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Abstract

We consider the decay rate of the singular values of the input map,
the output map and the Hankel operator for a class of infinite-dimensional
systems. This class is characterized by the control operator (or the ob-
servation operator) having a smoothing effect. We capture this in the
definition of a Gevrey operator (which generalizes the known concept of
a Gevrey vector). In applications to PDEs, this abstract assumption on
the control operator is typically satisfied when the input is multiplied by
a function which is a compactly supported Gevrey function in the spatial
variable. Using the theory of polynomial approximation (in particular:
truncated Chebyshev expansions), we obtain that the singular values de-
cay exponentially in a root of the approximation dimension. The power of
the root depends on the order of the Gevrey operator and on whether the
underlying semigroup is nilpotent, exponentially stable or polynomially
stable.

1 Introduction

Ruth Curtain with Amol Sasane in [1, Theorem 4] showed that if A generates
an exponentially stable strongly continuous semigroup on a Hilbert space X and
B ∈ L(Cm,X ), C ∈ L(X ,Cp) then the controllability Gramian, the observabil-
ity Gramian and the Hankel operator are nuclear (i.e. have summable singular
values). The singular values of the Hankel operator appear in the error-bound
for balanced truncation (established in the infinite-dimensioncal case by Ruth
Curtain with Keith Glover and Jonathan Partington in [2]) and decay of singu-
lar values of the Gramians is important for numerical approximation of them.
Decay of these singular values (for finite-dimensional systems) has therefore nat-
urally received attention from the numerical linear algebra community as well
[3, 4, 5, 6, 7].
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In [8] we refined another result from [1], namely [1, Theorem 6] (where B
and C are allowed to be unbounded, but A is assumed to generate an analytic
semigroup); see [9] and [10] for related results. There we showed that the
singular values of the Gramians and the Hankel operator decay exponentially in
the square root which is much stronger than them just being summable. In an
earlier article [11] we had already showed (through a very different approach)
that the Hankel singular values in that case were in `p for all p > 0 (the case
where p < 1 being the improvement on the Curtain–Sasane result)1.

In this article we consider a refinement of the result from [1, Theorem 4]
mentioned above. We make (for the controllability Gramian case) the stronger
assumption that B maps into the domain of An for all n ∈ N and that further-
more certain estimates on AnB hold. These conditions are typically satisfied in
PDE examples with interior control described by a smooth “shaping” function.
We allow A to only generate a polynomially stable semigroup rather than an
exponentially stable semigroup. In the exponentially stable case we obtain that
the singular values of the controllability Gramian decay exponentially in n1/(1+δ)

where δ relates to the estimates on AnB (the typical case is δ = 2 so that we
obtain exponential decay in the cube root). With a similar “smoothness” con-
dition on C, we obtain the analogues result for the observability Gramian. To
obtain the result for the Hankel operator a “smoothness” assumption on either
B or C suffices.

In Section 2 we elaborate on the above paragraph (but from the “observa-
tion” rather than the “control” point of view) as a guide to the technical content
in the remainder of the article.

2 Discussion of the main result

We consider the observed system

ẋ(t) = Ax(t), x(0) = x0, y(t) = Cx(t). (1)

We assume that A generates the strongly continuous semigroup T : [0,∞) →
L(X ) on the Hilbert space X and that C ∈ L(X ,Y) for a finite-dimensional
Hilbert space Y. The general theory of such system is considered in e.g. [12].
The objective is to study the operator C : X → L2(0,∞;Y) which maps the
initial condition x0 to the output y. Numerical approximation of (1) typically
results in an approximation Cn : Rn → L2(0,∞;Y) of C. Such an approximation
Cn has rank at most n. Therefore, how well we can approximate C by such
approximations is determined by the singular values of C. In this article we
therefore are interested in those singular values σn(C), and in particular in their
asymptotic behavior as n→∞. Since the observability Gramian of (1) is C∗C,
results about the singular values of the observability Gramian can be deduced
from this. By duality, results about the input map B and the controllability

1Note that the proof regarding singular values of the Gramians in [11] is incorrect; [8]
however gives a stronger result than that claimed with an erroneous proof in [11].
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Gramian BB∗ can be obtained. Furthermore since the Hankel operator equals
CB, results about the Hankel singular values follow.

In this article, we will make an additional assumption on C, namely that
C∗ is a Gevrey operator of order δ for A∗ (for some given δ > 1); see Definition
12. For the present discussion it suffices to keep in mind the following typical
example of a transport equation (see Section 8 for more examples):

wt(t, ξ) = wξ(t, ξ), t > 0, ξ ∈ (−1, 1),

w(0, ξ) = w0(ξ), ξ ∈ (−1, 1),

w(t, 1) = 0, t > 0,

y(t) =

∫ 1

−1
c(ξ)w(ξ) dξ,

where c is the standard bump function

c(ξ) = exp

(
−1

1− ξ2

)
, (2)

(see Figure 1), which satisfies this condition with δ = 2. It then follows that
for each initial condition x0 the output y is a Gevrey function of order δ (see
Corollary 17). The space of Gevrey functions sits in between the space of ana-
lytic functions and the space of infinitely differentiable functions; see Definition
1. A typical example of a Gevrey function (of order 2) is the bump function (2).
In fact something stronger is true: not only is t 7→ CT (t)x0 a Y-valued Gevrey
function for each x0 ∈ X ; but t 7→ CT (t) is a L(X ,Y)-valued Gevrey function.
This stronger fact ensures that certain constants are independent of the initial
condition x0 which is crucial for the application to singular value analysis (since
that deals with operator norms).

Figure 1: The function from (2)

A basic tenet of approximation theory is that since y is a smooth function,
it can be well-approximated over a finite interval by a low degree polynomial.
Instead of considering the best polynomial approximation we consider a Cheby-
shev projection; this is because the best polynomial approximation is non-linear
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whereas the Chebyshev projection is linear (for our application to singular value
analysis this is important since singular values deal with linear approximations).
Lemma 7 considers the error made when approximating a Gevrey function by its
Chebyshev projection over a finite interval. In Lemmas 10 and 11 we consider
piecewise polynomial approximation when the interval is unbounded. This re-
quires an additional assumption on the decay of the to-be-approximated function
at infinity; in the application to the observed system (1), these decay conditions
will be satisfied by assuming that the semigroup is exponentially stable (for
Lemma 10) or polynomially stable (for Lemma 11). To make this connection,
in Section 6 we briefly study polynomially stable semigroups.

