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Abstract

Representation and boundedness properties of linear, right-shift invari-
ant operators on half-line Bessel potential spaces (also known as fractional-
order Sobolev spaces) as operator-valued multiplication operators in terms
of the Laplace transform are considered. These objects are closely related
to the input-output operators of linear, time-invariant control systems.
Characterisations of when such operators map continuously between cer-
tain interpolation spaces and/or Bessel potential spaces are provided, in-
cluding characterisations in terms of boundedness and integrability prop-
erties of the symbol, also known as the transfer function in this setting.
The paper considers the Hilbert space case, and the theory is illustrated
by a range of examples.

1 Introduction

Consider a bounded, linear operatorG on L2(R+, U) for complex Hilbert space U .
As usual, L2(R+, U) denotes the Hilbert space of (equivalence classes of) square-
integrable functions R+ → U and R+ denotes the positive real numbers. We
say that G is right-shift invariant if it commutes with the right-shift semi-
group (στ )τ≥0 defined by

(στf)(t) =

{
0 t < τ

f(t− τ) t ≥ τ
almost all t ≥ 0 . (1.1)
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Note that σ leaves L2(R+, U) invariant. A famous result in the study of such
right-shift invariant operators is the following multiplier-type theorem.

Theorem 1.1. The operator G : L2(R+, U) → L2(R+, U) is bounded, linear
and right-shift invariant if, and only if, it is of the form G = L−1MGL, for
some (unique) holomorphic function G : C0 → B(U). Furthermore, ‖G‖ =
sups∈C0

‖G(s)‖B(U).

In the above theorem C0 denotes the open right-half complex plane, L denotes
the (unilateral) Laplace transform, MG denotes the multiplication operator
by G, and B(U) the Banach space of bounded linear operators U → U equipped
with the uniform topology. Theorem 1.1 is a special case of a general result
proved in [15], and appears with a simpler proof in [42, Theorem 2.3, Remark
2.4], along with a number of bibliographical notes.

Bounded, linear, right-shift invariant operators on L2(R+, U) arise naturally in
mathematical systems and control theory, as they are precisely the so-called
input-output maps G of linear, time-invariant, input-output stable control sys-
tems with input u and output Gu; see, for instance [43] and [36]. The termi-
nology input-output stable refers to the property that inputs in L2(R+, U) are
continuously mapped to outputs in L2(R+, U). Both u and Gu are assumed to
take their values in the space U . In this setting, the symbol G in Theorem 1.1
is called the transfer function associated with the input-output map G. The
independent variable t ∈ R+ denotes time, and the choice of the semi-infinite
real-axis R+ is important (as we shall note later) for developing a theory which
facilitates two features: (a) a stability theory, which requires an unbounded
time domain, and; (b) the treatment of initial value problems associated with,
for example, controlled and observed evolution equations [40], which requires
an initial time, and so support bounded to the left.

Theorem 1.1 is in the spirit of operator-valued multiplier theorems for pseudo-
differential operators, considering translation-invariant1, linear operators of the
form a(D) := F−1MaF where the symbol a is typically defined on Rn, takes
values in B(U), and F denotes the Fourier transform. A common aim is to
determine conditions on the symbol a so that a(D) has desired boundedness
properties with, for example, Mikhlin’s theorem [25] being a classical result in
the field. Fourier multiplier theorems are hugely well-studied problems, although
perhaps slightly less so in the vector-valued case. The paper [2], and texts [1,
3] by the same author, treat this problem in considerable detail, and contain
a substantial history of the area. That Theorem 1.1 contains necessary and
sufficient conditions is an exceptional consequence of the imposed Hilbert space
structure (Lp(R+, U) with p = 2 and Hilbert space U) via the Paley-Wiener
Theorem.

Connecting these ideas back to control theory, it is well-known (from, for exam-
ple [39, Theorem 6.2]) that there is a one-to-one relationship between bounded,

1Here translation-invariant means commuting with the (bilateral) shifts πτ given
by (πτf)(x) := f(x− τ) for all real τ .
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linear, right-shift invariant operators on L2(R+, U) and bounded, linear, translation-
invariant, causal operators on L2(R, U). Recall that a linear, translation-invariant
operator F : L2(R, U) → L2(R, U) is called causal (or non-anticipative) if
L2(R+, U) is an F -invariant subspace. In the so-called well-posed linear systems
literature — a class of physically-motivated infinite-dimensional linear control
systems, see [35] — input-output operators are typically considered to/from
function spaces on R+ or to/from function spaces on R. The latter frame-
work facilitates a connection between the control theoretic input-output maps
of [35] and the scattering theory of Lax and Phillips [21], see [36, Section 6].
By the above discussion these two approaches are equivalent for L2-spaces. In-
deed, it can be shown that (interpreted carefully) F and G as above coincide
on L2(R+, U).

Here, we present a number of far-reaching generalisations of Theorem 1.1,
broadly investigating representation and boundedness properties of linear, right-
shift invariant operators between certain interpolation spaces of Lebesgue and
(usual) Sobolev spaces, or certain fractional-order Bessel potential spaces. Our
first result contains a characterisation of bounded, linear, right-shift invariant
operators between two interpolation spaces of the form[

Hm
0 (R+, U), Hm+1

0 (R+, U)
]
γ

m ∈ {0, 1, 2, . . . }, γ ∈ [0, 1] ,

as necessarily multiplication operators L−1MGL for some holomorphic symbol
G : C0 → B(U). Moreover, boundedness properties of G are characterised
by boundedness conditions on G involving the interpolation exponents. This
result appears as Theorem 3.1. Our main result is Theorem 3.5 which contains a
characterisation now for such operators between Hγ(R+, U) spaces for γ ≥ 0 —
which are fractional-order Bessel potential spaces when γ is not a nonnegative
integer — and combines the previously-mentioned boundedness condition with
a strong Hardy space H2

str-condition. Furthermore, Proposition 3.10 provides
a characterisation of certain bounded, linear, right-shift invariant operators in
terms of a strong convolution representation. We discuss how our results relate
to others in the literature in Section 3.2.

We outline our argumentation, which relies on a few crucial ingredients. In
this first study we consider the Hilbert-space setting only. Roughly, right-shift
invariant operators commute with the generator of the associated right-shift
semigroup, which is a differentiation operator on R+ whose domain includes
a zero-trace boundary condition. Consequently, right-shift invariant operators
commute with fractional powers of this generator, which are well defined. The
images of certain fractional powers of operators form a scale of so-called frac-
tional power spaces, and are isometrically isomorphic to L2(R+, U). Moreover,
we exploit a powerful result relating interpolation spaces and fractional power
spaces (see, for example, [17, Theorem 6.6.9]). The upshot is that we are able
to use Theorem 1.1 to prove a number of generalisations of this very result.

Given the extensive research on operator-valued Fourier multiplier theorems on
Euclidean space, where the case n = 1 so that Rn = R is arguably the sim-
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plest to treat, it seems natural to approach the present problem by relating
the half-line case to the whole-line case. Although we argue differently here,
this approach may be used in the “zero-trace case”, Theorem 3.1, as certain
zero-trace functions on the half-line may be continuously extended by zero to
functions on the whole line and causality plays a key role. However, when
non-zero initial conditions are imposed, as will generally happen when consider-
ing Hγ(R+, U) for γ > 1/2, another argument seems to be required. Indeed, our
theory identifies numerous examples of bounded, linear, translation-invariant
and causal F : L2(R) → L2(R) (here U = C), which restrict to bounded oper-
ators H1(R) → H1(R) but the restriction of F to H1(R+) does not map con-
tinuously into H1(R+). It is this key distinction which has, in part, motivated
the current study, along with the control-theoretic motivation of investigating
when additional regularity of an input signal is continuously inherited by the
corresponding output signal.

The paper is organised as follows. Section 2 gathers notation and preliminary
results. Our main results are contained in Section 3 and examples are presented
in Section 4 which include connections of the current results to Regular Linear
Systems and Pritchard-Salamon Systems in Sections 4.1 and 4.2, respectively.
A number of further and technical details appear in the Appendix.

2 Preliminaries

We gather preliminary requisite notation and material.

2.1 Notation

Most mathematical notation used is standard. As usual, let N, Z, R and C de-
note the positive integers (natural numbers), integers, real numbers and complex
numbers, respectively. Furthermore, we set

Z+ := N ∪ {0}, R+ := (0,∞) and Cα :=
{
s ∈ C : Re (s) > α} ∀ α ∈ R .

Throughout the work we let (U, |·|U ) denote a complex, separable Hilbert space.
The theory developed applies in the setting of real spaces U by considering their
complexifications so as to make sense of Laplace transforms in the usual way.

For another Hilbert space V , we let B(U, V ) denote the Banach space of all
linear bounded operators U → V , with the usual induced operator norm ‖ · ‖
from U and V , and set B(U) := B(U,U). We write U ↪→ V if U is continuously
embedded in V , meaning

|u|V . |u|U ∀ u ∈ U .

The symbol . (&) means less (greater) than or equal to, up to a general mul-
tiplicative constant independent of the variables appearing. Its use is intended
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to clarify the exposition by reducing the number of constants which appear in
estimates. The symbol =̇ means equals with equivalent norms.

2.2 Function spaces

We let (L2(R+, U), ‖ · ‖L2(R+)) denote the usual Lebesgue space of (equivalence
classes of Bochner measurable) square-integrable functions R+ → U ; see, for
example [39, Section 1], which is a Hilbert space when U is. For simplicity, we
write L2(R+) for L2(R+,C).

We shall require Sobolev spaces of vector-valued functions and we refer the
reader to, for example, the texts [22, Chapter 8], [1, Chapter III, Sections 4.1,
4.2] or [3, Chapter VII]. For m ∈ N, we recall the (integer) Sobolev spaces

Hm(R+, U) :=
{
u ∈ L2(R+, U) : u(j) ∈ L2(R+, U), ∀ j ∈ {1, 2, . . . ,m}

}
,

with norm

‖u‖Hm(R+) :=
( m∑
k=0

‖u(k)‖2L2(R+)

) 1
2 ∀ u ∈ Hm(R+, U) .

Here the symbol u(j) denotes the j-th (weak) derivative of u for j ∈ Z+,
with u(0) = u. If u has a j-th classical derivative, then this is also denoted
by u(j).

It follows from, for instance, [22, Theorem 8.57] that elements of H1(R+, U)
(that is, equivalences classes of functions) may be identified with locally abso-
lutely continuous functions R+ → U , and that

f(t) = f(a) +

∫ t

a

g(s) ds ∀ t, a > 0, ∀ f ∈ H1(R+, U) , (2.1)

for some g ∈ L2(R+, U). We shall make this identification. Furthermore, taking
the limit t ↘ 0 in the right-hand side of (2.1) gives that every f ∈ H1(R+, U)
is well-defined at zero, with value denoted f(0).

