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OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS
FOR WELL-POSED LINEAR SYSTEMS\ast 
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Abstract. We study the problem of existence of weak right or left or strong coprime factoriza-
tions in H-infinity over the right half-plane of an analytic function defined and uniformly bounded on
some right half-plane. We give necessary and sufficient conditions for the existence of such coprime
factorizations in terms of an optimal control problem over the doubly infinite continuous time axis. In
particular, we show that an equivalent condition for the existence of a strong coprime factorization is
that both the control and the filter algebraic Riccati equation (of an arbitrary well-posed realization)
have a solution (in general unbounded and not even densely defined) and that a coupling condition
involving these two solutions is satisfied.
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1. Introduction. This is the second article in a series of articles where we con-
sider the relationships between linear quadratic optimal control in continuous time,
the factorization approach to control theory, and algebraic Riccati equations. The
corresponding discrete-time results were obtained in [6, 7, 8]. We refer the reader to
the introduction of [9], the first article in the series, for the motivation for and an
overview of this project and how it fits within the wider literature.

In [9] we considered a very general class of infinite-dimensional control systems.
In this article, we specialize to the case of well-posed linear systems [10, 12, 11], a
class of infinite-dimensional control systems which has been very well studied over the
last few decades.

In the case of a well-posed transfer function (i.e., a function which is analytic
and uniformly bounded on some open right half-plane), it is natural to require that
the inverse of the ``denominator"" in a left or right factorization is also well-posed
[11, section 8.3], a condition which was (naturally) not imposed in [9], where we
considered transfer functions which need not be well-posed. To obtain equivalences
in the well-posed case akin to those obtained in [9] between existence of factorizations
and solvability conditions for the linear quadratic optimal control problem and for
algebraic Riccati equations, some additional ``uniformity"" assumptions must be made
in the latter two contexts as well.

The remainder of this article is organized as follows. In section 2 we review that
part of the theory of well-posed linear systems which is needed in this article. Section
3 shows that the notion of (past and future) trajectories as used in [9] is consistent
with the standard notion of trajectories for well-posed linear systems. In section 4 we
expand on the theory of Riccati equations developed in [9]. Section 5 briefly considers
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well-posed right factorizations and the relation with Riccati equations. In section 6
we turn to the linear quadratic optimal control problem on [0,\infty ) and link this to
right factorizations and Riccati equations. For a function which has a well-posed right
factorization, in section 7 we construct a realization with very nice properties. The
various strands are pulled together in section 8, where we give several necessary and
sufficient conditions for a function to have a well-posed right factorization. In section
9 we consider (mainly through utilizing duality) the linear quadratic optimal control
problem on ( - \infty , 0] and left factorizations. Finally, in section 10, we consider doubly
coprime factorizations and relate this to the linear quadratic optimal control problem
on ( - \infty ,\infty ).

2. Well-posed linear systems. In this section we very briefly review the con-
cept of a well-posed linear system. We do this from the ``operator node"" point of view
so as to most easily connect to [9]. We refer to [11] for more background on well-
posed linear systems and in particular for alternative (but equivalent) viewpoints to
this theory.

The following is [9, Definition 2.1].

Definition 2.1. By an operator node on a triple of Hilbert spaces (\scrX ,\scrU ,\scrY ) we
mean a (possibly unbounded) linear operator S : [\scrX \scrU ] \rightarrow 

\bigl[ \scrX 
\scrY 
\bigr] 
with the following prop-

erties. We decompose S into S =
\bigl[ 
A\&B
C\&D

\bigr] 
, where A\&B = P\scrX S : dom (S) \rightarrow \scrX and

C\&D = P\scrY S : dom (S) \rightarrow \scrY . We denote dom (A) =
\bigl\{ 
x \in \scrX 

\bigm| \bigm| [ x0 ] \in dom (S)
\bigr\} 
, define

A : dom (A) \rightarrow \scrX by Ax = A\&B [ x0 ], and require the following conditions to hold:
(i) S is closed as an operator from [\scrX \scrU ] to

\bigl[ \scrX 
\scrY 
\bigr] 
(with domain dom (S)).

(ii) A\&B is closed as an operator from [\scrX \scrU ] to \scrX (with domain dom (S)).
(iii) A has a nonempty resolvent set, and dom (A) is dense in \scrX .
(iv) For every u \in \scrU there exists a x \in \scrX with [ xu ] \in dom (S).

We call S a system node if, in addition, A is the generator of a C0 semigroup. The
growth bound of a system node is defined as the growth bound of the semigroup.

Remark 2.2. By [11, Lemma 4.7.7], Definition 2.1 is equivalent to [11, Definition
4.7.2].

We recall some basic properties of operator nodes from [11] which were also al-
ready considered in [9, section 2]. Let \Sigma :=

\bigl( \bigl[ 
A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node.

We define \scrX 1 := dom (A) with the graph norm of A and \scrX 1
\ast := dom (A\ast ) with

the graph norm of A\ast and let \scrX  - 1 be the dual of \scrX 1
\ast when we identify the dual of

\scrX with itself. Then \scrX 1 \subset \scrX \subset \scrX  - 1 with continuous and dense embeddings, and
the operator A has a unique extension to an operator A| \scrX = (A\ast )\ast \in \scrB (\scrX ;\scrX  - 1)
(with the same spectrum as A), where we interpret A\ast as an operator in \scrB (\scrX 1

\ast ;\scrX ).
The operator A \in \scrB (\scrX 1,\scrX ) is called the main operator of \Sigma . The operator A\&B
(with dom (A\&B) = dom

\bigl( \bigl[ 
A\&B
C\&D

\bigr] \bigr) 
) can be extended to an operator

\bigl[ 
A| \scrX B

\bigr] 
\in 

\scrB ([\scrX \scrU ] ;\scrX  - 1) (this follows from Remark 2.2). The operator B \in \scrB (\scrU ,\scrX  - 1) is called
the control operator of \Sigma . The operator C : \scrX 1 \rightarrow \scrY defined by Cx = C\&D [ x0 ] is

called the observation operator of \Sigma . For any \lambda \in \rho (A) we have that
\Bigl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\Bigr] 
maps \scrU into dom

\bigl( \bigl[ 
A\&B
C\&D

\bigr] \bigr) 
. The transfer function of \Sigma is the operator-valued function

(2.1) \widehat \frakD (\lambda ) = C\&D

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
, \lambda \in \rho (A).

We denote \BbbC +
\alpha := \{ \lambda \in \BbbC : Re(\lambda ) > \alpha \} , \BbbC + := \BbbC +

0 , \BbbR + := [0,\infty ), and \BbbR  - := ( - \infty , 0].
Furthermore, \scrU , \scrY , and \scrX will always denote Hilbert spaces.
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Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node, and assume that \rho (A) contains

some right half-plane. By \rho +\infty (A) we denote the (connected) component of \rho (A)\cap \BbbC +

which is unbounded to the right.

Definition 2.3. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node, and let I \subset \BbbR 

be an interval.

(i) A triple
\Bigl[ x
u
y

\Bigr] 
\in 
\biggl[ 
C1(I;\scrX )
C(I;\scrU )
C(I;\scrY )

\biggr] 
is called a classical trajectory of \Sigma if for all t \in I

(2.2)

\biggl[ 
x(t)
u(t)

\biggr] 
\in dom

\biggl( \biggl[ 
A\&B
C\&D

\biggr] \biggr) 
,

\biggl[ 
\.x(t)
y(t)

\biggr] 
=

\biggl[ 
A\&B
C\&D

\biggr] \biggl[ 
x(t)
u(t)

\biggr] 
.

(ii) A triple
\Bigl[ x
u
y

\Bigr] 
\in 
\biggl[ 

C(I;\scrX )

L2
loc(I;\scrU )

L2
loc(I;\scrY )

\biggr] 
is called a generalized trajectory of \Sigma if there exists

a sequence of classical trajectories of \Sigma which converges to
\Bigl[ x
u
y

\Bigr] 
in

\biggl[ 
C(I;\scrX )

L2
loc(I;\scrU )

L2
loc(I;\scrY )

\biggr] 
.

If I = \BbbR +, then we add the adjective ``future"" (i.e., classical future trajectory and
generalized future trajectory), and if I = \BbbR  - , then we add the adjective ``past"" (i.e.,
classical past trajectory and generalized past trajectory).

Proposition 2.4. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a system node. Then for all

x0 \in \scrX and u \in W 1,2
loc (0,\infty ;\scrU ) with

\bigl[ x0

u(0)

\bigr] 
\in D(

\bigl[ 
A\&B
C\&D

\bigr] 
) there exists a unique classical

future trajectory of \Sigma with x(0) = x0.

Proof. This is [11, Lemma 4.7.8].

Definition 2.5. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node. Then \Sigma is

called well-posed if \Sigma is a system node and for all T > 0 there exists a M > 0 such
that for all classical future trajectories there holds

\| x(T )\| 2\scrX + \| y\| 2L2(0,T ;\scrY ) \leq M
\Bigl( 
\| x0\| 2\scrX + \| u\| 2L2(0,T ;\scrU )

\Bigr) 
.

Remark 2.6. Definition 2.5 is adapted from [11, Theorem 4.7.13].

Proposition 2.7. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node.

Then for all x0 \in \scrX and u \in L2
loc(0,\infty ;\scrU ) there exists a unique generalized future

trajectory with x(0) = x0.

Proof. This follows from Proposition 2.4 by using density combined with well-
posedness.

3. Future and past stable trajectories and behaviors. In [9] we used dif-
ferent notions of past and future trajectories than those defined in Definition 2.3. In
this section we show that these notions are, however, consistent (see Lemma 3.5 for
the case of future trajectories and Lemma 3.9 for the case of past trajectories). The
following two definitions correspond to [9, Definition 3.2] and define the notions of
future trajectories and the future behavior as it was used in [9].

Definition 3.1. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
open subset \Omega of \BbbC +. By the stable future \Omega -behavior of \varphi we mean the set of all

pairs [ uy ] \in 
\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
which satisfy

(3.1) \^y(\lambda ) = \varphi (\lambda )\^u(\lambda ), \lambda \in \Omega ,

where \^u and \^y are the Laplace transforms of u and y, respectively. We denote this
set by W0

+(\Omega ) and call u the input component and y the output component of a pair
[ uy ] \in W0

+(\Omega ).
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Definition 3.2. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main oper-

ator A, observation operator C, and transfer function \widehat \frakD , and let \Omega be an open subset
of \rho (A) \cap \BbbC +.

(i) By the set of stable future \Omega -trajectories of \Sigma we mean the set of all triples\Bigl[ x0
u
y

\Bigr] 
\in 
\biggl[ \scrX 

L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\biggr] 
which satisfy

(3.2) \^y(\lambda ) = \widehat \frakD (\lambda )\^u(\lambda ) + C(\lambda  - A) - 1x0, \lambda \in \Omega ,

where \^u and \^y are the Laplace transforms of u and y, respectively. We denote
this set by W+(\Omega ) and call x0 the initial state, u the input component, and

y the output component of a triple
\Bigl[ x0

u
y

\Bigr] 
\in W+(\Omega ).

(ii) By the stable future \Omega -behavior of \Sigma we mean the stable future \Omega -behavior of
its transfer function \widehat \frakD .

Remark 3.3. The notion of a stable future \Omega -trajectory and the stable future \Omega -
behavior of \Sigma is independent of the choice of \Omega to the following extent. If \rho (A) \cap \BbbC +

is connected, then W+(\Omega 1) = W+(\Omega 2) and W0
+(\Omega 1) = W0

+(\Omega 2) for all pairs of open
subsets \Omega 1 and \Omega 2 of \rho (A)\cap \BbbC +. That this is true follows from (3.2) by using analytic
continuation. If \rho (A)\cap \BbbC + is not connected, then only the following weaker statement
is true: W+(\Omega 1) = W+(\Omega 2) and W0

+(\Omega 1) = W0
+(\Omega 2) whenever \Omega 1 and \Omega 2 are both

contained in the same (connected) component of \rho (A) \cap \BbbC +. In the remainder of
this article, we shall refer to this type of independence as ``independence within each
(connected) component of \rho (A) \cap \BbbC +.""

In the well-posed case it is natural to consider generalized trajectories in the sense
of Definition 2.3 instead of \Omega -trajectories.

Definition 3.4. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node.

(i) By the set of stable future trajectories of \Sigma we mean the set of all triples\Bigl[ 
x(0)
u
y

\Bigr] 
\in 
\biggl[ \scrX 

L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\biggr] 
, where

\Bigl[ x
u
y

\Bigr] 
is a generalized future trajectory of \Sigma . We

denote this set by W+ and call x0 the initial state, u the input component,

and y the output component of a triple
\Bigl[ x0

u
y

\Bigr] 
\in W+.

(ii) By the stable future behavior of \Sigma we mean the set of all pairs [ uy ] \in 
\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
for which

\Bigl[ 
0
u
y

\Bigr] 
\in W+. We denote this set by W0

+ and call u the input com-

ponent and y the output component of a pair [ uy ] \in W0
+.

For well-posed systems there is a close connection between Definitions 3.2 and
3.4.

Lemma 3.5. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node with main

operator A. Let \Omega be an open subset of \rho +\infty (A). Then W+ = W+(\Omega ) and W0
+ =

W0
+(\Omega ).

Proof. We denote the growth bound of \Sigma by \alpha and let \alpha + = max\{ \alpha , 0\} . Then
\BbbC +

\alpha +
\subset \rho +\infty (A).

Assume first that
\Bigl[ x
u
y

\Bigr] 
is a classical future trajectory of \Sigma with [ uy ] \in 

\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
.

Since \Sigma has growth bound \alpha , for every \beta > \alpha + we have that there exists a M > 0

such that for all t \geq 0 there holds \| x(t)\| \leq Me\beta t. It follows that
\Bigl[ x
u
y

\Bigr] 
is Laplace
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transformable, and we obtain from (2.2) that for \lambda \in \BbbC +
\beta \biggl[ 

\lambda \^x(\lambda ) - x(0)
\^y(\lambda )

\biggr] 
=

\biggl[ 
A\&B
C\&D

\biggr] \biggl[ 
\^x(\lambda )
\^u(\lambda )

\biggr] 
.

This is equivalent to (see, e.g., [2])

(3.3)

\biggl[ 
\^x(\lambda )
\^y(\lambda )

\biggr] 
=

\biggl[ 
(\lambda  - A) - 1x(0) + (\lambda  - A| \scrX ) - 1B\^u(\lambda )

C(\lambda  - A) - 1x(0) + \widehat \frakD (\lambda )\^u(\lambda )

\biggr] 
.