We end up with the following bound on the singular values (see Theorem
22): there exist K, r > 0 such that for all n ∈ N

σn(C) ≤ K exp(−rn1/ε),

where

ε :=


δ T is nilpotent

δ + 1 T is exponentially stable

δ
(

1 + 1
β

)
+ 1 T is polynomially stable with rate β.

As mentioned, in Section 8 we consider several examples to illustrate the theory.
In Section 9 we illustrate the relevance of the assumptions by considering some
examples which do not satisfy our assumptions and where the singular values
do not decay or decay slowly.

We have subdivided the article so that Section 4 uses ideas from approxi-
mation theory whereas Sections 5 and 6 uses ideas from the theory of strongly
continuous semigroups.

We note that a crucial distinction between this article and earlier work (for
example [11] and [8]) is that the semigroup is not assumed to be analytic. This
allows us to deal with hyperbolic partial differential equations (rather than just
parabolic partial differential equations or hyperbolic partial differential equa-
tions which are so strongly damped that they essentially behave like parabolic
partial differential equations). In our earlier work [11] and [8], “smoothness”
came from an assumption on the semigroup whereas in this article “smooth-
ness” comes from an assumption on the observation operator C. In the nu-
merical linear algebra literature on decay of singular values of Gramians, the
hyperbolic–parabolic distinction is of course less clearly present; however, there
are never restrictive assumptions on C but only spectral type assumptions on
A; this effectively restricts applicability of those results to (discretizations of)
parabolic-like partial differential equations.

We finally note the similarity between the approximation of C used here,
ΠnC, where Πn is a projection onto a space of piecewise polynomials and the
approximation computed by ADI which (in the interpretation from [13]) is given
by a formula of the same form where instead Πn is the orthogonal projection
onto a space spanned by exponential functions.
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3 Gevrey functions

The following recalls the notion of a Gevrey function which is the appropriate
concept of smoothness for our purposes. We will use this notion both “in space”
(for “shaping functions” such as (2)) and “in time” (for output functions such
as t 7→ CT (t)x0). For functions “in time” we want to consider L(X ,Y)-valued
functions, which is why in the definition below we allow for functions with values
in a Banach space.

Definition 1. Let B be a Banach space, let δ ≥ 0 and let A0, A1 > 0. By
GδA0,A1

(a, b;B) we denote the set of functions f : (a, b)→ B which are infinitely
differentiable on (a, b) and are such that for all k ∈ N0 and all t ∈ (a, b)

‖f (k)(t)‖B ≤ A0A
k
1(k!)δ.

We further define

Gδ(a, b;B) :=
⋃

A0,A1>0

GδA0,A1
(a, b;B).

When B = R, then we simplify the notation to GδA0,A1
(a, b) and Gδ(a, b), re-

spectively.

The following is the typical example that we have in mind for our “shaping”
function (see also Figure 2).

Example 2. Let a, ξ1, ξ2, b ∈ R be such that a < ξ1 < ξ2 < b. Let γ > 0 and
define δ := 1 + 1

γ . The function f : (a, b)→ R defined by

f(ξ) =

exp

(
−1

[(ξ − ξ1)(ξ2 − ξ)]γ

)
ξ ∈ (ξ1, ξ2)

0 otherwise,

belongs to Gδ(a, b) .

The following defines exponentially decaying Gevrey functions which is im-
portant for the case of an exponentially stable semigroup.

Definition 3. Let B be a Banach space, let δ ≥ 0 and let A0, A1,M, ω >
0. We denote by GδA0,A1,M,ω(0,∞;B) the set of functions which satisfy f ∈
GδA0,A1

(0,∞;B) and additionally for all t ∈ (0,∞)

‖f(t)‖B ≤Me−ωt.

The following defines a class of Gevrey functions which in some sense decay
polynomially. This is important for the case of a polynomially stable semigroup.

Definition 4. Let B be a Banach space, let δ ≥ 0 and let C0, C1, α > 0. We
denote by GδC0,C1,α

(0,∞;B) the set of functions which satisfy f ∈ C∞(0,∞;B)
and additionally for all k ∈ N0 and all t > 0

‖f (k)(t)‖ ≤ C0C
k
1 (k!)δ max{t−α−k, 1}.

Remark 5. We note that GδC0,C1,α
(0,∞;B) ⊂ GδC0,C1

(0,∞;B).
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Figure 2: Functions from Example 2 with ξ1 = −1/2, ξ2 = 1/2 and various
values of γ and with a multiplicative normalization so that f(0) = 1.

4 Approximation of Gevrey functions

We denote the orthogonal projection in L2(−1, 1; dx√
1−x2

) onto the space of poly-

nomials of degree less than n by Πn. We note that Πnf then coincides with the
truncated Chebyshev expansion of f . Since L∞(−1, 1) ⊂ L2(−1, 1; dx√

1−x2
), the

expression Πnf for f ∈ L∞(−1, 1) is well-defined. The canonical affine change
of variables between functions on (a, b) and functions on (−1, 1) can be used
to translate the above to a projection on L∞(a, b) and we will use the notation

Π
[a,b]
n for that projection.

Figure 3 shows the standard bump function and a few of its approximations
computed by Chebfun [14].

Figure 3: Function from Example 2 with ξ1 = −1/2, ξ2 = 1/2, γ = 1 (so
that δ = 2) and with a multiplicative normalization so that f(0) = 1 and its
Chebyshev truncations for various degrees n.

The following is a result on approximation of Ck functions rather than
Gevrey functions which is crucial in the proof of the Gevrey function case.
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Lemma 6. Let n ∈ N and k ∈ {2, . . . , n− 1}. If f ∈ Ck([a, b]), then

‖f −Π[a,b]
n f‖∞ ≤ 2

(
b− a

2

)k+1
1

(k − 1)(n− k)k−1
‖f (k)‖∞.