Recall that Hk
0 (R+, U) is defined as the closure in Hk(R+, U) of compactly

supported smooth functions R+ → U . Repeated application of [26, Lemma
B.7.9] gives the description that, for every m ∈ N,

Hm
0 (R+, U) =

{
u ∈ Hm(R+, U) : u(0) = · · · = u(m−1)(0) = 0

}
. (2.2)

We shall require certain interpolation spaces. For thorough treatments we refer
the reader to, for example, [1] or [5]. Let θ ∈ (0, 1). For reasons we discuss
below, we borrow the notation of the so-called Lions-Magenes spaces from [23,
Chapter 1, Section 11.7], and define the interpolation spaces

Hθ
00(R+, U) :=

[
L2(R+, U), H1

0 (R+, U)
]
θ

=̇
(
L2(R+, U), H1

0 (R+, U)
)
θ,2
. (2.3a)
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Here [·, ·]θ denotes the usual complex interpolation functor, and (·, ·)θ,2 denotes
a real interpolation functor. By the results of [7], in the current Hilbert space
setting, the choice of K-method or J-method for real interpolation gives rise to
the same interpolation space.

For θ = m+ α where m ∈ N and α ∈ (0, 1), we set

Hθ
00(R+, U) :=

[
Hm

0 (R+, U), Hm+1
0 (R+, U)

]
α

=̇
(
Hm

0 (R+, U), Hm+1
0 (R+, U)

)
α,2

. (2.3b)

The second equalities in (2.3) are well-known; see, for example [7, Remark 3.6],
as all the spaces appearing in the interpolation functors are Hilbert spaces. We
set Hm

00(R+, U) := Hm
0 (R+, U) (as in (2.2)) for m ∈ Z+.

Apart from certain “borderline” values, the spaces Hθ
00(R+, U) may be related

to zero-trace Bessel potential spaces, which we now recall. For which purpose,
for θ ∈ R, the Bessel potential space Hθ

B(R, U) is defined as the set of all u ∈
L2(R, U) such that ∥∥F−1Mb2θ

Fu
∥∥
L2(R) <∞ ,

where F denotes the Fourier transform and bθ(ξ) := (1 + |ξ|2)
θ
2 is the so-called

Bessel potential. This space is a Hilbert space when equipped with the norm

‖u‖HθB(R) :=
∥∥F−1Mb2θ

Fu
∥∥
L2(R) .

Let K = cl(R+) = [0,∞) or R+ = (0,∞). The Bessel potential spaces Hθ
B(K, U)

are defined as the restriction of elements in Hθ
B(R, U) to K, with norm

‖u‖HθB(K) := inf
v∈HθB(R,U)
v|K=u

‖v‖HθB(R) .

Let X = R or K. It follows from [3, VII, Theorem 4.3.2] that

Hm
B (X, U) =̇ Hm(X, U) ∀m ∈ Z+ .

Therefore, from hereon in we omit the subscript B from Bessel potential spaces,
as the use of the same symbol for both Bessel potential spaces and Sobolev
spaces in this case is unproblematic, up to equivalent norms.

We highlight that, in following the work [3], Sobolev spaces and Bessel poten-
tial spaces may be defined on closed sets, such as H := [0,∞), which is not the
approach usually taken elsewhere in the literature. Typically, spaces of differ-
entiable functions are defined on open sets. In fact, the results of [3] show that,
for example, the spaces Hθ(R+, U) and Hθ(H, U), coincide. We refer the reader
specifically to [3, VIII, Section 1.9, Notes] for more information.

We now consider zero-trace Bessel potential spaces. To summarise [3, VIII, pp.
299–300], for θ > k + 1/2 and k ∈ Z+, it follows that the trace operator of
order k on ∂H, denoted trk and given by

trk u = u(k)(0) ∀ u ∈ Hθ(H, U) ,
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is well-defined. Moreover, the traces are continuous maps from Hθ(H, U) to U ,
so that

max
j∈{0,...,k}

|u(j)(0)| . ‖u‖Hθ(H) ∀ u ∈ Hθ(H, U) . (2.4)

Define Hθ
0 (H, U) as the closure in Hθ(H, U) of the set of compactly supported

smooth functions (0,∞)→ U . (This agrees with Hm
0 (R+, U) already introduced

when θ = m ∈ Z+.) With this definition, the result [3, VIII, Theorem 1.6.8]
gives that:

Hθ
0 (H, U) = Hθ(H, U) ∀ θ ∈ (0, 1/2) , (2.5)

and, if k ∈ Z+ and k + 1/2 < θ < k + 1 + 1/2, then{
u ∈ Hθ(H, U) : u(j)(0) = 0, ∀ j ∈ {0, . . . , k}

}
= Hθ

0 (H, U) . (2.6)

It can be shown that, for θ ∈ (0, 1)

Hm+θ
0 (R+, U) =̇

[
Hm

0 (R+, U), Hm+1
0 (R+, U)

]
θ

whenever θ 6= 1

2
. (2.7)

For scalar-valued functions, the equality is contained in [23, Theorem 11.6,
p.64]. The (Hilbert space) vector-valued case can be established by adapting
arguments from [3, proof of Theorem 1.6.4, p.320], particularly [3, equation
(1.6.10), p.320].

The upshot of (2.2) and (2.7) is that

Hθ
00(R+, U) =̇ Hθ

0 (R+, U) whenever θ 6∈ 1

2
+ Z+ . (2.8)

An explicit characterization of H
1
2
00(R+) is given in [23, Theorem 11.7], again in

the scalar-valued case.

We comment that, in light of the interpolation description (2.7), the symbol Hθ
00

is usually reserved in the literature for the borderline values θ ∈ 1/2 + Z+.
However, it is notationally convenient for us to use Hθ

00 everywhere as it is, by
definition, an interpolation space, a property which shall be important later in
the context of domains of fractional powers of certain operators. In the sequel,
we adopt the perspective that, whenever θ is not a borderline value, then Hθ

00

also admits a characterisation as a zero trace space Hθ
0 , that is, (2.8) holds.

Finally, we note that a discussion of H
1/2
00 also appears in [38, Section 33].

2.3 Hardy spaces and Laplace transforms

For α ∈ R, we let H∞α (B(U)) denote the Hardy space of all holomorphic func-
tions Cα → B(U) which are bounded in the norm

‖H‖H∞α := sup
s∈Cα

‖H(s)‖ .
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The space H∞α (B(U)), endowed with the above norm, is a Banach space. For
notational simplicity we set H∞(B(U)) = H∞0 (B(U)). For a complex Banach
space E we recall the Hardy space H2(E) = H2(C0, E) as the complex vector
space of holomorphic functions C0 → E bounded in the norm

‖H‖H2(E) := sup
x>0

∫ ∞
−∞
|H(x+ iy)|2E dy .

When E = B(U), equipped with the uniform operator topology, then we ob-
tain the (uniform) Hardy space H2(B(U)). We shall more frequently require
the space B(U,H2(C0, U)) which, by [27, Lemma 4.1], may be (isometrically)
identified with the so-called strong Hardy space, denoted H2

str(B(U)), of all holo-
morphic G : C0 → B(U) such that

‖G‖H2
str(B(U)) := sup

‖u‖≤1
‖s 7→ G(s)u‖H2(U) <∞ .

Evidently, the following estimate holds

‖s 7→ G(s)v‖H2(U) . |v|U ∀G ∈ H2
str(B(U,U)), ∀ v ∈ U .

From [26, Lemma F.3.2] it follows that if dim(U) <∞, then

H2(B(U)) =̇ H2
str(B(U)) .

We note that there is no distinction between H∞str(B(U)) and H∞(B(U)).

Throughout the paper we abuse notation by using the same symbol to asso-
ciate D ∈ B(U) with the bounded linear operators L2(R+, U) → L2(R+, U)
or H2(U)→ H2(U) given by u 7→ Du.

We let L denote the usual (one-sided) Laplace transform. By the Paley-Wiener
Theorem L is, up to a multiplicative constant, an isometric isomorphism L2(R+, U)→
H2(C0, U) (see, for instance [33, Theorem E, p. 91] or [4, Theorem 1.8.3, p. 47]).
One consequence of the vector-valued Paley-Wiener Theorem is the following
operator-valued version (which is routinely established or appears in [26, Lemma
F.3.4 (d), p.1019]).

Lemma 2.1. The Laplace transform L is (up to a multiplicative constant) an
isometric isomorphism B(U,L2(R+, U))→ B(U,H2(C0, U)).

2.4 Right-shift semigroups and their fractional powers

Here we gather preliminary material on right-shift semigroups and the fractional
powers of their generators which shall play an important auxiliary role in proving
our main results. The overall idea is that fractional powers of the generator of
the right-shift semigroup (which is a differentiation operator and commutes
with the focal objects of the present paper) induce a scale of fractional power
spaces, which are naturally isometrically isomorphic to L2(R+, U), and admit a
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representation in terms of interpolation spaces. This latter property facilitates
a connection to the Hθ

00(R+, U) spaces from Section 2.2. The upshot is that
we are able to prove generalisations of Theorem 1.1 by mapping back to the
case of bounded, linear, right-shift invariant operators on L2(R+, U), where
Theorem 1.1 applies.

Let σ denote the right-shift semigroup on L2(R+, U), so that στ denotes right-
shift by τ as in (1.1), which is a contraction semigroup. From, for example [40,
Example 2.4.5], the generator A of σ equals minus the derivative operator, with
domain H1

0 (R+, U). Note that the graph norm of A is simply the H1(R+, U)
norm. Further, σ restricts to a strongly continuous semigroup on Hm

0 (R+, U)
for m ∈ Z+ with generator the restriction of A to Hm+1

0 (R+, U).

Set V := L2(R+, U) and define the operators R0 := I, the identity on V0 := V,
and

Rθz :=
1

Γ(θ)

∫ ∞
0

τθe(A−I)τz
dτ

τ
∀ z ∈ V, ∀ θ > 0 . (2.9)

Since the growth bound of σ equals zero, we have that 1 belongs to the resolvent
set of A and, therefore, an application of [35, Lemma 3.9.5] gives that Rθ is a
bounded, injective operator on V. Moreover, its image with the norm v 7→
‖R−1θ z‖V is a Hilbert space, which we denote by Vθ, and is called the fractional
power space of index θ for A. Consequently, the operator Rθ : V → Vθ is an
isometric surjection; its inverse (I −A)θ : Vθ → V is called the fractional power
of I −A of index θ (and is also an isometric surjection).

