C*°(R,U) to D’(U). Consequently, it follows from [43,
Theorems 3.5-1 and 5.10-1] that there exists a unique K € D'(B(U)) such that

Gu=Gu=Kx*u YueCrR,U). (5.1)

The identity Gu = K * u extends to all u € D(U) Ndom G by the denseness of C°(R,U) in D'(U), the
continuity assumption on G, and the continuity properties of the convolution product (see Appendix 1).
Invoking [43, Theorem 5.11-1], the causality of G, and (5.1), we conclude that supp K C [0, 00).

(2) This statement is a consequence of results in [43, Chapter 5].

(3) As G € B(H*(R,U),HP(R,U)), the restriction G. of G to C>(R,U) is a continuous operator
from C®(R,U) to H?(R,U). Consequently, appealing to Lemma 5.1, G, is continuous as an operator
from C°(R,U) to D'(U). The claim now follows by arguments identical to those used in the proof of
statement (1). O
The distribution K appearing in Proposition 5.2 is called the kernel or impulse response of the operator G.
If o(K) < oo (finite abscissa of convergence), then G(s) := (LK)(s) exists for all s € C,(x) and the
function G, a B(U)-valued holomorphic function defined on C, (x, is referred to as the transfer function
of G. If u € D)(U) is such that o(u) < oo, then K u is Laplace transformable and

(LGu)(s) = G(s)(Lu)(s) VseC,, (5.2)

where p1 := max (¢(K),o(u)), sece Appendix 1. Observe that G is the unique function which satisfies (5.2).
Therefore, in control theoretic applications, where Gu is the output generated by the input u, the transfer
function G is often determined by computing the (necessarily unique) function which satisfies (5.2) (such
as by computing the quotient (£(Gu))(s)/(Lu)(s) when these quantities are scalar valued).

Definition 5.3. Let a, § € R. A linear operator G : dom G C D'(U) — D’(U) is said to be Sobolev (e, §)-
stable if C*(R,U) C dom G, G(CX(R,U)) C H?(R,U), and there exists v > 0 such that

|Gullge < Alullge Vue CE(R,U). (5.3)
The next theorem, the main result of this section, provides several characterizations of Sobolev («, 3)-
stability in terms of transfer functions.

Theorem 5.4. Let G : domG C D'(U) — D'(U) be a causal translation-invariant continuous linear
operator such that C°(R,U) C dom G, and let K € D'(B(U)) be the kernel of G. For arbitrary o, 8 € R,
the following statements are equivalent.

(1) G is Sobolev (a, B)-stable.

(2) There exists a unique causal and translation-invariant operator G¢ € B(H*(R,U), H?(R,U)) such
that Gu = Gu for allu € H*(R,U) NdomG.

(3) K is Laplace transformable, c(K) < 0 and the transfer function G of G satisfies

sup ||(1 4+ 8)P~*G(s)|| < oo. (5.4)
s€Co

(4) K is Laplace transformable and there exist p > max(0,0(K)) and a holomorphic function G°© :
Co = B(U) such that G® and the transfer function G of G coincide on C,, and

sup ||(1+ s)ﬁ*aGe(s)H < 00. (5.5)
O0<Res<p
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(5) K is Laplace transformable and there exists a holomorphic function G°:Cy — B(U) such that G°
and the transfer function G of G coincide on C,, where v := max(0,0(K)), and

sup [|(1+ s)P~2G®(s)|| < . (5.6)
s€Cop

Note that if, in statements (4) and (5), o(K) > 0, then G*® is a holomorphic extension of G.

Before we prove Theorem 5.4, we state two immediate consequences in the form of a corollary.

Corollary 5.5. Let G : domG C D'(U) — D'(U) be a causal translation-invariant continuous linear
operator such that CX(R,U) C dom G, and let o, 5 € R.

(1) If G is Sobolev (v, B)-stable, then G(H*(R,U) NdomG) C HA(R,U) and ||Gullgs < ~||u| e for
allw e H*(R,U) Ndom G, where v > 0 is the constant appearing in (5.3).

(2) If G is Sobolev (v, B)-stable, then G is Sobolev (a + 8, 8 + 0)-stable for all 6 € R.

Proof of Theorem 5.4. (1) = (2). Assume that statement (1) holds. As C°(R,U) is dense in H*(R, U)
(by Lemma 2.1), it follows from (5.3) that there exists a unique operator G¢ € B(H*(R,U), H?(R,U))
such that G°u = Gu for all u € C°(R,U). We proceed to show that G and G coincide on H*(R,U) N
dom G. To this end, let u € H*(R,U)Ndom G. Lemma 2.1 guarantees the existence of a sequence (ug)xen
in C°(R,U) such that uj, — u in H*(R,U) as k — oo. Since G¢ € B(H*(R,U), H?(R,U)), we have
that Guy, — G°u in H?(R,U) as k — oo. Invoking Lemma 5.1, we conclude that

ug —u in §'(U) and Gup — G°u in 8'(U) as k — oo. (5.7)
As G°uy, = Guy, for all k € N, the second convergence gives
Gup — G°u in 8'(U) as k — oo. (5.8)

The first convergence in (5.7) implies that ux — uw in D'(U) as k — oo, whence Gui — Gu in D'(U)
as k — oo as G is continuous. Appealing to (5.8) shows that Gu = G°u in D'(U). In particular, the
distribution Gu extends continuously to S, and hence is tempered and coincides with G°u. As u €
H*(R,U)Ndom G was arbitrary, it follows that G and G® coincide on H*(R,U)Ndom G. It is a routine
exercise to show that G° inherits the properties of translation-invariance and causality from G.