Proof. When a = −1 and b = 1, this follows from [15, Theorem 4.3] by noticing

that for g a continuous function ‖x 7→ g(x)√
1−x2
‖1 ≤ π‖g‖∞. The case of a general

interval [a, b] follows by using the standard affine change of variables.

The following is the basic result on approximation of Gevrey functions over
a finite interval.

Lemma 7. Let δ > 1, let ρ > 0 and define r∗ := δρ−1/δe1/2. Then for all
r ∈ (0, r∗) there exists a C > 0 such that for all A0, A1 > 0 and a, b ∈ R with

a < b and with ρ = A1(b−a)
2 and all f ∈ GδA0,A1

(a, b) and all n ∈ N there holds

‖f −Π[a,b]
n f‖∞ ≤ A0(b− a)Ce−rn

1/δ

.

Proof. The proof is based on ideas from [16, Theorem 2.3]. Let k ∈ {2, . . . , n−
1}. From Lemma 6 and the Stirling estimate k! ≤ 1.1(2πk)1/2kke−k we obtain

‖f −Π[a,b]
n f‖∞ ≤ 2

(
b− a

2

)k+1
1

(k − 1)(n− k)k−1
A0A

k
1(k!)δ

≤
[
A0(b− a)1.1δ(2π)δ/2

] [
A1

b− a
2

e−δ
]k

kδ/2(n− k)

k − 1

kδk

(n− k)k
.

Defining

cδ := 1.1δ(2π)δ/2, ρδ := A1
b− a

2
e−δ, φ(k) :=

(
ρδk

δ

n− k

)k
,

this is exactly

‖f −Π[a,b]
n f‖∞ ≤ A0(b− a)cδ

kδ/2(n− k)

k − 1
φ(k). (3)

Define

κ := e−1/2
(
n

ρδ

)1/δ

, k = bκc . (4)

Note that there exists a Nδ,ρ ∈ N depending only on δ and ρ such that for
n ≥ Nδ,ρ we have

e−δ/2n ≤ n− κ and κ ≥ 2.

For n ≥ Nδ,ρ we then have

φ(k) ≤
(

ρδk
δ

e−δ/2n

)k
≤
(

ρδκ
δ

e−δ/2n

)κ
= e−δκ.
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By choosing a cδ,ρ large enough we have for n < Nδ,ρ that φ(k) ≤ cδ,ρe
−δκ.

Therefore we obtain that for all n ∈ N the choice (4) gives

φ(k) ≤ cδ,ρe−δκ.

Substituting this in (3) gives

‖f −Π[a,b]
n f‖∞ ≤ A0(b− a)cδ

kδ/2(n− k)

k − 1
cδ,ρe

−δκ,

which can be re-written as

‖f −Π[a,b]
n f‖∞ ≤ A0(b− a)cδ

kδ/2(n− k)

k − 1
cδ,ρe

−r∗n1/δ

.

Since kδ/2(n−k)
k−1 grows at most polynomially in n it can be absorbed by choosing

r < r∗ and the result follows.

Remark 8. We emphasize that the constant C in Lemma 7 does not depend on
the particular function f considered, but only on the parameters in the estimate
from Definition 1. In fact: C is independent of A0 and only depends on the
length b− a of the interval indirectly through its dependence on ρ.

Figure 4 illustrates the error bound from Lemma 7 when applied to bump
functions for various values of γ (and therefore of δ).

(a) Various values of γ (and therefore of
δ).

(b) Case of γ = 1 (and therefore δ = 2)
on a scale which makes the upper-bound
a straight line.

Figure 4: Error in Chebyshev truncations for various degrees n for function from
Example 2 with ξ1 = −1/2, ξ2 = 1/2 and with a multiplicative normalization
so that f(0) = 1.

Corollary 9. Under the same assumptions and with the same notation as in
Lemma 7 we have for all p ∈[1,∞)

‖f −Π[a,b]
n f‖p ≤ A0(b− a)1+

1
pCe−rn

1/δ

.
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Proof. This follows from Lemma 7 by utilizing the trivial estimate ‖g‖Lp(a,b) ≤
‖g‖L∞(a,b)(b− a)1/p.

The following result considers approximation of exponentially decaying Gevrey
functions. The approximation method using piecewise polynomials is illustrated
in Figure 5.

Figure 5: Approximation of an exponentially decaying Gevrey function using
m = 3 intervals of equal length and n = 15 coefficients on each interval.

Lemma 10. Let p ∈[1,∞), δ > 1, ω,A1 > 0 and define ρ := A1

2 and r∗ :=

δρ−1/δe1/2. Then for all r ∈ (0, r∗) there exists a C > 0 such that for all A0 > 0
and M > 0 and all f ∈ GδA0,A1,M,ω(0,∞) and all n ∈ N and m ∈ N there holds∥∥∥∥∥∥f −

m∑
j=1

Π[j−1,j]
n f

∥∥∥∥∥∥
p

≤ A0Cme−rn
1/δ

+
M

(ωp)1/p
e−ωm. (5)

Define q∗ := min{r∗, ω}. Then for all q ∈ (0, q∗) there exists a D > 0 such that
for all A0 > 0 and M > 0 and all f ∈ GδA0,A1,M,ω(0,∞) and all n ∈ N there

holds, with m =
⌈
n1/δ

⌉
and N := nm,∥∥∥∥∥∥f −

m∑
j=1

Π[j−1,j]
n f

∥∥∥∥∥∥
p

≤ max{A0,M}De−qN
1/(δ+1)

.

Proof. Applying Corollary 9 to the restriction of f to [j − 1, j] gives

‖f |[j−1,j] −Π[j−1,j]
n f‖p ≤ A0Ce−rn

1/δ

.

