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Abstract

A theoretical method is presented, called the energy-balance method, for maximising the energy
extracted from a renewable energy converter in terms of determination of an optimal control. The
method applies to control systems specified by linear graphs, and graph-theoretic techniques are em-
ployed. The method simplifies a number of optimal control problems by essentially expressing the
performance objective — maximising energy extraction — in terms of an equivalent objective in-
volving fewer variables, thereby reducing the complexity of the optimisation. As illustrated, in certain
cases the optimal control problem may be reduced to one solvable by elementary calculus techniques.
The theory is illustrated with examples from solar, wave and wind applications.

Keywords: linear graph modelling, optimal control, photovoltaic (PV) solar energy, wave energy, wind
energy

1 Introduction

The pressing requirement to decarbonise global electrical energy generation to reduce emissions and tackle
the climate crisis is clear. Increased renewable energy conversion is one key mechanism to achieve this
aim [1, p. 40]. Increasing renewable energy uptake over time has many facets, from political and regulatory,
through to economic and technical. One economic consideration is reducing the Levelised Cost of Energy
of a given renewable energy technology to attract commercial investment. This can be achieved by, for
example, reducing the installation, operational and decommissioning costs of a given renewable energy
device, or by increasing the energy converted over the lifetime of the device.

Here, we present a general theoretical method, which we call the energy-balance method, to solve the optimal
control problem of maximal energy extraction by a renewable energy converter over a finite prediction
interval. The method rewrites the original control problem, essentially by using Tellegen’s theorem [2],
in terms of a new performance objective which contains only a subset of the variables which appear in
the original problem. Consequently, the resulting optimal control problem is no harder to solve than the
original and is, in fact, often much simpler. Since optimal control problems can be challenging to solve
analytically and numerically, methods which reduce the complexity of the problem are desirable. An
important feature of our approach, and as shall become apparent, is to take a flexible view of the roles of
variables, in the sense that (roughly) it is often more convenient to optimise a performance objective in
terms of, say, a state variable in the original problem, and then use algebraic and/or differential equations
— “the control system” — to define the remaining variables.

There are, of course, numerous mathematical and graphical descriptions of control systems. Presently, we
employ a graph-theoretic representation of a control system, often called a linear graph in the engineering
jargon; see, for example [3, Section 4.1] or [4, Chapter 5]. The graph determines the structure of the
control system, where edges correspond to (lumped, one-port, two-terminal) elements in a given energy
domain, and two variables are associated to each edge of the graph, called an across variable and a
through variable. These variables are power conjugate and are also termed effort and flow variables in
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the literature. In electrical contexts, they correspond to voltages and currents, respectively. However,
the linear graph framework permits treatment of control systems from other energy domains (mechanical
translational, mechanical rotational, acoustic etc), and the across and through variables satisfy certain
algebraic relationships which are natural generalisations of Kirchoff’s current law and Kirchoff’s voltage
law, respectively, as well as constitutive relationships on each edge, dependent on the element type.

As is well known, there is a choice of which variables in a given domain to assign as the across or through
variables, often called system analogies (see, for example [5, Section 2]), and our treatment is independent
of the chosen analogy. In all settings, the product of through and across variables is power. As we describe,
the control systems we consider are assumed to comprise of a number of components, generalising resistors,
capacitors, inductors and transformers/gyrators as well as external sources and control terms, to the
abstract setting. The inclusion of transducers facilitates modelling control systems which span multiple
energy domains, such as mechatronic systems and so on [6, 7]. We comment that a number of these
components are permitted to be dynamic or nonlinear, and so are not necessarily ideal. As we illustrate in
the examples considered, models for renewable energy generation via solar, wind and wave energy all fall
within the scope of the control systems presented considered, and the energy-balance method is applicable.

The motivation for the present study is to simplify the procedure of determination of optimal controls in
renewable energy applications. This aim resonates with a current direction in the control of wave energy
converters, a timely and ongoing area of research, to reduce complexity [8, Section 3.3]. Furthermore,
even if optimal controls are not implemented in the field, say because of robustness considerations or the
real-time computational complexity, the energy generation of an optimal control provides a theoretical
maximum against which other putative control schemes may be compared. Two strengths of our results
are the following. First, the energy-balance method rewrites an optimal control problem as a simpler one,
but is then agnostic to which optimization or optimal control method is subsequently used, so this may be
tailored to user preference or the bespoke setting. Classical optimal control techniques include so-called
indirect methods such as the Pontryagin Principle (see, for example [9, 10, 11]) or Dynamic Programming
(see, for example [12]), as well as so-called direct methods [13]. As we shall describe, in certain cases the
energy-balance method reduces a dynamic- (or trajectory-) optimization problem, that is, one subject to
dynamic state constraints, to a static optimization problem where no dynamic constraints apply. Here
standard optimization tools are applicable [14, 15], such as gradient descent or nonlinear programming.
Second, since the energy-balance method essentially works with the variables of energy, it applies to systems
which span multiple energy domains, and so enables optimization at a system-wide level.

The paper is organised as follows. Section 2 illustrates the main ideas behind the energy-balance method
in a simple example. Sections 3 and 4 are the technical heart of the manuscript, and contain the graph
theoretic ingredients required to specify control systems as so-called linear graphs and describe the energy-
balance method, respectively. Sections 5, 6 and 7 contain applications of the method to renewable energy
converters from solar, wind and wave energy contexts, respectively. Certain extensions to the energy-
balance method and summarising remarks appear in Sections 8 and 9, respectively.

We comment that no single paper can thoroughly cover the three renewable energy application areas (solar,
wave, wind) simultaneously, each of which is mature with its own academic and industrial/commercial
communities. Rather, the main contribution of the present work is theoretical and is to present the
energy-balance method in a focussed manner. The examples considered currently are primarily designed
to illustrate how the energy-balance method applies, and hence how it is widely applicable. That written, in
each case we demonstrate how known energy-maximising controls (such as maximum power point tracking
— MPPT — for PV solar energy) naturally and straightforwardly arise from the energy-balance method,
at least in simple settings. In depth studies in each particular application area shall constitute the focus of
future works. Whilst there are numerous papers on the optimal control of renewable energy devices, such
as those cited in Sections 5–7, we are not aware of a framework as general as that presented currently, at
least for control systems specified by linear graphs.

2 The basic idea illustrated on a damped mass

We illustrate the basic ideas underpinning the energy-balance method through a simple example. Consider
a damped mass m moving along a line with velocity y = y(t) at time t and damping coefficient d on which
an external force e acts and where power is taken off through a control force u:

mẏ + dy = e− u . (2.1)
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The energy extracted over the time interval [t0, t1] equals∫ t1

t0

y(t)u(t) dt , (2.2)

whereas the energy E = E(t) in the system as time t is:

E(t) =
m

2
y(t)2 . (2.3)

In practice the time interval [t0, t1] is determined by our ability to predict the external force e; the length
of this interval might be a few seconds. Maximizing the energy extracted over this prediction interval is a
natural optimal control problem, namely, how to design u. However, this optimal control problem tends
to cause unwanted boundary effects since, as far as the optimal control is concerned, there is no time
beyond t1. We argue that a more sensible quantity to maximize over the prediction interval is:

E(t1)− E(t0) +

∫ t1

t0

y(t)u(t) dt . (2.4)

The integral term is as before and is the energy extracted over the prediction interval, whilst the term E(t1)−
E(t0) is the increase of energy stored in the system over the prediction interval. This stored energy is
available for extraction at a later time. Indeed, since maximising the extracted energy over longer times
requires piecing together multiple, successive prediction intervals (which is somewhat similar to model
predictive control), the cost functional (2.4) seems appropriate.

Maximizing (2.4) under the constraint (2.1) is another optimal control problem. Although traditional
optimal control methods, such as the Pontryagin Principle can be used to determine an optimal control,
these methods become extremely cumbersome for the more complicated problems studied later. In fact,
since both the dynamics (2.1) and the cost function (2.4) are linear in the control u, this is (paradoxically)
a hard problem because of the possibility of singular control, and traditional optimal control numerical
methods have difficulties with nonlinear problems that are linear in the control; see, for example [13,
Chapter 4]. Singular control, and the related situation of bang-singular-bang control (when constraints
are present) are known to occur in the optimal control of wave energy devices [16].

Here, we utilize the additional structure of the problem which naturally comes from the renewable energy
generation context to avoid the problem of singular control. In this section, we illustrate the method on the
simple example (2.1) and (2.4), but its utility only really becomes clear in the more complicated examples
considered later.

For our damped mass system, the following power balance:

Ė = myẏ = −dy2 + ye− yu ,

holds. Mathematically, we first differentiated (2.3) with respect to time and then utilized the differential
equation (2.1). Integrating this over the time interval [t0, t1] and re-arranging gives the following energy-
balance:

E(t1)− E(t0) +

∫ t1

t0

y(t)u(t) dt =

∫ t1

t0

y(t)e(t) dt−
∫ t1

t0

dy(t)2 dt . (2.5)

An interpretation of the left-hand side of (2.5), which equals (2.3), has been given above. The right-hand
side of (2.5) comprises two terms: the first ∫ t1

t0

y(t)e(t) dt ,

equals the energy supplied over the interval [t0, t1] by the external force e and the second

−
∫ t1

t0

dy(t)2 dt ,

is the energy dissipated over the interval [t0, t1]. Importantly, observe that maximizing the left-hand side
of (2.5) is equivalent to maximizing the right-hand side of (2.5). We note that the right-hand side of (2.5)
does not involve the control u. Consequently, the optimal control problem is trivially solved as follows.
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We maximize the integrand of the right-hand side of (2.5), that is, we maximize y 7→ ye − dy2, which
gives y = e/(2d). Therefore, the optimality condition we obtain is:

y(t) =
1

2d
e(t) . (2.6)

The above formula is well known; see, for example [17, equation (6.44), p. 206] for a frequency domain
expression, or [18, equation (2.12)]. The resulting optimal control goes by a number of terms, as discussed
in [17, p. 206], such as phase and amplitude control, namely, the velocity of the mass being in phase with
the excitation force with an appropriate amplitude, or complex-conjugate control (also known as impedance
matching in electrical engineering).

To see which control achieves (2.6), we substitute this optimality condition into the differential equa-
tion (2.1) and obtain

u(t) = e(t)−mẏ(t)− dy(t) =
1

2
e(t)− m

2d
ė(t) .