We shall also require the fractional power spaces Vθ for negative θ. These are
defined, as usual, as the completion of V with respect to the (weaker) norm

v 7→ ‖R−θv‖V ∀ θ < 0 .

It is well-known that the scale of spaces Vθ are nested with continuous embed-
dings in the sense that Vθ1 ↪→ Vθ2 for all θ2 < θ1. Moreover,

Rθ|Vα : Vα → Vα+θ
and R−1θ |Vα+θ

: Vα+θ → Vα

}
are isometries ∀ θ > 0, ∀ α ∈ R ,

(see, for example, [35, p.148]).

We record further properties of Rθ and important consequences in the next
lemma.

Lemma 2.2. Let θ > 0, α ∈ R, V := L2(R+, U) and let Rθ be as in (2.9).
Define

qθ(t) :=
1

Γ(θ)
tθe−t

1

t
1(0,∞)(t) ∀ t > 0 .

The following statements hold.

(i) qθ ∈ L1(R+) with L(qθ)(s) = 1/(1 + s)θ for all s ∈ C0 and

Rθz = qθ ∗ z ∀ z ∈ V . (2.10)
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(ii) Rθ ∈ B(Vα,Vα+θ) and is right-shift invariant. Moreover, Rθ is invertible
and R−1θ is a right-shift invariant operator in B(Vα+θ,Vα).

Now additionally assume that α ≥ 0.

(iii) Vα =̇ Hα
00(R+, U) and so Rθ and R−1θ in statement (ii) satisfy

Rθ ∈ B(Hα
00(R+, U), Hα+θ

00 (R+, U))

and R−1θ ∈ B(Hα+θ
00 (R+, U), Hα

00(R+, U)) .

Proof. The first two claims in statement (i) are routinely established. To min-
imise disruption to the current section, the proof of equality (2.10) is relegated
to Appendix A.

The bulk of the argument for statement (ii) has been given in the text preceding
the statement of the lemma. Right-shift invariance of Rθ follows from the convo-
lution representation in (2.10). The Laplace transform of qθ equals s 7→ (1+s)−θ

and has inverse s 7→ q−θ(s) = (1 + s)θ — a polynomially bounded holomorphic
function on C0. Therefore, by [46, Theorem 6.5-1, p. 121], the inverse Laplace
transform of q−θ equals a distribution with support in [0,∞) and, moreover,
the inverse of Rθ equals convolution with this distribution. Convolution with
such a distribution is right-shift invariant.

That statement (iii) holds when β = m ∈ Z+ does not require interpolation
spaces and follows as

Vm = D((I −A)m) = D(Am) = Hm
0 (R+, U) .

To prove statement (iii) for non-integer exponent, let θ ∈ (0, 1). We seek to
apply [17, Theorem 6.6.9] to I − A. For which purpose, routine calculations
show that (−∞, 0) is contained in the resolvent set of I −A and

sup
t>0
‖t(tI + (I −A))−1‖ <∞ ,

hence I − A is sectorial by [17, Proposition 2.2.1]. Furthermore, I + (I − A) =
2I−A is injective and A is skew-adjoint, meaning Re〈Av, v〉 = 0 for all v ∈ D(A).
Thus,

Re〈(I + (I −A))v, v〉 = 2‖v‖2 ≥ 0 ∀ v ∈ D(A) ,

and so I + (I −A) is m-accretive, as in [17, Appendix C.7], as also closed with
dense range. We conclude that I+(I−A) has bounded imaginary powers by [17,
Corollary 7.1.8]. The hypotheses of [17, Theorem 6.6.9] are satisfied, and this
result yields that

D((I −A)θ) =
[
V, D(I −A)

]
θ
.

However, D(I −A) = D(A), and so

D((I −A)θ) =
[
L2(R+, U), H1

0 (R+, U)
]
θ

=: Hθ
00(R+, U) ,
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where the final equality follows from (2.3). Since Vθ = D((I − A)θ) and θ
was arbitrary, the claim is proven for θ ∈ (0, 1). Applying the construction to
the restriction of A to an operator Hm+1

0 (R+, U) → Hm
0 (R+, U), the claim is

proven for any θ > 0. The claimed boundedness of Rθ and R−1θ follows from
the equalities Vγ =̇ Hγ

00(R+, U) when γ ≥ 0.

3 Representations and regularity of right-shift
invariant operators on half-line Bessel poten-
tial spaces

Lemmas 2.2 facilitates the following theorem — a generalisation of Theorem 1.1.
Recall that Vθ denotes the fractional power spaces from Section 2.4, with V0 =
V = L2(R+, U).

Theorem 3.1. Let α, β ∈ R be given. The following statements hold.

(1) If G : Vα → Vβ is a bounded, linear, right-shift invariant operator, then
there exists a unique holomorphic function G : C0 → B(U) such that G =
L−1MGL and

s 7→ (1 + s)β−αG(s) ∈ H∞(B(U)) . (3.1)

(2) If a holomorphic function G : C0 → B(U) satisfies (3.1), then G :=
L−1MGL defines a bounded, linear, right-shift invariant operator Vα → Vβ.

In either case, we have that∥∥G∥∥B(Vα,Vβ) =
∥∥s 7→ (1 + s)β−αG(s)

∥∥
H∞ . (3.2)

Proof. To prove statement (1), an application of Lemma 2.2 yields thatR−1β GRα
is a bounded, linear, right-shift invariant operator on L2(R+, U). Therefore, by
Theorem 1.1, there exists a function H ∈ H∞(B(U)) such that

R−1β GRαz = L−1MHLz ,

for all z ∈ L2(R+, U). As convolution operators, we have

Rα = L−1M(1+s)−αL and Rβ = L−1M(1+s)−βL . (3.3)

Consequently,

L−1M(1+s)βLGL−1M(1+s)−αL = L−1MHL ,

which, under simplification and rearrangement, gives

LGL−1 =M(1+s)−βMHM(1+s)α .
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As a composition of multiplication operators, we infer that G = L−1MGL,
where

G(s) := (1 + s)−βH(s)(1 + s)α , (3.4)

which is evidently holomorphic C0 → B(U). Moreover, from the equality (3.4)
we conclude the desired boundedness property, namely,

s 7→ (1 + s)β−αG(s) = H(s) ∈ H∞(B(U)) .

The proof of statement (2) follows along the same lines by reversing the above
steps, and using that multiplication by aH∞(B(U)) function induces a bounded,
linear, right-shift invariant operator on L2(R+, U), again by Theorem 1.1.

To establish the equality of norms (3.2), we invoke the corresponding equality
of norms in Theorem 1.1, which here gives that∥∥R−1β GRα

∥∥
B(L2(R+,U))

=
∥∥H∥∥H∞

Simplifying both sides of the above, and using that R−1β and Rα are isometric
isomorphisms completes the proof.

The following corollary is a special case of Theorem 3.1 wherein α = β ≥ 0, also
using the identification Vβ =̇ Hβ

00(R+, U) from Lemma 2.2.

Corollary 3.2. If G : L2(R+, U) → L2(R+, U) is bounded, linear and right-

shift invariant, then G maps Hβ
00(R+, U) continuously into itself for all β ≥ 0.

Corollary 3.2 may be interpreted in terms of compressions of bounded, linear
and right-shift invariant operators on L2(R+, U). Analogously, it follows that

a bounded, linear and right-shift invariant operator on Hβ
00(R+, U) uniquely

dilates to a bounded operator on Hγ
00(R+, U) for all γ ∈ [0, β). By (3.2), the

operator norm of these dilations are equal.

We proceed to investigate boundedness properties of linear, right-shift invariant
operators Hα(R+, U)→ Hβ(R+, U). In light of

Hγ
00(R+, U) ( Hγ(R+, U) for γ ≥ 1/2,

we should not expect any such boundedness properties to follow from Theo-
rem 3.1 alone.

We introduce a construction that we shall repeatedly exploit. Since Hγ
00(R+, U)

is a closed subspace of the Hilbert space Hγ(R+, U) for all γ ≥ 0, the direct
sum decomposition

Hγ(R+, U) = Hγ
00(R+, U) +̇Wγ , (3.5)

is valid for some subspace Wγ of Hγ(R+, U). When γ is not a “borderline”
value, it is straightforward to construct a subspace Wγ such that (3.5) holds in
terms of a family of so-called Bohl functions, and this construction comprises the
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content of Lemma 3.3 below. For which purpose, for k ∈ N define gk : R+ → C
by

gk(t) :=
tk−1e−t

(k − 1)!
∀ t ∈ R+ . (3.6)

It is clear that gk ∈ Hγ(R+) for all k ∈ N and all γ ≥ 0 and, further, that

g
(r)
k (0) =

{
1 r = k − 1

0 r < k − 1
∀ k ∈ N . (3.7)

Lemma 3.3. Let γ ≥ 0, γ 6∈ 1/2 + Z+ be given. Define Wγ by

Wγ := {0} 0 < γ <
1

2
,

Wγ :=
〈
gkv : v ∈ V, k ∈ {1, . . . , argmin`∈N|γ − `|}

〉
γ >

1

2
,

 (3.8)

(linear span of vectors in second equality). Then Wγ satisfies (3.5) and, for
all u ∈ Hγ(R+, U), there exists a unique ξu ∈ Wγ such that

u =
(
u− ξu

)
+ ξu ∈ Hγ

00(R+, V ) +Wγ ,

and the mapping

Hγ(R+, U)→ (Wγ , ‖ · ‖Hκ(R+,U)), u 7→ ξu ,

is continuous for all κ ≥ 0.

In words, a suitable Wγ is a linear space of scalar-valued Bohl-functions, with
dimension tied to γ, tensored with the Hilbert space U .

Proof of Lemma 3.3. Let γ ≥ 0 be such that γ 6∈ 1/2+Z+. If γ ∈ (0, 1/2), then
the claim follows immediately from (2.5).