Since \beta > \alpha + was arbitrary, we obtain the above equality for all \lambda \in \BbbC +
\alpha +

, and since
\rho +\infty (A) is connected, by analytic continuation (3.3) holds for all \lambda \in \rho +\infty (A). In

particular, (3.3) holds for all \lambda \in \Omega , and thus
\Bigl[ 
x(0)
u
y

\Bigr] 
\in W+(\Omega ).

Next suppose that
\Bigl[ x0

u
y

\Bigr] 
\in W+. Then [ uy ] \in 

\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
, and there exists a

generalized future trajectory
\Bigl[ x
u
y

\Bigr] 
of \Sigma with x(0) = x0. For each n \in \BbbZ +, define

\left[  xn(t)
un(t)
yn(t)

\right]  :=
1

n

\int t+1/n

t

\left[  x(\tau )u(\tau )
y(\tau )

\right]  d\tau , t \in \BbbR +.

By [2] each
\Bigl[ xn
un
yn

\Bigr] 
is a classical future trajectory of \Sigma , and by standard properties

of approximate identities (see, e.g., [3]), [ un
yn ] \rightarrow [ uy ] in

\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
and e - \lambda txn(t) \rightarrow 

e - \lambda tx(t) uniformly on \BbbR + for every \lambda \in \BbbC +
\alpha +

. Since the solutions
\Bigl[ xn
un
yn

\Bigr] 
are classical,

the equations (3.3) hold with
\Bigl[ 
\^x
\^u
\^y

\Bigr] 
replaced by

\biggl[ 
\^xn

\^un

\^yn

\biggr] 
. The Laplace transforms

\biggl[ 
\^xn(\lambda )
\^un(\lambda )
\^yn(\lambda )

\biggr] 
converge to

\biggl[ 
\^x(\lambda )
\^u(\lambda )
\^y(\lambda )

\biggr] 
as n \rightarrow \infty for every \lambda \in \BbbC +

\alpha +
. In addition xn(0) \rightarrow x(0) = x0 in

\scrX as n \rightarrow \infty . This implies that (3.3) holds with x(0) = x0 for every \lambda \in \BbbC +
\alpha +

and
therefore, by analytic continuation, for all \lambda \in \rho +\infty (A). In particular, (3.3) holds with

x(0) = x0 for all \lambda \in \Omega , and thus
\Bigl[ x0

u
y

\Bigr] 
\in W+(\Omega ). This proves that W+ \subset W+(\Omega ).

Conversely, suppose that
\Bigl[ x0

u
y

\Bigr] 
\in W+(\Omega ), i.e., [

u
y ] \in 

\Bigl[ 
L2(\BbbR +;\scrU )

L2(\BbbR +;\scrY )

\Bigr] 
, and (3.2), holds

for all \lambda \in \Omega . Let
\Bigl[ x

u
y1

\Bigr] 
be the generalized future trajectory of \Sigma with initial state x0

and input function u (existence and uniqueness of which follows from Proposition 2.7).

Then
\Bigl[ x0

u
y1

\Bigr] 
\in W+ \subset W+(\Omega ). Consequently, it follows from (3.2) that \^y1(\lambda ) = \^y(\lambda ) for

all \lambda \in \Omega . It follows from the uniqueness theorem for Laplace transforms that y1 = y.

Thus,
\Bigl[ x0

u
y

\Bigr] 
\in W+. This proves that W+(\Omega ) \subset W+, and consequently W+(\Omega ) = W+.

That also W0
+(\Omega ) = W0

+ follows from Definitions 3.2 and 3.4 and the fact that
W+(\Omega ) = W+.

The following two definitions correspond to [9, Definition 3.8] and define the
notions of past trajectories and the past behavior used in [9].

Definition 3.6. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
open subset \Omega of \BbbC +. For each \lambda \in \BbbC + we denote the function t \mapsto \rightarrow e\lambda t, t \in \BbbR  - , by
e\lambda .
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(i) By the classical exponential past \Omega -behavior of \varphi we mean

V0
 - (\Omega ) := span

\biggl\{ \biggl[ 
e\lambda u0

e\lambda \varphi (\lambda )u0

\biggr] \bigm| \bigm| \bigm| \bigm| \lambda \in \Omega , u0 \in \scrU 
\biggr\} 

\subset 
\biggl[ 
L2(\BbbR  - ;\scrU )
L2(\BbbR  - ;\scrY )

\biggr] 
.

We call u the input component and y the output component of a pair [ uy ] \in 
V0

 - (\Omega ).
(ii) By the (generalized) stable past \Omega -behavior of \varphi we mean the closure in\Bigl[ 

L2(\BbbR  - ;\scrU )

L2(\BbbR  - ;\scrY )

\Bigr] 
of V0

 - (\Omega ). We denote this set by W0
 - (\Omega ).

Definition 3.7. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A, control operator B, and transfer function \widehat \frakD , and let \Omega be an open subset of
\rho (A) \cap \BbbC +.

For each \lambda \in \BbbC + we denote the function t \mapsto \rightarrow e\lambda t, t \in \BbbR  - , by e\lambda .
(i) By the set of classical stable past exponential \Omega -trajectories of \Sigma we mean

(3.4)

V - (\Omega ) := span

\left\{   
\left[  (\lambda  - A| \scrX ) - 1Bu0

e\lambda u0

e\lambda \widehat \frakD (\lambda )u0

\right]  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \lambda \in \Omega , u0 \in \scrU 

\right\}   \subset 

\left[  \scrX 
L2(\BbbR  - ;\scrU )
L2(\BbbR  - ;\scrY )

\right]  .

We call x0 the final state, u the input component, and y the output compo-

nent of a triple
\Bigl[ x0

u
y

\Bigr] 
\in V - (\Omega ).

(ii) By the set of generalized stable past \Omega -trajectories of \Sigma we mean the closure

in

\biggl[ \scrX 
L2(\BbbR  - ;\scrU )

L2(\BbbR  - ;\scrY )

\biggr] 
of V - (\Omega ). We denote this set by W - (\Omega ).

(iii) By the classical exponential past \Omega -behavior of \Sigma we mean the classical ex-
ponential past \Omega -behavior of its transfer function \widehat \frakD .

(iv) By the stable past \Omega -behavior of \Sigma we mean the stable past \Omega -behavior of its
transfer function \widehat \frakD .

In the well-posed case it is natural to consider generalized trajectories in the sense
of Definition 2.3 which ``vanish at  - \infty "" instead of past \Omega -trajectories.

Definition 3.8. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node.

(i) The notation V - stands for the set of all
\Bigl[ 
x(0)
u
y

\Bigr] 
, where

\Bigl[ x
u
y

\Bigr] 
is a generalized

past trajectory of \Sigma with compact support.
(ii) By the set of generalized stable past trajectories of \Sigma we mean the closure

in

\biggl[ \scrX 
L2(\BbbR  - ;\scrU )

L2(\BbbR  - ;\scrY )

\biggr] 
of V - . We denote this set by W - .

(iii) The notation V0
 - stands for the set of all [ uy ] \in 

\Bigl[ 
L2(\BbbR  - ;\scrU 
L2(\BbbR  - ;\scrY )

\Bigr] 
(with compact

support) with the property that
\Bigl[ x0

u
y

\Bigr] 
\in V - for some x0 \in \scrX .

(iv) By the stable past behavior of \Sigma we mean the closure in
\Bigl[ 
L2(\BbbR  - ;\scrU )

L2(\BbbR  - ;\scrY )

\Bigr] 
of V0

 - .

We denote this set by W0
 - .

For well-posed systems there is a close connection between Definitions 3.7 and
3.8.

Lemma 3.9. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node, and let \Omega 

be an open subset of \rho +\infty (A). Then W - = W - (\Omega ) and W0
 - = W0

 - (\Omega ).
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Proof. Define \Omega \ast := \{ \lambda : \=\lambda \in \Omega \} and \Sigma \dagger :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] \ast 
;\scrX ,\scrY ,\scrU 

\bigr) 
. We will add a

qualifier to the various sets of trajectories to indicate whether they are considered for
the operator node \Sigma or for its adjoint \Sigma \dagger . By [9, Lemma 3.16] we have that W - (\Omega ;\Sigma )
is the annihilator of W+(\Omega 

\ast ; \Sigma \dagger ) (with respect to the duality pairing given there) and
that W0

 - (\Omega ;\Sigma ) is the annihilator of W0
+(\Omega 

\ast ; \Sigma \dagger ). By [11, section 6.2], we have that
W - (\Sigma ) is the annihilator of W+(\Sigma 

\dagger ) and that W0
 - (\Sigma ) is the annihilator of W0

+(\Sigma 
\dagger ).

From Lemma 3.5 and uniqueness of annihilators we obtain the desired result.

4. Riccati equations. In [9] we used the concept of a normalized solution of a
Riccati equation. It is often, however, more convenient to replace the normalization
condition by a (more general) invertibility assumption. In this section we first recall
the concept of a normalized solution from [9] (Definition 4.1), then introduce the
alternative solution notion (Definition 4.2) and subsequently show that these two
solution notions are consistent (Lemma 4.3). Finally, we show that the feedback
operator which appears in the definition of the Riccati equation is (up to multiplication
by a unitary operator) uniquely determined by the solution of the Riccati equation
(Lemma 4.6).

The following is [9, Definition 5.1].

Definition 4.1. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and control operator B, and let \lambda \in \rho (A) \cap \BbbC +. By a \lambda -normalized solution
of the continuous time control Riccati equation induced by

\bigl[ 
A\&B
C\&D

\bigr] 
we mean a form q

on \scrX with the following properties:
(i) q is a closed nonnegative sesquilinear symmetric form on \scrX with domain \scrZ .
(ii) (\lambda  - A) - 1\scrZ \subset \scrZ .
(iii) (\lambda  - A| \scrX ) - 1B\scrU \subset \scrZ .
(iv) There exists an operator [K\&F ]\lambda : [\scrX \scrU ] \rightarrow \scrU with

(4.1) dom ([K\&F ]\lambda ) =

\Biggl\{ \biggl[ 
x0

u0

\biggr] 
\in dom

\biggl( \biggl[ 
A\&B
C\&D

\biggr] \biggr) \bigm| \bigm| \bigm| \bigm| \bigm| x0 \in \scrZ and

A\&B [ x0
u0

] \in \scrZ 

\Biggr\} 

and a self-adjoint operator W\lambda \in \scrB (\scrU ) such that the following identity holds:
(4.2)

2Re q

\biggl[ 
A\&B

\biggl[ 
x0

u0

\biggr] 
, x0

\biggr] 
+

\bigm\| \bigm\| \bigm\| \bigm\| C\&D

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrY 
+ \| u0\| 2\scrU 

=

\biggl\langle 
[K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] 
,W\lambda [K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] \biggr\rangle 
\scrU 
,

\biggl[ 
x0

u0

\biggr] 
\in dom ([K\&F ]\lambda ) ,

and

(4.3) [K\&F ]\lambda 

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
=  - 1\scrU .

It will be convenient to replace the normalization condition (4.3) in Definition 4.1
by an invertibility condition. The resulting concept of a Riccati equation is formalized
in Definition 4.2. Subsequently, in Lemma 4.3, we show that this concept is essentially
the same as that in Definition 4.1.

Definition 4.2. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and control operator B, and let \Omega be an open subset of \rho (A) \cap \BbbC +. By
an \Omega -solution of the continuous time control Riccati equation induced by

\bigl[ 
A\&B
C\&D

\bigr] 
we

mean a form q on \scrX with the following properties:
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(i) q is a closed nonnegative sesquilinear symmetric form on \scrX with domain \scrZ .
(ii) There exists an operator K\&F : [\scrX \scrU ] \rightarrow \scrU with domain given by

(4.4) dom (K\&F ) =

\Biggl\{ \biggl[ 
x0

u0

\biggr] 
\in dom

\biggl( \biggl[ 
A\&B
C\&D

\biggr] \biggr) \bigm| \bigm| \bigm| \bigm| \bigm| x0 \in \scrZ and

A\&B [ x0
u0

] \in \scrZ 

\Biggr\} 
such that the following identity holds:

(4.5)

2Re q

\biggl[ 
[A\&B]

\biggl[ 
x0

u0

\biggr] 
, x0

\biggr] 
+

\bigm\| \bigm\| \bigm\| \bigm\| C\&D

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrY 
+ \| u0\| 2\scrU 

=

\bigm\| \bigm\| \bigm\| \bigm\| K\&F

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrU 
,

\biggl[ 
x0

u0

\biggr] 
\in dom (K\&F ) .

(iii) For all \lambda \in \Omega the following conditions hold:
(a) (\lambda  - A) - 1\scrZ \subset \scrZ ;
(b) (\lambda  - A| \scrX ) - 1B\scrU \subset \scrZ ;
(c) the operator

(4.6) \sansF (\lambda ) := K\&F

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
is bounded and boundedly invertible.

An \Omega -solution qmin is called the minimal \Omega -solution if qmin \leq q for all \Omega -solutions q
(the inequality qmin \leq q meaning that D(q) \subset D(qmin) and qmin[x0, x0] \leq q[x0, x0] for
all x0 \in D(q)).

Lemma 4.3. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A and control operator B.
(i) Let \Omega be an open subset of \rho (A)\cap \BbbC +, and let q be an \Omega -solution of the contin-

uous time control Riccati equation with corresponding operator K\&F . Then
for any \lambda \in \Omega , q is a \lambda -normalized solution of the continuous time control
Riccati equation with [K\&F ]\lambda :=  - \sansF (\lambda ) - 1K\&F and W\lambda := \sansF (\lambda )\ast \sansF (\lambda ).

(ii) Conversely, let \lambda \in \rho (A)\cap \BbbC + and q be a \lambda -normalized solution of the contin-
uous time control Riccati equation with corresponding operators [K\&F ]\lambda and
W\lambda , and let \Omega be an open subset of the (connected) component of \rho (A) \cap \BbbC +

which contains \lambda . Then q is an \Omega -solution of the continuous time control

Riccati equation with corresponding operator K\&F :=  - W
1/2
\lambda [K\&F ]\lambda .