Combining the inequalities for j ∈ {1, . . . ,m} then gives∥∥∥∥∥∥f[0,m] −
m∑
j=1

Π[j−1,j]
n f

∥∥∥∥∥∥
p

≤
m∑
j=1

‖f |[j−1,j] −Π[j−1,j]
n f‖p ≤ A0Cme−rn

1/δ

.
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We further have

‖f[m,∞)‖pp =

∫ ∞
m

|f(t)|p dt ≤
∫ ∞
m

Mpe−ωpt dt =
Mp

ωp
e−ωpm.

It follows that

‖f[m,∞)‖p ≤
M

(ωp)1/p
e−ωm.

Combining the estimates obtained on [0,m] and [m,∞) gives the desired result.
Let q ∈ (0, q∗) and choose r ∈ (q, r∗) in the argument above. With the

indicated choice of m we have

M

(ωp)1/p
e−ωm ≤ M

(ωp)1/p
e−ωn

1/δ

,

so that an upper-bound on the right-hand side of (5) is(
A0Cm+

M

(ωp)1/p

)
e−min{r,ω}n1/δ

.

Let q̃ ∈ (q,min{r, ω}). Since m grows sub-linearly in n, we can absorb it in the
exponential using that q̃ < min{r, ω} to obtain the upper-bound

max{A0,M}D0e−q̃n
1/δ

,

for a constant D0 > 0 depending only on p, q, ρ, δ and ω. Since we have
N1/(δ+1) ≤ n1/δ + n1/(δ+1) ≤ q̃

qn
1/δ for n ≥ Cδ,q for some Cδ,q depending only

on δ and q, we have for those n

e−q̃n
1/δ

≤ e−qN
1/(δ+1)

.

To deal with n < Cδ,q, we increase the constant D0 to D. This gives the desired
result.

The following result considers approximation of “polynomially decaying”
Gevrey functions.

Lemma 11. Let p ∈[1,∞), δ > 1, α > 1 + 1
p , C1 > 0, θ > 1 and define

r∗ = δ
(
C1(θ−1)

2

)−1/δ
e1/2. Then for all r ∈ (0, r∗) there exists a C > 0 such

that for all C0 > 0 and all f ∈ GδC0,C1,α
(0,∞) and all n ∈ N and m ∈ N there

holds∥∥∥∥∥∥f −
m∑
j=1

Π[θj−1,θj ]
n f −Π[0,1]

n f

∥∥∥∥∥∥
p

≤ C0

(
θ − 1

1− θ1−α+
1
p

+ 1

)
Ce−rn

1/δ

+C0
θm(1−αp)/p

(1− αp)1/p
.

(6)
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Define q∗ := min{r∗, αp−1p ln(θ)}. Then for all q ∈ (0, q∗) there exists a D > 0

such that for all C0 > 0 and all f ∈ GδC0,C1,α
(0,∞) and all n ∈ N there holds,

with m =
⌈
n1/δ

⌉
and N := n(m+ 1),∥∥∥∥∥∥f −

m∑
j=1

Π[θj−1,θj ]
n f −Π[0,1]

n f

∥∥∥∥∥∥
p

≤ C0De−qN
1/(δ+1)

.

Proof. By Corollary 9 applied to the interval (θj−1, θj) and withA0 = C0θ
−α(j−1),

A1 = C1θ
−(j−1) we obtain the existence of r > 0 and C > 0 depending only on

r, C1, θ and δ (we note that ρ = C1(θ−1)
2 ) such that

‖f |[θj−1,θj ] −Π[θj−1,θj ]
n f‖p ≤ C0θ

(1−α+ 1
p )(j−1)(θ − 1)1+

1
pCe−rn

1/δ

.

By Corollary 9 applied to the interval (0, 1) with A0 = C0 and A1 = C1 we have
that there exists a C̃ depending only on r, C1 and δ such that

‖f |[0,1] −Π[0,1]
n ‖p ≤ C0C̃e−rn

1/δ

.

We further have

‖f |[θm,∞)‖pp =

∫ ∞
θm
|f(t)|p dt ≤

∫ ∞
θm

Cp0 t
−αp dt = Cp0

θm(1−αp)

1− αp
.

Combining these three inequalities and using that

m∑
j=1

θ(1−α+
1
p )(j−1) ≤ θ − 1

1− θ1−α+
1
p

,

we obtain (6).
Let q ∈ (0, q∗) and apply the above with r := q. With the indicated choice

of m we have that
θm(1−αp)/p ≤ e

1−αp
p ln(θ)n1/δ

,

so that from (6) we obtain the upper-bound

C0 max

{
θ − 1

1− θ1−α+
1
p

C,
1

(1− αp)1/p

}
e−qn

1/δ

.

Utilizing the definition of N gives the desired result.

5 Gevrey operators

For an operator A on a Banach space X define

D(A∞) :=

∞⋂
n=0

D(An).
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Definition 12. Let A be a closed densely defined operator with non-empty
resolvent set on a Banach space X and let δ ≥ 0. Let U be a Banach space and
let B ∈ L(U ,X ). Then B is called a Gevrey operator for A of order δ, denoted
B ∈ Gδ(A), if BU ⊂ D(A∞) and there exist C0, C1 > 0 such that for all n ∈ N0

there holds
‖AnB‖L(U,X ) ≤ C0C

n
1 (n!)δ.

Remark 13. If A is a bounded operator, then any bounded operator B is a
Gevrey operator for B with δ = 0 (take C0 = ‖B‖L(U,X ) and C1 = ‖A‖L(X )).
However, the interesting case in applications to partial differential equations is
where A is unbounded.

The following result is used in the proof of Proposition 15 and is crucial in
ensuring that, with reference to the discussion in Section 2, not only is t 7→
CT (t)x0 a Y-valued Gevrey function for all initial conditions x0 ∈ X , but in
fact t 7→ CT (t) is a L(X ,Y)-valued Gevrey function.

Lemma 14. Let A be the generator of the strongly continuous semigroup T
on the Banach space X . Let U be a Banach space and let B ∈ L(U ,X ). Let
n ∈ N0 and assume that BU ⊂ D(An). Then the function f : (0,∞)→ L(U ,X )
defined by f(t) := T (t)B is n−1 times continously differentiable in the uniform
operator topology.