The proof for γ > 1/2 relies on (2.8), recall, that Hγ
00(R+, U) =̇ Hγ

0 (R+, U) for
these γ, and the description (2.6) of Hγ

0 (R+, V ). Let m := argmin`∈N|γ− `| ≥ 1
and define

ξu :=

m∑
k=1

dkgk ∀ u ∈ Hγ(R+, U) ,

where the dk ∈ U are to be determined. In fact, the dk should be chosen so that

0 = u(r)(0)−
m∑
k=1

dkg
(r)
k (0) ∀ r ∈ {0, 1, . . . ,m− 1} , (3.9)

which is m equations in the m unknowns dk.
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Taking r = 0 gives d1 = u(0), and taking r = 1 gives d2 = u′(0) + u(0). More
generally, we iterate over increasing r ∈ {0, 1, . . . ,m−1} and use the expression

for g
(r)
k (0) in (3.7) to note that

0 = u(r)(0)−
r+1∑
k=1

dkg
(r)
k (0) = u(r)(0)−

r∑
k=1

dkg
(r)
k (0)− dr+1 ,

which determines dr+1 in terms of u(r)(0) and (the known) dk for k ≤ r. There-
fore, we have shown that

u = (u− ξu) + ξu ∈ Hγ
00(R+, U) +Wγ ∀ u ∈ Hγ(R+, U) ,

so that
Hγ(R+, U) = Hγ

00(R+, U) + Wγ .

If v ∈ Hγ
00(R+, V )∩Wγ , then v = ξv and, in light of the unique solution to (3.9),

it follows that d1 = · · · = dm = 0. Hence, v = 0 and the intersection is trivial.
We conclude that Wγ as in (3.8) satisfies the direct sum decomposition (3.5).

The map u 7→ ξu is evidently linear, and so to prove the claimed continuity, we
invoke the trace bound (2.4) to majorise∥∥∥ m∑

k=1

dkgk

∥∥∥
Hκ(R+,U)

≤
m∑
k=1

|dk|U‖gk‖Hκ(R+)

.
( m∑
k=1

‖gk‖Hκ(R+)

)
max

0≤k≤m−1

{
|u(k)(0)|U

}
. ‖u‖Hγ(R+,U) ,

for any κ > 0, as required.

Remark 3.4. Observe that Wγ in (3.8) is finite dimensional when U is. How-
ever, even in the scalar-valued U = C setting, the second expression for Wγ

in (3.8) cannot satisfy (3.5) when γ ∈ 1/2 + Z+. Indeed, Lemma 3.3 shows
that the inclusion operator Hγ

00(R+) → Hγ(R+) (which is injective) is Fred-
holm for γ ≥ 0 such that γ 6∈ 1/2 + Z+. The theory of Fredholm operators on
interpolation spaces, particularly [14, Corollary 5.2], gives that the dimension of
the cokernel is continuous in γ, and is also integer valued. However, Lemma 3.3
further shows that the dimension of the cokernel jumps by one across values
in 1/2 + Z+, and hence the inclusion operator is not Fredholm at these points.
In particular, the quotient space Hγ(R+)/Hγ

00(R+) must be infinite dimensional
at these values of γ. We do not have an explicit characterisation of a direct sum
decomposition (3.5) at these borderline values. Consequently, the approach we
adopt below is not currently applicable for those borderline values.

In overview, Theorem 3.1 provides a characterisation of bounded, linear, right-
shift invariant functions between Hγ

00(R+, U) spaces. In light of the direct-
sum decomposition (3.5), a necessary and sufficient condition for such operators
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to be bounded between Hγ(R+, U) spaces is that they behave nicely on Wγ .
Characterising this last property essentially comprises the content of the next
theorem, which is our main result.

Theorem 3.5. Let α, β ≥ 0 with α, β 6∈ 1/2 + Z+, and let

G = L−1MGL : L2(R+, U)→ Vβ−α ,

denote a bounded, linear, right-shift invariant operator, for some holomorphic G :
C0 → B(U). The following statements are equivalent.

(1) The restriction of G to Hα(R+, U) maps continuously into Hβ(R+, U) ;

(2) G(g1v) ∈ Hβ(R+, U) for all v ∈ U ;

(3) Let m = argmin`∈Z+
|β − `|.

(a) If m = 0, then

s 7→ (1 + s)β
G(s)

1 + s
∈ H2

str(B(U)) . (3.10a)

(b) If m ≥ 1, then there exist Dk ∈ B(U) for k ∈ {1, . . . ,m} such that

s 7→ (1 + s)β
(G(s)

1 + s
−

m∑
k=1

Dk

(1 + s)k

)
∈ H2

str(B(U)) . (3.10b)

If any of the above statements hold with β > 1/2, then D1 in (3.10b) is given
by D1v = G(g1v)(0) for all v ∈ U .

Some remarks on Theorem 3.5 are in order. Recall that g1 = t 7→ e−t is the
first Bohl function in (3.6). Next, G in the statement of Theorem 3.5 must
necessarily be of the form L−1MGL for G as stated by Theorem 3.1 and,
by the same result, G satisfies the H∞-condition (3.1). Additionally, since α
and β are not borderline values, we may by (2.8) view G as a bounded linear

operator Hα
0 (R+, U)→ Hβ

0 (R+, U).

Observe that α does not appear in statements (2) and (3), which place con-
straints on β only. We reconcile this by recalling that the H∞-condition (3.1)
places a constraint on α− β which, of course, when combined with a condition
on β is equivalent to a condition on the pair α and β.

If α ∈ (0, 1/2), then (3.1) is sufficient for the strong H2-condition (3.10a) as

s 7→ (1 + s)β
G(s)

1 + s
= (1 + s)β−αG(s)× 1

(1 + s)1−α
,

is the product of an H∞ and H2 function, and hence a forteriori belongs to H2
str.

Alternatively, for α ∈ (0, 1/2), we have that

Hα
00(R+, U) =̇ Hα

0 (R+, U) =̇ Hα(R+, U) ,
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from (2.5), and hence the result follows immediately from Theorem 3.1.

The proof of Theorem 3.5 is aided by the following technical lemmas.

Lemma 3.6. Let α, β ≥ 0 and let G : L2(R+, U) → Vβ−α denote a bounded,
linear, right-shift invariant operator. It follows that G(g1v) ∈ Hβ(R+, U) for
all v ∈ U if, and only if, v 7→ G(g1v) ∈ B(U,Hβ(R+, U)).

Proof. Sufficiency is immediate. For necessity, assume thatG(g1v) ∈ Hβ(R+, U)
for all v ∈ U . We seek to apply the Closed Graph Theorem. For which purpose,
let vn → 0 in U and G(g1v)→ y in Hβ(R+, U) as n→∞. Since

g1vn → 0 in L2(R+, U) as n→∞,

we conclude from the assumed continuity of G that

G(g1vn)→ 0 in Vβ−α as n→∞ .

Therefore, we reach the desired conclusion that y = 0, as the inclusion mapHβ(R+, U) ↪→
Vβ−α is injective.

The next lemma may be summarised in words as: ifG(g1v) has certain regularity
properties, then these are inherited by G(gkv) for all k ∈ N. Recall that gk
denotes the k-th Bohl function defined in (3.6).

Lemma 3.7. Let α, β ≥ 0 and let G : L2(R+, U) → Vβ−α denote a bounded,
linear, right-shift invariant operator. The following statements are equivalent.

(i) v 7→ G(g1v) ∈ B(U,Hβ(R+, U)) ;

(ii) v 7→ G(gkv) ∈ B(U,Hk−1+β(R+, U)) for all k ∈ N.

Proof. That statement (ii) implies statement (i) is clear by taking k = 1. Con-
versely, assume that statement (i) holds. We use an induction argument. The
base case is true by hypothesis. For the inductive step, assume that state-
ment (ii) holds for some k − 1 ∈ N. An elementary calculation shows that gk
satisfies the ordinary differential equation

g′k = −gk + gk−1 .

Right-shift invariance of G gives that

1

τ

(
στG−G

)
=

1

τ

(
G(στ )−G

)
= G

(στ − I
τ

)
∀ τ > 0 .

Therefore, in light of the continuity of G from Theorem 3.1, taking the limit τ ↘
0 above, it follows that

(G(u))′ = G(u′) ∀ u ∈ Vα+γ+1(U), ∀ γ ≥ 0 ,
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as an equality holding in Vβ−α−γ . Thus,

G(gkv)′ = G(g′kv) = −G(gkv) +G(gk−1v) ∀ v ∈ U . (3.11)

By induction hypothesis,

v 7→ G(gk−1v) ∈ B(U,Hk−2+β(R+, U)) , (3.12)

and, in light of (3.7) and the description (2.6),

gkv ∈ Hγ
00(R+, U) ∀ v ∈ U, ∀ γ ∈ (k − 3/2, k − 1/2) ,

(where recall that k ≥ 2). Therefore, the continuity of G from Theorem 3.1 and
the above inclusion combine to give

v 7→ G(gkv) ∈ B(U,Vγ+β−α) ∀ γ ∈ (k − 3/2, k − 1/2) . (3.13)

In light of (3.11), (3.12) and (3.13), we see that G(gk) has one more unit of
regularity than that claimed in (3.13), provided k − 2 + β > γ + β − α. Boot-
strapping this argument, which replaces γ + β − α by γ + β − α+ 1 and so on,
eventually gives that

v 7→ G(gkv) ∈ B
(
U,H(k−2+β)+1(R+, U)

)
= B

(
U,Hk−1+β(R+, U)

)
,

as required.

Proof of Theorem 3.5. We prove that statements (1) and (2) are equivalent, and
that statements (2) and (3) are equivalent. We shall use throughout that, by
Lemma 3.6, statement (2) is equivalent to v 7→ G(g1v) ∈ B(U,Hβ(R+, U)).

Assume first that statement (1) holds. That statement (2) is true is clear,
as g1v ∈ Hγ(R+, U) for all γ ≥ 0. Conversely, suppose that statement (2)
holds. Since α 6∈ Z+ + 1/2, the conjunction of Lemmas 3.3 and 3.7 gives that
the restriction of G to Wα is continuous Wα → Hβ(R+, U). The hypotheses of
Theorem 3.1 are satisfied by assumption, and this result gives that the restriction
of G to Hα

00(R+, U) is continuous

Hα
00(R+, U)→ Hβ

00(R+, U) ↪→ Hβ(R+, U) .

Statement (1) now follows from these ingredients and the direct sum decompo-
sition (3.5).

We next prove the equivalence of statements (2) and (3). Suppose first that
statement (2) holds. If m = 0, then

v 7→ G(g1v) ∈ B(U,Hβ
00(R+, U)) ,

and thus Lemma 2.2 yields that

v 7→ R−1β G(g1v) ∈ B(U,L2(R+, U)) . (3.14)
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If m ≥ 1, then appealing to the decomposition in Lemma 3.3, we write

ξG(g1v) =

m∑
k=1

dkgk ∈ Wβ so that G(g1v)− ξG(g1v) ∈ H
β
00(R+, U) ,

for some dk ∈ U . The proof of Lemma 3.3 shows that dk are linear combinations
of G(g1v)(j)(0), and hence v 7→ dk := Dkv ∈ B(U) by the trace estimate (2.4).
In particular, taking r = 0 in (3.9) gives the claimed equality d1 = G(g1v)(0) =:
D1v for all v ∈ U . Putting the above together, we conclude that

v 7→ G(g1v)−
m∑
k=0

Dkvgk ∈ B(U,Hβ
00(R+, U)) ,

and thus

v 7→ R−1β

(
G(g1v)−

m∑
k=0

Dkvgk

)
∈ B(U,L2(R+, U)) . (3.15)

In either case for m, an application of Lemma 2.1 yields that the Laplace trans-
form of the above belongs to B(U,H2(C0, U)). Computing the Laplace trans-
forms of (3.14) and (3.15) gives exactly (3.10). The converse argument reverses
these steps.