Proof. (i) Assume that q is an \Omega -solution of the continuous time control Riccati
equation, where \Omega is an open subset of \rho (A)\cap \BbbC +. Parts (i), (ii), and (iii) of Definition
4.1 are clearly satisfied. From the above definition of [K\&F ]\lambda , the fact that \sansF (\lambda ) is
invertible, and (4.4) we obtain (4.1). From the definitions of [K\&F ]\lambda and W\lambda we have
for [ x0

u0
] \in dom ([K\&F ]\lambda ) = dom (K\&F ) that\biggl\langle 

[K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] 
,W\lambda [K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] \biggr\rangle 
\scrU 

=

\biggl\langle 
\sansF (\lambda ) - 1K\&F

\biggl[ 
x0

u0

\biggr] 
,\sansF (\lambda )\ast \sansF (\lambda )\sansF (\lambda ) - 1K\&F

\biggl[ 
x0

u0

\biggr] \biggr\rangle 
\scrU 
=

\bigm\| \bigm\| \bigm\| \bigm\| K\&F

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrU 
,

so that (4.2) follows from (4.5). We also obtain (4.3) since

[K\&F ]\lambda 

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
=  - \sansF (\lambda ) - 1K\&F

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
=  - \sansF (\lambda ) - 1\sansF (\lambda ) =  - 1\scrU ,

where we have used (4.6).
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(ii) Now assume that q is an \lambda -normalized solution where \lambda \in \rho (A)\cap \BbbC +. Let \Omega 0

be the (connected) component of \rho (A) \cap \BbbC + which contains \lambda . Part (i) of Definition
4.2 is clearly satisfied. We obtain (4.4) from the definition of K\&F , (4.1), and the
fact that, by [9, Theorem 5.6], W\lambda is boundedly invertible. We obtain (4.5) from the
fact that\bigm\| \bigm\| \bigm\| \bigm\| K\&F

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrU 
=

\bigm\| \bigm\| \bigm\| \bigm\| W 1/2
\lambda [K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrU 
=

\biggl\langle 
[K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] 
,W\lambda [K\&F ]\lambda 

\biggl[ 
x0

u0

\biggr] \biggr\rangle 
\scrU 

and (4.2). We have

\sansF (\lambda ) = K\&F

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
=  - W

1/2
\lambda [K\&F ]\lambda 

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
= W

1/2
\lambda ,

where in the last equality we have used (4.3). It follows that for the \lambda specified in
the statement of the lemma, we have part (iii) of Definition 4.2. However, by [9,
Theorem 5.9] we have that q is a \beta -normalized solution for all \beta \in \Omega 0. Therefore, (iii)
of Definition 4.2 in fact holds for all \lambda \in \Omega 0, and consequently also for all \lambda \in \Omega .

Remark 4.4. It follows from Lemma 4.3 that the notion of an \Omega -solution of the
continuous time Riccati equation is independent of the choice of \Omega within each (con-
nected) component of \rho (A) \cap \BbbC + (in the same sense as in Remark 3.3).

The following technical lemma will be used in the proof of Lemma 4.6.

Lemma 4.5. Assume that T1, T2 : \scrH \rightarrow \scrU are surjective operators with common
domain \scrZ which satisfy \| T1x\| = \| T2x\| for all x \in \scrZ . Then there exists a unitary
operator W \in \scrB (\scrU ) such that T2 = WT1.

Proof. Let x1, x2 \in \scrZ be such that T1x1 = T1x2. Then T1(x1  - x2) = 0 and
therefore, by the assumed equality of norms, T2(x1  - x2) = 0. Hence, T2x1 = T2x2.

Let y \in \scrU . By surjectivity there exists a x \in \scrZ such that y = T1x. Define
Wy = T2x. By the above paragraph, this is well-defined (i.e., does not depend on the
choice of x). Since \| Wy\| = \| T2x\| = \| T1x\| = \| y\| , this operatorW is an isometry. We
clearly have T2 = WT1. Since T2 is surjective, this implies that also W is surjective,
and since W is also an isometry, we obtain that W is unitary.

Lemma 4.6. Let
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node, let \Omega be an open subset

of \rho (A) \cap \BbbC +, let q be an \Omega -solution of the continuous time control Riccati equation
induced by

\bigl[ 
A\&B
C\&D

\bigr] 
, and let K\&F be an operator satisfying the conditions in Definition

4.2. Then the operator K\&F is determined uniquely by q, \Omega , and
\bigl[ 
A\&B
C\&D

\bigr] 
up to the

multiplication by a unitary operator in \scrU to the left in the following sense:
(i) if K\&F is an operator satisfying the conditions in Definition 4.2 and if W

is a unitary operator in \scrU , then WK\&F is also an operator satisfying the
conditions in Definition 4.2;

(ii) if K\&F 1 and K\&F 2 are two operators which satisfy the conditions in Defi-
nition 4.2, then there exists a unitary operator W in \scrU such that K\&F 2 =
WK\&F 1.

Proof. The first statement is clear. So assume that K\&F 1 and K\&F 2 are two
operators which satisfy the conditions in Definition 4.2. From (4.4) we have that
K\&F 1 and K\&F 2 have the same domain, and by (4.5) we have that \| K\&F 2 [

x
u ] \| =

\| K\&F 1 [
x
u ] \| for all [ xu ] in this domain. It follows from part (iiic) of Definition 4.2

that K\&F 1 and K\&F 2 are surjective. Lemma 4.5 with T1 := K\&F 1, T2 := K\&F 2,
\scrH := [\scrX \scrU ], and \scrZ the common domain of K\&F 1 and K\&F 2 then gives the result.
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5. Right factorizations. The following definition adds an extra well-posedness
condition on \sansM  - 1 to [9, Definition 5.8] which is relevant in the well-posed case (con-
ditions (i)--(iii) below are the same as in [9, Definition 5.8]).

Definition 5.1. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
open subset \Omega of \BbbC +.

(i) \varphi has a right H\infty (\BbbC +) factorization valid in \Omega if there exist two functions
\sansM \in H\infty (\BbbC +;\scrB (\scrU )) and \sansN \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )) such that \sansM (\lambda ) has a bounded
inverse and \varphi (\lambda ) = \sansN (\lambda )\sansM (\lambda ) - 1 for all \lambda \in \Omega .

(ii) The factorization in (i) is normalized if
\bigl[ 
\sansN 
\sansM 

\bigr] 
is inner; i.e., the multiplication

by
\bigl[ 
\sansN 
\sansM 

\bigr] 
is an isometric operator from H2(\BbbC +;\scrU ) to H2(\BbbC +;

\bigl[ \scrY 
\scrU 
\bigr] 
).

(iii) The factorization in (i) is weakly (right) coprime if the range of the multipli-
cation operator in (ii) is equal to the Laplace transform of the future behavior
W0

+(\Omega ) defined in Definition 3.1.
(iv) The factorization in (i) is well-posed if there exists some \alpha \geq 0 such that

\sansM (\lambda ) has a bounded inverse for all \lambda \in \BbbC +
\alpha and \sansM  - 1 \in H\infty (\BbbC +

\beta ;\scrB (\scrU )) for all
\beta > \alpha .

(v) If the factorization in (i) is well-posed, then the growth bound of this factor-
ization is the infimum over all \alpha for which the condition in (iv) holds. (If the
factorization is not well-posed, then its growth bound is +\infty .)

The following lemma shows how the minimal solution of the control Riccati equa-
tion gives rise to a normalized weakly coprime right H\infty (\BbbC +) factorization (which
need not be well-posed in general).

Lemma 5.2. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A and transfer function \widehat \frakD . Let \Omega be an open set which is contained in some (con-
nected) component of \rho (A) \cap \BbbC +. Assume that there exists a minimal \Omega -solution q
of the continuous time control Riccati equation induced by

\bigl[ 
A\&B
C\&D

\bigr] 
. Let K\&F be an

operator satisfying the conditions in Definition 4.2 and define \sansF by (4.6). Define

(5.1) \sansM (\lambda ) := \sansF (\lambda ) - 1, \sansN (\lambda ) := \widehat \frakD (\lambda )\sansM (\lambda ), \lambda \in \Omega .

Then \sansM and \sansN can be extended to H\infty -functions over \BbbC +, and \widehat \frakD = \sansN \sansM  - 1 is a
normalized weakly coprime right H\infty (\BbbC +) factorization of \widehat \frakD valid in \Omega .

Proof. This follows from [9, Theorem 5.10 part (ii)]; the details are as follows.
By Remark 4.4 we may, without loss of generality, assume that \Omega is connected (we
may, e.g., replace \Omega by the component of \rho (A) \cap \BbbC + which contains \Omega ). Fix \alpha \in \Omega .
By Lemma 4.3, solutions of the Riccati equations according to Definitions 4.1 and 4.2
coincide, and therefore q coincides with the q in [9, Theorem 5.10]. Let [K\&F ]\alpha and
W\alpha be as in Definition 4.1 (by [9, Theorem 5.6 part (ii)] these operators are uniquely
determined by \Sigma , q and \alpha ). The operator F\alpha (\lambda ) appearing in [9, Theorem 5.10] is

F\alpha (\lambda ) := [K\&F ]\alpha 

\biggl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\biggr] 
.

From Lemma 4.3 and the uniqueness up to a unitary operator of K\&F from Lemma

4.6 we obtain that W
1/2
\alpha F\alpha (\lambda ) =  - W\sansF (\lambda ) for some unitary W .

From [9, Theorem 5.10 part (ii)] we have that

(5.2) \sansM \alpha (\lambda ) :=  - [W 1/2
\alpha F\alpha (\lambda )]

 - 1, \sansN \alpha (\lambda ) := \widehat \frakD (\lambda )\sansM \alpha (\lambda ), \lambda \in \Omega ,

have the properties desired of \sansM and \sansN . By the above relation between F\alpha and \sansF we
have \sansM (\lambda ) = \sansM \alpha (\lambda )W . It then follows that \sansN (\lambda ) = \sansN \alpha (\lambda )W . From this we see that
\sansM and \sansN also have the desired properties.



OPTIMAL CONTROL ON THE DOUBLY INFINITE TIME AXIS 1995

6. The future optimal control problem. As in [9] (but now for the well-
posed case), we obtain in this section equivalence of (i) a ``cost condition"" for the
future optimal control problem being satisfied, (ii) solvability of the control Riccati
equation, and (iii) existence of a weakly coprime right factorization. In comparison to
[9], each of these three equivalent statements has an additional ``uniformity"" condition.
The above equivalence is precisely formulated in Theorem 6.10. The first part of this
section (up to and including Lemma 6.6) briefly recalls relevant notions from [9].
Definition 6.7 introduces the relevant ``uniform"" version of the cost condition.

Definition 6.1. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +.
(i) A vector x0 \in \scrX is said to have finite future \Omega -cost if it is the initial state

of a generalized stable future \Omega -trajectory of \Sigma . The future \Omega -cost of such a
vector x0 is the infimum of the future cost functional

(6.1) Jfut(x0, u) =

\int \infty 

0

\bigl( 
\| u(t)\| 2\scrU + \| y(t)\| 2\scrY 

\bigr) 
dt

over all generalized stable future \Omega -trajectories
\Bigl[ x0

u
y

\Bigr] 
of \Sigma . We denote this

cost by \| x0\| 2fut,\Omega .
(ii) If \Sigma is well-posed, then a vector x0 \in \scrX is said to have finite future cost if

it is the initial state component of a stable future trajectory. The future cost
of such a vector x0 is the infimum of the future cost functional (6.1) over

all generalized stable future trajectories
\Bigl[ x0

u
y

\Bigr] 
of \Sigma . We denote this cost by

\| x0\| 2fut.
Remark 6.2. By [9, Theorem 3.7], the infimum in part (i) of Definition 6.1 is

actually achieved by a unique minimizing generalized stable future \Omega -trajectory of \Sigma ,
and \| \cdot \| 2fut,\Omega is a closed quadratic form in \scrX . By Remark 3.3, \| \cdot \| 2fut,\Omega is independent

of \Omega in the following sense: If \Omega 1 and \Omega 2 are two open subsets \rho (A) \cap \BbbC + both of
which are contained in the same (connected) component of \rho (A)\cap \BbbC +, then \| \cdot \| 2fut,\Omega 1

=

\| \cdot \| 2fut,\Omega 2
. An analogous result is true for well-posed systems: The infimum in part

(ii) of Definition 6.1 is achieved by a unique minimizing generalized stable future
trajectory of \Sigma , and \| \cdot \| 2fut is a closed quadratic form in \scrX . (The proof is essentially
the same as the proof of the \Omega -version.)

Parts (i) and (ii) of Definition 6.1 are related to each other by the following lemma.

Lemma 6.3. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node with main

operator A, and let \Omega be an open subset of \rho +\infty (A). Then a vector x0 \in \scrX has a
finite future cost if and only if x0 has a finite future \Omega -cost, and \| x0\| 2fut,\Omega = \| x0\| 2fut.

Proof. This follows from Lemma 3.5.

The following is essentially [9, Definition 5.7] (see Remark 6.5 for the connection).

Definition 6.4. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and control operator B, and let \Omega be an open subset of \rho (A) \cap \BbbC +.
(i) \Sigma satisfies the input finite future \Omega -cost condition if (\lambda  - A| \scrX ) - 1Bu0 has a

finite future \Omega -cost for every \lambda \in \Omega and every u0 \in \scrU .
(ii) \Sigma satisfies the state finite future \Omega -cost condition if every initial state in \scrX 

has a finite future \Omega -cost.

Remark 6.5. In this remark we assume that the subset \Omega in Definition 6.4 is
contained in some (connected) component of \rho (A) \cap \BbbC +. Then it follows from [9,



1996 MARK R. OPMEER AND OLOF J. STAFFANS

Theorem 5.9] that (\lambda  - A| \scrX ) - 1Bu0 has a finite future \Omega -cost for every \lambda \in \Omega and
every u0 \in \scrU if and only if (\lambda  - A| \scrX ) - 1Bu0 has a finite future \Omega -cost for some \lambda \in \Omega 
and every u0 \in \scrU . Thus, in this case it is possible to replace ``every \lambda \in \Omega "" by ``some
\lambda \in \Omega "" in condition (i) above.

Under the same additional assumption on \Omega , if \Sigma satisfies the input finite future \Omega -
cost condition, then \| \cdot \| 2fut,\Omega is the minimal \Omega -solution of the control algebraic Riccati
equation by [9, Theorem 5.9] (combined with Lemma 4.3). Conversely, if the control
algebraic Riccati equation has an \Omega -solution, then \Sigma satisfies the input finite future
\Omega -cost condition by [9, Theorem 5.9] (combined with Lemma 4.3).