Proof. The method of proof follows [17, Lemma 2.4.2, Corollary 2.4.3].
Let k ∈ {0, . . . , n} and t ≥ 0. Since Ak is closed and T (t)B is bounded,

AkT (t)B is closed and since it is everywhere defined it follows from the Closed
Graph Theorem that it is bounded.

Let u ∈ U and define x0 = Bu. Then x0 ∈ D(An) and it follows by
standard semigroup theory that g : (0,∞) → X defined by g(t) = f(t)u, i.e.
g(t) = T (t)x0, is n times continously differentiable with g(k)(t) = AkT (t)x0, i.e.
g(k)(t) = Akf(t)u, for k ∈ {0, . . . , n}. This precisely means that f is n times
continously differentiable in the strong operator topology.

We now proceed to show that t 7→ Akf(t) is continuous in the uniform
operator topology for k ∈ {0, . . . , n − 1}. Let t1 and t2 be such that 0 ≤ t1 ≤
t2 ≤ t1 + 1 and let M > 0 be such that ‖T (t)‖ ≤M for all t ∈ [0, t1 + 1]. Then

Akf(t2)u−Akf(t1)u = g(k)(t2)−g(k)(t1) =

∫ t2

t1

g(k+1)(t) dt =

∫ t2

t1

Ak+1T (t)Budt.

(7)
From this we obtain

‖Akf(t2)u−Akf(t1)u‖ ≤ |t2 − t1|M‖Ak+1B‖‖u‖,

which show that t 7→ Akf(t) is indeed continuous in the uniform operator topol-
ogy.

From (7) we have, with f [k] the k-th derivative of f in the strong operator
topology, for k ∈ {0, . . . , n− 2}, t ≥ 0 and h > 0

f [k](t+ h)− f [k](t) =

∫ t+h

t

Ak+1f(s) ds,

12



so that

f [k](t+ h)− f [k](t)
h

−Ak+1f(t) =

∫ t+h

t

Ak+1f(s)−Ak+1f(t) ds,

from which we obtain∥∥∥∥f [k](t+ h)− f [k](t)
h

−Ak+1f(t)

∥∥∥∥ ≤ h sup
s∈[t,t+h]

‖Ak+1f(s)−Ak+1f(t)‖,

which by continuity of Ak+1f in the uniform operator topology implies that f [k]

is differentiable at t in the uniform operator topology with derivative Ak+1f(t).
We conclude that f is n − 1 times continuously differentiable in the uniform
operator topology.

The following result makes the connection between B being a Gevrey oper-
ator and t 7→ T (t)B being a Gevrey function.

Proposition 15. Let δ ≥ 0 and let A be the generator of the strongly continuous
semigroup T on the Banach space X . Let U be a Banach space and let B ∈
L(U ,X ). If B ∈ Gδ(A), then for all τ > 0 the function defined by t 7→ T (t)B is
in Gδ(0, τ ;L(U ,X )).

If T is uniformly bounded, then the function is in Gδ(0,∞;L(U ,X )).

Proof. From Lemma 14 we know that t 7→ T (t)B is infinitely differentiable in
the uniform operator topology.

Let C0 and C1 be as in Definition 12. By the theory of strongly continuous
semigroups, there exist M > 0 and ω ∈ R such that ‖T (t)‖ ≤ Meωt. Define
A1 := C1 and A0 = C0M max{1, eωτ}.

Let n ∈ N and let u ∈ U . Define x(t) := T (t)B. Since x(n)(t) = AnT (t)B =
T (t)AnB, we have that

‖x(n)(t)‖ ≤Meωt‖AnB‖.

From the estimate in Definition 12 we then obtain for t ∈ [0, τ ]

‖x(n)(t)‖ ≤M max{1, eωτ}C0C
n
1 (n!)δ = A0A

n
1 (n!)δ.

Since n ∈ N0 was arbitrary, this shows that t 7→ T (t)B belongs toGδ(0, τ ;L(U ,X )).
If T is uniformly bounded then we may choose ω = 0 in the above and we

see (since A0 and A1 then do not depend on τ) that t 7→ T (t)B belongs to
Gδ(0,∞;L(U ,X )).

The following result uses the sun-dual semigroup (see e.g. [18, Section 3.5]
and [19]). When X is reflexive (e.g. when it is a Hilbert space), then the sun-dual
semigroup is simply equal to the dual semigroup (the reason for considering the
sun-dual semigroup is that the dual semigroup need not be strongly continuous
if X is non-reflexive). We define B� as the restriction of B∗ to X�.
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Proposition 16. Let δ ≥ 0 and let A be the generator of the strongly continuous
semigroup T on the Banach space X and let U be a Hilbert space. If B is a
Gevrey operator of order δ for A, then for all τ > 0 the function defined by
t 7→ B�T�(t) is in Gδ(0, τ ;L(X�,U)).

If T is uniformly bounded, then the function is in Gδ(0,∞;L(X�,U)).

Proof. From Proposition 15 that there exist A1 and A2 such that

‖T (t)AnB‖L(X ,U) ≤ A0A
n
1 (n!)δ.

Using that with x(t) := B�T�(t)

‖x(m)(t)‖L(X�,U) = ‖B�A�mT�(t)‖L(X�,U) = ‖T (t)AmB‖L(U,X ),

we then have the desired

‖x(m)(t)‖L(X�,U) ≤ A0A
n
1 (n!)δ,

so that indeed x ∈ Gδ(0, τ ;L(X�,U)). The case where T is uniformly bounded
follows as well.

The following result gives the “smoothing” property of the output map C
which is crucial for us.

Corollary 17. Let δ ≥ 0 and let A be the generator of the uniformly bounded
strongly continuous semigroup T on the reflexive Banach space X and let Y
be a Hilbert space. If C∗ is a Gevrey operator of order δ for A∗, then CX ⊂
Gδ(0,∞;Y) and we have that there exist Ã0, A1 > 0 such that for all m ∈ N0,
all t ∈ (0,∞) and all x0 ∈ X

‖(Cx0)(m)(t)‖Y ≤ A0A
m
1 (m!)δ,

where A0 := Ã0‖x0‖.