Therefore, the optimal control and optimal state are given in terms of the external force by:

u(t) =
1

2
e(t)− m

2d
ė(t) and y(t) =

1

2d
e(t) . (2.7)

Some remarks are in order. The crucial aspect of solution method is that the differential equation (2.1)
is no longer viewed as a constraint, but as a defining equation for the optimal control u, in terms of the
optimal state y and external force e. This is made possible by maximizing the right-hand side of the
energy-balance (2.5), which does not involve the control u, instead of maximizing the left-hand side, which
does involve u.

We also note that in this simple example, solving the optimal control problem was trivial. As we shall see,
this will not always be the case but, when applicable, the energy-balance method we present reduces the
complexity of the optimal control problem to be solved. We have not included input- or state-constraints
here, which of course will feature in real-world applications, and we comment on how constraints may be
included in Section 8.

3 Graph-theoretic modelling of control systems

In order to generalise the method outlined in Section 2, we shall view control systems from a graph-
theoretic perspective and the current section gathers the requisite material. These objects are often called
linear graphs in engineering contexts; see, for example [3, Section 2.1]. Treatments of control systems as
linear graphs appear across older works, such as [19, 20, 21], with [4] a recent text. We refer the reader to
these texts for further background on writing control systems as linear graphs.

3.1 Planar and dual graphs

We collect the requisite graph-theoretic notation and terminology. We consider a finite directed graph
without self-loops, and with possibly multiple edges between the same pair of vertices. This can be
formally described by a triple (V, E , α) where V is the finite set of vertices (also called nodes), E is the
finite set of edges (also called branches in some texts) and

α : E →
{
(x, y) ∈ V × V : x ̸= y

}
,

is the incidence function. The calligraphic notation for the vertices V and edges E is to distinguish these
objects from voltages V and energies E which commonly occur elsewhere.

When we draw a graph in the plane, we draw vertices as circles, edges as line segments and we draw an
arrow on the edge e from x to y if α(e) = (x, y). In what follows, the directions on the edges are simply
to fix signs and otherwise have no physical meaning. Two examples of graphs are shown in Figure 3.1.

The graphs we consider can always be drawn in the plane, meaning they can be drawn without edges
crossing, and such graphs are called planar. We specify a particular embedding in the plane by drawing a
figure; this makes our graph into a plane graph. That we consider plane graphs is really only of importance
when we consider duality. Our graphs will always be connected (here ignoring directions, meaning that
the underlying graph of our directed graph is connected). We will denote the number of vertices by n and
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Figure 3.1: Examples of plane graphs

the number of edges by m. From Euler’s formula for plane graphs (see, for example [22, Theorem 15, p.
22]), such a graph then has m− n+ 2 faces, including the unbounded face.

We will relate matrices and vectors to our graphs. For this, we order the edges and vertex sets by
writing E = {1, . . . ,m} and V = {1, . . . , n}.
The incidence matrix M of a graph is the n×m matrix which has

Mij = 1 if edge j starts at vertex i

Mij = −1 if edge j ends at vertex i, and

Mij = 0 if edge j is not incident to vertex i.

The face matrix F of a plane graph is a (m− n+ 2)×m matrix which has

Fij = 1 if edge j bounds face i and is oriented counter-clockwise with respect to the face

Fij = −1 if edge j bounds face i and is oriented clockwise, and

Fij = 0 if edge j does not bound face i.

Here oriented counter-clockwise means that the face is on the left of the edge as it is traversed along the
direction of the arrow, and oriented clockwise means the face is on the right of the edge.

We note that the face matrix is a special cycle matrix and, apart from when used for duality, could in
what comes below be replaced by a general cycle matrix. Since each edge bounds exactly two faces, and
with opposite orientation, the face matrix F is itself the incidence matrix of a graph, called the dual graph.
From a drawing of the graph, we can obtain a drawing of the dual graph as follows: in each face draw a
dual vertex and connect dual vertices by a dual edge if the corresponding (primal) faces share a (primal)
edge.

We consider an example.

Example 3.1. Consider the graph drawn in Figure 3.1a with edges and vertices labelled. The incidence
matrix for this graph is

M =



1 0 0 0 0 −1 0 0
0 0 0 0 −1 1 0 0
−1 −1 0 0 0 0 0 −1
0 0 0 0 0 0 −1 1
0 0 0 1 1 0 1 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0


.

Fixing the following ordering of faces: upper bounded face, lower bounded face, unbounded face; the face
matrix of the graph in Figure 3.1a is

F =

 1 0 0 0 1 1 −1 −1
0 −1 −1 −1 0 0 1 1
−1 1 1 1 −1 −1 0 0

 .
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This is the incidence matrix of the graph in Figure 3.1b which is, therefore, the dual graph of the graph
in Figure 3.1a. □

Presently, duality is introduced and used as follows. When modelling control systems as linear graphs,
a so-called systems analogy [5, Section 2.1] must be chosen which, mathematically, prescribes algebraic
conditions, determined by a graph, on pairs of power-conjugate variables associated with each edge of the
graph. The algebraic conditions on the pairs of variables in each analogy are dual, in the sense that the
primal graph in one analogy is the dual graph in the other. Therefore, duality permits straightforward
conversion between analogies. Being able to convert between analogies becomes essential when seeking to
merge linear graphs from different domains (electrical, translational/rotational mechanical, acoustic etc)
where different analogies may be preferentially used.

3.2 Functions on graphs

Given a planar graph as in the previous subsection, we will identify a function f : E → R defined on the
edges of a graph with a vector in Rm and will identify a function ϕ : V → R defined on the vertices of a
graph with a vector in Rn.

An edge function f is called across if Ff = 0. This is equivalent to the existence of a potential vertex
function ϕ such that f = M⊤ϕ. The potential ϕ is unique if at a specified vertex i the condition ϕ(i) = 0 is
imposed (in electrical engineering terms, the vertex i can be considered ground). We call the components of
an across edge function across variables, although the terminology generalised across variables also appears
in the literature. Intuitively, across variables are those which are measured “across” the two terminals of
a one-port element. In words, the condition Ff = 0 states that the across variables sum to zero around
faces, or directed loops, and is called the compatibility law in [3, Section 4.3] and the loop rule in [6,
Section 4.3].

An edge function f is called through if Mf = 0 and the components of a through edge function are called
through variables. As before, the terminology generalised through variables is also used in the literature.
Intuitively, through variables are those which act “through” the element. In words, the condition Mf = 0
states that the directed sum of through variables at every vertex equals zero. The condition Mf = 0 is
called the continuity law in [3, Section 4.3] and the nodal rule in [6, Section 4.3].

We note that a function which is across for a (primal) graph is through for the dual graph, and vice versa.

Since F and M are both rank deficient by one, the across and through conditions give

n+ (m− n+ 2)− 2 = m,

independent equations for the 2m scalar unknowns contained in two (generally distinct) edge functions.
Hence, by additionally specifying for each edge a single equation relating the two functions, we obtain
in total 2m equations, which generically gives existence and uniqueness of an across edge function and a
through edge function on a planar graph.

The edge functions we consider presently will typically depend on time as well, meaning that the com-
ponents of the corresponding vectors in Rm or Rn are themselves functions of a real variable, and the
across/through equations are assumed to hold pointwise in time. Consequently, across/through variables
are functions of time in this case.

3.3 Control systems as graphs

On our graphs, we consider a pair of edge functions, one being across and one being through. The canonical
example of an across function is voltage, and the across condition is Kirchhoff’s voltage law. Similarly,
the canonical example of a through function is current, and the through condition is Kirchhoff’s current
law. Intuitively, the product of a through variable and an across variable is power, the time derivative of
energy. As such, we model control systems in terms of power conjugate variables, as in [5, Section 2.1].

For each of the edges we will have one (and only one) of the following possibilities:

� A through-accumulator. Here the energy E stored on the edge is a function of an auxiliary variable x,
and the through variable T and across variable A satisfy

T =
∂E

∂x
, ẋ = A .
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The typical situation is where E is quadratic: E(x) = x2/(2L) for L a positive constant, so that

T =
x

L
, ẋ = A,

and the auxiliary function x can be eliminated to obtain

LṪ = A .

The energy is then given by E = LT 2/2, hence the terminology through-accumulator — the energy is
stored in the through variable. A through accumulator is called a T-type energy storage element in [3,
Section 3.3].

� An across-accumulator. Here the energy E stored on the edge is a function of an auxiliary function x,
and the through variable T and across variable A satisfy

A =
∂E

∂x
, ẋ = T .

The typical situation is where E is quadratic: E(x) = x2/(2C) for C a positive constant, so that

A =
x

C
, ẋ = T ,

and the auxiliary function x can be eliminated to obtain

CȦ = T .

Correspondingly, the energy is then given by E = CA2/2, hence the terminology across-accumulator —
the energy is stored in the across variable. An across accumulator is called an A-type energy storage
element in [3, Section 3.3].

� A dissipator. We consider three different types. Let {X,Y } = {A, T}, so thatX and Y are placeholders
for A and T , in some combination.

– A linear dissipator: X = RY , where R > 0 is a constant.

– A nonlinear dissipator X = r(Y ), where r : R → R and r(Y )Y ≥ 0.

– A dynamic dissipator. Here there is an auxiliary (vector-valued) variable z which satisfies

ż = Fz +GX, Y = Hz + JX , ,

where the transfer function of the above linear control system is assumed to be positive real, that
is, with

G(s) = H(sI − F )−1G+ J ,

we have that G is holomorphic on {s : Re(s) > 0} and G(s)∗ +G(s) ≥ 0 for all s with Re(s) > 0;
see, for example [23].

We comment that since we have not fixed an analogy, we do not prescribe the roles of X and Y here.
A dissipator is called a D-type dissipative element in [3, Section 3.3], although only static dissipators are
considered there.

� A through-source. Here the through variable T on the edge is externally prescribed.

� An across-source. Here the across variable A on the edge is externally prescribed.

� A mixed-source. Here two auxiliary variables v, λ are prescribed, and A and T are of the form A =
a(v, λ) and T = t(v, λ) for functions t, a : R → R.

The equations relating the across and through variables in the accumulator and dissipator elements are
called constitutive relationships. The source terms shall play the role of either control terms or external
signals. Observe that there are no constitutive relations for the source edges. It is this property that makes
them somewhat different to the other edges.

Further, note that in both accumulator cases we have

Ė =
∂E

∂x
ẋ = AT , (3.1)

so that the product of the across and through variable indeed has the interpretation of power.

In the electrical context we have the following identifications: voltage is the across variable and current is
the through variable. Moreover:
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� A through-accumulator is an inductor with inductance L and the auxiliary variable x is flux.