The following result was never explicitly stated in [9] but follows easily from the
results presented there. We recall that a sesquilinear form q on \scrX is called bounded if
its domain equals \scrX and there exists a M > 0 such that | q[x0, z0]| \leq M\| x0\| \scrX \| z0\| \scrX 
for all x0, z0 \in \scrX .

Lemma 6.6. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A, and let \Omega be an open subset of a connected subset of \rho (A)\cap \BbbC +. The following are
equivalent:

(i) \Sigma satisfies the state finite future \Omega -cost condition.
(ii) The quadratic form \| \cdot \| 2fut,\Omega giving the optimal future \Omega -cost is bounded.
(iii) The control Riccati equation has a bounded \Omega -solution.

If these equivalent conditions hold, then \| \cdot \| 2fut,\Omega is equal to the minimal nonnegative
\Omega -solution of the control Riccati equation.

Proof. Since the state finite future \Omega -cost condition trivially implies the input
finite future \Omega -cost condition, we have by [9, Theorem 5.9] combined with Lemma 4.3
that (i) implies that \| \cdot \| 2fut,\Omega is equal to the minimal nonnegative \Omega -solution of the
control Riccati equation. Using [9, Theorem 5.9] combined with Lemma 4.3 we also
obtain that (iii) implies that \| \cdot \| 2fut,\Omega is equal to the minimal nonnegative \Omega -solution
of the control Riccati equation.

(i) =\Rightarrow (ii) follows since \| \cdot \| 2fut,\Omega is closed by [9, Lemma 3.6], and since by the
state finite future \Omega -cost condition it is everywhere defined, it must then be bounded.

(ii) =\Rightarrow (i) is trivial.
(ii) =\Rightarrow (iii). We have already shown that if (ii) holds, then so does (i). We

have also already seen that then \| \cdot \| 2fut,\Omega is the minimal nonnegative \Omega -solution of the

control Riccati equation. Since by assumption \| \cdot \| 2fut,\Omega is bounded, (iii) holds.

(iii) =\Rightarrow (ii). We saw above that if (iii) holds, then \| \cdot \| 2fut,\Omega is the minimal non-
negative \Omega -solution of the control Riccati equation. Since existence of a bounded
\Omega -solution of the control Riccati equation implies that the minimal nonnegative \Omega -
solution is also bounded, it follows that \| \cdot \| 2fut,\Omega is bounded.

The following strengthens [9, Definition 5.7] to the notion relevant in the well-
posed case. Note that what is added is an estimate on the size of the cost (see Remark
6.8 for further comments on this).

Definition 6.7. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and control operator B, and let \Omega be an open subset of \rho (A) \cap \BbbC +. \Sigma is
said to satisfy the uniform input finite future \Omega -cost condition if \Sigma satisfies the input
finite future \Omega -cost condition and if there exist constants \alpha \geq 0 and M > 0 such that
\BbbC +

\alpha \subset \Omega and

(6.2)
\bigm\| \bigm\| (\lambda  - A) - 1Bu0

\bigm\| \bigm\| 2
fut,\Omega 

\leq M

Re(\lambda )
\| u0\| 2, u0 \in \scrU , \lambda \in \BbbC +

\alpha .
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Remark 6.8. Condition 6.7 can be interpreted as a strengthened version of the
condition

(6.3)
\bigm\| \bigm\| (\lambda  - A) - 1Bu0

\bigm\| \bigm\| 2
fut,\Omega 

\leq M

Re(\lambda )

\bigl( 
\| u0\| 2 + \| \widehat \frakD (\lambda )u0\| 2

\bigr) 
, u0 \in \scrU , \lambda \in \BbbC +

\alpha ,

which has the following interpretation. For each \lambda \in \BbbC +
\alpha and u0 \in \scrU the past cost

of the classical stable past exponential trajectory
\Bigl[ x0

u
y

\Bigr] 
:=

\biggl[ 
(\lambda  - A| \scrX ) - 1Bu0

\bfe \lambda u0

\bfe \lambda 
\widehat \frakD (\lambda )u0

\biggr] 
in (3.4) is

equal to

Jpast(x0, u) =

\int 0

 - \infty 

\bigl( 
\| u(t)\| 2\scrU + \| y(t)\| 2\scrY 

\bigr) 
dt =

1

Re(\lambda )

\bigl( 
\| u0\| 2 + \| \widehat \frakD (\lambda )u0\| 2

\bigr) 
.

Therefore, (6.3) says that the optimal future cost of the initial state (\lambda  - A) - 1Bu0

is bounded by a constant times the past cost it takes to reach that state with input
e\lambda u0.

Clearly (6.2) implies (6.3). If \Sigma is well-posed and the growth bound of \Sigma is at
most \alpha , then \widehat \frakD is uniformly bounded on \BbbC +

\alpha , and the converse implication holds as
well.

Whereas it is immediately clear that the state finite future \Omega -cost condition im-
plies the input finite future \Omega -cost condition, it is not immediately clear that it implies
the uniform input finite future cost condition. The following lemma shows that in the
well-posed case this is in fact true.

Lemma 6.9. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node with main

operator A, and let \Omega be an open subset of \rho +\infty (A) which contains some right half-
plane. If \Sigma satisfies the state finite future cost condition, then \Sigma also satisfies the
uniform input finite future \Omega -cost condition.

Proof. By Lemma 6.3, the assumption that \Sigma satisfies the state finite future cost
condition implies that \Sigma satisfies the state future \Omega -cost condition and therefore the
input finite future \Omega -cost condition as well.

Fix any \alpha \geq 0 such that the growth bound of \Sigma is less than \alpha  - 1 and such that
\BbbC +

\alpha \subset \Omega . By [11, Proposition 4.2.9], there exists a M0 > 0 such that\bigm\| \bigm\| (\lambda  - A) - 1Bu0

\bigm\| \bigm\| 2
\scrX \leq M0

Re(\lambda ) - \alpha + 1
\| u0\| 2\scrU , u0 \in \scrU , \lambda \in \BbbC +

\alpha .

Since Re(\lambda )/(Re(\lambda ) - \alpha + 1) \leq max\{ 1, \alpha \} for all \lambda \in \BbbC +
\alpha , this implies that

(6.4)
\bigm\| \bigm\| (\lambda  - A) - 1Bu0

\bigm\| \bigm\| 2
\scrX \leq M1

Re(\lambda )
\| u0\| 2\scrU , u0 \in \scrU , \lambda \in \BbbC +

\alpha ,

where M1 = max\{ 1, \alpha \} M0. From Lemma 6.6 we obtain that \| \cdot \| 2fut,\Omega is bounded; i.e.,
there exists a M2 > 0 such that

\| z\| 2fut,\Omega \leq M2\| z\| 2, z \in \scrX .

In particular,

(6.5) \| (\lambda  - A) - 1Bu0\| 2fut,\Omega \leq M2\| (\lambda  - A) - 1Bu0\| 2, u0 \in \scrU , \lambda \in \BbbC +
\alpha .

Combining (6.4) and (6.5) we get (6.2) with M := M1M2. Thus, the uniform input
finite future \Omega -cost condition holds.
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Theorem 6.10. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and transfer function \widehat \frakD . Assume that \rho (A) contains some right half-plane,
and let \Omega be an open subset of \rho +\infty (A) which contains some right half-plane. Then
the following conditions are equivalent:

(i) \Sigma satisfies the uniform input finite future \Omega -cost condition, and \widehat \frakD is uniformly
bounded on some right half-plane.

(ii) The control Riccati equation for \Sigma has an \Omega -solution for which the function
\sansF in (4.6) is uniformly bounded on some right half-plane.

(iii) The control Riccati equation for \Sigma has a unique minimal \Omega -solution, and the
function \sansF in (4.6) corresponding to this solution is uniformly bounded on
some right half-plane.

(iv) \widehat \frakD has a well-posed normalized weakly coprime right H\infty (\BbbC +) factorization
valid in \Omega .

Proof. We first show that each of the conditions (i), (ii), and (iv) implies that
there exists a minimal nonnegative \Omega -solution of the control Riccati equation. Indeed,
according to [9, Theorem 5.9] conditions (i), (ii), and (iv) are equivalent if we drop
the word ``uniform"" and the uniform boundedness condition on \widehat \frakD in (i), drop the
uniform boundedness condition on \sansF in (ii), and drop the word ``well-posed"" in (iv),
and these three equivalent weaker conditions imply that the control Riccati equation
has a minimal \Omega -solution. Thus, under all four conditions in the theorem we have a
minimal \Omega -solution q of the control Riccati equation.

Let \lambda \in \Omega and u0 \in \scrU . Substituting
\Bigl[ 
(\lambda  - A) - 1Bu0

u0

\Bigr] 
in the control Riccati equation

gives

(6.6) 2Re(\lambda ) q
\bigl[ 
(\lambda  - A) - 1Bu0, (\lambda  - A) - 1Bu0

\bigr] 
+ \| \widehat \frakD (\lambda )u0\| 2 + \| u0\| 2 = \| \sansF (\lambda )u0\| 2.

This substitution is allowed since
\Bigl[ 
(\lambda  - A) - 1Bu0

u0

\Bigr] 
\in dom

\bigl( \bigl[ 
A\&B
C\&D

\bigr] \bigr) 
and we have that

both (\lambda  - A) - 1Bu0 \in dom(q) and A\&B
\Bigl[ 
(\lambda  - A) - 1Bu0

u0

\Bigr] 
= \lambda (\lambda  - A) - 1B \in dom(q). We

use (6.6) to complete the proof.
(i) \Leftarrow \Rightarrow (iii). We recall from Lemma 6.6 that \| \cdot \| 2fut,\Omega is equal to the mini-

mal nonnegative \Omega -solution of the control Riccati equation. From (6.6) with q[(\lambda  - 
A) - 1Bu0, (\lambda  - A) - 1Bu0] = \| (\lambda  - A) - 1Bu0\| 2fut,\Omega we see that \sansF is uniformly bounded
on some right half-plane if and only if (a) \widehat \frakD is uniformly bounded on the same right
half-plane and (b) condition (6.3) holds on the same right half-plane.

(iii) =\Rightarrow (ii). This is trivial.
(ii) =\Rightarrow (i). This follows from (6.6) since \| \cdot \| 2fut,\Omega is the minimal \Omega -solution of

the control Riccati equation, and hence \| (\lambda  - A) - 1Bu0\| 2fut,\Omega \leq q[(\lambda  - A) - 1Bu0, (\lambda  - 
A) - 1Bu0].

(iii) =\Rightarrow (iv) follows from Lemma 5.2.
(iv) =\Rightarrow (iii). Let (\sansN ,\sansM ) be a well-posed normalized weakly coprime right factor-

ization of \widehat \frakD . Since a normalized weakly coprime right factorization is unique up to
multiplication by a unitary operator, we obtain using Lemma 5.2 that there exists a
U \in \scrB (\scrU ) unitary such that \sansF (\lambda ) - 1 := \sansM (\lambda )U for all \lambda \in \Omega . Since \sansM  - 1 is assumed
to be uniformly bounded on some right half-plane, it follows that \sansF has the same
property.

7. LQ future normalized realizations. In this section we construct a real-
ization with particularly nice properties for a function which has a well-posed right
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H\infty (\BbbC +) factorization. This realization is analogous to an ``output normalized real-
ization"" [11, section 9.5] (relevant for H\infty (\BbbC +) functions) and to an ``optimal realiza-
tion"" [11, section 11.8], [1] (relevant for contractive H\infty (\BbbC +) functions). (All these
realizations are unique up to a unitary similarity transformation in the state space.)

Definition 7.1. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +. Then \Sigma is called LQ future
\Omega -normalized if

(i) \Sigma is \Omega -controllable in the sense that
\bigvee 

\lambda \in \Omega img
\bigl( 
(\lambda  - A) - 1B

\bigr) 
= \scrX ;

(ii) \Sigma satisfies the state finite future \Omega -cost condition, and for each x0 \in \scrX the
optimal future \Omega -cost of x0 is equal to \| x0\| 2\scrX .

If \Sigma is well-posed, then it is called LQ future normalized if
(i\prime ) \Sigma is controllable (in the sense of [11, Definition 9.1.2]);
(ii\prime ) \Sigma satisfies the state finite future cost condition, and for each x0 \in \scrX the

optimal future cost of x0 is equal to \| x0\| 2\scrX .

Remark 7.2. The notion ``LQ future \Omega -normalized"" is independent of \Omega within
each (connected) component of \rho (A) \cap \BbbC + (in the same sense as in Remark 3.3). See
also Remarks 4.4 and 6.2.

We also note that the definitions of LQ future normalized and LQ future \Omega -
normalized are consistent in the sense that a well-posed operator node is LQ future
normalized if and only if it is LQ future \Omega -normalized for some (equivalently, for all)
open subset \Omega of \rho +\infty (A). This follows from Lemma 6.3 (for equivalence of (ii) and
(ii\prime )) and [11, Corollarly 9.6.5] (for equivalence of (i) and (i\prime )).

The following lemma shows uniqueness (up to a unitary similarity transformation
in the state space) of LQ future \Omega -normalized realizations of a given transfer function.

Lemma 7.3. For j \in \{ 1, 2\} , let \Sigma j :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
j
;\scrX j ,\scrU ,\scrY 

\bigr) 
be an operator node

with main operator Aj. Assume that \rho (A1)\cap \rho (A2)\cap \BbbC + is nonempty, and let \Omega be an
open subset of \rho (A1)\cap \rho (A2)\cap \BbbC +. Further assume that the restrictions of the transfer
functions of \Sigma 1 and \Sigma 2 to \Omega are equal. If \Sigma 1 and \Sigma 2 are LQ future \Omega -normalized,
then they are unitarily similar (i.e., there exists a unitary U \in \scrB (\scrX 1,\scrX 2) such that\bigl[ 
U 0
0 1\scrU 

\bigr] 
S1 = S2

\bigl[ 
U 0
0 1\scrU 

\bigr] 
).

Proof. Let \beta \in \Omega , let j \in \{ 1, 2\} , and consider the (internal) Cayley transform

with parameter \beta of \Sigma j (as defined in, e.g., [9, section 4]) and denote this by \Sigma \beta 
j .

From [9, Theorem 4.5] we obtain that \Sigma \beta 
j satisfies the discrete-time equivalent of

(ii) in Definition 7.1. The proofs of [11, Lemmas 9.6.3 and 12.2.6] show that \Sigma \beta 
j

is controllable. Hence, \Sigma \beta 
j is discrete-time LQ future normalized (as defined in [8,

Definition 2.8]) noting that observability follows from the fact that the norm equals
the optimal future cost.