(2) = (3). Invoking Theorem 3.1, we conclude that there exists a holomorphic function G° : Cy — B(U)
such that
sup [[(1+5)77G*(s)]| < 0, (5.9)
s€Co
and G®u = (L_l o Mgg o L(u) for all w € H}(R,U). By [43, Theorem 6.5-1] there exists a Laplace
transformable K¢ € D'(B(U)) with supp K¢ C [0,00), o(K°) < 0 and (LK®)(s) = G°(s) for all s € C.
Invoking the convolution theorem (exchange formula) for the Laplace transform (see Appendix 1), we
obtain
Gu= (L oMgeoL)u= (L oMggeoL)u=K*u YuécC R,U).

Therefore,
Kxu=Gu=Gu=K°~u YueCrR,U). (5.10)

To establish that statement (3) holds, it is sufficient to prove that K = K¢ Indeed, in this case it
follows from (5.9) that inequality (5.4) is satisfied. To show that K = K¢, let ¢ € D and v € U, and

set ¢ := ¢ € D, where the superscript “ 7 denotes reflection, that is, @(t) := ¢(—t) for all ¢t € R.
Then K 1 € C*(R,B(U)), K x (¢ ® v) € C*(R,U) and

K(p)v = K()v = (K x)(0)v = (K * (¢ @ v))(0).

Similarly, K¢(p)v = (K°* (¢ ® v))(0). Together with an application of (5.10) with u = ¢ ® v this shows
that K(¢)v = K°(¢)v. This holds for all ¢ € D and all v € U, and thus K = K°.
(3) = (4). This implication is trivially true.

(4)=(5). Since K is Laplace transformable, supp K C [0,00) (by Proposition 5.2) and p > o(K), it
follows that the function G is polynomially bounded on C, (see, for example, [43, Theorem 6.5-1]).
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Now G°|¢, = Glc,, and so, it follows from (5.5) that G is polynomially bounded on Cy. An application
of Corollary 4.7 to G° shows that (5.6) is satisfied.

(5) = (1). Assume that statement (5) holds, that is, there exists a holomorphic function G° : Cy — B(U)
of G such that G¢(s) = G(s) for all s € C, and (5.6) is satisfied. To show that G is Sobolev («, 3)-
stable, we note that, by Theorem 3.1, there exists a translation-invariant and causal operator G° €
B(H*(R,U), H?(R,U)) such that

Gou= (L7 oMgeoL(u) Vue HR,U).
Consequently,
(L(Gu))(s) = G(s)(Lu)(s) = G(s)(Lu)(s) = (L(G°u))(s) YVue CF(R,U), VseCy,

showing that Gu = G°u for all u € C°(R,U), and thereby completing the proof. O

The following corollary shows that, under suitable assumptions, Sobolev («, )-stability follows if the
transfer function satisfies a natural boundedness condition on the imaginary axis.

Corollary 5.6. Let G : domG C D'(U) — D'(U) be a causal translation-invariant continuous linear
operator such that C°(R,U) C dom G and let K € D'(B(U)) be the kernel of G. Assume that K is
Laplace transformable and there exists a holomorphic function G©:Co — B(U) such that G¢(s) = G(s)
for all s € C,, where G is the transfer function of G and v := max (O,U(K)). Then, for o, € R, the
following statements hold.

(1) Under the assumption that the following three conditions are satisfied:

(i) there exist M >0, m,k € Ny and p > v such that
IGE(s)| < M(1+|s|™)(1+ (Res) ™) for all s € C such that 0 < Res < p,
(ii) there exist xo > 0 such that, for every a > 0, there exists g, € L'(—a,a) satisfying
1G®(z + i)l < galy) V(z,y) € (0,20) X [~a,a],

(iii) the limit G§(y) = limg 0 GE(y) exists in the strong operator topology for almost every y € R,

the operator G is Sobolev («, 3)-stable, provided that

esssup, epl|(1 +iy)" *Gg(y)|| < oc. (5.11)

(2) Assume that U is separable and G® is polynomially bounded on the strip 0 < Re s < p for some u >
v. Under these conditions, the limit G§(y) = limg 0 GS(y) exists in the strong operator topology
for almost every y € R, and, if (5.11) holds, then G is Sobolev («, B)-stable.

Proof. (1) By Proposition 5.2, supp K C [0, 00), and so, the function G = LK is polynomially bounded
on C,, as follows from [43, Theorem 6.5-1]. Thus, by condition (i), there exist N > M and an integer n > m
such that

IGe(s)| < N(1+|s|")(1+ (Res)™*) Vs e Co.

Hence, G° satisfies the hypotheses of Proposition 4.6 (with § = a — ). Consequently, if esssup,cgl|(1 +
iy)?~*G§(y)| < oo, then Proposition 4.6 guarantees that sup, ¢, [|(1+s)?~*G®(s)|| < co. Sobolev (a, 3)-
stability of G now follows from Theorem 5.4.