Proof. This follows from Proposition 16 with B = C∗ and (so that B� = C
since both X and Y are reflexive) noting that A� = A∗ since X is reflexive.

Note that a crucial part of Corollary 17 is that the constants Ã0 and A1 do
not depend on the “initial condition” x0.

6 Polynomial stability

In this section we very briefly discuss the notion of a polynomially stable semi-
group (see e.g. [20] and [21] for more details on this notion).

We note that for A a closed operator in X , X1 denotes the space D(A)
equipped with the norm ‖x‖X1

:= ‖(αI − A)x‖X where α ∈ ρ(A) (different α’s
give rise to equivalent norms).
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Definition 18. Let A be the generator of the strongly continuous semigroup
T on the Banach space X . This strongly continuous semigroup is called poly-
nomially stable (with rate β) if there exist M > 0 and β > 0 such that for all
x0 ∈ D(A) and all t ≥ 1 there holds

‖T (t)x0‖X ≤Mt−β‖x0‖X1
.

Remark 19. We note that when 0 ∈ ρ(A), the estimate in the definition of
polynomial stability is equivalent to:

‖T (t)x0‖X ≤Mt−β‖Ax0‖X ,

which by defining z0 := Ax0 is equivalent to

‖T (t)A−1z0‖X ≤Mt−β‖z0‖X ,

which by taking the supremum over all z0 with ‖z0‖X = 1 gives

‖T (t)A−1‖L(X ) ≤Mt−β .

Proposition 20. Let A be the generator of the strongly continuous semigroup
T on the Banach space X with 0 ∈ ρ(A)and let B ∈ L(U ,X ) where U is a
Banach space. Assume that T is polynomially stable (with rate β) and that B
is a Gevrey operator of order δ for A. Then the function x : (0,∞)→ L(U ,X )
defined by x(t) := T (t)B satisfies: for given γ > 0 there exist A0, A1 > 0 such
that for all m ∈ N0 and all t > 0

‖x(m)(t)‖L(U,X ) ≤ A0A
m
1 (m!)δ̂ min{t−γ−m, 1},

with

δ̂ := δ

(
1 +

1

β

)
+ 1.

Proof. Let C0 and C1 be as in the definition of Gevrey operator and let u ∈ U .
We have for n ∈ N0 (using Remark 19)

‖x(m)(t)‖X = ‖T (t)AmBu‖X ≤ ‖T (t)A−n‖L(X )‖An+mBu‖X

=

∥∥∥∥(T ( tn
)
A−1

)n∥∥∥∥
L(X )

‖An+mBu‖X ≤
∥∥∥∥T ( tn

)
A−1

∥∥∥∥n
L(X )

‖An+mB‖L(U,X )‖u‖U

≤

(
M

(
t

n

)−β)n
C0C

n+m
1 (n+m)!δ‖u‖U = t−βnMnnβnC0C

n+m
1 (n+m)!δ‖u‖U .

Choosing n :=
⌈
γ
β + m

β

⌉
gives for t ≥ 1 and certain A0 and A1

‖x(m)(t)‖X ≤ t−γ−mA0A
m
1 (m!)δ̂‖u‖U .

For t ≤ 1 we can use Proposition 15 to obtain the desired estimate.
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7 Main results

Theorem 21. Let A be the generator of the strongly continuous semigroup T
on the Hilbert space X . Let B ∈ L(U ,X ) where U is a finite-dimensional Hilbert
space. Let δ > 1 and assume that B ∈ Gδ(A). Additionally assume one of the
following:

(i) T is nilpotent, in which case define ε := δ;

(ii) T is exponentially stable, in which case define ε := δ + 1;

(iii) T is polynomially stable with rate β, in which case define ε := δ
(

1 + 1
β

)
+

1.

Then the input map B : L2(0,∞;U) → X of the pair (A,B) satisfies: there
exist K, r > 0 such that for all n ∈ N

σn(B) ≤ K exp(−rn1/ε).

The controllability Gramian Q := BB∗ : X → X of the pair (A,B) satisfies:
there exist K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−rn1/ε).

If additionally C : D(A)→ Y is an infinite-time admissible observation operator
for A with Y a Hilbert space (see e.g. [22, Section 4.6] or [18, Chapter 10]),
then the Hankel operator H := CB : L2(0,∞;U) → L2(0,∞;Y) of the triple
(A,B,C) satisfies: there exist K, r > 0 such that for all n ∈ N

σn(H) ≤ K exp(−rn1/ε).

Proof. By Corollary 17 we have that C := B∗ : X → L2(0,∞;U) has the
properties listed there. Let {ei}dimYi=1 be an orthonormal basis for Y and define
Ci : X → L2(0,∞) by (Ciz)(t) := 〈(Cz)(t), ei〉Y . It follows that

Cz =

dimY∑
i=1

(Ciz)ei.

We first consider the case where T is nilpotent. We can then apply Lemma
7 to f := Ciz where by Corollary 17 the constant A1 does not depend on z
so that by Lemma 7 the constant C is independent of z. We therefore obtain
(where τ > 0 is such that T (t) = 0 for all t ≥ τ)

‖Ciz −ΠnCiz‖L2(0,∞) ≤ Ã0‖z‖τ3/2Ce−rn
1/δ

.

It follows that

‖Ci −ΠnCi‖L(X ,L2(0,∞)) ≤ Ã0τ
3/2Ce−rn

1/δ

. (8)
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Define Πn,Y : X → L2(0,∞;Y) by

Πn,Yz =

dimY∑
i=1

(Πnz)ei.

Since Πn has rank at most n, it follows that Πn,Y has rank at most ndimY and
from (8) we obtain

‖C−Πn,YC‖L(X ,L2(0,∞;Y)) ≤ Ã0τ
3/2Ce−rn

1/δ

dimY.

It follows that
σn dimY+1(B) ≤ Ã0τ

3/2Ce−rn
1/δ

dimY.
From this the indicated bound follows.

The exponentially stable case follows similarly by utilizing Lemma 10 instead
of Lemma 7. The polynomially stable case follows by utilizing Lemma 11 (where
we obtain the required estimate from Proposition 20) instead of Lemma 7.