Remark 3.8. Developing the trail of thought from Remark 3.4, imposing the
notation of Theorem 3.5 but relaxing the requirements that α, β 6∈ 1/2 +Z+, it
follows that statement (1) is further equivalent to

(2∗) the restriction of G to Wα as in (3.5) maps continuously into Hβ(R+, U).

However, in the absence of a description of Wγ at the borderline values, this
result is not constructive.

3.1 A convolution characterisation

Here we provide a further characterisation of bounded, linear, right-shift invari-
ant operators Hβ(R+, U)→ Hβ(R+, U) in terms of so-called strong convolution
operators, and appears as Proposition 3.10 below. For which purpose, the fol-
lowing lemma describes operators defined in terms of convolution with elements
in B(U,L2(R+, U)). The present formulation is inspired by [35, Theorem A.3.5],
[26, Lemma F.2.2] and [26, Lemma F.3.7].

Lemma 3.9. Let h ∈ B(U,L2(R+, U)). There exists a unique bounded, linear,
right-shift invariant operator H : L1(R+, U)→ L2(R+, U) with the property that(

H(uv)
)
(t) =

∫ t

0

h(u(t−s)v)(s) ds =

∫ t

0

(hv)(s)u(t− s) ds

∀ t ≥ 0, ∀ v ∈ U, ∀ u ∈ L1(R+,C) . (3.16)

We write Hu = h∗u for all u ∈ L1(R+, U). Moreover, the following statements
hold.
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(i) H(g1v) = h ∗ (g1v) = (hv) ∗ g1 belongs to H1
0 (R+, U) for all v ∈ U , with(

H(g1v)
)′

= hv −H(g1v) and ‖H(g1v)‖H1(R+) . |v|U ∀ v ∈ U .

(ii) Suppose that G ∈ H2
str(B(U)) ∩ H∞(B(U)), and set h := L−1(G) ∈

B(U,L2(R+, U)). Then the restriction of H to L1 ∩ L2 has a unique ex-
tension to a bounded, linear, right-shift invariant operator on L2(R+, U).
We write this extension as Heu = h ∗e u for all u ∈ L2(R+, U).

(iii) Let G = L−1MGL with G ∈ H∞(B(U)). If G ∈ H2
str(B(U)), then Gu =

h ∗e u, where h = L−1(G) and ∗e is as described in statement (ii).

A sufficient condition for h ∈ B(U,L2(R+, U)) is that h : R+ → B(U) is
Bochner- (also known as uniformly) or even just strongly-measurable and ‖h‖B(U) ∈
L2(R+). However, as demonstrated in [35, Remark A.3.6, p. 742], not ev-
ery h ∈ B(U,L2(R+, U)) as in Lemma 3.9 is of this form when U is infinite
dimensional.

By way of further commentary, recall the so-called strong L2-space, denoted L2
str(R+,B(U)),

which comprises all f : R+ → B(U) such that fv ∈ L2(R+, U) for all v ∈ U and

‖f‖L2
str(R+) := sup

‖v‖≤1
‖t 7→ f(t)v‖L2(R+,U) <∞ .

This space can be identified as a subspace of B(U,L2(R+, U)), and a version of
Lemma 3.9 applies for h ∈ L2

str(R+,B(U)). Moreover,

L2
str(R+,B(U)) =̇ L2(R+,B(U)) ,

when U is finite dimensional; see [26, Lemma F.1.5, p.1003]. Strong Lp-spaces
are studied in some generality in [26, Appendix F].

However, the main motivation for our present focus on B(U,L2(R+, U)), rather
than the strong L2-space is that this latter space is not isomorphic toH2

str(B(U))
under the Laplace transform, that is, the corresponding version of Lemma 2.1
does not hold here. This claim is proven in [26, Example F.3.6, p.1020]. As the
proof of Theorem 3.5 illustrates, to obtain various characterisations of bound-
edness properties of bounded, linear, right-shift invariant operators, we make
essential use of spaces which are isomorphic under the Laplace transform.

We use the notation ∗e for convenience, even though it is an extension of con-
volution in the sense of (3.16). For brevity, we write h ∗e in place of u 7→ h ∗e u.

Proof. The first claim is taken from [35, Theorem A.3.5] in the case p = 2.

Statement (i) is routine to prove in light of the equality (3.16), namely, that

H(g1v) =

∫ t

0

(hv)(s)e−(t−s) ds ∀ t ≥ 0, ∀ v ∈ U .
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The estimate for ‖H(g1v)‖H1(R+) follows from the expression for (H(g1v))′ and
as

‖hv‖L2(R+) . |v|U and ‖H(g1v)‖L2(R+) . ‖g1v‖L1(R+) . |v|U ∀ v ∈ U .

To prove statement (ii), we first estimate that

‖Hu‖L2(R+) . ‖L(Hu)‖H2(U) = ‖s 7→ G(s)L(u)(s)‖H2(U)

≤ ‖G‖H∞‖L(u)‖H2(U)

. ‖u‖L2(R+) ∀ u ∈ L1(R+, U) ∩ L2(R+, U) . (3.17)

Here we have used that

L(Hu)(s) = G(s)L(u)(s) ∀ s ∈ C0, ∀ u ∈ L1(R+, U) ,

which follows from [35, Theorem A.3.5]. Since L1(R+, U) ∩ L2(R+, U) is dense
in L2(R+, U), the estimate (3.17) gives the unique claimed extension.

Finally, statement (iii) follows from statement (ii), noting that L(Gu) = L(Heu)
for all u ∈ L2(R+, U). Hence, G = He.

Proposition 3.10. Imposing the notation of Theorem 3.5, in the situation
that α = β > 0, each statement is additionally equivalent to:

(4a) if β ∈ (0, 1/2), then there exists h ∈ B(U,L2(R+, U)) such that G =
R−11−βh ∗e ;

(4b) if β ∈ (1/2, 1), then there exist D ∈ B(U) and h ∈ B(U,L2(R+, U)) such
that G−D = R−11−βh ∗e ;

(4c) if β ≥ 1, then there exist D ∈ B(U) and h ∈ B(U,Hβ−1(R+, U)) such
that G−D = h ∗e .

For the above proposition to be true, note that the claimed conditions must each
be equivalent to G(g1v) ∈ Hβ(R+, U) for all v ∈ U . Observe that h ∗ (g1v) ∈
H1

0 (R+, U) when h ∈ B(U,L2(R+, U)). In particular, when β < 1 as is the
case in statements (4a) and (4b), then R−11−β is the inverse of convolution with

an L1-function, and so is convolution with some distribution. This (in general)
removes regularity. Although we have presented the case β > 1 differently
above, essentially the opposite is happening, as now R−11−β is convolution with
a function, which is smoothing. We note that G and G−D in statements (4a)
and (4b), respectively, are still strong convolution operators.

Proof of Proposition 3.10. Assume first that any of the statements of Theo-
rem 3.5 hold.

The proofs of statements (4a) and (4b) are similar. We give the latter, as the
former essentially has the same calculations only with D = 0. On the one hand,
as statement (3) holds with m = 1, it follows that

s 7→ (1 + s)β−1
(
G(s)−D

)
∈ H2

str(B(U)) .
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On the other hand, as α = β it follows from Theorem 3.1 that G ∈ H∞(B(U))
and, therefore, that

s 7→ (1 + s)β−1
(
G(s)−D

)
∈ H∞(B(U)) .

Define G0 := L−1MG−DL = G −D ∈ B(L2(R+, U)). An application of state-
ment (iii) of Lemma 3.9 to G0 yields that

R1−β
(
G−D

)
= R1−βG0 = h∗e ,

for some h ∈ B(U,L2(R+, U)), and where we have invoked the property of R1−β
as a multiplication operator as in (3.3). The desired expression in statement (4b)
is obtained.

In the case that β ≥ 1, the conclusions of Theorem 3.5 are valid with β replaced
by 1. Hence, the above argument, with R0 = I, now gives again the desired
expression for G0 = G−D. Here it remains to see that h ∈ B(U,Hβ−1(R+, U))
when β > 1. The operator G0 clearly also satisfies statement (2), as well
as G0(g1v) = h ∗ g1v. Therefore, rearranging the first equation in statement (i)
of Lemma 3.9 gives that

hv =
(
G0(g1v)

)′
+G0(g1v) ∀ v ∈ U . (3.18)

Viewed as a linear operator in v, the right hand side of the above belongs
to B(U,Hβ−1(R+, U)) by hypothesis, and hence so does the left hand side. We
have proven statement (4c).

Conversely, assume that statement (4a), (4b) or (4c) holds. Where applicable,
set G0 := G − D. We seek to prove that statement (2) of Theorem 3.5 holds.
Since

R−11−β = L−1M(1+s)1−βL ,

it follows from Theorem 3.1 with α = 1 that R−11−β is a bounded linear opera-

torH1
00(R+, U)→ Hβ

00(R+, U). Statement (i) of Lemma 3.9 gives that h∗(g1v) ∈
H1

0 (R+, U) =̇ H1
00(R+, U), and hence

G0(g1v) = R−11−βh ∗ (g1v) ∈ Hβ
0 (R+, U) ∀ v ∈ U . (3.19)

If β ∈ (0, 1/2), then Hβ
0 (R+, U) =̇ Hβ(R+, U) by (2.5). We now see from (3.19)

that G = G0 has the desired regularity. If β ∈ (1/2, 1), then from (3.19) we now
conclude that G(g1v) = G0(g1v) +D(g1v) has the required regularity.

For β ≥ 1, we again consider G0(g1v) = h ∗ g1v. Rearranging (3.18) yields that(
G0(g1v)

)′
= −G0(g1v) + hv ∀ v ∈ U .