On a neighborhood of zero, the transfer functions of \Sigma \beta 
1 and \Sigma \beta 

2 are equal. From

[8, Lemma 2.11] we conclude that \Sigma \beta 
1 and \Sigma \beta 

2 are unitarily similar. It follows that \Sigma 1

and \Sigma 2 are unitarily similar as well.

The following theorem uses the notion of a strongly stabilizable well-posed linear
system from [11, Definition 8.2.4], that of a controllable well-posed linear system
from [11, Definition 9.1.2], and that of a minimal well-posed linear system from [11,
Definition 9.1.2].

Theorem 7.4. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some right
half-plane. Then
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(i) \varphi has a well-posed LQ future normalized realization \Sigma if and only if \varphi has a
well-posed right H\infty (\BbbC +) factorization valid in some right half-plane.

If the above equivalent conditions hold, then the realization \Sigma of \varphi in (i) has the
following additional properties:

(ii) \Sigma is minimal.
(iii) \Sigma is determined uniquely by \varphi , up to a unitary similarity transformation in

the state space.
(iv) Denote the growth bound of \Sigma by \omega \Sigma . Then max\{ \omega \Sigma , 0\} = max\{ \omega \varphi , 0\} ,

where \omega \varphi is the growth bound of an arbitrary normalized weakly coprime right
H\infty (\BbbC +) factorization (\sansN ,\sansM ) of \varphi .

(v) \Sigma is strongly stabilizable.

(vi) If a generalized future trajectory
\Bigl[ x
u
y

\Bigr] 
of \Sigma satisfies [ yu ] \in L2(\BbbR +;

\bigl[ \scrY 
\scrU 
\bigr] 
), then

x(t) \rightarrow 0 as t \rightarrow \infty (in particular, x is bounded).

Proof. We first show that every function \varphi which has a well-posed right H\infty (\BbbC +)
factorization valid in some right half-plane has a well-posed LQ future normalized
realization.

Suppose that \varphi has a well-posed right H\infty (\BbbC +) factorization. Then \varphi also has
a well-posed normalized weakly coprime right H\infty (\BbbC +) factorization (\sansN ,\sansM ) by [5,
Theorem 1.1]. Since

\bigl[ 
\sansN 
\sansM 

\bigr] 
is inner, it has a minimal well-posed strongly stable energy-

preserving realization by, e.g., [11, Theorem 11.8.1 (i)]. We denote this operator
node by \Sigma \curvearrowleft = (S\curvearrowleft ;\scrX ,\scrU ,

\bigl[ \scrY 
\scrU 
\bigr] 
). We note that the transfer function from the input

to the second output of \Sigma \curvearrowleft is \sansM , which by assumption has an inverse which is
uniformly bounded on some right half-plane \BbbC +

\alpha , where \alpha \geq 0. By [11, Theorems
6.6.1 and 10.3.5], we obtain a well-posed operator node \Sigma ext =

\bigl( 
Sext;\scrX ,\scrU ,

\bigl[ \scrY 
\scrU 
\bigr] \bigr) 

with
growth bound at most \alpha by considering the second output of \Sigma \curvearrowleft as the input of \Sigma ext

and the input of \Sigma \curvearrowleft as the second output of \Sigma ext. We have the following relation

between generalized future trajectories of \Sigma \curvearrowleft and \Sigma ext:

\biggl[ 
x
w

[ yu ]

\biggr] 
is a generalized future

trajectory of \Sigma \curvearrowleft if and only if

\biggl[ 
x
u

[ yw ]

\biggr] 
is a generalized future trajectory of \Sigma ext. We

define the system \Sigma =
\bigl( 
S;\scrX ,\scrU ,\scrY 

\bigr) 
by dropping the second output of \Sigma ext. We will

show that this \Sigma has the properties claimed in the theorem. It follows from the above
that \Sigma is well-posed with growth bound at most \alpha .

We next show that the system \Sigma constructed above satisfies condition (vi). Since
the state and output of a well-posed system are uniquely determined by the initial
state and input, there is a one-to-one correspondence between the trajectories of

\Sigma and the trajectories of \Sigma ext; i.e., if

\biggl[ 
x
u

[ yw ]

\biggr] 
is a generalized future trajectory of

\Sigma ext, then
\Bigl[ x
u
y

\Bigr] 
is a generalized future trajectory of \Sigma , and, conversely, if

\Bigl[ x
u
y

\Bigr] 
is

a generalized future trajectory of \Sigma , then there exists a unique w \in L2
loc(\BbbR +;\scrU )

such that

\biggl[ 
x
u

[ yw ]

\biggr] 
is a generalized future trajectory of \Sigma ext. As we noticed above,

there is also a one-to-one correspondence between the trajectories of \Sigma ext and the
trajectories of \Sigma \curvearrowleft . However, we also need a one-to-one correspondence between

stable generalized future trajectories, which can be established as follows. Let
\Bigl[ x
u
y

\Bigr] 
be

a stable generalized future trajectory of \Sigma , so that u \in L2(\BbbR +;\scrU ) and y \in L2(\BbbR +;\scrY ).

Let

\biggl[ 
x
w

[ yu ]

\biggr] 
be the corresponding generalized future trajectory of \Sigma \curvearrowleft . We shall prove
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that

\biggl[ 
x
w

[ yu ]

\biggr] 
is stable as well, i.e., that additionally w \in L2(\BbbR +;\scrU ). We can write

the trajectory as the sum of two trajectories:

\biggl[ 
x
w

[ yu ]

\biggr] 
=

\biggl[ 
x1
0

[ y1
u1
]

\biggr] 
+

\biggl[ 
x2
w

[ y2
u2
]

\biggr] 
, where

x1(0) = x(0) and the input function of the first of these trajectories is zero, and
x2(0) = 0. Since \Sigma \curvearrowleft is strongly stable, we have x1(t) \rightarrow 0 as t \rightarrow \infty , and since
\Sigma \curvearrowleft is strongly stable and energy preserving, by, e.g., [11, Theorem 11.3.4], we have
[ y1
u1

] \in L2(\BbbR +;
\bigl[ \scrY 
\scrU 
\bigr] 
). From the assumption that [ yu ] \in L2(\BbbR +;

\bigl[ \scrY 
\scrU 
\bigr] 
) and the just

established [ y1
u1

] \in L2(\BbbR +;
\bigl[ \scrY 
\scrU 
\bigr] 
) we obtain that [ y2

u2
] \in L2(\BbbR +;

\bigl[ \scrY 
\scrU 
\bigr] 
). Since x2(0) = 0,

we have [ y2
u2

] =
\bigl[ 
\frakN 
\frakM 

\bigr] 
w, where

\bigl[ 
\frakN 
\frakM 

\bigr] 
is the causal shift-invariant operator with symbol\bigl[ 

\sansN 
\sansM 

\bigr] 
. Since (\sansN ,\sansM ) is weakly right coprime, from [ y2

u2
] \in L2(\BbbR +;

\bigl[ \scrY 
\scrU 
\bigr] 
) we obtain

w \in L2(\BbbR +;\scrU ). Since \Sigma \curvearrowleft is strongly stable and energy preserving, by [11, Theorem
11.3.5] it is strongly input/state stable (in the sense of [11, Definition 8.1.1 (iib)]),
and since the input w giving rise to x2 is in L2(\BbbR +;\scrU ), it follows that x2(t) \rightarrow 0 as
t \rightarrow \infty . We conclude that x(t) = x1(t) + x2(t) \rightarrow 0 as t \rightarrow \infty . Hence, we obtain that
the constructed \Sigma satisfies (vi).

We now prove that \Sigma satisfies condition (ii\prime ) in Definition 7.1. Let
\Bigl[ x
u
y

\Bigr] 
be a stable

generalized future trajectory of \Sigma . By the above, there exists a unique w such that\biggl[ 
x
w

[ yu ]

\biggr] 
is a stable generalized future trajectory of \Sigma \curvearrowleft . Since \Sigma \curvearrowleft is energy preserving,

we obtain for all t \geq 0

(7.1) \| x(t)\| 2\scrX +

\int t

0

\| y(\tau )\| 2\scrY d\tau +

\int t

0

\| u(\tau )\| 2\scrU d\tau = \| x(0)\| 2\scrX +

\int t

0

\| w(\tau )\| 2\scrU d\tau .

Letting t \rightarrow \infty and using that x(t) \rightarrow 0 by the above established (vi), we obtain

(7.2)

\int \infty 

0

\| y(\tau )\| 2\scrY d\tau +

\int \infty 

0

\| u(\tau )\| 2\scrU d\tau = \| x(0)\| 2\scrX +

\int \infty 

0

\| w(\tau )\| 2\scrU .

From this we see that the infimum over all stable generalized future trajectories of \Sigma of\int \infty 
0

\| y(\tau )\| 2\scrY d\tau +
\int \infty 
0

\| u(\tau )\| 2\scrU d\tau is obtained for w = 0 and equals \| x(0)\| 2\scrX . Therefore,
we obtain condition (ii\prime ) in Definition 7.1.

We now prove that \Sigma is controllable (this is condition (i\prime ) in Definition 7.1). We
have that \Sigma \curvearrowleft is controllable (in the sense of [11, Definition 9.1.2]). By [11, Lemma
9.9.2] (where the first input space is taken to be the trivial vector space) we then obtain
that \Sigma ext is controllable. Since dropping an output does not affect controllability, it
follows that \Sigma is controllable.

According to Definition 7.1, \Sigma is a well-posed LQ future normalized realization
of \varphi .

Conversely, suppose that \Sigma is a well-posed LQ future normalized realization of
\varphi . We proceed to prove that \varphi has a well-posed right H\infty (\BbbC +)-factorization valid in
some right half-plane and that this realization has the additional properties (ii)--(vi).
In the remainder of the proof we denote the main operator of \Sigma by A, the control
operator by B, the transfer function by \widehat \frakD , and the growth bound of \Sigma by \omega \Sigma .

We begin by proving (ii). If
\Bigl[ 
x
0
0

\Bigr] 
is a generalized future trajectory of \Sigma , then the

optimal future cost of x(0) is clearly zero, and from condition (ii\prime ) in Definition 7.1 we
then obtain that \| x(0)\| 2\scrX = 0, so that x = 0. Hence, \Sigma is observable. A well-posed
system which is both controllable and observable is minimal.

We next prove that \varphi has a well-posed right H\infty (\BbbC +)-factorization valid in some
right half-plane. Let \alpha > max\{ \omega \Sigma , 0\} , and denote \Omega := \BbbC +

\alpha . By Lemma 6.6 combined
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with Definition 7.1 and Remark 7.2, the inner-product in \scrX is the minimal \Omega -solution
of the continuous time control Riccati equation (with domain \scrX ). Hence, we have
that there exists an operator K\&F : dom(S) \rightarrow \scrU such that
(7.3)

2Re

\biggl\langle 
[A\&B]

\biggl[ 
x
u

\biggr] 
, x

\biggr\rangle 
+

\bigm\| \bigm\| \bigm\| \bigm\| C\&D

\biggl[ 
x
u

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrY 
+ \| u\| 2\scrU =

\bigm\| \bigm\| \bigm\| \bigm\| K\&F

\biggl[ 
x
u

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
\scrU 
,

\biggl[ 
x
u

\biggr] 
\in dom (S) ,

and such that the operator \sansF (\lambda ) := K\&F
\Bigl[ 
(\lambda  - A| \scrX ) - 1B

1\scrU 

\Bigr] 
has a bounded inverse for all

\lambda \in \Omega . From Lemma 5.2 we obtain that \sansM (\lambda ) := \sansF (\lambda ) - 1, \sansN (\lambda ) := \varphi (\lambda )\sansM (\lambda ) gives
rise to a normalized weakly coprime right H\infty (\BbbC +) factorization of \widehat \frakD . From (7.3)
we see that K\&F is continuous with respect to the graph norm of S and therefore

\Sigma ext :=
\Bigl( \Bigl[ 

A\&B
C\&D
K\&F

\Bigr] 
;\scrX ,\scrU ,

\bigl[ \scrY 
\scrU 
\bigr] \Bigr) 

is a system node. We now prove that \Sigma ext is well-posed.

Let

\biggl[ 
x
u

[ yw ]

\biggr] 
be a classical trajectory of \Sigma ext. From (7.3) we obtain by integrating that

(7.1) holds. Since \Sigma is well-posed, for all T > 0 there exists a M > 0 such that for all
t \in [0, T ]

(7.4) \| x(t)\| 2\scrX +

\int t

0

\| y(\tau )\| 2\scrY d\tau \leq M

\biggl( 
\| x(0)\| 2\scrX +

\int t

0

\| u(\tau )\| 2\scrU d\tau 

\biggr) 
.

From (7.1) we obtain\int t

0

\| w(\tau )\| 2\scrU d\tau \leq \| x(t)\| 2\scrX +

\int t

0

\| y(\tau )\| 2\scrY d\tau +

\int t

0

\| u(\tau )\| 2\scrU d\tau ,

which combined with (7.4) gives

\| x(t)\| 2\scrX +

\int t

0

\| y(\tau )\| 2\scrY d\tau +

\int t

0

\| w(\tau )\| 2\scrU d\tau \leq (2M + 1)

\biggl( 
\| x(0)\| 2\scrX +

\int t

0

\| u(\tau )\| 2\scrU d\tau 

\biggr) 
,

which shows that \Sigma ext is well-posed. The growth bound of \Sigma ext is the same as the
growth bound \omega \Sigma of \Sigma (equal to the growth bound of the evolution semigroup of \Sigma ).
In particular, this implies that the transfer function \sansF from the input to the second
output of \Sigma ext is bounded in \BbbC +

\alpha . Since \sansF = \sansM  - 1, this implies that \sansM  - 1 is bounded
in \BbbC +

\alpha . Consequently, the factorization (\sansN ,\sansM ) of \widehat \frakD is well-posed, and the growth
bound of this factorization is at most \alpha . Since \alpha is an arbitrary number satisfying
\alpha > max\{ \omega \Sigma , 0\} , we see that the growth bound of the factorization (\sansN ,\sansM ) is at most
max\{ \omega \Sigma , 0\} . This proves that \varphi has a well-posed right H\infty (\BbbC +)-factorization valid
in some right half-plane (and also proves one-half of (iv)).