(2) Assume that U is separable and the function G® is polynomially bounded on the strip 0 < Res <
for some p > v. As in the proof of statement (1), we have that G is polynomially bounded on C,, and
thus, G*® is polynomially bounded on Cy. It follows that conditions (i) and (ii) of statement (1) hold.
Moreover, there exists k € Ny such that H(s) := (1 + s)"*G*®(s) is bounded on Cy and therefore, as U is
assumed to be separable, the limit Ho(y) = lim, o H(z + iy) exists in the strong operator topology for
almost every y € R, implying that condition (iii) of statement (1) is also satisfied. As a consequence, the
claim now follows from statement (1). O
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Next, we make contact with the theory of well-posed linear state-space systems, see, for example, the
monograph [36]. Each of these systems has a translation-invariant and causal input-output operator
G € B(L2(R,U)) for some p € R, where the Hilbert space L2 (R,U) is defined by

Li(R, U):={uec L} (RU):e" uec L*R,U)} and (u,v)r2 = (™" u, ™" V) 2.
Conversely, for every translation-invariant and causal operator G belonging to B(L? (R, U)) for some p €
R, there exists a well-posed state-space system which has G as its input-output operator. If G €
B(L2(R,U)) is translation invariant and causal, then, invoking Proposition 5.2, there exists a ker-
nel K € D'(B(U)) such that supp K C [0,00) and Gu = K  u for all u € L?, ,(R,U), where L? ,(R,U)
denotes the subspace of Li (R, U) all functions with support bounded on the left. Furthermore, the causal
translation-invariant operator G,, € B(L?*(R,U)) given by

Guu=e " G(e' u) Vue L*(R,U)

has kernel K, := e #* K € D'(B(U)), and an application of Theorem 5.4 to G, with & = = 0 shows
that o(K,) <0 and sup,ee, [|(£K,)(s)|| < oo. Consequently, o(K) < p and the transfer function G =
LK of G satisfies that sup,cc, [|G(s)|| < oo, that is, G € H7(B(U)).

The above discussion shows that Theorem 5.4 is applicable to the input-output operators of well-posed
linear systems. The following corollary is an immediate consequence of Theorem 5.4 and Corollary 5.6.

Corollary 5.7. Let i >0, o, f € R and let G € B(L2(R,U)) be causal and translation-invariant with
transfer function G € 32 (B(U)). The following statements hold.

(1) The operator G is Sobolev («, 8)-stable if, and only if, there exists a holomorphic extension G° :
Co — B(U) of G such that supy ges<,, [|(1+ 5)f=2Ge(s)]| < oo.

(2) Assume that there exists a holomorphic extension G°® : Co — B(U) of G satisfying the condi-
tions (1)-(ili) of statement (1) of Corollary 5.6. If esssup,cgl/(1 + iy)P~2G§(y)|| < oo, then G is
Sobolev («, 5)-stable.

(3) Assume that U is separable and there exists a holomorphic extension G¢ : Cy — B(U) of G such
that G¢ is polynomially bounded on the strip 0 < Res < p. If esssup,cgl|(1+ i) G§(y)| < oo,
then G is Sobolev («, f3)-stable.

Statements (1) and (2) can be understood as a substantial generalization of [30, Theorem 6]. To explain
this, we recall the concept of P-stability [23, 30]: a holomorphic function H : Q — B(U), where 2 C C
is open and such that Cy C €, is said to be P-stable of order o > 0 if the following two conditions are
satisfied:

(i) supyec, [IH(s)| < oo for all pu > 0;
(ii) there exists M > 0 such that [|[H(iy)|| < M (1 + |y|) for all y € R.
Let p € R and let G € B(LZ(R,U)) be causal and translation-invariant. The growth bound w(G) of G is

defined by
w(G):=inf{lv <p:Ge 3(L,2/)Z(R, U))}.

We note that the definition is meaningful because L7 ,(R,U) C L ,(R,U) C L3 (R,U) for all v < p.
Furthermore, we say that G is regular if its transfer function G has the property that G(z) converges
in B(U) with respect to the strong operator topology as x — oo, where = € (0, 00).

Whilst [30, Theorem 6] is formulated in a state-space setting with time-domain [0, 00), an inspection
of the proofs of [30, Theorem 6 and Lemma 7] shows that [30, Theorem 6] can be rephrased in our
double-time axis input-output framework as follows.

Proposition 5.8. Let 1 > 0 and let G € B(L2(R,U)) be causal, translation-invariant and regular
with transfer function G € H°(B(U)). Assume that G has a holomorphic extension G° : Q — B(U),

where Q C C is open and such that Cy C Q. For o > 0, the following statements hold.

It has been pointed out in [20] that [30, Theorem 6] is not correct as stated, but can be rectified by replacing the
interpolation space W2 (0, co; U) used in [30] by HE(R,U).
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(1) If G¢ is P-stable of order a and there exist M > 0 and k € Ny such that
|G®(s)|| < M(Res)™® for all s € C such that 0 < Res < 1,

then G is Sobolev (., 0)-stable.
(2) If w(G) =0 and G is Sobolev (a, 0)-stable, then G® is P-stable of order .

Proof. The hypotheses of statement (1) imply that G® satisfies the conditions (i)-(iii) of statement (1) of
Corollary 5.6, and thus, statement (1) is a special case of of statement (2) of Corollary 5.7. Statement (2)
is an immediate consequence of Theorem 5.4. |

As for statement (2), it is clear that, in the absence of the condition w(G) = 0, Sobolev stability does
not necessarily imply P-stability (see Examples 6.1, 6.2 and 6.4 below).

We close this section, by linking Sobolev stability to certain results on polynomial decay of strongly
continuous semigroups [1, 6, 30].

Proposition 5.9. Let T(t) be a strongly continuous semigroup on U, denote its generator by A, and
let o > 0. Assume that sup,~q [|T(t)|| < oo and the intersection of the spectrum of A with iR is empty.
The following statements are equivalent.

1) sup;>q [t/ T () A < oo.

(1)
(2) sup,eg I(1 + iy) " (iyl — A)~H|] < 0.
(3)
(4)

3) sup,ec, [[(1+ )7 (s — A)7H| < 0.