The initial value problem

y′ = −y + hv, y(0) = 0 ,

has unique solution y = g1 ∗hv ∈ Hβ(R+, U), as hv ∈ Hβ−1(R+, U) by hypoth-
esis. Therefore, G0(g1v) = y ∈ Hβ(R+, U), which proves statement (2). The
proof is complete.
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Our final result of the section is a corollary in the special case that α = β = m ∈
N, so that the focal object is a bounded, linear, right-shift invariant operator on
L2(R+, U) or, equivalently, a symbol in H∞(B(U)). This setting is particularly
relevant in the study of well-posed linear control systems.

Corollary 3.11. Let G denote a bounded, linear, right-shift invariant opera-
tor L2(R+, U) → L2(R+, U), with G as in Theorem 1.1, and fix m ∈ N. The
following statements are equivalent.

(1) The restriction of G to Hm(R+, U) maps continuously into Hm(R+, U) ;

(2) G(g1v) ∈ Hm(R+, U) for all v ∈ U ;

(3) There exist Dk ∈ B(U) for k ∈ {1, . . . ,m} such that

s 7→ (1 + s)m
(G(s)

1 + s
−

m∑
k=1

Dk

(1 + s)k

)
∈ H2

str(B(U)) ; (3.20)

(4) There exist D ∈ B(U) and h ∈ B(U,Hm−1(R+, U)) such that G−D = h∗e.

When m = 1, the condition (3.20) in statement (3) simplifies to G − D1 ∈
H2

str(B(U)). This condition plays a key role in [27, Theorem 1.2], in the context
of so-called Pritchard-Salamon systems, as we discuss in Section 4.2.

Each of the statements of Corollary 3.11 are in turn equivalent to Hm(R+, U)
being an invariant subspace for G as in the statement of the result. The non-
trivial claim here of course is that invariance of a one-dimensional subspace
of Hm(R+, U) is sufficient for the invariance of the whole subspace. We note
that if Hm(R+, U) is an invariant subspace for G, then G|Hm(R+) is continuous
in the stronger norm of Hm(R+, U) by the Closed Graph Theorem.

The next remark addresses the situation of linear, right-shift invariant operators
mapping between vector-valued function spaces with distinct spaces of function
values. Hitherto, a single Hilbert space has been used as a space of values in
both the domain and codomain, and has always been denoted U .

Remark 3.12. The results of the present paper may easily be extended to op-
erators of the form L−1MGL for holomorphic G : C0 → B(U, Y ) and complex
Hilbert space Y 6= U . Specifically, a trick is used which considers the block
operators on the product space U × Y given by

G̃ :=

(
0 0
G 0

)
: C0 → B(U × Y ) and G̃ := L−1MG̃L .

The results of the present paper are applied to G̃ and G̃, and then G and G
are recovered by restriction and projection. The current choice of U = Y has
been made primarily to simplify the presentation.
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3.2 Connections to other results

We conclude the section by describing how our results relate to others in the
literature. The paper [29] considers bounded, linear, right-shift invariant opera-
tors X → X where X denotes a Banach space of locally integrable scalar-valued
functions on R+ with certain properties. The main result of [29] is [29, Theorem
2.1] which shows that such operators are necessarily of the form L−1MGL for
some symbol G ∈ H∞(C) or, in words, “represented by transfer functions”. The
authors of [29] acknowledge that the methods used only apply to spaces X with
zero boundary conditions at zero (where these evaluations make sense). As such
there is some overlap between [29, Theorem 2.1] and Theorem 3.1, although nei-
ther result truly generalises the other. In particular, whilst the Banach space X
includes spaces of functions other than Hα

00(R+, U) for α ≥ 0, Theorem 3.1 con-
siders operators between different (vector-valued) spaces, allows for the situation
that the symbol G is unbounded, and that G maps between spaces of distribu-
tions (Vα, Vβ with negative exponent). The argumentation used presently and
that of [29] is very different, and so these works are complementary in this sense
as well.

There is some minor overlap between Theorem 3.5 and [30, Theorem 6]. How-
ever, in the proof of [30, Theorem 6] it is erroneously claimed that C∞0 (R+, U)
is dense in Wα,2(R+, U) for all α > 0. Consequently, no condition of the
form (3.10) appears in [30, Theorem 6]. In fact, the authors of [30] essentially
prove another version of Theorem 3.1 where β = 0, although from a state-space
perspective.

Regarding connections to Proposition 3.10, we comment that convolution opera-
tors are well-studied objects, from a variety of perspectives with a vast literature.
We relate the present work to three papers. First, the work [8], which builds on
the earlier paper [45], considers convolution operators

(Gu)(t) =

∫ t

0

h(t− τ)u(τ) dτ, t > 0 , (3.21)

(mostly) in the setting that the Laplace transform of h : R+ → Rl×m is a
rational matrix function. The main results of [8] are summarised in [8, Table
1] and derive exact formulae, or computable upper bounds, for the norm of G
viewed as an operator Lp1

(
R+, (Rm, |·|r1)

)
→ Lp2

(
R+, (Rl, |·|r2)

)
spaces for 1 ≤

pi, ri ≤ ∞, where |·|r denotes the Euclidean r-norm.

Second, the work [18] also considers convolution operators of the form (3.21) but
with operator-valued kernels h : R+ → B(U, Y ) for Hilbert spaces U and Y . Two
problems are studied related to characterising when G is a bounded operator
between the weighted spaces L2(R+, w(s) ds, U) → L2(R+,m(s) ds, Y ). Here
the terms w and m are weighting functions and, roughly, either the weight pair
(w,m), or the kernel h, is fixed, and the problem is to characterise the other
quantity which ensures boundedness of G. Positive results are given in both
cases.
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Third, the paper [13] broadly addresses solvability properties of Wiener-Hopf
equations of the form

H(φ)(t) := φ(t) +

∫ ∞
0

k(t− τ)φ(τ) dτ = f(t) t ∈ R+ , (3.22)

on various function spaces on R+, for given right-hand side f and kernel k ∈
L1(R). There are some differences to the situation considered presented, namely
that k is not assumed to be supported in R+ and so H need not be causal (and
so necessarily need not be right-shift invariant). However, when k is supported
on R+, then H is a linear, right-shift invariant operator of the form H−I = k∗.
In order to address solvability of (3.22) in [13, Section 6], the author in [13,
Section 4] considers a number of boundedness properties of H between various
function spaces, with results [13, Theorems 11, 13, 14], the latter of which
addresses boundedness between Bessel potential spaces.

A direct comparison between Proposition 3.10 and [13, Theorem 14] is difficult
owing to the different assumptions imposed but, in the case that p = 2 and
the kernel k is supported on R+, Proposition 3.10 extends [13, Theorem 14] to
the vector-valued setting and kernels not in L1, and, in some sense, provides a
converse. The overlap between our results and those of [8] or [18] is minimal,
as these works both consider convolution operators between various (possibly
weighted) Lebesgue spaces, and neither consider their continuity between Bessel-
potential spaces, which is the main focus of the present work.

4 Examples

We illustrate our results through four examples. As mentioned, one moti-
vation for the present study comes from mathematical systems and control
theory, where bounded, linear, right-shift invariant operators are called input-
output maps of linear, time-invariant control systems, and the associated symbol
(should such a multiplication representation exist) is called the transfer function.
Consequently, our examples are drawn from this field, although the presenta-
tion is elementary, does not require extensive knowledge of the area, and the
examples are primarily intended to illustrate the theory.

There are a number of frameworks for extracting a transfer function from so-
called infinite-dimensional linear control systems, such as those specified by
partial- or delay-differential equations. These frameworks are broadly equiv-
alent, and we refer the reader to, for example [16, Remark 7.6], as well [20,
Chapter 12] and [47] for more information. For brevity, in the following exam-
ples we do not give extensive derivations of transfer functions.

Example 4.1. For fixed τ > 0 the right-shift semigroup G = στ is evidently a
bounded, linear, right-shift invariant operator L2(R+) → L2(R+). It is intu-
itively clear that the conclusions of Theorem 3.1 with U = C and2 B(U) = C

2We identify a scalar in C with a linear operator C→ C.

24



should be true here — namely that στ has bounded compressions Hβ
00(R+) →

Hβ
00(R+) for all β ≥ 0. Indeed, στ is essentially “the identity map delayed by

τ and with zeros inserted beforehand”, which preserves all zero boundary con-
ditions and the regularity of a function. To formalise these observations, Theo-
rem 3.1 is applicable with α = β ≥ 0 as G = L−1MGL with s 7→ G(s) = e−sτ

which belongs to H∞(C). We note that α = β is optimal insomuch as s 7→
(1 + s)γe−sτ 6∈ H∞(C) for any γ > 0.

To address the action of στ on functions with non-zero boundary conditions,
observe that t 7→ G(g1v)(t) is discontinuous at t = τ , so does not belong
to Hβ(R+) for any β > 1/2. In particular, Theorem 3.5 yields that G does
not restrict to a bounded operator Hβ(R+) → Hβ(R+) for such β. For com-
pleteness, we note that D1 in statement (3) of Theorem 3.5 (with m = 1) equals
zero, and G−D1 = G 6∈ H2(C0).

Consider next the controlled ordinary differential equation

ż(t) = −z(t) + u(t), t > 0, z(0) = 0 ,

with input u, and delayed output y = στz (based on [12, Example 7.1.1]), with
resulting input-output map G1 given by G1u = στ (g1 ∗ u) for all u ∈ L2(R+).
The discontinuity in Gu introduced by the delay has been removed as G1(g1v)
is identically zero on a neighbourhood of zero, and hence infinitely differentiable
on the same neighbourhood, with(

G1(g1)
)(k−1)

(0) = 0 ∀ k ∈ N .

Consequently, if condition (3.10b) is to hold, then it must hold with Dk = 0 for
every k as, recall, the proof of Theorem 3.5 showed that the v 7→ Dkv are linear

combinations of
(
G1(g1)

)(j)
(0).

The transfer function G1 is given by s 7→ e−sτ/(s+ 1) on C0 which satisfies

s 7→ (1 + s)m
G1(s)

1 + s
∈ H2(C0) ,

for m ∈ Z+ if, and only if, m = 1. We conclude that the compressions
of G1 to Hm(R+) → Hm(R+) are bounded when m = 1 and are not bounded
when m ≥ 2.

Example 4.2. The controlled and observed neutral delay differential equation

ẋ− σrẋ = −ax+ u, y = x ,

is considered in [24]. Here, as usual, u, x, y denote the input, state and output
variables, respectively, and a, r > 0 are positive parameters. We have U = C.
The associated transfer function G is given by

G(s) =
1

s(1− e−rs) + a
.

It is clear that G ∈ H∞α for all α > 0. Furthermore, it follows from [24,
Propositions 3.1 and 3.4] that:
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• there exists an open set Ω containing the closed right-half complex plane
such that G is holomorphic on Ω ;

• G is not bounded on C0, that is, G 6∈ H∞(C0), and ;

• s 7→ G(s)/(1 + s) is bounded on C0 .