� A across-accumulator is a capacitor with capacitance C and the auxiliary variable x is charge.

� A linear dissipator is a resistor with resistance R.

� A through-source is a current source.

� An across-source is a voltage source.

In the mechanical context we can either view velocity difference as the across variable and force as the
through variable (this is called the mobility analogy and dates back to the work of Firestone [24] and
Trent [25]) or the other way around (which is called the impedance analogy). Although each analogy has
its own advantages and disadvantages, we prefer the former. One reason is that the graphs then look
similar to the usual mechanical system diagrams typically drawn. Another reason is that the potential for
the through variable then has the natural interpretation of velocity. Thus, in the translational mechanical
context under the mobility analogy:

� A through-accumulator is a spring with spring constant 1/L and we have that x is displacement.

� An across-accumulator is a mass with mass C and we have that x is momentum. Here it would need
to be assumed that all across accumulators in the system are connected to the same vertex (ground);
otherwise the across-accumulator is an inerter [26].

� A linear dissipator is a dash-pot damper with damping coefficient R (as T = RA, that is, force is
proportional to velocity difference with constant R).

� A through-source is a force source.

� An across-source is a velocity source.

As is well known, rotational mechanical, fluid and thermal systems may also be modelled by the control
systems described in this section; see, for example, [6, Section 3] or [3, Section 3]. Finally, and as mentioned
in Section 3.1, the mobility and impedance analogies are dual concepts, and so can be mapped between as
necessary. This is particularly important when seeking to combine graphs from different energy domains.

3.4 Merging graphs

Many engineering systems, including renewable energy devices, are comprised of subsystems from dis-
tinct energy domains. To connect such subsystems requires energy converting elements, called trans-
ducers. When modelling control systems as linear graphs, transducers are two-port elements which map
across/through variables in one domain (at one port) to either across/through variables or through/across
variables in another (at the second port). A transducer is conventionally called a transformer when the
analogy between variables is preserved, and a gyrator otherwise. Of course, a given transducer acts as
either a transformer or gyrator depending on the analogies chosen in each energy domain.

Transducers are covered in depth in [3, Section 6] and [6, Chapters 5, 8 and 9], as well as throughout
the text [5] for the coupling of electrical and mechanical systems. For brevity, we simply recall from [3,
Section 6.2] that an ideal transducer is a lossless (or energy routing), linear, static two-port element, so
has constitutive equation of the form (

A2

T2

)
= G

(
A1

T1

)
, (3.2)

for across/through variable pairs (Ai, Ti), and where the 2× 2 matrix G is of the form

G =

(
−κ−1 0
0 κ

)
or

(
0 −κ−1

κ 0

)
κ > 0 ,

for transformers and gyrators, respectively.

We give an example, based on [3, Figure 6.3(b), p. 172].

Example 3.2. A gear train (two connected cogwheels) is a transformer/gyrator which connects one rota-
tional mechanical system to another. Let ωk and Tk denote the angular velocity and torque of the k-th
cogwheel, respectively, for k = 1, 2. Suppose that the first and second cogwheel have n1 and n2 teeth,
respectively, so that γ := n1/n2 > 0 denotes the gear ratio. Then the ideal gear equations are

ω2 = −ω1/γ and T2 = γT1 , (3.3)
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(note minus sign as cogwheels rotate in opposite directions) which may also expressed as a transformer/gyrator
equation (

ω2

T2

)
=

(
−γ−1 0
0 γ

)(
ω1

T1

)
or

(
0 −γ−1

γ 0

)(
T1

ω1

)
,

depending on the choice of across and through variables.

Presently, our aim is to use transducers to merge multiple subgraphs into a single graph, so that the
energy-balance method is applicable. We do this as follows. We add an external edge to each graph to be
merged, representing the through and across variables which enter the two ports of the transducer. The
transducer equation (3.2) gives an algebraic relationship between the variables on the transducer edges.
By appropriately rescaling the variables in one of the graphs, the variables on the two transformer edges
become equal. The two graphs may then simply be connected at the nodes of the transformer edges, and
these edges omitted. Importantly, when a transducer is a gyrator (so that an across variable is proportional
to a through variable in a given energy domain), then the dual analogies need to be used between the two
subgraphs, so as to obtain a consistent set of across/through edge functions for the whole graph.

Example 3.3. Consider two rotating shafts, labelled one and two, both with damping and inertia. The first
and second shafts are subject to an external and control torque, respectively. The shafts are connected
by an ideal gear train. Figure 3.2a shows the graphs of both shafts (separately, before connection) under
the mobility analogy, so that angular velocity differences are across variables and torques are through
variables. The d and a edges denote dissipator (damping) and accumulator (inertia) elements. The dashed
edges marked yi are transformer edges.

Before merging the graphs, the through and across variables are denoted

Ã1 =

Ae

Ad1

Aa1

 , T̃1 =

 Te

Td1

Ta1

 , Ã2 =

Ad2

Aa2

Au

 , T̃2 =

Td1

Ta1

Tu

 .

We let (Ayi
, Tyi

) denote the across and through variables of the transformer edges. Observe that from the
across equations we obtain

Ayi = Adi = Aai =: ωi, i = 1, 2 ,

the angular velocity of the i-th shaft, and the through equations give

Tx + Tdi
+ Tai + Tyi

= 0, i = e, u ,

the sum of the torques on the i-th shaft.

In light of the gear equations (3.3), by defining new across and through variables (A2, T2) as

A2 := −γÃ2 and T2 := T̃2/γ ,

it follows that Ay2
= Ay1

and Ty2
= Ty1

. Therefore, the subgraphs may be merged by removing the
transformer edges and connecting the two subgraphs at the transformer nodes. The merged graph is
shown in Figure 3.2b. For simplicity, we have not changed the edge labels in the merged graph, but we
comment that the constants in the elements of rescaled subgraphs also need to be rescaled.

We comment that transducers may be modelled to include energy storage or energy dissipation (such
as a gear train having stiffness and damping) by including edges in the corresponding linear graph with
accumulator or dissipator elements.

4 The energy-balance method for a two-source optimal control
problem

Here we describe the energy-balance method for a two-source optimal control problem, which includes
numerous renewable energy applications. In essence, we generalise the basic idea from Section 2 to control
systems specified in terms of graphs and across/through edge functions from Section 3. The method is
illustrated in a number of renewable energy settings across Sections 5–7.

We make the following assumptions:
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Figure 3.2: Two rotating shafts connected by gear-train under mobility analogy. Dashed node is ground.
(a) Separate graphs with dashed transformer edges (b) Merged graphs.

� A control system (CS) is specified by a planar graph, with across edge function A and through edge
function T , as in Section 3.

� There are precisely two sources in our graph. One of these is external, and we denote those edge
variables by Ae and Te. The other is the control, and we denote those edge variables by Au and Tu.
We assume that the sources have a vertex in common, chosen to be the ground vertex.

� There is a graph energy function E, which is equal to the sum of the energy functions Ek corres-
ponding to each accumulator edge.

� An optimization time interval [t0, t1] is given, and the objective is to maximize

E(t1)− E(t0) +

∫ t1

t0

AuTu dt , (4.1)

subject to the control system (CS). Here E(t0) and E(t1) denote the energy in the system at the

initial and final time, respectively; and
∫ t1
t0

AuTu dt equals the energy extracted from the system
during the optimization interval.

The energy-balance equation is

E(t1)− E(t0) +

∫ t1

t0

AuTu dt = −
∫ t1

t0

AeTe dt−
∑

dissipator

∫ t1

t0

AkTk dt . (4.2)

Equation (4.2) generalises equality (2.5) from Section 2 to the general control system (CS). From a physical
perspective the above equality corresponds to conservation of energy, taking into account sources and
dissipation. A derivation of the energy-balance equation is given in Section 4.1. As with the problem
studied in Section 2, maximising the left-hand side of (4.2), which equals the desired quantity to be
maximised (4.1), is equivalent to maximising the right-hand side of (4.2) — our new performance objective.

In order to maximise the new performance objective we require a closed system of sufficiently many
equations, and potentially additional variables which do not appear in the new performance objective, to
determine all the variables which do appear. Equations may come from across/through equations from
the graph, or constitutive relationships on the edges. However, the fewer the variables and equations the
better, as this leads to a simpler optimisation problem to solve. Indeed, the advantage of the method is
that when enough equations are present, the variables which do not appear can be neglected from the new
optimal control problem, reducing its size. Once the new optimisation problem is solved, the remaining
variables are determined from the original constitutive relationships and the across/through equations.

Since the original problem corresponds to a control system specified by a graph — we employ a graph-
theoretic approach to maximise the new performance objective. The problem is as follows. We are given a
connected graph without self-loops, but probably with multiple edges. The new performance objective only
includes the dissipator edges and the external source edge and, therefore, we seek a connected subgraph
which includes these edges.

For which purpose, we give the original graph an initial colouring, in that we mark:
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� the external edge and all dissipator edges green ;

� the control edge red, and ;

� the accumulator edges black.

(The choice of colours is of course arbitrary, what matters is that we partition these edges into three
distinct groups.) By hypothesis, the control (red) and external (green) edges have a shared vertex; the
ground. The objective is to partition the graph into two connected subgraphs which share the ground
vertex and one other vertex (only) by marking each accumulator (black) edge as either red or green in
such a way that the set of green edges is as small as possible. The smallest possible set of green edges
comprises precisely the external edge and all the dissipator edges. However, in practice, some initially
black edges may need to be marked green so that the resulting subgraph is connected. Therefore, an
algorithm is required to colour each black (accumulator) edge in the initial colouring either green or red
to meet the above objective.

We then view the green subgraph as a new control system, and maximise the new performance object-
ive subject to this smaller control system. We call the process of using the energy-balance equation and
graph-splitting procedure as outlined above to solve the original optimal control problem, the energy-
balance method. Importantly, observe that the energy-balance method does not specify which optimization
technique is ultimately used for solving the subgraph optimization problem. We view this as a strength as
it means that the method is somewhat flexible and widely applicable. In certain cases, the new performance
criterion is subject to no dynamic (state) constraints, and so becomes a classical optimization problem,
which may be solved by calculus methods such as gradient descent and its variations, or nonlinear pro-
gramming, (see, for example [14, 15]). When dynamic constraints are present, then a so-called trajectory
optimization problem remains. Our preference for solving such problems is the Pontryagin Principle (see,
for instance [9, 10, 11]), but other methods are applicable here, as well as shooting or collocation direct
methods.