4) The convolution operator L3(R,U) — L3

loc

R,U), ur [ T(-—71)u(r)dr is Sobolev (a,0)-stable.

Proof. The equivalence (1) < (2) follows from [6, Theorem 2.4]. The implication (3) = (2) holds trivially,
whilst the implication (2) = (3) follows from the fact that, by the Hille-Yosida theorem, there exists M > 0
such that

|(sT — A)7| < M(Res)™! VseCq

combined with an application of Proposition 4.6 with G(s) = (sI — A)~!. Finally, the transfer function
of the convolution operator in statement (4) is (sI — A)~!, and thus, the equivalence (3) < (4) is a
consequence of Theorem 5.4. (]

6 Examples

To illustrate the results in the previous sections, we discuss five examples.

Example 6.1. (Rational functions) Let U be a complex Hilbert space. Following [31], a B(U)-valued
function G is called rational if it is meromorphic on C U {oc}. The Laurent expansion of G at oo is of
the form

G(s)=Y» Gjs/, G eBU), deZ, Ga#0 (6.1)
j=d

and converges in a neighbourhood of co. The integer d is said to be the relative degree of G. It is not
difficult to see that G is rational if, and only if, G = P/q, where P is a B(U)-valued polynomial and q is
a scalar-valued polynomial. For the relative degree d of G we have that d = deg q — deg P. Furthermore,
a B(U)-valued function G is rational if, and only if, it is the Laplace transform of a distribution K = ®+A,
where ® and A are of the form
D thieMtEy, >0 mo
D(t) =14 = , A=Y 6YD;, F;,D;eBU), n,ml; €Ny, ) €C.
j=0

0, t<0

Let G be a B(U)-valued rational function with relative degree d, set K := £L7'G, let € R be such
that G is holomorphic on C, and let G, be the convolution operator with kernel e™# K. Note that
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the transfer function G, of G, is given by G, (s) = G(s + ). It follows from Theorem 5.4 that G, is
Sobolev (0, 5)-stable for every g < d. Moreover, the relative degree of G can be characterized in terms
of Sobolev stability of G, as follows:

d=max{8 € R: G, is Sobolev (0, 5)-stable}. (6.2)

The above identity is an immediate consequence of Theorem 5.4 and the fact that the relative degrees of
the functions G and G, coincide.

The concept of relative degree and the identity (6.2) extend to B(U)-valued functions which are mero-
morphic at oo, that is, functions G which can be represented by a Laurent series of the form (6.1)
on some neighbourhood of co. The resolvents of bounded linear operators provide a class of examples
of B(U)-valued functions which are meromorphic at co.

We close this example by remarking that the notion of relative degree plays an important role in classical
and adaptive control of finite-dimensional systems. Whilst attempts (see, for example, [12]) have been
made to extend it to systems with irrational transfer functions, a fully adequate generalization is still
missing. We feel that the concept of Sobolev stability (or some localised version of it) might be a suitable
tool to facilitate such a generalization, and we are planning to pursue this in future research. O

Example 6.2. (Series connection of a rational transfer function and a delay line) Let G be a B(U)-
valued rational function, where U is a complex Hilbert space, assume that G is holomorphic on Cy, and
let G be the convolution operator on D) (U) with kernel £L~'G. Define the operator H by Hu := §, x(Gu)
for all u € D'(U), where ¢, is the Dirac distribution supported at 7 > 0. Then the transfer function H
of H is given by H(s) = e "*G(s). It follows from Theorem 5.4 and Example 6.1 that

max{0 € R : H is Sobolev (0, 3)-stable} = relative degree of G.

This is not surprising since convolution with ¢, leaves any regularity properties unchanged. %

Example 6.3. (A neutral functional differential equation) Consider the controlled and observed neutral
functional differential equation

w(t) —w(t —r) = —aw(t) +u(t), =z(t)=w(t), (6.3)

where a,7 > 0 are positive parameters, u is the control function or input and z is the observation or
output. We assume that « has support bounded on the left. Taking Laplace transforms (under zero
initial conditions) of (6.3) and computing (£z)(s)/(Lu)(s) shows that the transfer function of (6.3) is
given by

1
s(l—e ") +a’

see equation (5.2) and the subsequent commentary. It follows from [24] that the function G has the
following properties:

G(s) =

i) sup,ec, |G(s)| < oo for every pu > 0;

ii) there exists an open set Q containing Cy such that G is holomorphic on €;

iv) G is not bounded on Cy, that is, G & H>;
v) G(s)/(1+ s) is bounded on Cj.

In particular, it follows that the causal and translation-invariant input-output operator G of (6.3) (that
is, the map u — z under zero initial conditions) maps Li (R) boundedly into itself for every p > 0. An
application of Theorem 5.4 guarantees that G is Sobolev (1, 0)-stable. O

(i
(
(iii) there exist poles s; (j € N) of G such that Res; < 0, Res; — 0 and |s;| — 0o as j — o0;
(
(

Example 6.4. (A I-dimensional heat equation) Consider the following heat equation on the unit interval
with Dirichlet control and Neumann observation at the right end point:

ow 9w ow
E(f,t) ez (&,1), % 0,6) =0, w(l,t) =wu(t), &e(0,1),
Do (6.4)
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As in Example 6.3, u is the input and z is output, both of which take values in U = C. We assume that u
has support bounded on the left. Calculating (£z)(s)/(Lu)(s) (under zero initial conditions) is routine
and shows that the transfer function G is given by

G(s) = /stanh(v/s) Vs e Cop,

see equation (5.2) and the subsequent commentary. The function G is not bounded on any right-half
complex plane (and thus is not the transfer function of a well-posed state-space system [36]), but evidently
satisfies
sup (1 + s)_%G(s)’ < 0. (6.5)
s€Co
Therefore, the input-output operator G' of (6.4) (that is, the convolution operator with kernel L71G)
is (1/2,0)-Sobolev stable by Theorem 5.4. Corollary 5.5 yields that G is (1/2 4 6, 8)-Sobolev stable for
all 0 € R. O

Example 6.5. (A 2-dimensional heat equation) Consider the following controlled and observed heat
equation on the unit square © := (0,1) x (0,1):

0 0? 0?