The final property ensures that condition (3.1) in Theorem 3.1 applies with α−
β = 1. Consequently, for example, the associated input-output operator G is
continuous H1

0 (R+)→ L2(R+).

We claim that s 7→ G(s)/(1+s) ∈ H2(C0), so that statement (3) of Theorem 3.5
holds with β = m = 1 and D1 = 0. Thus, by that result, it follows that G is
continuous as an operator H1(R+)→ L2(R+). For which purpose, we compute
that∣∣∣G(iω)

1 + iω

∣∣∣2 =
1

(1 + ω2)
(

(a− ω sin(rω))2 + ω2(1− cos(rω))2
) ∀ ω ∈ R .

Since for all a, r > 0, there exists b > 0 such that

(a− ω sin(rω))2 + ω2(1− cos(rω))2 ≥ b ∀ ω ∈ R ,

we conclude that ∣∣∣∣G(iω)

1 + iω

∣∣∣∣2 ≤ 2b

(1 + ω)2
∀ ω ∈ R .

Therefore, s 7→ G(s)/(1 + s) ∈ H2(C0), as required.

Example 4.3. Consider the ubiquitous finite-dimensional controlled and ob-
served system of linear ordinary differential equations

ẋ = Ax+Bu, x(0) = x0, y = Cx+Du , (4.1)

with input, state and output denoted u, x and y, respectively. The input, state
and output spaces are U = Cp, X = Cn and U , respectively, and A, B, C and D
may be identified with compatibly-sized complex matrices. Let h : R+ → Cp×p
be given by t 7→ h(t) := CeAtB. With this notation, we have that the input-
output map G associated with (4.1) satisfies

Gu = h ∗ u+Du .

If every eigenvalue of A has negative real part, then, in light of

t 7→ h(k)(t) = CeAtAkB ∈ L2(R+,B(U)) ⊆ B(U,L2(R+, U)) ∀ k ∈ N0 ,

it follows from Proposition 3.10 that the restriction of G to Hm(R+, U) maps
continuously into Hm(R+, U) for every m ∈ N.

Consider now the case that (4.1) denotes (at least formally) an infinite-dimensional
linear control system, where A : X ⊇ D(A) → X generates an exponentially
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stable C0-semigroup. If C is bounded, meaning C ∈ B(X,U), and AkB ∈
B(U,X) for k ∈ Z+, then the restriction of G to Hm(R+, U) maps continu-
ously into Hm(R+, U) for m = k + 1. We refer the reader to [28] for a number
of examples of controlled and observed partial differential equations where the
condition AkB ∈ B(U,X) is satisfied.

Our final example considers an operator-valued transfer function based on [16,
Example 7.14].

Example 4.4. Consider the following controlled and observed heat equation on
the unit square Ω := (0, 1)× (0, 1):

∂w

∂t
(x1, x2, t) =

∂2w

∂x21
(x1, x2, t) +

∂2w

∂x22
(x1, x2, t),

w(0, x2, t) = 0, w(1, x2, t) = 0,

∂w

∂x2
(x1, 0, t) = 0,

∂w

∂x2
(x1, 1, t) = u(x1, t),

y(x1, t) = w(x1, κ, t) ,

where κ ∈ [0, 1) is a parameter. Here we choose as input and output space U :=
L2(0, 1). The input u represents a Neumann boundary control term along the
top edge of the square. The measurement y is observation of w along the line
parallel to the x1-axis at x2-position κ and, as may be shown by arguments
analogous to those used in [6], the mapping U → U , u 7→ y under zero initial
conditions is well-defined and continuous. We refer the reader to [6] for more
details of controlled and observed heat equations on bounded domains in Rn.

Routine modifications to the calculation in [16, Example 7.14] show that the
transfer function G is given by

G(s)v =

∞∑
n=1

hn(s;κ)γn(v)
√

2 sin(nπ ·) ∀ v ∈ L2(0, 1) ,

where γn are the Fourier sine coefficients of v, namely,

γn(v) =
√

2〈v, sin(nπ ·)〉L2(0,1) =
√

2

∫ 1

0

v(x1) sin(nπx1)Fx1 ∀ n ∈ N ,

and

hn(s;κ) :=
cosh(κ

√
s+ n2π2)√

s+ n2π2 sinh(
√
s+ n2π2)

∀ s ∈ C0, ∀ n ∈ N .

The function G belongs to H∞(C0,B(U)) and so, by Theorem 3.1 with α =
β ≥ 0, the associated input-output operator u 7→ y = G(u) maps Hα

00(R+, U)
continuously into itself.

We investigate the extent to which the hypotheses of Theorem 3.5 hold. For
which purpose, for ω ∈ R, set zn :=

√
iω + n2π2 6= 0 for all n ∈ N, which further

satisfies

zn = (ω2 + n4π4)
1
4 ei arg(zn) and Re zn = (ω2 + n4π4)

1
4 cos(arg(zn)) .
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Straightforward hyperbolic identities give that

cosh(κzn) = cosh(κRe zn) cos(κ Im zn) + i sinh(κRe zn) sin(κ Im zn)

and |cosh(κzn)|2 = cosh2(κRe zn)− sin2(κ Im zn) ≤ cosh2(κRe zn) .

Similarly,

sinh(zn) = sinh(Re zn) cos(Im zn) + i cosh(Re zn) sin(Im zn)

and |sinh(zn)|2 = sinh2(Re zn) + sin2(Im zn) ≥ sinh2(Re zn) .

Therefore,∣∣∣∣cosh(κzn)

sinh(zn)

∣∣∣∣ ≤ cosh(κRe zn)

sinh(Re zn)
. exp

(
(κ− 1)(ω2 + n4π4)

1
4 cos(arg(zn))

)
≤ exp

(
(1/
√

2)(κ− 1)(ω2 + n4π4)
1
4

)
∀ ω ∈ R, ∀ n ∈ N ,

where we have used that κ− 1 < 0 and arg(zn) ∈ (−π/4, π/4). Consequently,

|hn(iω;κ)| . 1

nπ
exp

(
(1/
√

2)(κ− 1)(ω2 + n4π4)
1
4

)
∀ ω ∈ R, ∀ n ∈ N .

Noting that

√
ω + nπ . (ω2 + n4π4)

1
4 ∀ ω ∈ R+, ω ≥ n2π2 ,

we estimate that∫
R

∣∣∣∣(1 + iω)β
hn(iω, κ)

1 + iω

∣∣∣∣2 dω

.
2

(nπ)2

(∫ n2π2

0

+

∫ ∞
n2π2

)
(1 + ω2)β−1 exp

(√
2(κ− 1)(ω2 + n4π4)

1
4
)
dω

.
2

(nπ)2
e
√

2(κ−1)nπ
(∫ n2π2

0

(1 + ω2)β−1 dω +

∫ ∞
n2π2

(1 + ω2)k−1e2c1(κ−1)
√
ω dω

)
≤ qβ(nπ)

2n
e
√
2(κ−1)nπ ∀ n ∈ N, ∀ β ≥ 0 ,

where qβ and c1 are a certain polynomial and positive constant, respectively.
Hence, we have shown that

‖s 7→ (1 + s)β−1hn(s;κ)‖H2 .

√
qβ(nπ)

n
e(
√
2/2)(κ−1)nπ ∀ n ∈ N, ∀ β ≥ 0 .

Evidently, by the Cauchy-Schwarz inequality

|γn(v)| = |
√

2〈v, sin(nπ ·)〉L2(0,1)| . ‖v‖L2(0,1)‖ sin(nπ ·)‖L2(0,1)

. ‖v‖L2(0,1) ∀ n ∈ N .
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Consequently, invoking the above inequalities, we have that

‖s 7→ (1 + s)β−1G(s)v‖H2(L2(0,1))

≤
∞∑
n=1

‖s 7→ (1 + s)β−1hn(s;κ)‖H2 ‖γn(v)
√

2 sin(nπ ·)‖L2(0,1)

. ‖v‖L2(0,1)

∞∑
n=1

√
qβ(nπ)

n
e(
√
2/2)(κ−1)nπ . ‖v‖L2(0,1) ∀ v ∈ L2(0, 1) ,

where we have crucially used that κ ∈ [0, 1) so that the infinite series involving qβ
is summable. We conclude that s 7→ (1+s)β−1G(s) ∈ H2

str(B(U)) and, therefore,
from Theorem 3.5 with Dk = 0 for every k ∈ N that the associated input-output
map G maps Hβ(R+, U) continuously into itself for all β ≥ 0. The above
analysis crucially relies on the inequality κ < 1 and fails when κ = 1. Indeed,
in this case it can be shown that G does not continuously map Hβ(R+, U) into
itself for β > 1/2.

4.1 Regular linear systems

Here we connect the results of Section 3 to the concept of regular systems in
mathematical systems and control theory. Regularity in this context was origi-
nally defined as a property of G, but a number of characterisations are available
in terms of the associated function G as in Theorem 1.1. We recall from [35,
Definition 5.6.1, p. 318] that weak, strong or uniform regularity is equivalent to
the existence of the following limit

lim
s∈R+
s→∞

G(s) ,

in the weak, strong or uniform topology, respectively. The above concept of
regularity dates back to [41], and was further developed in, for example, [43] (see
also the discussion on [43, p.833]) and [36]. A number of further refinements
of regularity appear in [26, Definition 6.2.3], including that of uniform line-
regularity, namely that G(s) has a limit in the uniform topology as Re(s)→∞.
As noted in [26, Section 6.2, Notes], the concept of uniform line-regularity dates
much further back to the 1970s in [19, p.155], although the terminology regular
is not used there.

In all cases, the resulting linear operator D defined by

Du := lim
s∈R+
s→∞

G(s)u ∀ u ∈ U ,

is called the feedthrough operator, and belongs to B(U) by the uniform bounded-
ness principle. To quote [35, p.318]: “Most of the systems appearing in practice
seem to be regular.” An example of a non-regular function may be found in [37,
Example 8.4], viz. the function G : C0 → C given by

G(s) = cos(log(s2 + 1)) ,
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where log is defined to be analytic on the split plane C\(−∞, 0]. Furthermore,
[35, Example 5.7.4] contains a function which is weakly regular, but not strongly
regular, and one which is strongly regular, but not uniformly regular.

Our next result relates the regularity property to additional continuity proper-
ties of bounded, linear, right-shift invariant operators on L2(R+, U). It follows
from Corollary 3.11.