We next prove (v). As we noticed above, the transfer function from the input to
the second output of \Sigma ext equals \sansF , whose inverse \sansM is well-posed. By [11, Theorem
6.6.1] we obtain a well-posed operator node \Sigma \curvearrowleft = (S\curvearrowleft ;\scrX ,\scrU ,

\bigl[ \scrY 
\scrU 
\bigr] 
) by considering the

second output of \Sigma ext as input of \Sigma \curvearrowleft and the input of \Sigma ext as the second output of
\Sigma \curvearrowleft . The transfer function of \Sigma \curvearrowleft is

\bigl[ 
\sansN 
\sansM 

\bigr] 
. From (7.1) we obtain that \Sigma \curvearrowleft is energy

preserving. Since \Sigma is controllable, \Sigma ext is controllable and using [11, Lemma 9.9.2],
\Sigma \curvearrowleft is controllable. From [11, Theorem 11.3.3] we then obtain that \Sigma \curvearrowleft is additionally
strongly stable and observable. Therefore, \Sigma \curvearrowleft has the properties assumed in the first
part of this proof; additionally, \Sigma , \Sigma ext, and \Sigma \curvearrowleft are related as in that first part of
this proof. By [11, Chapter 7], the operator K\&F is an admissible state feedback for
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\Sigma with closed-loop system \Sigma \curvearrowleft . Since \Sigma \curvearrowleft is well-posed and strongly stable, it follows
that \Sigma is strongly stabilizable, i.e. that (v) holds.

We note that (iii) follows from Lemma 7.3.
In the first part of the proof we showed that the system \Sigma constructed there

satisfes condition (vi). It therefore follows from (iii) that all well-posed LQ future
normalized systems \Sigma must satisfy (vi).

The only property left to be established is (iv). All normalized weakly comprime
right H\infty (\BbbC +) factorizations of \varphi are determined uniquely up to the multiplication
from the right by an unitary operator, and hence they all have the same growth
bound, which we may denote by \omega \varphi . Likewise, all well-posed LQ future normalized
realizations \Sigma of \varphi have the same growth bound since they are unitarily similar. We
denote this common growth bound by \omega \Sigma . It follows from the construction in the
first part of the proof that max\{ \omega \Sigma , 0\} \leq max\{ \omega \varphi , 0\} , and as we saw above, also the
converse inequality is true. Thus, max\{ \omega \Sigma , 0\} = max\{ \omega \varphi , 0\} .

The following lemma gives a necessary and sufficient condition for a LQ future
\Omega -normalized operator node to be well-posed (and hence LQ future normalized).

Lemma 7.5. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A and transfer function \widehat \frakD . Then the two following conditions are equivalent:
(i) \Sigma is well-posed and LQ future normalized.
(ii) The following conditions hold:

(a) \rho (A) contains some right half-plane;
(b) \Sigma is LQ future \Omega -normalized for some (or, equivalently, for every) open

subset \Omega of \rho +\infty (A);
(c) \widehat \frakD has a well-posed right H\infty (\BbbC +) factorization valid in \Omega (with \Omega as in

(b)).

Proof. Suppose first that \Sigma is well-posed and LQ future normalized. Then (a)
holds. By Remark 7.2, \Sigma is LQ future \Omega -normalized for every open subset \Omega of
\rho +\infty (A). By Theorem 7.4, \widehat \frakD has a well-posed right H\infty (\BbbC +) factorization valid in
some right half-plane. By analytic continuation, this factorization is actually valid in
\rho +\infty (A) and hence also valid in every open subset \Omega of \rho +\infty (A).

Conversely, suppose that conditions (a)--(c) in (ii) hold (where we in (b) fix \Omega to
be some open subset of \rho +\infty (A)). Since \widehat \frakD has a well-posed right H\infty (\BbbC +) factor-
ization valid in \Omega , it also has a well-posed normalized weakly right coprime H\infty (\BbbC +)
factorization (\sansN ,\sansM ) valid in \Omega (cf. the proof of Theorem 7.4). By analytic contin-
uation, \widehat \frakD (\lambda )\sansM (\lambda ) = \sansN (\lambda ) for all \lambda \in \rho +\infty (A), and consequently the factorization\widehat \frakD (\lambda ) = \sansN (\lambda )\sansM (\lambda ) - 1 is valid everywhere in \rho +\infty (A) where \sansM (\lambda ) is invertible. The
well-posedness assumption on the factorization means that \sansM (\lambda ) is invertible in some
right half-plane, and thus the factorization \widehat \frakD (\lambda ) = \sansN (\lambda )\sansM (\lambda ) - 1 is also valid in some
right half-plane \BbbC +

\alpha .
By Theorem 7.4, \widehat \frakD has a well-posed LQ future normalized realization \Sigma 1, and

by Remark 7.2, \Sigma 1 is also LQ future \BbbC +
\alpha -normalized. By Lemma 7.3, \Sigma and \Sigma 1 are

unitarily similar. Since \Sigma 1 is well-posed and LQ future normalized, also \Sigma is therefore
well-posed and LQ future normalized.

8. Realization theory. By collecting several results from the previous sections,
we obtain the following theorem.

Theorem 8.1. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main opera-

tor A and transfer function \widehat \frakD . Assume that \rho (A) contains some right half-plane, let
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\Omega be an open subset of \rho +\infty (A) which contains some right half-plane, and denote the
restriction of \widehat \frakD to \Omega by \varphi . Then the following conditions are equivalent:

(i) \Sigma satisfies the uniform input finite future \Omega -cost condition, and \varphi is uniformly
bounded on some right half-plane.

(ii) The control Riccati equation for \Sigma has an \Omega -solution for which the function
\sansF in (4.6) is uniformly bounded on some right half-plane.

(iii) The control Riccati equation for \Sigma has an \Omega -solution, and the function \sansF in
(4.6) corresponding to the minimal \Omega -solution is uniformly bounded on some
right half-plane.

(iv) \varphi has a well-posed realization for which the control Riccati equation has a
bounded \BbbC +

\alpha -solution for some \alpha \geq 0.
(v) \varphi has a well-posed realization which satisfies the state finite future cost con-

dition.
(vi) \varphi has a well-posed stabilizable realization.
(vii) \varphi has a well-posed strongly stabilizable realization.
(viii) \varphi has a well-posed LQ future normalized realization.
(ix) \varphi has an well-posed right H\infty (\BbbC +) factorization.
(x) \varphi has a well-posed normalized weakly coprime right H\infty (\BbbC +) factorization.

Proof. (i) \Leftarrow \Rightarrow (ii) \Leftarrow \Rightarrow (iii) \Leftarrow \Rightarrow (x) follows from Theorem 6.10.
(x) =\Rightarrow (ix) is trivial.
(ix) =\Rightarrow (viii) follows from Theorem 7.4.
(viii) =\Rightarrow (vii) follows since the LQ future normalized realization is well-posed

and strongly stabilizable by Theorem 7.4.
(vii) =\Rightarrow (vi) is trivial.
(vi) =\Rightarrow (v) follows since any stabilizable realization satisfies the state finite future

cost condition.
(v) \Leftarrow \Rightarrow (iv) follows from Lemmas 6.3 and 6.6 with \Omega replaced by \BbbC +

\alpha , where \alpha 
is taken to be large enough so that \BbbC +

\alpha is contained in the resolvent set of the main
operator.

(v) =\Rightarrow (x) follows from Lemma 6.9 and Theorem 6.10 applied to the realization
in (v).

Remark 8.2. We note that the equivalence of (v), (vi), (vii), (ix), and (x) in
Theorem 8.1 had already been proven by Mikkola in [5]. In [4] he also proved that
those conditions are equivalent to some modified version of (iv) involving integral
Riccati equations.

9. The past optimal control problem and left factorizations. In this sec-
tion we consider the past optimal control problem and left factorizations. Several
results follow in a relatively straightforward way from previous sections by duality.

Definition 9.1. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main

operator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +. By an \Omega -solution of the
continuous time filter Riccati equation induced by

\bigl[ 
A\&B
C\&D

\bigr] 
, we mean an \Omega \ast -solution

of the continuous time control Riccati equation induced by the adjoint system \Sigma \dagger =
(
\bigl[ 
A\&B
C\&D

\bigr] \ast 
;\scrX ,\scrY ,\scrU ), where \Omega \ast := \{ \lambda \in \BbbC : \=\lambda \in \Omega \} .

Definition 9.2. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +.
(i) A vector x0 \in \scrX is said to have finite past \Omega -cost if it is the final state

component of a generalized stable past \Omega -trajectory. The past \Omega -cost of such
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a vector x0 is the infimum of the past cost functional

(9.1) Jpast(x0, u) =

\int 0

 - \infty 

\bigl( 
\| u(t)\| 2\scrU + \| y(t)\| 2\scrY 

\bigr) 
dt

over all generalized stable past \Omega -trajectories
\Bigl[ x0

u
y

\Bigr] 
of \Sigma . We denote this cost

by \| x0\| 2past,\Omega .
(ii) If \Sigma is well-posed, then a vector x0 \in \scrX is said to have finite past cost if it is

the final state component of a stable past trajectory. The past cost of such a
vector x0 is the infimum of the past cost functional (9.1) over all generalized

stable past trajectories
\Bigl[ x0

u
y

\Bigr] 
of \Sigma . We denote this cost by \| x0\| 2past.

Remark 9.3. By [9, Theorem 3.12], the infimum in part (i) of Definition 9.2 is
actually achieved by a unique minimizing generalized stable past \Omega -trajectory of \Sigma ,
and \| \cdot \| 2past,\Omega is a closed quadratic form in \scrX . Also the infimum in part (ii) of Definition
9.2 is achieved by a unique minimizing generalized stable past trajectory of \Sigma , and
\| \cdot \| 2past is a closed quadratic form in \scrX as well. By Lemma 3.9, if \Sigma is well-posed, and
if \Omega is an open subset of \rho +\infty (A), then x0 \in \scrX has a finite past \Omega -cost if and only if
x0 has a finite past cost, and \| \cdot \| 2past,\Omega = \| \cdot \| 2past.

The following definition is essentially a reformulation of [9, Definition 6.2] (the
connection is similar to what is mentioned in Remark 6.5 in connection to the future
optimal control problem).

Definition 9.4. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and observation operator C, and let \Omega be an open subset of \rho (A) \cap \BbbC +.
(i) \Sigma satisfies the output coercive past \Omega -cost condition if for every \lambda \in \Omega there

exists a constant M > 0 such that

(9.2)
\bigm\| \bigm\| C(\lambda  - A) - 1x0

\bigm\| \bigm\| 2
\scrY \leq M\| x0\| 2past,\Omega 

for every x0 \in \scrX with a finite past \Omega -cost.
(ii) \Sigma satisfies the state coercive past \Omega -cost condition if there exists a constant

M > 0 such that

(9.3) \| x0\| 2\scrX \leq M\| x0\| 2past,\Omega 

for every x0 \in \scrX with a finite past \Omega -cost.

The following result was never explicitly stated in [9] but follows easily from the
results presented there.

Lemma 9.5. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A, and let \Omega be an open subset of a connected subset of \rho (A)\cap \BbbC +. The following are
equivalent:

(i) \Sigma satisfies the state coercive past \Omega -cost condition.
(ii) The quadratic form \| \cdot \| 2past,\Omega giving the optimal past \Omega -cost is bounded away

from zero.
(iii) The filter Riccati equation has a bounded \Omega -solution.

If these equivalent conditions hold, then \| \cdot \| 2past,\Omega is equal to the inverse of the minimal
nonnegative \Omega -solution of the filter Riccati equation (in the sense of [9, Lemma 3.17]).

Proof. The proof is analogous to the proof of Lemma 6.6 with [9, Theorem 5.9]
replaced by [9, Theorem 6.5].
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The following strengthens the notion of output coercive past \Omega -cost condition.

Definition 9.6. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and observation operator C, and let \Omega be an open subset of \rho (A) \cap \BbbC +. \Sigma 
is said to satisfy the uniform output coercive past \Omega -cost condition if \Sigma satisfies the
output coercive past \Omega -cost condition and there constants \alpha \geq 0 and M > 0 such that
\BbbC +

\alpha \subset \Omega and

(9.4)
\bigm\| \bigm\| C(\lambda  - A) - 1x0

\bigm\| \bigm\| 2
\scrY \leq M

Re(\lambda )
\| x0\| 2past,\Omega , \lambda \in \BbbC +

\alpha ,

for every x0 \in \scrX with a finite past \Omega -cost.

Thus, Definition 9.6 imposes an extra uniformity condition in some right half-
plane on the constant M in (9.2).

The following lemma is the ``uniform"" equivalent of [9, Lemma 6.3].

Lemma 9.7. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node, and let \Omega be an

open subset of \rho (A) \cap \BbbC +. Then \Sigma satisfies the uniform output coercive past \Omega -cost
condition for some constants \alpha \geq 0 and M > 0 if and only if the adjoint system
\Sigma \dagger = (

\bigl[ 
A\&B
C\&D

\bigr] \ast 
;\scrX ,\scrY ,\scrU ) satisfies the uniform input finite future \Omega \ast -cost condition for

the same constants \alpha and M , where \Omega \ast := \{ z \in \BbbC : \=z \in \Omega \} .
Proof. First assume that the uniform output coercive past \Omega -cost condition for

\Sigma holds, and let \alpha \geq 0 and M > 0 be as in Definition 9.6. By [9, Theorem 3.18] we
have for all x0 \in \scrX with finite future \Omega \ast -cost for \Sigma \dagger that

\| x0\| fut,\Omega \ast = sup
\| z0\| past,\Omega \leq 1

\bigm| \bigm| \langle x0, z0\rangle \scrX 
\bigm| \bigm| .

Applying this with x0 := (\lambda  - A) - \ast C\ast y0, where y0 \in \scrY and \lambda \in \Omega \ast (by [9, Lemma
6.3], this x0 indeed has finite future cost for \Sigma \dagger ), we obtain\bigm\| \bigm\| (\lambda  - A) - \ast C\ast y0

\bigm\| \bigm\| 
fut,\Omega \ast = sup

\| z0\| past,\Omega \leq 1

\bigm| \bigm| \langle (\lambda  - A) - \ast C\ast y0, z0\rangle \scrX 
\bigm| \bigm| 

= sup
\| z0\| past,\Omega \leq 1

\bigm| \bigm| \langle y0, C(\lambda  - A) - 1z0\rangle \scrY 
\bigm| \bigm| \leq \| y0\| \scrY sup

\| z0\| past,\Omega \leq 1

\| C(\lambda  - A) - 1z0\| \scrY .