The mathematical derivation in Section 4.1 shows that the above problem may always be solved — although
with no a priori guarantee as to how many variables from the original problem may be omitted in the new
performance objective. It is beyond the scope, and not the purpose, of the present work to exhaustively
explore how to numerically compute such a partition of the original graph into two subgraphs, particularly
for “large” graphs. For control systems specified by “small” graphs, it is possible simply to identify the
desired subgraphs by inspection, as we do for the examples presented across Sections 5–7.

4.1 Mathematical derivations

Here we derive the energy-balance equation (4.2) and the graph-splitting procedure from the previous
section.

In order to derive (4.2), we require Tellegen’s Theorem [2]. In the present context, Tellegen’s Theorem
states that the across and through edge functions A, T : R → Rm are orthogonal (pointwise in time),
meaning:

A⊤T = 0 or, in components,
∑
k

AkTk = 0 . (4.3)

Integrating both sides of (4.3) from t = t0 to t = t1 yields that∑
k

∫ t1

t0

AkTk dt = 0 . (4.4)

Splitting the sum in equation (4.4) into different edge types, (4.4) may be rewritten as

0 =
∑
k

∫ t1

t0

AkTk dt

=
∑

accumulator

∫ t1

t0

AkTk dt+

∫ t1

t0

AuTu dt+

∫ t1

t0

AeTe dt+
∑

dissipator

∫ t1

t0

AkTk dt ,

which we may rearrange to give∑
accumulator

∫ t1

t0

AkTk dt+

∫ t1

t0

AuTu dt = −
∫ t1

t0

AeTe dt−
∑

dissipator

∫ t1

t0

AkTk dt . (4.5)
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For each accumulator edge we have Ėk = AkTk from (3.1), which we integrate between t = t0 and t = t1
to give

Ek(t1)− Ek(t0) =

∫ t1

t0

AkTk dt .

Summing over all accumulator edges yields that

E(t1)− E(t0) =
∑

accumulator

∫ t1

t0

AkTk dt . (4.6)

Substituting (4.6) into (4.5) gives (4.2), as required.

We now derive the graph-splitting procedure. Suppose that we have a connected (green) subgraph com-
prising, at least, the external edge and the dissipator edges. The control edge is not included in this
subgraph and, recall, the external edge and control edge share a vertex by hypothesis.

Assume that the subgraph has ns vertices and ms edges. We partition the across edge function A and
through edge function T into

A =

(
AS

AC

)
and T =

(
TS

TC

)
,

where AS and TS both have ms components. Then we have ms edge equations inherited from the original
graph. To obtain across equations, we partition the face matrix F as follows

F =

(
F11 F12

F21 F22

)
,

where the rows of F11 and F12 correspond to the green faces, and the columns correspond to the green
and red edges, respectively. Since the green subgraph is connected by hypothesis, it follows that F11 is a
compatibly-sized cycle submatrix1 and there are no green faces with red edges, so that F12 = 0. Therefore,
we obtain the decomposition of the across equations

FA = 0 =

(
F11 F12

F21 F22

)(
AS

AC

)
=

(
F11 0
F21 F22

)(
AS

AC

)
, (4.7)

and, consequently,
F11AS = 0 .

By Euler’s formula, we obtain ms − ns + 2 − 1 = ms − ns + 1 independent across equations, as we have
not included the unbounded face in the green subgraph.

Similarly, the through equations are

MT = 0 =

(
M11 M12

M21 M22

)(
TS

TC

)
,

but now M12 ̸= 0 in general and, in fact, we do not obtain through equations involving only through
variables in TS at vertices which are shared with the complement. Rather, if there are p shared vertices,
then there are ns − p through equations for the green subgraph which involve only the through variables
in TS — these are inherited from the original graph.

Hence, the across/through equations yield so far

(ms − ns + 1) + (ns − p) = ms + 1− p ,

independent equations for the green subgraph. We need ms − 1 through equations for TS (involving
only TS) in addition to the edge equations, since we treat one edge variable as the independent variable
for the new performance objective. This leads to p = 2. Note that since ground is one of the shared
vertices by hypothesis, the graph-splitting procedure must identify exactly one additional shared vertex —
doing so will generically give existence and uniqueness of solutions for the across function AS and through
function TS.

1In terms of the graph colouring described in Section 4, F11 corresponds to the “green faces”, that is, the faces with green
edges only. However, strictly, F11 is not a face matrix as it does not include a row for the unbounded face of the green
subgraph.
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4.2 The energy-balance method for a damped mass

We revisit the motivating damped mass example from Section 2, and now apply the energy-balance method
presented in Section 4. To do so requires expressing the damped mass example as a linear graph, from
Section 3. Whilst this level of abstraction may seem excessive for such a simple example, it becomes very
useful for the more complicated situations considered later.

We present the mobility analogy, from which the impedance analogy may be treated by duality. In the
mobility analogy, across variables are velocity differences and the through variables are forces. The damped
mass as a mechanical system diagram is shown in Figure 4.1. There are four “components”, which will
lead to a graph with four edges, corresponding to the mass, the damper, the external signal and the control
signal.

Fe d m Fu

y(t)

Figure 4.1: Mechanical system diagram of the damped mass

Denote the across- and through- edge functions by A and T , respectively. In accordance with the splitting
in Section 4.1, we order these as follows:

A :=


Ae

Ad

Au

Aa

 and T :=


Te

Td

Tu

Ta

 .

The corresponding graph is given in Figure 4.2a, with its initial colouring. The nodes are labelled in the
graph. By symmetry, which vertex is chosen as the ground is unimportant here. We label the external force,
damper (dissipator), mass (accumulator) and control force edges as one to four, respectively. Therefore,
the incidence matrix and face matrix are respectively given by

M :=

(
1 1 1 1
−1 −1 −1 −1

)
and F :=


1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

 . (4.8)

The faces are enumerated according to: left bounded face, middle bounded face, right bounded face, and
unbounded face. The solid lines in F have been inserted to illustrate the decomposition of F as in (4.7).

e d a u

II

I

1 2 3 4

(a)

e d a u

II

I

1 2 3 4

(b)

Figure 4.2: Damped mass graph under mobility analogy. Yellow nodes are shared and the dashed node is
ground. (a) Initial graph (b) Graph-splitting decomposition.

The across equation FA = 0 gives
Ae = Ad = Aa = Au , (4.9)
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essentially stating that all the velocity differences act on the same single object (the mass).

The through equation MT = 0 gives that

Te + Tu + Ta + Td = 0 , (4.10)

which, physically, is simply Newton’s third law.

The constitutive relationships for the across-accumulator and dissipator are, respectively,

mȦa = Ta and Ad =
1

d
Td . (4.11)

Therefore, with Te = −e, Tu = u, and Aa = y, invoking (4.9), (4.10), and (4.11) gives that

mẏ = mȦa = Ta = −(Te + Tu + Td) = −e− u− dy ,

which recovers (2.1).

At first sight, the six equations across (4.9), (4.10), and (4.11) may seem a cumbersome way of expressing
the simple equation (2.1). However, the structured nature of those six equations, encoded by the graph
in Figure 4.2a, has advantages which become more apparent in more complex situations. The right-hand
side of the energy balance equation (4.2) is given by

−
∫ t1

t0

AeTe +AdTd dt , (4.12)

which is also equal to the right-hand side of (2.5).

Here the graph-splitting procedure is trivial. To partition the initial graph into two connected subgraphs
(green edges and red edges) which share exactly two nodes, and where the green subgraph has as few
edges as possible, it suffices to colour the black accumulator edge red, shown in Figure 4.2b. Both the
subgraph (green edges) and its complement (red edges) have two edges, and share the only two vertices.
For completeness, we record that the across edge function, through edge function, and the cycle matrix
associated with green the subgraph are

AS =

(
Ae

Ad

)
, TS =

(
Te

Td

)
and FS =

(
1 −1

)
, (4.13)

respectively. Therefore, the across equation FSAS = 0 yields

Ae = Ad .

We also retain the second constitutive equation from (4.11). However, as described in Section 4.1, the
green subgraph inherits no through relationships from the original graph because the two (and so all the)
vertices of the subgraph are shared with its complement. Finally, the external edge variable Te = −e is
externally specified.

Thus, the energy-balance method reduces the current optimal control problem to maximising (4.12), in
terms of the four unknowns, Ae, Ad, Te and Td. One of these variables is specified, and one shall play the
role of the independent variable for the optimisation. This leaves two equations and two unknowns, which
generically gives existence and uniqueness of solutions.

From here, the maximisation procedure is bespoke to the example under consideration. Presently, it
is convenient to view Ae as the independent variable. In light of the across equation and constitutive
relationship in (4.11), we seek to minimise∫ t1

t0

−Aee+ dA2
e dt .

As before, this is achieving by pointwise minimising the integrand, to give Ae = e/(2d) = −Te/(2d), which
determines the other variables Ad and Td in the green subgraph. The remaining variables, those in the
red subgraph, are now determined from (4.9), (4.10), and (4.11).

Of course, the above argumentation gives us the same as we obtained, in a seemingly easier way, in (2.7).
However, as mentioned, the above graph-theoretic perspective provides a structured approach which gen-
eralizes to much more complex situations.
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5 Renewable energy application — solar

The remainder of the paper outlines the energy-balance method in the context of three different renewable
energy technologies: solar, wind and wave. We begin with photovoltaic solar energy.

5.1 Background and existing works

A solar photovoltaic (PV) system essentially converts variable in time sunlight into electric power of a
fixed frequency. The treatment of solar energy systems is now common in engineering textbooks, such
as [27, Chapter 6], and recent reviews of PV systems include [28] and [29]. The basic component of a PV
system is a PV cell, underpinned by the photovoltaic effect. PV cells are connected in series or parallel to
form a PV module (also called a panel), collections of which are called a PV array or farm. PV modules
or arrays generate a DC current which is transformed, via a PV inverter, and then may be connected to
a utility grid. The generic structure of a grid-connected PV system is shown in [28, Figure 1] or [29, Fig.
14], from which Figure 5.1 below is inspired.

Optional

PV
module

Input
filter

DC link
DC-DC
converter

DC/AC
inverter

To grid

Figure 5.1: Schematic of grid-connected PV system

We note that the input filter and DC/DC converter are marked as optional in Figure 5.1. However, it is
advantageous to individually control each solar module making up the array, and then this option is needed
as highlighted in [29, p.3128]. The objective is to maximize the total energy at the DC/AC interface. The
subsystem comprising the DC link and the DC/AC converter is then left to deal with converting this to
the desired frequency. We will concentrate on the subsystem comprising the PV module and the input
filter. The DC/DC converter is typically modelled as an ideal transformer (see, for example [30, equation
(31)]), and could easily be included in what follows.