Corollary 4.5. Suppose that G = L−1MGL : L2(R+, U) → L2(R+, U) is
a bounded, linear, right-shift invariant operator, with G ∈ H∞(B(U)). The
following statements are equivalent.

(i) The restriction of G to H1(R+, U) maps continuously into H1(R+, U) ;

(ii) G is uniformly line-regular with feedthrough D and G−D ∈ H2
str(B(U)) ;

(iii) G is weakly regular with feedthrough D and G−D ∈ H2
str(B(U)) .

In each case the feedthrough operator is equal to u 7→ G(g1u)(0).

Proof. If statement (i) holds, then an application of Corollary 3.11 yields thatG−
D = h∗e for some D ∈ B(U) and h ∈ B(U,L2(R+, U)). It now follows from [26,
Proposition 6.3.4, (a3)] with p = 2 that G−D is uniformly line-regular with zero
feedthrough, and hence G is trivially uniformly line-regular with feedthrough D.
Further, invoking Lemma 3.9, we compute that

G(g1u)(0) = (h ∗ (g1u))(0) +D(g1u)(0) = Du ∀ u ∈ U ,

giving the desired formula for D. Theorem 3.5 gives that D1v := G(g1v)(0) =
Dv is such that G−D1 ∈ H2

str(B(U)), as required.

That statement (ii) implies statement (iii) is trivial, and that statement (iii)
implies statement (i) follows from Corollary 3.11 with m = 1 and D1 = D.

An interesting facet of Corollary 4.5 is that the combination of weak regularity
with feedthrough D and G − D ∈ H2

str(B(U)) is sufficient for the a priori
stronger properties of uniformly line-regular with feedthrough D and G−D ∈
H2

str(B(U)). Observe further that regularity is a necessary condition for G to
map H1(R+, U) continuously into itself. As a complementary approach, in
Appendix B we provide an elementary proof of the regularity aspect in the
implication (i)⇒ (ii) which does not require the results of [26].

4.2 Pritchard-Salamon systems

Pritchard-Salamon (PS) systems are a class of infinite-dimensional state-space
linear control systems, dating back to [31, 32]. At their heart are three opera-
tors (A,B,C) and Hilbert spaces W ↪→ V with A generating a C0-semigroup
on V , which restricts to a semigroup on W . The input map B is bounded U →
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V , and induces a bounded controllability operator from inputs in L2((0, t), U)→
W for some (hence all) t > 0. The output map C is bounded W → U , and
induces a bounded observability operator V → L2((0, t), U) for some (hence
all) t > 0. These admissibility concepts are dual to one another. Nowadays,
Pritchard-Salamon systems have been generalised to well-posed linear systems
and system nodes, but they were popular for a number of years and arguably
helped pave the way for the contemporary abstract functional-analytic under-
standing of infinite-dimensional state-space linear control systems. They also
have a number of appealing properties, such as being closed under feedback.
Studies of Pritchard-Salamon systems include [10], [34] and [44] and, for more
historical information, we refer the reader to [35, Section 2.9] as well as, for
example, [9] and [11].

By appealing to the combination of our results and those of [27], we are able to
provide a criterion for when the conclusions of Proposition 3.10 hold with β = 1.
For convenience, we recall [27, Theorem 1.2], the main result of that paper,
presented with the notation used currently. The symbol D below refers to a
feedthrough operator. For brevity, we refer to [27] for the remaining definitions.

Theorem 4.6 (Theorem 1.2, [27]). Let γ ∈ R and let G : Cγ → B(U) be
holomorphic. The following statements hold.

(1) G has a realisation with a bounded input operator and D = 0 if, and only
if, there exists α ∈ R such that s 7→ G(s)u ∈ H2(Cα, U) for all u ∈ U .

(2) G has a realisation with a bounded output operator and D = 0 if, and only
if, there exists α ∈ R such that s 7→ G(s)∗y ∈ H2(Cα, U) for all y ∈ U .

(3) G has a realisation as a Pritchard-Salamon system with D = 0 if, and
only if, the conditions in both statements (1) and (2) hold.

The Closed Graph Theorem yields that the above condition s 7→ G(s)u ∈
H2(C0, U) for all u ∈ U (here α = 0) is equivalent to G ∈ H2

str(B(U)) — see
also [27, Lemma 3.1]. The analogous conclusion applies to the condition s 7→
G(s)∗y ∈ H2(C0, U) for all y ∈ U . The conditions (1) and (2) above are
equivalent when U is finite-dimensional, but are not equivalent in general.

Presently, the upshot of the above result is that, in light of Corollary 3.11, the
bounded, linear, right-shift invariant operators G : L2(R+, U) → L2(R+, U)
with restrictions to H1(R+, U) that map continuously into H1(R+, U) with
finite-dimensional U are precisely those that may be realised by an input-output
stable Pritchard-Salamon system. In particular, this immediately provides nu-
merous examples and counterexamples of where Corollary 3.11 applies; for ex-
ample, those discussed in [9] and [11].
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A Remaining arguments for the proof of Lemma 2.2

It remains to prove the equality (2.10). We proceed in steps.

Step 1. We claim that for all z ∈ D(A) and all t > 0, it is true that(∫ ∞
0

τθ(e(A−I)τz)
dτ

τ

)
(t) =

∫ ∞
0

τθ(e(A−I)τz)(t)
dτ

τ
. (A.1)

Observe that the integral on the left-hand side takes place in the abstract space
V. It is then evaluated at t to give an element of U (at least almost everywhere).
The integral on the right-hand side already takes place in U . To establish (A.1),
let t > 0 and let Tt : D(A)→ U denote the evaluation map, that is, Ttx := x(t)
for all x ∈ D(A) = H1

0 (R+, U) with usual Sobolev norm, so that Tt is continuous
by (2.4). For z ∈ D(A), define fz : R+ → D(A) by

fz(τ) = τθe−τ
1

τ
1(0,∞)(τ)eAτz ∀ τ > 0 ,

which is well-defined as D(A) is eAτ -invariant.

Then, as Tt ∈ B(D(A), U), it follows from the commutativity of bounded linear
operators and the Bochner integral (see, for example [4, Proposition 1.1.6, p.
11]), that

Tt

∫ ∞
0

fz(τ) dτ =

∫ ∞
0

Ttfz(τ) dτ ,

which, when unravelled, yields (A.1).

Step 2. In light of (A.1) we have that

Rθz = qθ ∗ z ∀ z ∈ D(A) , (A.2)

as invoking Step 1 gives that

(Rθz)(t) =
1

Γ(θ)

∫ ∞
0

τθ(e(A−I)τz)(t)
dτ

τ
=

1

Γ(θ)

∫ ∞
0

τθe−τ (στz)(t)
dτ

τ

=
1

Γ(θ)

∫ τ

0

τθe−τz(t− τ)
dτ

τ

= (qθ ∗ z)(t) ∀ z ∈ D(A), ∀ t > 0 .

Step 3. We claim that the equality (A.2) extends to all z ∈ V = L2(R+, U).
For which purpose, we use a density and continuity argument. Let z ∈ V and
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let (zn)n with zn ∈ D(A) for all n ∈ N satisfy ‖zn − z‖L2(R+) → 0 as n → ∞.
On the one hand, since qθ ∈ L1(R+), by Young’s inequality

‖qθ ∗ z− qθ ∗ zn‖L2(R+) = ‖qθ ∗ (z− zn)‖L2(R+) ≤ ‖qθ‖L1(R+)‖z− zn‖L2(R+) → 0 ,

as n→∞. On the other hand, since Rθ is an isometry V → Vθ, we have that

‖Rθz −Rθzn‖Vθ = ‖z − zn‖L2(R+) → 0 as n→∞ .

In light of the continuous embedding Vθ ↪→ V0 = V as θ > 0, it follows that

‖Rθz −Rθzn‖L2(R+) . ‖Rθz −Rθzn‖Vθ → 0 as n→∞ .

Therefore, the conjunction of the above two limits yields that

Rθz
L2(R+,U)←−−−−−− Rθzn = qθ ∗ zn

L2(R+,U)−−−−−−→ qθ ∗ z as n→∞ ,

and so the claimed extension of (A.2) to V holds, completing the proof. �

B An alternative argument for Corollary 4.5

The following argument invokes the Laplace transform estimate below, an im-
mediate consequence of Hölder’s inequality: for f ∈ L2(R+, U) and all s ∈ C0

|L(f)(s)|U ≤
∥∥s 7→ e−st

∥∥
L2(R+)

· ‖f‖L2(R+) =
1√

2Re (s)
‖f‖L2(R+) . (B.1)

Assume that statement (i) holds. Then G(g1v) ∈ H1(R+, U) and v 7→ Dv :=
G(g1v)(0) ∈ B(U) is evidently linear, and is continuous by the trace esti-
mate (2.4), which here gives

|Du|U = |G(g1u)(0)|U ≤ ‖G(g1u)‖H1(R+) . ‖g1u‖H1(R+) . |u|U ∀ u ∈ U .

Therefore, on the one hand, by (B.1)

0 ≤
∣∣L((G(g1v))′

)
(s)
∣∣
U
≤ 1√

2Re (s)

∥∥(G(g1v)
)′∥∥

L2(R+)

.
1√

2Re (s)

∥∥g1‖H1(R+)|v|U ∀ s ∈ C0 . (B.2)

On the other hand, by Theorem 1.1 and usual Laplace transform identities

L
(
(G(g1v))′

)
(s) = sL(G(g1v))(s)−G(g1v)(0) =

s

1 + s
G(s)v −G(g1v)(0)

= G(s)v − 1

1 + s
G(s)v −G(g1v)(0) ∀ s ∈ C0 . (B.3)
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Rearranging (B.3) gives

G(s)v −G(g1v)(0) =
1

1 + s
G(s)v + L

(
(G(g1v))′

)
(s) ∀ s ∈ C0 .

Since G ∈ H∞(B(U)), we have that∣∣∣G(s)v

1 + s

∣∣∣
U
≤ ‖G‖H∞

1

|1 + s|
|v|U .

1

1 + Re (s)
|v|U ∀ s ∈ C0 . (B.4)

In light of (B.2) and (B.4), we estimate that

‖G(s)−D‖B(U) = sup
v∈U
v 6=0

|G(s)v −G(g1v)(0)|U
|v|U

.
1

1 + Re (s)
+

1√
2Re (s)

∥∥g1‖H1(R+) . (B.5)

The right hand side of (B.5) converges to zero as Re (s) → ∞, whence G is
uniformly line-regular.

References

[1] H. Amann. Linear and quasilinear parabolic problems. I, Abstract Linear Theory. Num-
ber 89 in Monographs in Mathematics. Birkhäuser Verlag, 1995.
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