Since we have
σn(BB∗) ≤ σn(B)‖B∗‖,

and
σn(CB) ≤ ‖C‖σn(B),

the statements about the controllability Gramian and Hankel operator readily
follow.

The dual of Theorem 21 is the following:

Theorem 22. Let A be the generator of the strongly continuous semigroup T
on the Hilbert space X . Let C ∈ L(X ,Y) where Y is a finite-dimensional Hilbert
space. Let δ > 1 and assume that C∗ ∈ Gδ(A∗). Additionally assume one of the
following:

(i) T is nilpotent, in which case define ε := δ;

(ii) T is exponentially stable, in which case define ε := δ + 1;

(iii) T is polynomially stable with rate β, in which case define ε := δ
(

1 + 1
β

)
+

1.

Then the output map C of the pair (A,C) satisfies: there exist K, r > 0 such
that for all n ∈ N

σn(C) ≤ K exp(−rn1/ε).
The observability Gramian Q := C∗C of the pair (A,C) satisfies: there exist
K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−rn1/ε).

If additionally B : U → X−1 is an infinite-time admissible control operator for A
with U a Hilbert space, then the Hankel operator H := CB of the triple (A,B,C)
satisfies: there exist K, r > 0 such that for all n ∈ N

σn(H) ≤ K exp(−rn1/ε).
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Proof. This follows by duality from Theorem 21.

8 Examples

Examples 23, 24 and 25 consider a transport equation which illustrates the nilpo-
tent case; examples 26 (a transport equation) and Example 27 (a wave equation)
illustrate the exponentially stable case whereas Example 28 (a Rayleigh beam)
and Example 29 (a coupled wave-heat system) illustrate the polynomially stable
case.

Example 23. Consider the partial differential equation

wt(t, ξ) = wξ(t, ξ) + b(ξ)u(t), t > 0, ξ ∈ (0, 1),

w(t, 1) = 0, t > 0,

where

b(ξ) =

exp

(
−1

(ξ − 1
4 )( 3

4 − ξ)

)
ξ ∈

(
1
4 ,

3
4

)
,

0 otherwise.

(9)

Abstractly, this is given by ẋ = Ax + Bu where x(t) := ξ 7→ w(t, ξ), X :=
L2(0, 1), U = R,

Af = f ′, D(A) = {f ∈ H1(0, 1) : f(1) = 0}, (Bu)(ξ) = b(ξ)u.

We have for the set of Gevrey vectors of this particular A:

Gδ(A) = {f ∈ L2(0, 1) : f ∈ Hn(0, 1) and f (n)(1) = 0, for all n ∈ N0,

∃A0, A1 > 0 such that ∀n ∈ N0 there holds ‖f (n)‖L2(0,1) ≤ A0A
n
1 (n!)δ}.

We note that a Gevrey function f of order δ as defined in Definition 1 which
additionally satisfies f (n)(1) = 0 for all n ∈ N0 belongs to Gδ(A). In particular,
since b is a Gevrey function of order 2 and satisfies b(n)(1) = 0 for all n ∈ N0

we have B ∈ G2(A).
Since T (t) = 0 for t > 1, we have that the semigroup is nilpotent. We

conclude from Theorem 21 that for the controllability Gramian Q of this system
we have that there exist K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−r 2
√
n).

Example 24. Consider the same PDE as in example 23, but now with the ob-
servation y(t) = w(t, 0). The observation operator then is

Cf = f(0),

which is unbounded. We however have that the initial state to output map C is
bounded X → L2(0,∞) as it is given by

(Cx0)(t) =

{
x0(t) t ∈ [0, 1],

0 t > 1,

18



where x0 ∈ X is the initial state (i.e., C is an admissible observation operator
for A). For the Hankel operator H = CB we have from Theorem 21: there exist
K, r > 0 such that for all n ∈ N

σn(H) ≤ K exp(−r 2
√
n).

Example 25. Consider the observed transport equation

wt(t, ξ) = wξ(t, ξ), t > 0, ξ ∈ (0, 1),

w(t, 1) = 0, t > 0,

y(t) =

∫ 1

0

b(ξ)w(ξ) dξ,

where b is given again by (9). We now have

A∗f = −f ′, D(A∗) = {f ∈ H1(0, 1) : f(0) = 0},

and
(C∗u)(ξ) = b(ξ)u.

Therefore we have C∗ ∈ G2(A∗). We conclude from Theorem 22 that for the
observability Gramian Q of this system we have that there exist K, r > 0 such
that for all n ∈ N

σn(Q) ≤ K exp(−r 2
√
n).

Example 26. Consider the same PDE as in example 23, but now with damped
periodic boundary conditions:

wt(t, ξ) = wξ(t, ξ) + b(ξ)u(t), t > 0, ξ ∈ (0, 1),

w(t, 1) =
1

2
w(t, 0), t > 0,

where b is given again by (9). We now have

Af = f ′, D(A) = {f ∈ H1(0, 1) : f(1) =
1

2
f(0)},

and we again have B ∈ G2(A). The semigroup generated by A is now no longer
nilpotent, but it is exponentially stable. From Theorem 21 we therefore have:
there exist K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−r 3
√
n).

Example 27. Consider the damped wave equation

ytt(t, ξ) + yt(t, ξ) = yξξ(t, ξ) + b(ξ)u(t), t > 0, ξ ∈ (0, 1),

y(t, 0) = 0, y(t, 1) = 0, t > 0,
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where b is as in (9). Abstractly, this is given by ẋ = Ax+Bu where

x(t) := ξ 7→
[
y(t, ξ)
yt(t, ξ)

]
,

X := H1
0 (0, 1)× L2(0, 1), U = R,

A

[
f1
f2

]
=

[
f2

f ′′1 − f2

]
, D(A) =

{
f ∈

[
H2(0, 1)
H1

0 (0, 1)

]
: f1(0) = f1(1) = 0

}
,

and

(Bu)(ξ) =

[
0

b(ξ)u

]
.