By the uniform output coercive past \Omega -cost condition for \Sigma we then obtain for \lambda \in \BbbC +
\alpha \bigm\| \bigm\| (\lambda  - A) - \ast C\ast y0

\bigm\| \bigm\| 2
fut,\Omega \ast \leq M

Re(\lambda )
\| y0\| 2\scrY ,

which shows that the uniform input finite future \Omega \ast -cost condition for \Sigma \dagger holds.
Now assume that the uniform input finite future \Omega \ast -cost condition for \Sigma \dagger holds,

and let \alpha \geq 0 and M > 0 be as in Definition 6.7 (applied to \Sigma \dagger ). Let x0 have finite
past \Omega -cost for \Sigma . By [9, Theorem 3.18] we have

\| x0\| past,\Omega = sup
\| z0\| fut,\Omega \ast \leq 1

| \langle x0, z0\rangle \scrX | .

Take z0 :=
\sqrt{} 

Re(\lambda )
M (\lambda  - A) - \ast C\ast y0, where \lambda \in \BbbC +

\alpha and y0 \in \scrY satisfies \| y0\| \scrY \leq 1.

From the uniform input finite future \Omega \ast -cost condition for \Sigma \dagger we then obtain that
\| z0\| fut\dagger \leq 1. Hence,

\| x0\| past,\Omega \geq 
\sqrt{} 

Re(\lambda )

M

\bigm| \bigm| \langle x0, (\lambda  - A) - \ast C\ast y0\rangle \scrX 
\bigm| \bigm| = \sqrt{} 

Re(\lambda )

M

\bigm| \bigm| \langle C(\lambda  - A) - 1x0, y0\rangle \scrY 
\bigm| \bigm| .
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Since y0 \in \scrY with \| y0\| \scrY \leq 1 was arbitrary, we then obtain

\| x0\| past,\Omega \geq 
\sqrt{} 

Re(\lambda )

M
sup

\| y0\| \scrY \leq 1

\bigm| \bigm| \langle C(\lambda  - A) - 1x0, y0\rangle \scrY 
\bigm| \bigm| = \sqrt{} 

Re(\lambda )

M

\bigm\| \bigm\| C(\lambda  - A) - 1x0

\bigm\| \bigm\| 
\scrY .

This precisely shows that the uniform output coercive past \Omega -cost condition for \Sigma 
holds.

The following is the left version of Definition 5.1 and the well-posed version of [9,
Definition 6.4].

Definition 9.8. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
open subset \Omega of \BbbC +.

(i) \varphi has a left H\infty (\BbbC +) factorization valid in \Omega if there exist two functions\widetilde \sansM \in H\infty (\BbbC +;\scrB (\scrY )) and \widetilde \sansN \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )) such that \widetilde \sansM (\lambda ) has a bounded

inverse and \varphi (\lambda ) = \widetilde \sansM (\lambda ) - 1\widetilde \sansN (\lambda ) for all \lambda \in \Omega .
(ii) The factorization in (i) is called normalized if the operator\biggl[ 

\^u
\^y

\biggr] 
\mapsto \rightarrow PH2(\BbbC  - ;\scrY )

\Bigl[ 
 - \widetilde \sansN \widetilde \sansM \Bigr] \biggl[ 

\^u
\^y

\biggr] 
:

\biggl[ 
H2(\BbbC  - ;\scrU )
H2(\BbbC  - ;\scrY )

\biggr] 
\rightarrow H2(\BbbC  - ;\scrY )

is co-isometric.
(iii) The factorization in (i) is weakly (left) coprime if the kernel of the operator

in (ii) is equal to the (past time) Laplace transform of the stable past behavior
W0

 - (\Omega ) defined in Definition 3.6.
(iv) The factorization in (i) is well-posed if there exists some \alpha \geq 0 such that\widetilde \sansM (\lambda ) has a bounded inverse for all \lambda \in \BbbC +

\alpha and \widetilde \sansM  - 1 \in H\infty (\BbbC +
\beta ;\scrB (\scrY )) for all

\beta > \alpha .
(v) If the factorization in (i) is well-posed, then the growth bound of this factor-

ization is the infimum over all \alpha for which the condition in (iv) holds. (If the
factorization is not well-posed, then its growth bound is +\infty .)

Definition 9.9. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +. Then \Sigma is called LQ past
\Omega -normalized if

(i) \Sigma is \Omega -observable in the sense that \cap \infty 
n=0 ker(C(\lambda  - A) - n) = \{ 0\} for some

\lambda \in \Omega ;
(ii) \Sigma satisfies the state coercive past \Omega -cost condition and for each x0 \in \scrX the

optimal past \Omega -cost of x0 is equal to \| x0\| 2\scrX .
If \Sigma is well-posed, then it is called LQ past normalized if

(i\prime ) \Sigma is observable (in the sense of [11, Definition 9.1.2]);
(ii\prime ) \Sigma satisfies the state coercive past cost condition and for each x0 \in \scrX the

optimal past cost of x0 is equal to \| x0\| 2\scrX .

Remark 9.10. Remark 7.2 with the obvious substitutions applies to ``LQ past
normalized"" as well.

The following follows from Theorem 7.4 by duality.

Theorem 9.11. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
right half-plane. Then

(i) \varphi has a well-posed LQ past normalized realization \Sigma if and only if \varphi has a
well-posed left H\infty (\BbbC +) factorization valid in some right half-plane.

If the above equivalent conditions hold, then the realization \Sigma of \varphi in (i) has the
following additional properties:
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(ii) \Sigma is minimal.
(iii) \Sigma is determined uniquely by \varphi , up to a unitary similarity transformation in

the state space.
(iv) Denote the growth bound of \Sigma by \omega \Sigma . Then max\{ \omega \Sigma , 0\} = max\{ \omega \varphi , 0\} ,

where \omega \varphi is the growth bound of an arbitrary normalized weakly coprime left
H\infty (\BbbC +) factorization of \varphi .

(v) \Sigma is strongly \ast -detectable; i.e., there exists an output injection operator which
makes the closed-loop system obtained by output injection strongly co-stable
(in the sense that its dual system is strongly stable).

The following follows from Theorem 8.1 and duality using Lemma 9.7.

Theorem 9.12. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main oper-

ator A and transfer function \widehat \frakD . Assume that \rho (A) contains some right half-plane, let
\Omega be an open subset of \rho +\infty (A) which contains some right half-plane, and denote the
restriction of \widehat \frakD to \Omega by \varphi . Then the following conditions are equivalent:

(i) \Sigma satisfies the uniform output coercive past \Omega -cost condition, and \varphi is uni-
formly bounded on some right half-plane.

(ii) The control Riccati equation for \Sigma \dagger has an \Omega \ast -solution for which the function
\sansF in (4.6) is uniformly bounded on some right half-plane.

(iii) The control Riccati equation for \Sigma \dagger has an \Omega \ast -solution, and the function \sansF 
in (4.6) corresponding to the minimal \Omega \ast -solution is uniformly bounded on
some right half-plane.

(iv) \varphi has a well-posed realization for which the filter Riccati equation has a
bounded \BbbC +

\alpha -solution for some \alpha \geq 0.
(v) \varphi has a well-posed realization which satisfies the state coercive past cost con-

dition.
(vi) \varphi has a well-posed detectable realization.
(vii) \varphi has a well-posed strongly \ast -detectable realization.
(viii) \varphi has a well-posed LQ past normalized realization.
(ix) \varphi has an well-posed left H\infty (\BbbC +) factorization.
(x) \varphi has a well-posed normalized weakly coprime left H\infty (\BbbC +) factorization.

10. Doubly coprime factorizations. In this section we consider doubly co-
prime factorizations and as in [9] relate it to an optimal control problem on the whole
real axis.

The following are [9, Definition 7.1 and 7.2].

Definition 10.1. Let q and r be two closed symmetric nonnegative sesquilinear
forms on the Hilbert space \scrX . Then we say that r dominates q if dom (r) \subset dom (q)
and there exists a constant M > 0 such that q[x, x] \leq Mr[x, x] for all x \in dom (r).

Definition 10.2. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main

operator A, and let \Omega be an open subset of \rho (A) \cap \BbbC +.
(i) \Sigma is said to satisfy the past \Omega -cost dominance condition if the optimal future

\Omega -cost \| \cdot \| 2fut,\Omega is dominated by the optimal past \Omega -cost \| \cdot \| 2past,\Omega .
(ii) If \Sigma is well-posed, then it is said to satisfy the past cost dominance condition

if the optimal future cost \| \cdot \| 2fut is dominated by the optimal past cost \| \cdot \| 2past.
Remark 10.3. The past \Omega -cost dominance condition and the past cost dominance

condition are consistent by Remarks 6.2 and 9.3.

The following result on the past cost dominance condition and duality had not
been considered in [9].
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Lemma 10.4. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main operator

A, and let \Omega be an open subset of \rho (A)\cap \BbbC +. If \Sigma satisfies the past \Omega -cost dominance
condition, then \Sigma \dagger satisfies the past \Omega \ast -cost dominance condition.

Proof. Let M > 0 be such that \| z\| fut,\Omega \leq M\| z\| past,\Omega for all z with finite past
cost for \Sigma . By [9, Theorem 3.18] we have that the domain of \| \cdot \| 2past,\Omega \ast for \Sigma \dagger is
characterized by

D(\| \cdot \| 2past\dagger ,\Omega \ast ) = \{ z\dagger \in \scrX : sup
\| z\| fut,\Omega \leq 1

| \langle z, z\dagger \rangle | < \infty \} 

and that the domain of \| \cdot \| 2fut\dagger ,\Omega \ast is characterized by

D(\| \cdot \| 2fut\dagger ,\Omega \ast ) = \{ z\dagger \in \scrX : sup
\| z\| past,\Omega \leq 1

| \langle z, z\dagger \rangle | < \infty \} .

For z\dagger \in \scrX we have

sup
\| z\| past,\Omega \leq 1

| \langle z, z\dagger \rangle \scrX | \leq sup
\| z\| fut,\Omega \leq M

| \langle z, z\dagger \rangle \scrX | \leq M sup
\| \~z\| fut,\Omega \leq 1

| \langle \~z, z\dagger \rangle \scrX | .

Hence, D(\| \cdot \| 2past\dagger ,\Omega \ast ) \subset D(\| \cdot \| 2fut\dagger ,\Omega \ast ). We further see from the above calculation
using that

\| z\dagger \| fut\dagger ,\Omega \ast = sup
\| z\| past\leq 1

| \langle z, z\dagger \rangle | , \| z\dagger \| past\dagger ,\Omega \ast = sup
\| z\| fut,\Omega \leq 1

| \langle z, z\dagger \rangle | ,

that for z\dagger \in D(\| \cdot \| 2past\dagger ,\Omega \ast )

\| z\dagger \| fut\dagger ,\Omega \ast \leq M\| z\dagger \| past\dagger ,\Omega \ast .

Hence, the past \Omega \ast -cost dominance condition for \Sigma \dagger holds.

The following is the ``uniform"" equivalent of [9, Lemma 7.3].

Lemma 10.5. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be a well-posed operator node. If \Sigma 

satisfies the past cost dominance condition, then it satisfies both the uniform input
finite future cost condition and the uniform output coercive past cost condition.

Proof. Let \alpha > 0 be such that \BbbC +
\alpha \subset \rho (A), and define \Omega := \BbbC +

\alpha . By Remarks
6.2, 9.3, and 10.3 we have that the well-posed cost conditions and the corresponding
\Omega -cost conditions are equivalent.

From Remark 6.8 we see that in the well-posed case, the past cost dominance
condition implies the uniform input finite future cost condition. By Lemma 10.4, the
past cost dominance condition for \Sigma with respect to \Omega implies the past cost dominance
condition for \Sigma \dagger with respect to \Omega \ast . Hence, using Remark 6.8 again, we obtain the
uniform input finite future cost condition for \Sigma \dagger with respect to \Omega \ast . From Lemma
9.7 we then obtain the uniform output coercive past cost condition for \Sigma with respect
to \Omega .

The following strengthens [9, Definition 7.4] to the notion relevant in the well-
posed case. Note that what is added compared to [9, Definition 7.4] is a well-posedness
assumption on the denominators.

Definition 10.6. Let \varphi be an analytic \scrB (\scrU ;\scrY )-valued function defined on some
open subset \Omega of \BbbC +.
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(i) A right H\infty (\BbbC +) factorization
\bigl[ 
\sansM 
\sansN 

\bigr] 
valid in \Omega is strongly coprime if there

exist two functions \widetilde \sansX \in H\infty (\BbbC +;\scrB (\scrU )) and \widetilde \sansY \in H\infty (\BbbC +;\scrB (\scrY ;\scrU )) such that\widetilde \sansX (\lambda )\sansM (\lambda ) - \widetilde \sansY (\lambda )\sansN (\lambda ) = 1\scrU for all \lambda \in \BbbC +.

(ii) A left H\infty (\BbbC +) factorization [\widetilde \sansM , \widetilde \sansN ] valid in \Omega is strongly coprime if there
exist two functions \sansX \in H\infty (\BbbC +;\scrB (\scrY )) and \sansY \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )) such that\widetilde \sansM (\lambda )\sansX (\lambda ) - \widetilde \sansN (\lambda )\sansY (\lambda ) = 1\scrY for all \lambda \in \BbbC +.

(iii) \varphi has a doubly coprime H\infty (\BbbC +)-factorization valid in \Omega if there exist func-

tions \sansM \in H\infty (\BbbC +;\scrB (\scrU )), \sansN \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )), \widetilde \sansX \in H\infty (\BbbC +;\scrB (\scrU )),\widetilde \sansY \in H\infty (\BbbC +;\scrB (\scrY ;\scrU )), \widetilde \sansM \in H\infty (\BbbC +;\scrB (\scrY )), \widetilde \sansN \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )), \sansX \in 
H\infty (\BbbC +;\scrB (\scrY )), and \sansY \in H\infty (\BbbC +;\scrB (\scrU ;\scrY )) such that

\bigl[ 
\sansM 
\sansN 

\bigr] 
is a right H\infty (\BbbC +)

factorization valid in \Omega , [\widetilde \sansM , \widetilde \sansN ] is a left H\infty (\BbbC +) factorization valid in \Omega and

\biggl[ 
\sansM \sansY 
\sansN \sansX 

\biggr] \biggl[ 
\~\sansX  - \~\sansY 

 - \~\sansN \~\sansM 

\biggr] 
=

\biggl[ 
\~\sansX  - \~\sansY 

 - \~\sansN \~\sansM 

\biggr] \biggl[ 
\sansM \sansY 
\sansN \sansX 

\biggr] 
=

\biggl[ 
1\scrU 0
0 1\scrY 

\biggr] 
(10.1)

on \BbbC +.
(iv) The factorization in (iii) is well-posed if both

\bigl[ 
\sansM 
\sansN 

\bigr] 
and [\widetilde \sansM , \widetilde \sansN ] are well-posed.