PV systems are well-studied objects with a vast literature. The prevailing optimization method is so-called
Maximum Power Point Tracking (MPPT) with reviews including [31, 32, 33, 34, 35]. Roughly speaking, the
Maximum Power Point is the voltage (load) point at which the power output of a PV module (described by
the P-V characteristic) is maximised. MPPT then seeks to vary the voltage temporally so that the the MPP
is maintained. There are a range of MPPT algorithms, each with its advantages and disadvantages, such
as those described in [33, Section 3], and we refer the reader to the references listed for more information.
In Section 5.3 below we demonstrate how the MPPT problem naturally arises from the energy-balance
method. By way of other recent related literature, the papers [36, 37] explore, in different ways, the role
of the DC-DC converter in optimal energy conversion.

5.2 A mathematical model

Details of the mathematical modelling of PV modules may be found in [38]. Here we make the further
simplifying assumption that the PV module comprises a single PV cell — more complicated arrangements
will be considered in later work. Furthermore, we do not consider the effects of temperature or partial
shading, the latter of which is a current avenue of PV research; see, for example [39, 40]. A simple
equivalent circuit model for an ideal PV cell comprises an ideal current source in parallel with an ideal (or
Shockley) diode. However, more realistic models for PV cells include losses within the cell are typically
modelled by including shunt and series resistances; see, for example [38, Figure 4] or [27, Figure 5.14, p.
151]. Figure 5.2 contains an electrical circuit model for a PV solar cell connected to a RLC filter, and the
ideal PV cell is also outlined.

With reference to Figure 5.2, the current source is an external source, the diode is modelled as a nonlinear
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Figure 5.2: Electrical circuit model for PV solar cell (blue box) and RLC filter (red box). The components
inside the black box comprise the ideal PV cell.

dissipator given by V = R1(I) where

R1(I) := V0 ln

(
1 +

I

I0

)
or, equivalently, I = I0 exp

( V

V0
− 1

)
,

for positive constants V0, I0. Further, the shunt resistance R2, series resistance R3, and filter resistance R4

are all modelled as linear dissipators. The control is the voltage across the capacitor; this is modelled as a
voltage source, though for our purposes it does not really matter which of the three possible sources it is.

The corresponding linear graph is given in Figure 5.3a with its initial colouring. Figures 5.3b and 5.3c
show the graph-splitting decomposition (with colourings) for the setting of an LC filter and RLC filter,
respectively. As an electrical circuit example, the across and through variables in this example are voltage
and current, respectively and, therefore, we use the notation Ax = Vx and Ty = Iy throughout.

R4

u

C

R2eR1

R3

L

III

III IV

(a)

u

C

R2eR1

R3

L

III

III IV

(b)

R4

u

C

R2eR1

R3

L

III

III IV

(c)

Figure 5.3: PV RLC circuit model as graph. Yellow nodes are shared and the dashed node is ground. (a)
Initial colouring of graph with RLC filter (b) Subgraph and its complement for the LC filter (c) Subgraph
and its complement for the RLC filter.

In the following subsections we apply the energy-balance method to the PV solar cell (and RLC filter)
models considered.

5.3 Maximum Power Point Tracking for an ideal PV solar cell

For the ideal PV cell depicted in Figure 5.2, elementary circuit modelling leads to the following relationship

Iu = Ie − I0 exp
(Vu

V0
− 1

)
, (5.1)

so that the power output of the ideal solar PV cell is

P = IuVu =
(
Ie − I0 exp

(Vu

V0
− 1

))
Vu .

Here I = Iu and V = Vu are the load current and voltage, respectively. For fixed Ie, the graphs of
these two equations are called the I-V characteristic and P -V characteristic of the ideal PV solar cell,
respectively, and illustrative graphs are plotted in Figure 5.4a. It is readily seen that P = P (Vu) has a
unique maximum, and this point is called the Maximum Power Point (MPP) and denoted VMPP . Since
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Figure 5.4: (a) I-V characteristic (solid) and P -V characteristic (dashed) of the ideal PV solar cell. The
maximum power point (MPP) is shown. (b) Linear graph for the ideal PV solar cell. The subgraph and
its complement are shown. Yellow nodes are shared and the dashed node is ground.

the P -V characteristic varies with time as the current source Ie varies, the MPP changes over time, that
is, VMPP = VMPP (t). MPPT methods essentially specify how to determine VMPP (t) temporally.

We show how the MPPT problem arises from the energy-balance method. Arguably, as with the damped
mass considered in Sections 2 and 4.2, this level of abstraction may seem excessive for such a simple
example, but we argue is extremely useful once more involved models are considered. The linear graph of
the ideal PV cell is shown in Figure 5.4b, with the directions of the edges chosen to be consistent with the
signs used in (5.1). In this problem there are six variables

Ie, Ve, IR1 , VR1 , Vu, Iu , (5.2)

(where IR1 , VR1 are the current voltage pair for the diode), a single through equation

Iu = Ie − IR1
(from either node) ,

two across equations

VR1
= −Ve and VR1

= Vu , (from the e–R1 and R1–u faces) , (5.3)

and the constitutive relationship

VR1
= R1(IR1

) = V0 ln

(
1 +

IR1

I0

)
or, equivalently, IR1

= I0

(
exp

(VR1

V0

)
− 1

)
. (5.4)

Presently, the energy-balance equation (4.2) reads∫ t1

t0

IuVu dt = −
∫ t1

t0

IeVe + IR1
VR1

dt , (5.5)

as there are no energy storage elements (accumulators) here. The desired aim of maximising the left-
hand side of (5.5) is equivalent to maximising the right-hand side, which depends on four variables and is
subject to no dynamic constraints. Hence, maximisation is achieved by pointwise maximisation (in time)
of the integrand. Of the the four variables, one is externally specified and one shall play the role of the
independent variable used for the optimisation. Therefore, we require two equations relating these four
variables. Whilst it is clear in this simple example which equations these are, with reference to the graph-
splitting procedure, observe that the green subgraph inherits no through relationships from the original
graph because the two (and so all the) nodes of the subgraph are shared with its complement. However,
the first across equation in (5.3) and the constitutive relationship (5.4) are inherited by the green subgraph,
yielding the two required equations. To maximise the integrand on the right-hand side of (5.5), we first
rewrite it in terms of the variable VR1

and external source Ie as

VR1

(
Ie − I0

(
exp

(VR1

V0

)
− 1

))
.

Maximising the above function gives the MPP, as expected.
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5.4 Solar cell with a LC filter

Here we consider the arrangement in Figure 5.3b. The right-hand side of the energy-balance equation (4.2)
equals

−
∫ t1

t0

VeIe dt−
∑

dissipator

∫ t1

t0

VkIk dt = −
∫ t1

t0

VeIe + VR1
IR1

+ VR2
IR2

+ VR3
IR3

dt .

Hence, the objective is to minimize∫ t1

t0

VeIe + VR1
IR1

+ VR2
IR2

+ VR3
IR3

dt ,

subject to the algebraic constitutive relationships

VR1 = V0 ln

(
1 +

IR1

I0

)
, VR2

= R2IR2
,

VR3 = R3IR3 ,

 (from the green dissipator edges) ,

the through equation
IR1 + IR2 + Ie = IR3 (from the green node (III)) ,

the across equations
Ve = VR1

= VR2
(from the R1–e and R2–e faces) ,

and we recall that Ie (from the green edge e) is externally given. The optimization involves eight variables,
one of which is externally specified and one of which shall play the role of the independent variable in
the optimisation. This leaves six unknowns and six equations above, which generically gives existence and
uniqueness of solutions.

Since the optimal control problem associated with the energy-balance method only involves algebraic
equations, it can be solved by pointwise minimization of the integrand. It is convenient to choose IR1

as
the independent variable. We use the algebraic equations to write the integrand in terms of IR1

and the
given Ie as (

R2 +R3

R2
V0 ln

(
1 +

IR1

I0

)
+R3Ie +R3IR1

)(
1

R2
V0 ln

(
1 +

IR1

I0

)
+ Ie + IR1

)
.

From setting the derivative of the integrand with respect to IR1 equal to zero, we obtain(R2 +R3

R2
V0 ln

(
1 +

IR1

I0

)
+R3Ie+R3IR1

)( V0

R2(I0 + IR1
)
+ 1

)
( (R2 +R3)V0

R2(I0 + IR1)
+R3

)( 1

R2
V0 ln

(
1 +

IR1

I0

)
+ Ie + IR1

)
= 0 , (5.6)

as a necessary condition for an optimum. Developing equation (5.6) further analytically seems intractable,
and numerical solutions will be required. Note that, including (5.6) we now have seven equations in seven
variables.

Once the optimal control problem for the green subgraph is solved, we use the remaining equations to
determine the remaining variables. These equations are

LṪL = VL, CȦC = IC , VR4
= R4IR4

, IR3
= IL, Vu = VR4

= VC ,

and
Vu + Ve + VR3

+ VL = 0, IL = IR4
+ IC + Iu .

5.5 Solar cell with a RLC filter

Here we consider the arrangement in Figure 5.3c. The right-hand side of the energy-balance equation (4.2)
equals

−
∫ t1

t0

VeIe dt−
∑

dissipator

∫ t1

t0

VkIk dt = −
∫ t1

t0

VeIe + VR1IR1 + VR2IR2 + VR3IR3 + VR4IR4 dt .
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Hence, we seek to minimize∫ t1

t0

VeIe + VR1
IR1

+ VR2
IR2

+ VR3
IR3

+ VR4
IR4

dt ,

subject to the algebraic and differential constitutive relationships

VR1
= V0 ln

(
1 +

IR1

I0

)
, VR2

= R2IR2

VR3
= R3IR3

VR4
= R4IR4

LṪL = VL,

 (from the green edges) ,

the through equations

IR1 + IR2 + Ie = IR3 , IR3 = IL (from the green vertices (III) and (IV)) ,

and the across equations

Ve = VR1
= VR2

, VR4
+ Ve + VR3

+ VL = 0 (from the three green faces) .

We recall that Ie is externally given, and one variable shall play the role of an independent variable for
the optimisation. Consequently, we are left with ten unknowns and ten equations, which generically gives
existence and uniqueness of solutions. By way of commentary, observe from Figure 5.3c that in order to
construct a connected subgraph which contains all the dissipator edges, particularly R4, the accumulator
edge with across variable VL and through variable IL has been included. These variables do not appear in
the right-hand side of (4.2), but are required to ensure that enough equations are specified to (uniquely)
determine the variables which do appear.