871:(51,52715) = ng(&,&,t) + 6752;(51,52715),

’L;El(])ag%t) = Ov w(g;f%t) = 07 (51752) c Q, (66)
87&(517071;):0’ 67&(51’17t):u(£17t)7

g(flut) = w(gh Kﬂt) 9

where k£ € [0,1) is a parameter which specifies the £>-position at which the observation is taken. We
choose as input and output space U = L?(0, 1), and the U-valued input and output functions u and z
are given by u(t) := a(-,t) and z(¢) := 2(-,t). The control function u acts via a Neumann boundary
condition along the top edge of the square, and is assumed to have support bounded to the left. For
each ¢ > 0, the output z(¢) corresponds to the observation of the profile w( -, ,t). As may be shown by
arguments analogous to those used in [7], the mapping L?(R,U) — L2(R,U) , u ~— 2 determined by (6.6)
under zero initial conditions is well-defined and continuous. The present example is based on [20, Section
4, Example (7)], which in turn is inspired by [21, Example 7.14], and we refer the reader to [7] for more
details of controlled and observed heat equations on bounded domains in R™.

The transfer function G is given by
G(s)v = \/52 B (s;6)Cn(v)sin(nm-) Yo € L?(0,1),
n=1
where (,, are the Fourier sine coefficients of v, namely,

Cn(v) = V2(v,sin(nn Nz = \/5/0 v(n)sin(nmn)dn VneN,

and

cosh(kv's + n?n?)
Vs +n?x? sinh(v's + n?n?)
The function G belongs to H*°(B(U)) and so, by Theorem 3.1, the input-output operator of (6.6) extends
to a causal translation-invariant operator G € B(L%(R,U)).

We claim that s + (1 + 5)?G(s) is bounded on Cq for all § € R, so that G is (a, 3)-Sobolev stable
for all (o, 3) € R? by Theorem 5.4. Since G is bounded on Cy, the claim for non-positive 6 is trivial,
and so we focus on the case that § > 0. By statement (2) of Corollary 5.6 it suffices to show that y —
(1+1iy)Go(y) = (1 +iy)?G(iy) is bounded on R.

For which purpose, let y € R, set s, = s,,(y) := /iy + n?n2 # 0 for all n € N, and note that

hn(s;k) = VseC_,2, VneN.

sp = (y* + n47r4)%ei arg(sn) and  Res, = (y + n47r4)% cos(arg(sy)) -
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Standard hyperbolic identities give that

cosh(ks,) = cosh(k Re sp,) cos(kIm s,,) + i sinh(k Re s,,) sin(k Im s,,)

and |cosh(ks,)|? = cosh®(k Res,,) — sin(kIms,,) < cosh?(kRes,) .
Similarly,

sinh(sy) = sinh(Re s, ) cos(Im s,,) + i cosh(Re s,) sin(Im s,,)
and [sinh(s,)|> = sinh®(Res,) + sin?(Im s,,) > sinh*(Re s,,) .

Consequently, there exists a constant k& > 0 such that

cosh(ksy,)
sinh(sy,)

cosh(k Re sp,)
sinh(Re s,,)
< kexp ((1/\/5)(,% —1)(y 24 pirt)i ) VyeR, VneN,

<kexp ((k—1)(y* + nirt) cos(arg(sy)))

where we have used that k — 1 < 0 and arg(sy) € (—m/4,7/4). Therefore,
k 1
| (iy; 6)| < ——eXp (1/v2)(k — 1)(y* + n*a")7) VyeR, VneN.

It is straightforward to show that, for each fixed 6 > 0, there exist y* > 0 and y € [0,y*] for every n € N
such that

max| (1 + )" (iys )| = | (1 + i) "B (i )
In particular, there exist constants [, A\ > 0 such that

m>a(>)<|(1 +iy)Ph(iy; k)| < le™" VYn €N.
y
Since

(1 + i)’ G (iy) ||L2(01)<(Z 1+ iy)? h (i 5 )\)||v||L2(0,1) Voue L*0,1), Vy € R,
n=1

the claim is proven. O

7 Remarks on right-shift invariant operators on the half line

In this section, we indicate how the results in Sections 3-5 can be used to obtain corresponding res-
ults for right-shift invariant operators acting on functions defined on the half line. Recall the half-line
space HY(R,U), a € R, defined in Section 2. By Lemma 2.1, H¢(R,U) is the closure of the subspace
{u € C*(R,U) : suppu C (0,00)} with respect to the norm topology of H*(R,U). Throughout this
section, U denotes a complex Hilbert space.

An operator G € B(H$(R,U), HE(R, U)) is said to be right-shift invariant if S;G = GS; for all 7 > 0. It
is straightforward to show that right-shift invariance of G implies causality, in the sense that, for all 7 > 0
and all u € HY(R,U),

suppu C [1,00) =  supp(Gu) C [r,00).