Similarly as in Example 23, since b is a Gevrey function of order 2 which has a
zero of infinite order at the boundary points, it follows that B ∈ G2(A). The
semigroup generated by A is exponentially stable (this follows e.g. from [23,
Theorem 8.3]). We therefore obtain from Theorem 21 that there exist K, r > 0
such that for all n ∈ N

σn(Q) ≤ K exp(−r 3
√
n).

Example 28. Consider a weakly damped clamped Rayleigh beam :

ytt(t, ξ)− yttξξ(t, ξ) + yt(t, ξ) + yξξξξ(t, ξ) = b(ξ)u(t), t > 0, ξ ∈ (0, 1),

y(t, 0) = yξ(t, 0) = y(t, 1) = yξ(t, 1) = 0, t > 0,

where b is given by (9). Abstractly, this is given by ẋ = Ax+Bu where

x(t) := ξ 7→
[
y(t, ξ)
yt(t, ξ)

]
,

X := H2
0 (0, 1)×H1

0 (0, 1), U = R,

A

[
f1
f2

]
=

[
f2

−M−1K0f1 −M−1f2

]
, D(A) =

[
H3(0, 1) ∩H2

0 (0, 1)
H2

0 (0, 1)

]
,

where

M : H1
0 (0, 1)→ H−1(0, 1), Mg = g − g′′,

K0 : H3(0, 1) ∩H2
0 (0, 1)→ H−1(0, 1), K0g = g(4),

and

(Bu)(ξ) =

[
0

b(ξ)u

]
.

Similarly as in Example 23, since b is a Gevrey function of order 2 which has a
zero of infinite order at the boundary points, it follows that B ∈ G2(A). The
semigroup generated by A is polynomially stable with rate β = 1/2 (this follows
from [24]). We therefore obtain from Theorem 21 that, withQ the controllability
Gramian, there exist K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−r 7
√
n).
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Example 29. Consider the system of partial differential equations (a coupled
wave-heat system) from [25] (considered there without the control).

ytt(t, ξ) = yξξ(t, ξ) + b(ξ)u(t), t > 0, ξ ∈ (−1, 0),

wt(t, ξ) = wξξ(t, ξ), t > 0, ξ ∈ (0, 1),

yξ(t,−1) = 0, w(t, 1) = 0, t > 0

yt(t, 0) = w(t, 0), yξ(t, 0) = wξ(t, 0), t > 0.

where

b(ξ) =

exp

(
−1

(ξ − −34 )(−14 − ξ)

)
ξ ∈

(−3
4 ,
−1
4

)
,

0 otherwise.

Abstractly, this is given by ẋ = Ax+Bu where

x(t) := ξ 7→

 y(t, ξ)
yt(t, ξ)
w(t, ξ)

 ,
X := H1(−1, 0)× L2(−1, 0)× L2(0, 1), U = R,

A

f1f2
f3

 =

f2f ′′1
f ′′3

 , D(A) =

f ∈
H2(−1, 0)
H1(−1, 0)
H2(0, 1)

 : f ′1(−1) = f3(1) = 0, f2(0) = f3(0), f ′1(0) = f ′3(0)

 ,

and

(Bu)(ξ) =

 0
b(ξ)u

0

 .
Similarly as in Example 23, since b is a Gevrey function of order 2 which has a
zero of infinite order at −1, 0 and 1, it follows that B ∈ G2(A). By [25, Theorem
4.2], the semigroup is polynomially stable with rate β = 2. We conclude from
Theorem 21 that for the controllability Gramian Q of this system we have that
there exist K, r > 0 such that for all n ∈ N

σn(Q) ≤ K exp(−r 5
√
n).

9 Importance of the assumptions

In this section we consider some examples which illustrate the relevance of the
assumptions in our results.

Example 30 considers a transport equation with an unbounded observation
operator where the singular values of the observability Gramian don’t decay
at all, whereas the more complicated Example 31 has a bounded observation
operator which is not Gevrey where the singular values decay slowly. In Example
32 the infinite-dimensionality of the output space is the cause of slow decay of
the singular values.
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Example 30. Consider on X = L2(0, 1)

Af = f ′, D(A) = {f ∈ H1(0, 1) : f(1) = 0}, Cf = f(0).

Then the observability Gramian Q equals the identity. In particular σn(Q) = 1
so that there is no decay of its singular values. Note that C is unbounded and
that therefore Theorem 22 does not apply.

Example 31. Consider on X = L2(0, 1)

Af = −f ′, D(A) = {f ∈ H1(0, 1) : f(0) = 0}, Cg =

∫ 1

0

g(ξ) dξ.

We then have for t ≤ 1

(Cf)(t) = CT (t)f =

∫ 1

0

[T (t)f ](ξ) dξ =

∫ 1

t

f(ξ − t) dξ =

∫ 1−t

0

f(η) dη,

whereas (Cf)(t) = 0 for t > 1. Therefore C : L2(0, 1)→ L2(0,∞) =

[
L2(0, 1)
L2(1,∞)

]
can be written as

C =

[
RV
0

]
,

where R : L2(0, 1)→ L2(0, 1) is defined by (Rf)(t) = f(1−t) and V : L2(0, 1)→
L2(0, 1) is the Volterra operator defined by

(V g)(η) =

∫ η

0

g(ξ) dξ.

It is known that

σn(V ∗V ) =
4

(2n− 1)2π2
,

see e.g. [26], and using that R is an isometry it follows that with Q = C∗C the
observability Gramian

σn(Q) =
4

(2n− 1)2π2
.

We note that Cg = 〈c, g〉 where c ∈ X is defined by c(ξ) = 1. We have
c /∈ D(A), which implies that C∗ is not a Gevrey operator for A∗ and therefore
the assumptions of Theorem 22 are not satisfied.

Example 32. Consider on X = L2(0, 1)

Af = f ′′, D(A) = {f ∈ H2(0, 1) : f(0) = f(1) = 0}, Cf = f.

Then the observability Gramian Q equals − 1
2A
−1. In particular, using the

known eigenvalues of the Dirichlet Laplacian, σn(Q) = 1
2n2π2 . This does not

contradict Theorem 22 since dimY =∞.
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