In contrast to the situation of the LC filter, the current optimal control problem is subject to a single
dynamic equation, LİL = VL. Therefore, solving this optimal control problem requires the Pontryagin
Principle, or some other optimal control method. We note that the natural choice for control variable
is IR1

and that the Hamiltonian is non-affine in this new control variable, which is advantageous from a
numerical perspective.

Once the optimal control problem for the subgraph is solved, we use the remaining equations to determine
the remaining variables, namely, VC , IC , Vu and Iu. These equations are

CȦC = IC , Vu = VR4
= VC , IL = IR4

+ IC + Iu .

6 Renewable energy application — wind

6.1 Background and existing works

A wind turbine system essentially converts variable in time aerodynamic power into electric power of a
fixed frequency. Nowadays wind energy is commonly used globally. It is both a growing source of renewable
energy and, in 2021, generated more energy than all other non-hydro renewable sources combined [41]. The
mathematical modelling of wind turbines is addressed in the works [42, 43], and reviews of wind energy
technology and control include [44, 45, 46, 47]. We refer the reader to these papers and, for example,
the texts [48] or [27, Chapter 2] for thorough treatments. Research into wind energy technology is multi-
faceted, with two current lines of enquiry including improving the monitoring and maintenance of wind
turbine blades [49, 50], and vibration reduction control of wind turbine towers [51].

The operation of a wind turbine is as in Figure 6.1a: both at low wind speed and at very high wind speed
the blades do not move; in “region 3” the power is held constant; it is “region 2” which is of interest to us
— this is where the turbine operates in an energy capture maximizing fashion.

The main mechanical components of a horizontal-axis wind turbine are illustrated in Figure 6.1b. Attached
to the rotor is the low-speed shaft which is connected via a gear to the high-speed shaft. The high-speed
shaft is connected to a generator. The control variable is the torque applied to the high-speed shaft. For
simplicity, we assume that the pitch is constant throughout, so that we ignore controlling the pitch via
the yaw motor. A wind turbine also contains an electrical subsystem (see, for instance [52, Figure 4]), the
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Figure 6.1: Wind turbine figures (a) Schematic graph of regions of operation. Dashed line is wind power
and solid line is turbine power. Figure is based on [44, Figure 3]. (b) Diagram of horizontal axis wind
turbine. Figure is in the public domain and is courtesy of U.S. Department of Energy.

role of which is to convert the mechanical energy into electrical energy of a desired frequency. Presently,
the objective is to maximize the energy at the mechanical–electrical interface. We assume that the low-
speed shaft, high-speed shaft and gear all have damping and inertia, and, further, that we can control the
electromechanical torque directly. In the model in [52] this is indirectly controlled through the electrical
subsystem; this can be incorporated easily enough into the present framework.

6.2 A mathematical model

For a graph-theoretic model of the mechanical subsystem of a wind turbine, we choose (scaled) angular
velocity differences as the across variables and (scaled) torques as the through variables. Specifically, we
scale the across/through variables for the high-speed shaft as in Example 3.3 to obtain a single linear
graph. Recall that the coefficients in the edge equations related to the high-speed shaft are then scaled by
the square of the gear ratio compared to what they would have been had we taken velocity and torque as
the variables. Since all the elements are linear, we simply relabel the relevant coefficients.

The external source is a mixed source which, recall, must be specified in terms of two auxiliary/external
variables. The across variable Ae is the angular velocity of the blades and the through variable Te is the
aerodynamic torque acting on the blades which are related by

Te = −Cq(λ)
ρar

2
v2, λ =

Aer

v
, Cq(λ) :=

Cp(λ)

λ
, (6.1)

where v is the wind speed, λ is the tip-speed ratio, ρ is the air density, r is the radius of the rotor blades,
and a = πr2 is the area swept by the turbine blades. The function Cp is referred to as the power coefficient,
it takes positive values and has a unique maximum. It is determined experimentally — a sample curve is
contained in [44, Figure 3]. The variables Ae and Te are uniquely determined by v and λ via (6.1), and we
view these latter two as the two independent variables in the mixed source.

The three energy-dissipating elements are all modelled as linear resistors. The control variable is the torque
applied to the high-speed shaft, which is a through source. This gives the graph in Figures 6.2c and a
description of the edges appears in Table 6.1.

If, in fact, it is assumed that there is no stiffness and damping in the gear (so that L = 0 and R3 = 0),
then the above is what is referred to as a one-inertia model of a gear; see, for example [44, Equation (7)].
This is the situation considered in Example 3.3. When there is stiffness in the gear, and possibly damping,
then the above model is referred to as a two-inertia model of a gear; see, for example [53] and [30, Equation
(16)] for multiple-inertia models.

From a linear graph modelling perspective, the difference between the one- and two-inertia models is that
the L and R3 edges are absent in the former. The initial graphs and graph-splitting decompositions of the
one- and two-inertia models described are shown in Figure 6.2. In the two-inertia model the accumulator
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Edge label Description Element type

e angular velocity/torque of rotor blades mixed source

R1 low-speed shaft damping linear dissipator

R2 high-speed shaft damping linear dissipator

R3 gear damping linear dissipator

C1 low-speed shaft inertia across accumulator

C2 high-speed shaft inertia across accumulator

L gear stiffness through accumulator

u control torque applied to high-speed shaft through source

Table 6.1: Edges for linear graph of wind turbine in Figure 6.2c.

edges L and C3 are required to belong to the green subgraph rather than the red subgraph, as otherwise
the green and red subgraphs would share three nodes.

C1

C2

u

e
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I II
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u
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I
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Figure 6.2: Wind turbine models as linear graphs. Yellow nodes are shared and the dashed node is
ground. (a) and (c) Initial graphs for one- and two-inertia models, respectively. (b) and (d) Graph-
splitting decompositions for one- and two-inertia models, respectively.

In the following subsections we apply the energy-balance method for the two wind turbine models con-
sidered.

6.3 One-inertia wind turbine model

Here we consider the arrangement in Figure 6.2a. At face value, we have an optimal control problem in
the 12 variables

Ae, Te, Au, Tu, AR1
, TR1

, AR2
, TR2

, AC1
, TC1

, AC2
, TC2

. (6.2)

However, here the right-hand side of the energy-balance equation (4.2) equals

−
∫ t1

t0

AeTe dt−
∑

dissipator

∫ t1

t0

AkTk dt = −
∫ t1

t0

AeTe +AR1
TR1

+AR2
TR2

dt .
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Therefore, the objective is to minimize∫ t1

t0

AeTe +AR1
TR1

+AR2
TR2

dt , (6.3)

subject to the algebraic constitutive relationships

AR1
= R1TR1

, AR2
= R2TR2

(from the two green dissipator edges) ,

the across equations
AR1

= Ae = AR2
, (from two green faces) ,

and we recall that the external edge variables Ae and Te are determined in (6.1) by the external variable,
the wind speed v, and the auxiliary variable, the tip-speed ratio λ. The green subgraph inherits no through
relationships from the original graph because the two (and so all the) nodes of the subgraph are shared
with its complement. As usual, one variable in the integrand (6.3) will play the role of the independent
variable for the optimisation.

Thus, the energy-balance method reduces the original optimal control problem to another in terms of six
variables

v, λ,AR1
, TR1

, AR2
, TR2

related by four equations, and of which the first is externally given and one variable is chosen to be
independent. Thus, existence and uniqueness of solutions is generically guaranteed.

Since the optimal control problem obtained by the energy-balance method only involves algebraic equations,
it can be solved by pointwise minimization of the integrand. For which purpose, we first rewrite the
integrand in terms of Ae. We use the algebraic equations to write the integrand in terms of Ae as

AeTe +AR1TR1 +AR2TR2 = AeTe +A2
e

( 1

R1
+

1

R2

)
.

It is now convenient to switch to the tip-speed ratio λ as independent variable. Invoking (6.1), the integrand
is then equal to

− Cp(λ)
ρa

2
v3 +

λ2v2

r2

( 1

R1
+

1

R2

)
, (6.4)

which we seek to minimise as a function of λ. In the absence of an analytic expression for Cp, this needs
to be done numerically, and gives rise to some λ† > 0 such that

A†
e(t) =

λ†

r
v(t) ,

that is, the optimal speed of the low-speed shaft is proportional to the wind speed with proportionality
constant λ†/r.

However, if the dissipators are absent, then (6.4) simplifies to −Cp(λ)ρav
3/2, and minimizing this is

equivalent to maximizing the power coefficient Cp. In pariticular, we recover the same energy maximising
control as the Standard Variable-Speed Control Law in [44, pp.73–74], although here from the energy-
balance method. Let λ∗ denote the unique point where Cp is maximized. Then, still in the absence of
dissipators,

A∗
e(t) =

λ∗

r
v(t),

It follows from the shape of Cp that λ† < λ∗, and so the optimal speed of the low-speed shaft is still pro-
portional to the wind speed, but with a larger proportionality constant than in the presence of dissipators.

Once the optimal control problem for the green subgraph is solved, we use the remaining six equations to
determine the remaining six variables. These equations are

C1ȦC1
= TC1

, C2ȦC2
= TC2

,

AC1
= AC2

= Au = Ae, Te + TC1
+ TR1

= −(Tu + TC2
+ TR2

) .
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6.4 Two-inertia wind turbine model

Here we consider the arrangement in Figure 6.2c. We have an optimal control problem in 16 variables —
12 from (6.2), and

AR3
, TR3

, AL, TL . (6.5)

Here, the right-hand side of the energy-balance equation (4.2) equals

−
∫ t1

t0

AeTe dt−
∑

dissipator

∫ t1

t0

AkTk dt = −
∫ t1

t0

AeTe +AR1
TR1

+AR2
TR2

+AR3
TR3

dt .

Therefore, the objective is to minimize∫ t1

t0

AeTe +AR1
TR1

+AR2
TR2

+AR3
TR3

dt ,

subject to the constitutive relationships

AR1
= R1TR1

, AR2
= R2TR2

, AR3
= R3TR3

,

C1ȦC1
= TC1

, LṪL = AL,

}
(from the green dissipator/accumulator edges) ,

the through equation

TR1
+ TC1

+ Te = TR3
+ TL (from the single green vertex) ,

and the across equations

Ae = AR1
= AC1

, AR3
= AL,

AR1
+AR2

+AR3
= 0 ,

}
(from the four green faces) ,

and we recall that Te and Ae are determined by v and λ via (6.1).