The following lemma shows that a right-shift invariant operator in B(H

T(R,U), f_ R,U)) has a unique
causal and translation-invariant bilateral extension belonging to B(H*(R,U), H?(R,

U)).

Lemma 7.1. Let o, 5 € R.

(1) If G € B(Hj‘,(R,U),Hf(R,U)) is right-shift invariant, then there exists a unique causal and
translation-invariant operator G* € B(H*(R,U), H?(R,U)) such that

G'lugu) =G and |G®so .m0 = Glly e n2)
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(2) If G is a causal and translation-invariant operator in B(H*(R,U), H?(R,U)), then the restric-
tion G4 = Glpgwv) i a right-shift invariant operator in B(HE (R, U),Hf(R,U)) and, further-

more, HG+H3(H$7H{:) = HG”'B(Ha,Hﬁ)-

The above lemma is a generalization of [38, Theorem 6.2] which addresses the L?-case (o = 3 = 0). The
arguments used in [38] extend to the case of arbitrary a and 3, and therefore, we do not include a proof
of Lemma 7.1.

The following corollary, a right-half line version of Theorem 3.1, provides a characterization of right-shift

invariant bounded operators G : HY(R,U) — H f (R,U). Tt is an immediate consequence of Theorem 3.1
and Lemma 7.1.

Corollary 7.2. Let o, 8 € R.

(1) IfG: HY(R,U) — H_f (R,U) is a bounded linear right-shift invariant operator, then there exists a
unique holomorphic function G : Co — B(U) such that

sup [|(1+ )" G(s)| = IGllpsrg,mp)  and  Gu= (L7 oMo L)(u) Yu e HY(RU).

(2) Conwversely, if G : Co — B(U) is holomorphic and such that sup,cc, [|[(1 + s)?~*G(s)|| < oo,
then G := L™' o Mg o L is a right-shift invariant bounded operator HY(R,U) — Hf(R,U) and
1Cllagire ) = supsce, 1+ £)7-G(s)].

The above corollary is a generalization of a well-known result for the L?-case (« = 8 = 0), see, for
example, [41]. For the special case wherein « = 8 = 1 and U = C, statement (1) can also be found
in [29]. Whilst Corollary 7.2 is essentially identical to [20, Theorem 3.1], we mention that it has been
derived here by somewhat different means.

The half-line space H$(R,U) is a so-called zero-trace space because, for o > 1/2, it can be shown
that if u € HY(R,U), then v (0) = 0 for all j € Ny such that j < o — 1/2 (see, for example, [3,
Chapter VIII, Theorem 1.6.8]). Another half-line version of H*(R,U) (when o > 0) is the space of
restrictions {u[jg,oc) : v € H*(R,U)} equipped with the norm |[ul| := inf{||v|[ze : v[[0,00) = u}. This is a
bigger space than H¢(R,U) and a characterization of right-shift invariant bounded linear operators on
this space is more difficult and is addressed in [20].

Finally, by an argument very similar to that leading to Corollary 7.2, a right-half line version of the Fourier
multiplier result in Corollary 3.7 can derived. Furthermore, Lemma 7.1 and Corollary 7.2 together with
the results in Sections 4 and 5 can be used to develop a theory of Sobolev stability for right-shift invariant
operators defined on half-line spaces.

8 Appendix

The purpose of the appendix is twofold: to present some background material on the convolution of
vector-valued distributions (Appendix 1) and to provide proofs of Lemmas 2.1 and 2.2 (Appendix 2) and
Theorem 4.1 (Appendix 3).

Appendix 1: Remarks on the convolution of vector-valued distributions

Let X be a complex Banach spaces and let Z = X or Z = B(X). The subspace of all distributions
in D'(Z) with support bounded on the left is denoted by D}(Z). As usual, we set D), := D}(C). In the
following, when using the term “convolution product”, we mean a bilinear mapping which is continuous
in each argument. It is well known that there exists a unique convolution product

DY (B(X)) x DY(X) — DYX), (K,u) = K +u (8.1)
satisfying
koT)x(foz)=(kxf)o (Tz) Yk feD), VT € B(X), Vr € X,
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where k x f is the standard convolution product of the scalar-valued distributions k& and f, see [3, p.
432/433], [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 5].

If K and u are Laplace transformable, then the convolution theorem (exchange formula) for Laplace
transforms holds:

(L(K xu))(s) = (LK)(s)(Lu)(s) for all s € C such that Res > max{o(K),o(u)},

see [14, Chapter XVI: Section 2], [16, Chapter 8] or [43, Chapter 6].

If K and u have supports which are bilaterally unbounded, then it is still possible to define a convolution
product of K and u, provided certain assumptions are satisfied. For the current purposes, it is sufficient
to consider the case wherein K is of the form K = k ® I, where k is a scalar-valued distribution. We
set Of = F 1Oy C 8 (distributions of rapid decay) and recall that there exists a well-defined scalar
convolution product

O x8 =8, (k, f)— kxf,

see [35, Théoreme XI (Chapitre VII)] or [40, Definition 30.2]. By [35, Théoréeme XV (Chapitre VII)]
or [40, Theorem 30.4], the convolution theorem (exchange formula) for Fourier transforms holds:

Fkf) = (Fk)(Ff) VkeOp, VfeS. (8.2)

Note that the multiplication on the right-hand side of (8.2) is well defined because Tk € Oy and Ff € §'.
An application of [3, Appendix: Theorem 1.5.3] together with arguments similar to those used in the
proof of [3, Appendix: Theorem 1.9.1] shows that there exists a unique convolution product

Ok x 8'(X) = 8'(X), (ku)— kxu (8.3)

satisfying
kx(foz)=(kxf)or VkeOy Vfe8, Ve X. (8.4)

It is a routine exercise to show that if the supports of k € O and u € 8'(X) are bounded on the left,
then k * u in the sense of (8.3) coincides with (k ® I') x u in the sense of (8.1).