It is well known that any strongly coprime factorization is weakly coprime in
the corresponding sense (right/left) and that a transfer function has a strongly right
coprime factorization if and only if it has a strongly left coprime factorization if and
only if it has a doubly coprime factorization; see, e.g., [5].

Lemma 10.7. Let \alpha \geq 0, and define \Omega := \BbbC +
\alpha . Let \varphi be an analytic \scrB (\scrU ;\scrY )-

valued function which is uniformly bounded on \Omega . Then every strongly coprime right
H\infty (\BbbC +) factorization valid in \Omega of \varphi is well-posed.

Proof. We will show that \sansM  - 1 \in H\infty (\BbbC +
\alpha ;\scrB (\scrU )), which implies well-posedness.

For \lambda \in \BbbC + we have by strong coprimeness that \widetilde \sansX (\lambda )\sansM (\lambda )  - \widetilde \sansY (\lambda )\sansN (\lambda ) = 1\scrU . Since
\sansM (\lambda ) is invertible for \lambda \in \Omega and \varphi (\lambda ) = \sansN (\lambda )\sansM (\lambda ) - 1 for \lambda \in \Omega , we obtain from

this that \widetilde \sansX (\lambda )  - \widetilde \sansY (\lambda )\varphi (\lambda ) = \sansM (\lambda ) - 1 for all \lambda \in \Omega . Since the left-hand side is in
H\infty (\BbbC +

\alpha ;\scrB (\scrU )), it follows that the right-hand side is.

The following theorem is the well-posed equivalent of [9, Theorem 7.5] and involves
the notion of the inverse of a quadratic form as defined in [9, Lemma 3.17] and
the notion of a jointly stabilizable and detectable well-posed linear system from [11,
Definition 8.2.4].

Theorem 10.8. Let \Sigma :=
\bigl( \bigl[ 

A\&B
C\&D

\bigr] 
;\scrX ,\scrU ,\scrY 

\bigr) 
be an operator node with main op-

erator A and transfer function \widehat \frakD . Assume that \rho (A) contains some right half-plane,
let \Omega be an open subset of \rho +\infty (A) which contains some right half-plane, and denote
the restriction of \widehat \frakD to \Omega by \varphi . Then the following conditions are equivalent:

(i) \Sigma satisfies the past \Omega -cost dominance condition, and \varphi is uniformly bounded
on some right half-plane.

(ii) The control Riccati equation for \Sigma has an \Omega -solution q for which the function
\sansF in (4.6) is uniformly bounded on some right half-plane, the control Riccati
equation for \Sigma \dagger has an \Omega \ast -solution p for which the function \sansF in (4.6) is
uniformly bounded on some right half-plane, and q is dominated by the inverse
of p.

(iii) The control Riccati equation for \Sigma has an \Omega -solution q and the function \sansF in
(4.6) corresponding to the minimal \Omega -solution is uniformly bounded on some
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right half-plane, the control Riccati equation for \Sigma \dagger has an \Omega \ast -solution p and
the function \sansF in (4.6) corresponding to the minimal \Omega -solution is uniformly
bounded on some right half-plane, and q is dominated by the inverse of p.

(iv) \varphi has a well-posed realization for which the control Riccati equation has a
\BbbC +

\alpha -solution q for some \alpha \geq 0, the filter Riccati equation has a \BbbC +
\beta -solution q

for some \beta \geq 0, and q is dominated by the inverse of p.
(v) \varphi has a well-posed realization which satisfies the past cost dominance condi-

tion.
(vi) \varphi has a well-posed realization for which the control Riccati equation has a

bounded \Omega -solution and the filter Riccati equation has a bounded \Omega -solution.
(vii) \varphi has a well-posed realization which satisfies the state finite future cost con-

dition and the state coercive past cost condition.
(viii) \varphi has a well-posed realization which is stabilizable and detectable.
(ix) \varphi has a well-posed realization which is jointly stabilizable and detectable.
(x) \varphi has a well-posed doubly coprime H\infty (\BbbC +) factorization valid in \Omega .

Proof. (x) =\Rightarrow (ix) is [11, Theorem 8.4.1 (ii)].
(ix) =\Rightarrow (viii) is trivial.
(viii) =\Rightarrow (vii) follows since stabilizability implies the state finite future cost

condition, and (by duality) therefore detectability implies the state coercive past cost
condition.

(vii) =\Rightarrow (vi) follows from Lemma 6.6 applied to both the realization and its dual
noting that the state coercive past \Omega -cost condition is equivalent to the state finite
future \Omega \ast -cost condition for the dual by [9, Lemma 6.3].

(vi) =\Rightarrow (v). Since the optimal future \Omega -cost is the minimal \Omega -solution to the
control Riccati equation by Lemma 6.6, we have that there exists a Mq > 0 such
that \| z\| fut,\Omega \leq Mq\| z\| for all z \in \scrX . Existence of a bounded \Omega -solution of the filter
Riccati equation is equivalent to the state coercive past \Omega -cost condition by Lemma 6.6
applied to the dual system. Hence, there exists a Mp > 0 such that Mp\| z\| \leq \| z\| past,\Omega 
for all z \in \scrX , which are the final state of a generalized stable past \Omega -trajectory of
\Sigma . It follows that \| z\| fut,\Omega \leq Mq

Mp
\| z\| past,\Omega for all z \in \scrX , which are the final state of

a generalized stable past \Omega -trajectory of \Sigma ; i.e., the past \Omega -cost dominance condition
holds. By Remark 10.3, this is equivalent to the past cost dominance condition.

(v) \Leftarrow \Rightarrow (iv) follows from [9, Theorem 7.5] applied to this realization (and Lemma
4.3).

(v) =\Rightarrow (x). That the past \Omega -cost dominance condition (which by Remark 10.3
is equivalent to the past cost dominance condition) implies the existence of a doubly
coprime H\infty (\BbbC +) factorization valid in \Omega follows from [9, Theorem 7.5]. The addi-
tional well-posedness assumption on the realization implies through Lemma 10.7 that
this factorization is well-posed.

(x) =\Rightarrow (i). That the existence of a doubly coprimeH\infty (\BbbC +) factorization valid in
\Omega of the transfer function implies that \Sigma satisfies the past \Omega -cost dominance condition
follows from [9, Theorem 7.5]. The additional well-posedness assumption on the
factorization implies that \varphi is uniformly bounded on some right half-plane.

(i) =\Rightarrow (x). That \Sigma satisfying the past \Omega -cost dominance condition implies the
existence of a doubly coprime H\infty (\BbbC +) factorization valid in \Omega of its transfer function
follows from [9, Theorem 7.5]. That uniform boundedness of \varphi on some right half-
plane implies well-posedness of this factorization follows from Lemma 10.7.

(i) \Leftarrow \Rightarrow (ii) \Leftarrow \Rightarrow (iii). Equivalence of the past \Omega -cost dominance condition with
the existence of q and p combined with the dominance of q by the inverse of p fol-
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lows from [9, Theorem 7.5]. The additional uniform boundedness claims follow using
Theorem 6.10 applied to both \Sigma and \Sigma \dagger .

11. An example. An example without a doubly coprime factorization (with in
fact a well-posed transfer function) was given in [9, section 8]. Here we give a simple
PDE example which does have a doubly coprime factorization. We additionally use
this example to illustrate LQ future and past normalized realizations.

Consider the PDE with boundary control:

\partial w

\partial t
(t, \xi ) =

\partial w

\partial \xi 
(t, \xi ), t > 0, \xi \in (0, 1),

w(t, 1) = u(t), t > 0.

We define x by x(t) = \xi \mapsto \rightarrow w(t, \xi ), and we define the output by y := x. The
above PDE can then be described by the operator node on \scrX = L2(0, 1), \scrU = \BbbR ,
\scrY = L2(0, 1) given by

S

\biggl[ 
x
u

\biggr] 
=

\biggl[ 
x\prime 

x

\biggr] 
, D(S) =

\biggl\{ \biggl[ 
x
u

\biggr] 
\in 
\biggl[ 
H1(0, 1)

\BbbR 

\biggr] 
: x(1) = u

\biggr\} 
.

This operator node is in fact well-posed, and \BbbC + \subset \rho (A). We will therefore take
\Omega = \BbbC +. Similar to the calculation in [13], it is straightforward to compute that the
future optimal control is zero and that the optimal future cost is given by

\| x0\| 2fut =
\int 1

0

\xi | x0(\xi )| 2 d\xi .

The continuous time control Riccati equation has the bounded sesquilinear form

q[x0, z0] =

\int 1

0

\xi x0(\xi ) z0(\xi ) d\xi 

as solution with

K\&F

\biggl[ 
x0

u0

\biggr] 
=

\surd 
2u0

since for [ x0
u0

] \in D(S)

2

\int 1

0

\xi x\prime 
0(\xi )x0(\xi ) d\xi +

\int 1

0

| x0(\xi )| 2 d\xi + | u0| 2 = | 
\surd 
2u0| 2.

The past optimal control problem has the optimal control and output

u(t) =

\Biggl\{ 
0 t <  - 1

x0( - t) t \in [ - 1, 0],
y(t, \xi ) =

\Biggl\{ 
0 t+ \xi /\in [0, 1]

x0(t+ \xi ) t+ \xi \in [0, 1],

and therefore the optimal past cost is

\| x0\| 2past =
\int 1

0

(2 - \xi ) | x0(\xi )| 2 d\xi .

The adjoint of S can be calculated to be

S\ast 
\biggl[ 
z
y

\biggr] 
=

\biggl[ 
 - z\prime + y
z(1)

\biggr] 
, D(S\ast ) =

\biggl\{ \biggl[ 
z
y

\biggr] 
\in 
\biggl[ 
H1(0, 1)
L2(0, 1)

\biggr] 
: x(0) = 0

\biggr\} 
.
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The continuous time filter Riccati equation has the bounded sesquilinear form

p[x0, z0] =

\int 1

0

1

2 - \xi 
x0(\xi ) z0(\xi ) d\xi 

as solution with

K\&F

\biggl[ 
x0

y0

\biggr] 
= \xi \mapsto \rightarrow 1

2 - \xi 
x0(\xi ) + y0(\xi )

since for [ x0
y0 ] \in D(S\ast )

2

\int 1

0

1

2 - \xi 
[ - x\prime 

0(\xi ) + y0(\xi )] x0(\xi ) d\xi + | x0(1)| 2 +
\int 1

0

| y0(\xi )| 2 d\xi 

=

\int 1

0

\bigm| \bigm| \bigm| \bigm| 1

2 - \xi 
x0(\xi ) + y0(\xi )

\bigm| \bigm| \bigm| \bigm| 2 d\xi .

We see that condition (vi) from Theorem 10.8 is satisfied, and therefore so are all of
the other equivalent conditions mentioned in that theorem. In particular, the transfer
function of S has a doubly coprime factorization. The transfer function of S can be
calculated to be (see [13]) \widehat \frakD (\lambda ) = \xi \mapsto \rightarrow e\lambda (\xi  - 1),

and, similarly as in [9, section 8], using the above solutions of the Riccati equations
we can calculate a normalized strongly coprime right factorization

\sansM (\lambda ) = 1, \sansN (\lambda ) = \widehat \frakD (\lambda ),

with corresponding Bezout factors

\widetilde \sansX (\lambda ) = 1, \widetilde \sansY (\lambda ) = 0,

and a normalized strongly coprime left factorization

\widetilde \sansM (\lambda )y = \xi \mapsto \rightarrow y(\xi ) - e\lambda \xi 

2 - \xi 

\int 1

\xi 

e - \lambda \theta y(\theta ) d\theta , \widetilde \sansN (\lambda ) = \xi \mapsto \rightarrow e\lambda (\xi  - 1) 1

2 - \xi 
,

with corresponding Bezout factors

\sansX (\lambda )y = \xi \mapsto \rightarrow y(\xi ) + e\lambda \xi 
\int 1

\xi 

e - \lambda \theta 

2 - \theta 
y(\theta ) d\theta , \sansY (\lambda ) = 0,

where to obtain \widetilde \sansN (\lambda ) we solved the boundary value problem

\lambda x(\xi ) - x\prime (\xi ) +
1

2 - \xi 
x(\xi ) = 0, x(1) = 1,

to obtain \widetilde \sansM (\lambda ) we solved the boundary value problem

\lambda x(\xi ) - x\prime (\xi ) +
1

2 - \xi 
x(\xi ) =

1

2 - \xi 
y(\xi ), x(1) = 0,
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and to obtain \sansX (\lambda ) we solved the boundary value problem

\lambda x(\xi ) - x\prime (\xi ) =
1

2 - \xi 
y(\xi ), x(1) = 0.

From the above expression for \| x0\| 2past for the past cost we see that when we
consider S instead on the state space

\scrX past := L2(0, 1; (2 - \xi ) d\xi ),

we obtain an LQ past normalized realization of the transfer function of S. Note that
since the weight 2 - \xi and its inverse are both in L\infty (0, 1), we have that x0 \in L2(0, 1) if
and only if x0 \in L2(0, 1; (2 - \xi ) d\xi ) (but the norm of x0 in the two spaces is different).

From the above expression for \| x0\| 2fut for the future cost we see that when we
consider S instead on the state space

\scrX fut := L2(0, 1; \xi d\xi ),

we obtain an LQ future normalized realization of the transfer function of S. Note
that since the weight \xi is in L\infty (0, 1) but its inverse is not, we have L2(0, 1) \lhook \rightarrow 
L2(0, 1; \xi d\xi ), but we do not have the reverse inclusion. For example, x0(\xi ) = 1\surd 

\xi 

satisfies x0 /\in L2(0, 1) and x0 \in L2(0, 1; \xi d\xi ).
For precisely those state spaces \scrX for S with

L2(0, 1) \lhook \rightarrow \scrX \lhook \rightarrow L2(0, 1; \xi d\xi ),

we have that both the finite future cost condition and the state coercive past cost
condition are satisfied.
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