The optimal control problem obtained by the energy-balance method has two state variables, AC1
and TL,

and can be solved using the Pontryagin Principle, or some other optimal control method. We note that
the natural choice for the control variable is AL. We can write the integrand in terms of this new control
and the state as

−Cp

(
AC1r

v

)
ρav3

2
+

A2
C1

R1
+

(AC1
+AL)

2

R2
+

A2
L

R3
.

The differential equation constraints are

C1ȦC1
=

AL

R3
+ TL − AC1

R1
+ Cq

(
AC1

r

v

)
ρarv2

2
, LṪL = AL .

Once the optimal control problem for the green subgraph is solved, we use the remaining four equations
to determine the remaining four variables (AC2

, TC2
, Au and Tu). These equations are

C2ȦC2 = TC2 , Au = AR2 = AC2 , Te + TC1 + TR1 = Tu + TC2 + TR2 .

7 Renewable energy application — wave

7.1 Background and existing works

There are a multitude of wave energy converter (WEC) technologies, including point absorber, atten-
uator, terminator and overtopping (offshore) devices, as well as oscillating wave surge converters (typ-
ically nearshore) and oscillating water column (typically shoreline). These technologies are reviewed
across [8, 54, 55, 56], with the works [57], [58] and [59] focussing on oscillating water columns, point
absorbers, and power take-off systems, respectively. The control of WECs has garned much interest, and
reviews specifically of the control of WECs include [60, 61, 62]. Recent perspectives and a nice summary
of the research ‘landscape’, appear in [8]. Arguably, the established text in the field is that of Falnes [17],
with more recent text [63]. There is broad consensus from researchers in the field that there is vast, as yet
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mostly untapped, potential for wave energy globally yet, despite now considerable research over the past
three decades, “wave energy has not yet reached commercial viability” [8, Abstract] and “In comparison
to other sources of renewable energy, wave energy is still too expensive.” [56, Section 4]. To illustrate the
range of ideas being considered, the paper [64] reported nearly 150 WECs in development in 2013.

Roughly speaking, the hydrodynamic modelling and subsequent control of wave energy converters under
linear dynamics is well understood [65] (even if still not straightforward to implement practically), but wave
energy particularly is an area where consideration of nonlinear effects is important, as discussed in [66]. We
reemphasise that the energy-balance method is applicable in a variety of nonlinear settings. In addition
to the above researches, other current lines of enquiry include: real time prediction of incoming wave
forces [67]; the exploration of hybrid wave-wind renewable energy technologies [68], seeking to leverage
existing infrastructure of offshore wind, and; the grid integration challenges associated with renewable
wave energy [69].

7.2 A mathematical model

The energy-balance method has already been illustrated in the context of wave energy, as the damped mass
considered in Section 2 is a highly simplistic model of a point absorber moving in the heave direction only.
As mentioned there, the known formulae in (2.7) from the WEC literature are almost trivially obtained
by the energy-balance method, and do not make assumptions on the nature of the excitation force e.

As a different example, here we apply the energy-balance method to a simplified WEC model comprising
a hull and a gyroscope. The hull oscillates owing to a force exerted by waves. The hull is also affected
by a radiation system — the force on the hull caused by the radiated waves from the hull. The resulting
energy is transferred to a gyroscope from where it is converted into electrical energy. For simplicity, the
parts of the system downstream from the gyroscope are ignored, but those could be easily incorporated
into the present framework. This device is called an Inertial Sea Wave Energy Converter (ISWEC). We
refer the reader to [70], and the references therein, for information on the history and academic research
on ISWECs. We comment that the same model has been studied for gyrostabilization of ships; see, for
example [71].

We first write down the equations of motion before considering a linear graph.

Denote the angular velocity of the hull by ωh and its moment of inertia by Jh. The hull experiences a
stiffness torque Fkh

and nonlinear damping torque Fdh
which satisfy

Ḟkh
= khωh and Fdh

= dh|ωh|ωh .

Here kh and dh are positive constants.

There is a torque arising from the radiation system given by CRz, where z is the state of the radiation
system which is modelled by a linear, finite-dimensional state space control system

ż = ARz +BRωh ,

whose transfer function (from ωh to CRz) is assumed to be positive real. Denoting the angular position of
the gyroscope by yg and its angular velocity by ωg, which are related by the differential equation ẏg = ωg,
there is a torque imposed on the hull given by ηωg cos(yg) for some positive constant η. Finally, the
incoming waves impose a torque Fe on the hull. Therefore, the dynamics of the hull are given by

Jhω̇h + dh|ωh|ωh + Fkh
− ηωg cos(yg) + CRz + Fe = 0, Ḟkh

= khωh . (7.1a)

The gyroscope has moment of inertia Jg, stiffness satisfying Ḟkg
= kgωg cos(yg) (consistent with Fkg

=
kg sin(yg)), damping dgωg, a torque imposed by the hull of−ηωh cos(yg) and a control torque Fu. Therefore,
the dynamics of the gyroscope are given by

Jgω̇g + dgωg + Fkg
+ ηωh cos(yg) + Fu = 0, Ḟkg

= kgωg cos(yg), ẏg = ωg . (7.1b)

Our aim is to express the coupled hull and gyroscope control system as a linear graph and illustrate
how the energy-balance method applies. As we shall see, for a graph-theoretic treatment it is important
to distinguish between whether coupling between hull and gyroscope is linearised for small yg, meaning
that cos(yg) is replaced by one, or not. Unsurprisingly, the linearised coupling case is more straightforward,
and we consider it first.

24



7.3 Linearised coupling

If the variable yg is assumed small, so that cos(yg) is replaced by one, then the variable yg may be omitted
from (7.1) and the coupling between the hull and gyroscope is via a transducer, as(

Fhull→gyro

Fgyro→hull

)
=

(
0 −η
η 0

)(
ωh

ωg

)
= G

(
ωh

ωg

)
.

We initially give separate graphs for the hull and the gyroscope. Since the transducer is a gyrator, we need
to choose dual analogies in order to merge the graphs, as discussed in Section 3.4. For the hull system,
we choose angular velocity differences as the across variables and torques as the through variables — the
mobility analogy. This gives the graph in Figures 7.1a and a description of the edges appears in Table 7.1.
Consequently, we use the impedance analogy for the gyroscope, so that angular velocity differences are
through variables and torques are across variables. This gives the linear graph for the gyroscope system
shown in Figure 7.1b with a description of edges given in Table 7.2. By scaling the variables of one of the
graphs by η, we can combine the two graphs into one, as depicted in Figure 7.1c. For simplicity for the
remainder of the example, we set η = 1.
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(b) Gyroscope graph
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(c) Merged graph
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(e) Subgraphs

Figure 7.1: Linear graphs for wave energy converter with linearised coupling. Dashed green edges are
absent when corresponding damping term is omitted, and present otherwise. Yellow nodes are shared and
the dashed node is ground. (a) Hull graph (with mobility analogy) (b) Gyroscope graph (with impedance
analogy) (c) Merged wave energy converter graph. (d) and (e) Subgraph and complement for undamped
and damped gyroscope, respectively.

Edge label Description Element type

e torque from the incoming waves through source

R1 hull damping nonlinear dissipator

R2 damping from radiation system dynamic dissipator

C1 hull inertia across accumulator

L1 hull stiffness though accumulator

gyro torque imposed on the hull by the gyroscope one-port of transducer

Table 7.1: Edges for linear graph of hull system in Figure 7.1a.
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Edge label Description Element type

u control torque across source

R3 gyroscope damping linear dissipator

L2 gyroscope inertia through accumulator

C2 gyroscope stiffness across accumulator

hull torque imposed on the gyroscope by the hull one-port of transducer

Table 7.2: Edges for linear graph of gyroscope system in Figure 7.1b.

In the following subsections we apply the energy-balance method for versions of the wave energy converter
model considered.

7.3.1 Only the hull damped

Assume first that the radiation system is absent and the gyroscope is undamped. Consequently, the R2

and R3 edges are absent from the graph in Figure 7.1c and instead we obtain the subgraph appearing in
Figure 7.1d. The energy-balance method gives that the objective is to minimize∫ t1

t0

AeTe +AR1
TR1

dt,

subject to the constitutive relationship (representing the nonlinear damping of the hull)

TR1
= dh|AR1

|AR1
=: q1(AR1

) (from the green dissipator edge) , (7.2)

the across equation
Ae = AR1

(from the single green face) ,

and we recall that Te is externally given.

As with some of the earlier examples considered, since the optimal control problem obtained by the
energy-balance method only involves algebraic equations, it can be solved by pointwise minimization of
the integrand. For which purpose, a convenient choice for the new independent variable is AR1

, the angular
velocity of the hull. We can write the integrand in terms of this variable and the given Te, the torque
imposed by the incoming waves, as

AeTe +AR1
TR1

= AR1

(
Te + q1(AR1

)
)
.

Differentiating the above and setting equal to zero, a necessary condition for a minimiser is that AR1

and Te satisfy:
0 = Te + q1(AR1

) +AR1
q′1(AR1

) =: Te + r1(AR1
) .

Inverting the function r1 leads to the angular velocity of the hull as a function of the torque of the incoming
wave. A straightforward calculation shows that r1(x) = 3q1(x), so that

Te = −3q1(AR1
) = −3dh|AR1

|AR1
,

which inverts to give

AR1
= −sign(Te)

√
|Te|
3dh

.

As usual, once the optimal control problem for the green subgraph is solved, we use the remaining equations
to determine the remaining variables.

7.3.2 Including the radiation system

Including the radiation system corresponds to incorporating the R2 edge in Figures 7.1c and 7.1d. The
energy-balance method now gives that the objective is to minimize∫ t1

t0

AeTe + TR1AR1 + TR2AR2 dt .
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We have the across equations

Ae = AR1
= AR2

(from the two green faces) ,

and the nonlinear damping of the hull (7.2), as before. The term TR2 is given in terms of AR1 by the
radiation system

ż = ARz +BRAR1
, TR2

= CRz .

Therefore, we have an optimal control problem with input AR1
and dynamic state variable z. Once this

is solved, the other variables can be determined from the remaining equations.