The identity (8.4), together with (8.2), the denseness of 8’ ® X in 8'(X) [3, Appendix: Theorem 1.3.6] and
continuity properties of the Fourier transform and the convolution product (8.3), shows that convolution
theorem for Fourier transforms (8.2) carries over to the vector-valued case, that is,

F(kxu) = (Fk)(Fu) Yk e 0, Yue8(X). (8.5)

Appendix 2: Proofs of Lemmas 2.1 and 2.2

Proof of Lemma 2.1. In the following, let V.= U or V = C. By statements (3) and (4) of Pro-
position 3.3, the restriction of the operator Ry to L?(R,V) is a causal isomorphism from L?*(R,V)
onto HY(R, V) (for every § € R). To avoid awkward notation, we use the same symbol Ry to denote the
scalar- and vector-valued versions of the operator. As usual, the tensor product F(R,C)® U C F(R,U),
where F = L2, F = O% or F = H? is defined as the vector space spanned by all finite linear combinations
> i1 fi ®uy, where f; € F(R,C), u; € U and (f; @ u;)(+) = f;(- )u;.

(1) As Rg(L*(R,V)) = H'(R,V) for V = U,C, L*(R,C) ® U is dense in L?(R,U) and
Ry(L*(R,C) ® U) = Ry(L*(R,C)) © U = H'(R,C) @ U,

it follows that H?(R,C) ® U is dense in HY(R,U). Now C>(R,C) is dense in H?(R,C) (see, for ex-
ample, [37, Lemma 15.10]), implying that C>*(R,C) ® U is dense H?(R,U) ® U, and thus, C>®(R,U) is
dense in HY(R,U).

(2) Invoking the causality of Ry and R, ' = R_y, it follows that Ro(L2(R,V)) = H{(R,V) for V =U,C.
By an argument similar to that used in the proof of statement (1), we obtain that Hf (R, C) ® U is dense
in HY (R,U). Consequently, as HY (R, C) is the closure of the subspace {u € C*°(R,C) : suppu C (0,00)}
with respect to the norm topology of H?(R,U) (see [25, Theorem 3.29]), the space {u € C>*(R,U) :
suppu C (0,00)} is dense in HY (R, U). O

Proof of Lemma 2.2. We proceed in two steps.
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Step 1: pu > 0. In this case, it follows from an application of [4, Theorem 2.5.1] (with, in the notation
of [4], w = u, q(s) = sh(s) and b = 1) that there exists h € C(R, X) such that h(¢t) = 0 for all ¢ < 0,
sup,~q le 7 h(t)|| < oo for every v > p and (Lh)(s) = h(s) for all s € C,,. Furthermore, letting v > p,
and choosing 0 < € < v — p, we have that

M :=sup ||e_(”_5)tt_1h(t)|| < 0.
t>0

Consequently, ||e™"*h(t)|| < Mte¢t for all t > 0, showing that e™* h € L'(R, X) and completing the
proof of the claim when p > 0.

Step 2: u < 0. Set g(s) := h(s + u) for all s € Cy. Then g is a holomorphic X-valued function on Cqy
such that sup,cc, [[s°g(s)|| < co. By Step 1, there exists g € C(R, X) such that g(¢) = 0 for all ¢ < 0,
supys le 't tg(t)|| < oo and e g € LY(R,X) for every w > 0 and (Lg) = g(s) for all s € Co.
Routine arguments show that the function h : R — X, t — etg(t) has all the required properties. a

Appendix 3: Proof of Theorem 4.1

Before we prove Theorem 4.1, we develop some auxiliary material which will play a key role in the proof.
For n € Ny, we define h,, : C\(iR) — R by

(s) (1+[s/*)™(Res) ™, 0<|Res| <1
T+ s, Res| > 1.

Throughout this appendix, let X be a complex Banach space. The following result is a special case of [26,
Lemma 2| (translated from the upper/lower- to the right/left-half plane setting).

Lemma 8.1. Let F : C\(iR) — X be holomorphic, and, for x € R, x # 0, set F(y) := F(x + iy) for
all y € R. If there exist n € Ng and L > 0 such that

IF(s)|| < Lhy(s) VseC\(R), (8.6)
then there exists ® € 8'(X) such that ([Fy] — [F_;]) — ® in 8'(X) as z | 0.
Next we relate the growth conditions (8.6) and (4.2). In view of the condition (4.2), we set
mk(s) == (14 |s))™(1 + (Res) %) Vs e Cy,
where k,m € Ng.
Lemma 8.2. Let k,m € Ny. The exists C > 0 such that, for all s € Cy,

hi(s), ifk>m

gmk(s) < C {hm(s), if k <m.

Proof. Let s € Cy and write s = x + iy, where x > 0 and y € R.
CASE 1: k> m. If x > 1, then |s| > 1, and so,

gmk(s) <201+ [s)™ < 201+ [s)" < 201+ 5"
If 0 <z <1, then
Imo(s) < 2L+ s <201+ |s) P a7 < 298 (1 + |s[*)*27F,
where v := max,>o(1 + a)(1 + a?)~' = 1/(2(vV2 — 1)). We conclude that in this case
Im.k(8) < 2’ykhk.(s) Vs e Cy.
CASE 2: k <m. If x > 1, then |s| > 1, and so,

gmi(s) < 2(1+[s])™ < 2(1+[s])™.
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Furthermore, if 0 < z < 1, then
Im.k(s) < 2(1+4 Is)™mz=F < 2(1 4 |s))mz™™ < 29™(1 + |s]2)™ma ™.