7.3.3 Including all damping

When we assume that both the hull and the gyroscope are damped, then we obtain the subgraph in
Figure 7.1e. Observe that the C1 and L1 edges, corresponding to the stiffness and inertia of the hull,
respectively, must be included in the green subgraph in order that the green and red subgraphs share only
two vertices. The energy balance method proceeds as before. In light of the green subgraph in Figure 7.1e,
the new optimal control problem is subject to one through equation and four across equations (corres-
ponding to the one green vertex and four green faces, respectively), as well as two algebraic constitutive
relationships from the dissipator edges R1 and R3, the dynamic dissipator equation from the radiation
system, edge R2, and two dynamic constitutive relationships from the accumulator edges L1 and C1.

7.4 Nonlinear coupling

If the coupling is nonlinear, then the term cos(yg) appears in (7.1), particularly in the coupling terms
between hull and gyroscope, where yg is the position of the gyroscope. Therefore, to merge the hull and
gyroscope graphs a nonlinear, dynamic gyrator is required, of the form(

Fhull→gyro

Fgyro→hull

)
=

(
0 −η cos(yg)

η cos(yg) 0

)(
ωh

ωg

)
= G(yg)

(
ωh

ωg

)
, ẏg = ωg .

Such a component falls outside of the scope of the graph-theoretic treatment of control systems considered
currently, and is beyond the scope of the present contribution. Some heuristics are available, however.
To incorporate the nonlinear coupling requires including the variable yg and solving the differential equa-
tion ẏg = ωg. For the gyroscope, ωg is a through variable, so this equation is essentially an across
accumulator equation. Thus, even with the nonlinear coupling, we can view the merged graphs as those in
Figures 7.1c, 7.1d and 7.1e only where the edge C2 is replaced by an edge corresponding to the gyroscope
stiffness and this additional across accumulator equation.

Since the C2 edge is not included when the gyroscope is assumed undamped, as considered in Sections 7.3.1
and 7.3.2, the energy-balance method described there still applies. When the gyroscope is assumed damped
then we can include the across accumulator edge, labelled C2, into the green subgraph, as in Figure 7.2.
Although the graph-theoretic approach presented earlier formally does not apply, the graph is still useful
in determining a smaller optimal control problem to be solved.
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u

I

II
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V

Figure 7.2: The wave energy subgraph with nonlinear coupling when both the hull and gyroscope are
damped.
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8 Extensions and including constraints

Here we briefly comment on extensions to the energy-balance method.

First, we have focussed so far on control systems expressed as linear graphs which contain a single external
edge and a single control edge. The energy-balance equation (4.2) generalises to multiple external edges,
and multiple controls, and becomes

E(t1)− E(t0) +
∑
PTO

control

∫ t1

t0

AuTu dt = −
∑
other
control

∫ t1

t0

AuTu −
∑

external

∫ t1

t0

AeTe dt

−
∑

dissipator

∫ t1

t0

AkTk dt , (8.1)

where PTO denotes power take-off. The derivation of (8.1) is analogous to that of (4.2), starting from the
integrated version of Tellegen’s theorem (4.4). In principle, the same ideas underpinning the energy-balance
method apply here — maximising the left-hand side of (8.1) is equivalent to maximising the right-hand side
of (8.1), which becomes the new performance objective. The problem remains of extracting an appropriate,
as small as possible, subgraph to

(a) permit the optimisation of, and;

(b) uniquely determine all the (remaining) variables of

the right-hand side of (8.1). It is beyond the scope of the present contribution to investigate when such
a graph-splitting procedure is practicable. Observe that the additional generality afforded by (8.1) as
compared to (4.2) was not required in the examples presented in Sections 5–7.

Second, the optimal control problems considered presently are not subject to any input- or state-constraints.
Such constraints are likely to be present in all real-world renewable energy generation contexts, although
again we reiterate that the energy-balance method provides a theoretical maximum against which other
control strategies, including those with constraints, may be compared.

The energy-balance method may be adjusted to incorporate state-constraints as follows. Essentially, any
constrained edge variable in the original optimal control problem must be included in the green subgraph
— as these are the variables which appear in, and hence are determined by, the new optimisation problem.
Constraints may then be treated by classical optimal control tools, such as versions of the Pontryagin
Principle. Since it is often convenient to take a flexible interpretation of the roles of variables in the new
optimal control problem, whether an original variable receives a state or input (independent variable)
constraint will vary between applications. Currently, the (PTO) control edge variable is never placed in
the green subgraph, and so traditional input constraints cannot be accommodated by this adjustment. It
is worth commenting that it may be the case that the control edge variables determined by the (possibly
constrained) energy-balance method may satisfy its constraints and, in this case, is optimal even for
the constrained problem. However, this may not happen and, in which case, the underpinning ideas of
using (4.2) or (8.1) to obtain a new optimal control problem may still be applicable for “large” problems
with certain constraints.

Third, we reiterate that we have not explored in depth how to perform the graph-splitting procedure, an
essential ingredient of the energy-balance method. For small graphs, a visual inspection and colouring
suffices, but this will prove intractable for “large” examples. We note here that seeking a decomposition of
edges of the original linear graph corresponds to seeking a decomposition of vertices of the corresponding
“graph” with vertices and nodes interchanged. Mathematically, this corresponds to viewing M⊤ as an
incidence matrix which will lead to a hypergraph in general — where a single (hyper)edge may connect
to more than two vertices. Separating a graph into two distinct sets of vertices is called a cut, and
graph cutting problems are very well studied. Extensions to the setting of cuts for hypergraphs have
been considered (see, for example [72]) and it may be possible to reformulate the current graph-splitting
problem as a minimum cut problem for the associated hypergraph.

Fourth, and finally, we conjecture that the solution of the optimal control problem considered here, namely
to maximise

E(t1)− E(t0) +

∫ t1

t0

AuTu dt ,
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subject to the control system (CS) — which is the focus of the energy-balance method — is in fact the
singular control related to the following constrained optimal problem: namely, to maximise purely the
extracted energy, that is, ∫ t1

t0

AuTu dt ,

(note no boundary energy terms) subject to the control system (CS) and the control constraint Xmin ≤
Xu(t) ≤ Xmax, where Xu = Au or Tu is the control variable. In general, this latter problem will have
bang-singular (also known as bang-singular-bang) solutions, where the optimal control either rides the
constraints (bang), or equals the singular solution. Establishing the validity of this conjecture shall also
be the subject of future work.

9 Summary

The energy-balance method for simplifying optimal control problems associated with renewable energy
conversion has been presented. The method applies to control systems specified by linear graphs in terms
of across and through edge variables, with a number of fixed edge types (denoting lumped, one-port two-
terminal element types) and essentially uses Tellegen’s theorem to rewrite the extracted energy in terms
of the supplied energy and dissipated energy, equation (4.2). We called this expression the energy-balance
equation. A graph-splitting procedure has been proposed for solving the original optimal control problem
by identifying fewer, but sufficiently many, variables to optimise the new performance criterion — the right-
hand side of the energy-balance equation. One strength of the energy-balance method is that elements do
not need to be ideal — they may be nonlinear or, in certain cases, dynamic. The energy-balance method
does not specify the optimization method to be used to the solve resulting simpler optimal control problem,
and this choice may be made situationally or according to user preference.

By specifying control systems in terms of linear graphs and using transducers (transformers and gyro-
scopes), the energy-balance method may be applied to control systems spanning multiple energy domains,
such as mechatronic systems. For instance, in the context of wave energy, oscillating water column devices
span fluid (via water and air), mechanical (via turbines), and electrical (via generators) domains. Con-
sequently, the method facilitates optimisation at the level of the whole control system. The method has
been illustrated via examples from solar, wind and wave energy across Sections 5–7. From a practical
engineering perspective, we recommend that the method is considered whenever an optimal control of a
renewable energy converter is implemented, as it may well simplify the computational complexity of the
overall problem.

One feature which emerges from the study is the importance of the structure of the control system in
determining the variables which are key to maximising the extracted energy. This structure is seemingly
most easily visualised and understood graphically rather than, say, by a traditional state-space repres-
entation. For example, on the one hand, when no energy storage (accumulator) elements are present in
the subgraph obtained by the graph-splitting procedure (recall, termed the green subgraph), then the
resulting performance criterion is static, that is, subject only to algebraic constraints. Therefore, it may
be maximised by pointwise maximisation of the integrand — essentially by elementary calculus methods.
In other words, here the need for classical optimal control techniques is obviated. On the other hand,
including additional accumulator edges in the red subgraph (recall, the complementary subgraph) does not
change the performance objective associated with the energy-balance method or its solution. Of course,
the variables associated with the red subgraph, which includes the original control variable, do depend on
the red subgraph, and so change as the structure and/or composition of this subgraph changes.

The energy-balance method determines an optimal control over a finite (possibly short) prediction interval,
here denoted [t0, t1]. In practice, to use this method continuously in time requires piecing together multiple,
successive prediction intervals. We comment that a key feature of optimal control problems in renewable
energy contexts is accurately forecasting the external variables over the prediction interval, such as the
incoming wave profile in wave energy applications; see, for example [67]. This challenge (or opportunity,
depending on outlook) is still present in the energy-balance method.

Some extensions and current limitations of the method have been discussed in Section 8, notably on how
the method may generalise to optimal control problems with multiple control and external sources, and
the extent to which constraints may be included. Exploring these directions further shall be the subject
of future studies. Furthermore, bond graph modelling, originating in the work of Paynter [73], with recent
texts including [74], is recommended by its proponents as a powerful and widely applicable framework for
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control systems spanning multiple energy domains. Formulating the energy-balance method in terms of
bond graphs rather than linear graphs may well be possible, and shall also be subject of future work.
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[6] A. Lenk, R. G. Ballas, R. Werthschützky, and G. Pfeifer, Electromechanical systems in microtechnology and mechat-
ronics: electrical, mechanical and acoustic networks, their interactions and applications. Microtechnology and MEMS,
Berlin: Springer-Verlag, 2010.

[7] I. Sinclair, Sensors and transducers. Oxford: Newnes, 2001. Third edition.

[8] J. V. Ringwood, “Wave energy control: status and perspectives 2020,” IFAC-Pap., vol. 53, no. 2, pp. 12271–12282, 2020.

[9] F. Clarke, Functional analysis, calculus of variations and optimal control, vol. 264 of Graduate Texts in Mathematics.
Springer, London, 2013.

[10] D. Liberzon, Calculus of variations and optimal control theory. Princeton University Press, 2011.

[11] A. Seierstad and K. Sydsaeter, Optimal Control Theory with Applications, vol. 24 of Advanced Textbooks in Economics.
Amsterdam: North Holland, 1987.

[12] O. Hernández-Lerma, L. R. Laura-Guarachi, S. Mendoza-Palacios, and D. González-Sánchez, An introduction to optimal
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