Consequently, we have that
gm,k(s) < 2’7mhm(3) Vs e (Co.

The claim now follows with C = 2ymax(k:m), (]

We are now in the position to prove Theorem 4.1.
Proof of Theorem 4.1. We proceed in three steps.

Step 1: Ezxistence of the boundary distribution T.

To use Lemma 8.1, we define a holomorphic function F : C\({R) — X by setting F(s) := G(s)
when Res > 0 and F(s) := 0 when Res < 0. As G satisfies the growth bound (4.2), it follows from
Lemma 8.2 that (8.6) holds for F with n = max(k,m) and L = MC. The existence of I' € 8'(X) such
that [G;] = T in 8/'(X) as x | 0 is now guaranteed by Lemma 8.1.

Step 2: supp F~IT" C [0, 00).
We note that, for every p > 0, there exists a constant M, > 0 such that
IG() _ M,

s ST V0

as follows from (4.2). Defining the holomorphic X-valued function H by

1
Sm+2

H(s) := G(s) VseCy,
we see that sup,ec, |s*H(s)|| < M, for every p > 0. Invoking Lemma 2.2 shows that there exists H €
C(R, X) such that H(t) =0 for all t <0, e * H € L'(R, X) for every u > 0 and

H(s):/ e H(t)dt Vs e Co.

— 00

Therefore,

H(z +iy) = / e W (e H(t))dt = (F(e " H))(y) Vx>0, VyeR.

—0o0
Let now = > 0 be fixed, but arbitrary. Setting H,(y) := H(x + iy) for all y € R, the above can be

expressed as
H, =" H).

Obviously, (x + iy)™?H,(y) = G, (y) for all y € R. Defining b(y) := (z + iy)™*? for all y € R, this can
be written as bH,, = G,. Noting that b[H,] = [bH,], we obtain
F((@l + D)™ [~ H]) = bFle™™ H] = b[F(e™*" H)] = b[H,] = [pH,] = [G,], (8.7)

where D denotes distributional differentiation. Since H(t) = 0 for all ¢ < 0, it follows that supp((z] +
D)™ +2[e=*" H]) C [0, 00), and so,
supp(F1[G,]) C [0, 00).

This holds for all x > 0, and, since [G,] — I' in 8/(X) as = | 0, the continuity of F~! then guarantees
that supp F~!T" C [0, c0).

Step 8: L(F7IT) = G.
Note that, by (8.7),
(xI + D)™ 2[e™" H] = F[G,]. (8.8)

Next, we let z go to 0. As we do not know that [H] € 8'(X), it cannot be concluded that the left-hand
side of (8.8) converges to D™"2[H] in 8/(X) as = | 0. However, [H] € D'(X), and so it is clear that

(I + D)™ 2[e® H] — D™ 2[H] in D'(X) asx 0.
Together with (8.8) and the convergence of [G,] to I' in 8'(X) as x | 0, this implies

(D™ [H])(p) = (F7'T)(¢) Vo€ D.
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Hence, for ¢ > 0,
(e= D™ 2[H])(p) = (e (F'I))(p) VeeD. (8.9)

Obviously, as the distribution 7T is tempered and has support in [0, 00), it is Laplace transformable.
Since e=¢* € O}, the distribution e~¢* (F~II) is also tempered, and hence Laplace transformable. It is
sufficient to prove that

(L(e™° (F7'D))(s) = G(s+¢) VseCo. (8.10)
Indeed, as ¢ > 0 is arbitrary, it then follows that (£(F'T))(s) = G(s) for all s € C.

We proceed to establish (8.10). Using an induction argument, it can be shown that

" /n
(e~ D"[H]) () = Z (k) (D" *(e ¢ [H]))(p) Vn €Ny, VoeD. (8.11)
k=0
We postpone the derivation of (8.11) to the end of the proof.

Ase ¢ [H] =[e ¢ H]and e “ H € L'(R, X), we have that e=¢ [H] € 8'(X). Consequently, D’ (e=¢" [H])
is in 8/(X) for every j € Ny, and it follows from (8.9), (8.11) and the denseness of D in § that

m—+2
e =Y (")) e ) vees.
k=0

Taking Laplace transforms on both sides of the above identity yields

m—+2
(Ll (F~'D)))(s) = (Z (ml—: 2) cksm+2_k> H(s+c) = (s+¢)"H(s+c¢) Vs e Cy,

k=0
whence

(L (F')))(s) = G(s+c) Vs e Cy,
which is (8.10).

It remains to derive (8.11). Trivially, (8.11) is valid for n = 0. Assume now that (8.11) holds for
some n € Ny. Setting ¢ := e~ ¢ and T®) := D*T for T e §8’(X) and k € Ny, the induction hypothesis

takes the form N

ot =Y (D)) on .

k=0

As [H|HD = ([H]™) + cp[H]™ (on D), it follows from the induction hypothesis and a straightfor-
ward calculation that

n+1

ot =3 (V) im0+ 30 ("))t on .
k=1

k=0

As

()=1=03") (== ma () ()= (1) veetom

we conclude that
n+1 n+ 1
wlH]"Y = ( K )c’“w[H])("“‘“ on D,
k=0

completing the induction argument. ]
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