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Abstract

It is well-known that the state space isomorphism theorem fails in
infinite-dimensional Hilbert spaces: there exist minimal discrete-time sys-
tems (with Hilbert space state spaces) which have the same impulse re-
sponse, but which are not isomorphic. We consider discrete-time systems
on locally convex topological vector spaces which are Hausdorff and bar-
relled and show that in this setting the state space isomorphism theorem
does hold. In contrast to earlier work on topological vector spaces, we
consider a definition of minimality based on dilations and show how this
necessitates certain definitions of controllability and observability.

1 Introduction

Consider the linear discrete-time system

xn+1 = Axn +Bun, (1)

yn = Cxn +Dun.

Here A : X → X , B : C → X , C : X → C, D : C → C are linear operators,
X is a vector space (the state space) and n ∈ N0. The above equations can be
solved to obtain

yn = CAnx0 +

n−1∑
k=0

CAkBun−k−1 +Dun.

Assuming that x0 = 0 we obtain

yn =

n∑
k=1

CAk−1Bun−k +Dun.

The output y (for initial condition zero) is thus characterized by the input u
and the impulse response sequence

θk :=

{
D k = 0,

CAk−1B k > 0.
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Different quintuples (A,B,C,D; X ) can give the same impulse response
sequence. Each of these quintuples is called a realization of the impulse re-
sponse sequence. For example, if S : X1 → X2 is an invertible operator,
then the quintuple (SAS−1, SB,CS−1, D; X2) produces the same impulse re-
sponse sequence as the quintuple (A,B,C,D; X1). We call the quintuples
(SAS−1, SB,CS−1, D; X2) and (A,B,C,D; X1) related by an invertible op-
erator S isomorphic. A fundamental question is whether isomorphism captures
all the possible non-uniqueness. The answer to this is clearly no since for a given
realization (A,B,C,D; X ) a non-isomorphic realization on the space X ×C is([

A 0
0 0

]
,

[
B
0

]
,
[
C 0

]
, D;

[
X
C

])
. (2)

Let us for the moment restrict ourselves to the situation where the impulse re-
sponse sequence has a realization with a finite-dimensional state space. Then we
can define a minimal realization as a realization whose state space has minimal
dimension amongst all realizations of the same impulse response sequence. It
can be shown that all minimal realizations are isomorphic. This is a fundamen-
tal result in finite-dimensional linear systems theory sometimes referred to as
the state space isomorphism theorem.

The infinite-dimensional case introduces several complications. Typically X
is assumed to be a Hilbert space and A, B and C are assumed to be continuous.
An isomorphism is then a continuous operator with a continuous inverse. The
notion of minimal realization clearly becomes problematic. What has emerged
as the most satisfactory notion of minimal realization is a definition based on
dilations of operators (see Definition 2). With this definition, (2) is non-minimal
since its restriction to the proper subspace X is also a realization. However,
with this notion of minimality it is no longer true that all minimal realizations
are isomorphic (also known as similar). What can be deduced is that minimal
realizations are pseudo-similar (allowing for both S and S−1 to be unbounded)
[2, Section 3]. In Section 2 we re-consider an example from [2, Section 2.7] which
illustrates this.

The standard dilation definition of minimality only considers Hilbert spaces
as allowable state spaces. In this article we consider more generally topological
vector spaces which are locally convex, Hausdorff and barrelled. We show that in
this context any sequence (θk)∞k=0 has a minimal realization and that all minimal
realizations of the same sequence are isomorphic. This in essence shows that the
“correct” setting for studying minimal realizations is that of topological vector
spaces which are locally convex, Hausdorff and barrelled rather than that of
Hilbert spaces.

The assumption that a topological vector space is locally convex and Haus-
dorff is standard. Our assumption that state spaces have to be barrelled might
at first sight seem surprising. However we show in Remark 26 that the state
space isomorphism theorem isn’t true if this assumption is dropped.

Intuitively, infinite-dimensional Hilbert spaces are “large” in the sense that
any Hamel basis for it must be uncountable. We show in Theorem 22 that any
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impulse response sequence can be realized on a topological vector space which is
locally convex, Hausdorff and barrelled and additionally has a countable Hamel
basis. Therefore, intuitively, any infinite-dimensional Hilbert space realization
is “too large” (it has a Hamel basis of too large cardinality) for it to be minimal.

Our results explain why minimal Hilbert space realizations may not be iso-
morphic: when considered in the appropriate context (of more general topolog-
ical vector spaces) these realizations are no longer minimal and from this more
general point of view it should therefore not be surprising that the state space
isomorphism theorem doesn’t hold for Hilbert space realizations.

To illustrate our results, in Section 2 we first consider an example from [2,
Section 2.7]. In [2] that example was used to illustrate the failure of the state
space isomorphism theorem in Hilbert spaces. We use it to indicate how con-
sidering more general topological vector spaces resolves this issue. In Section
3 we precisely define the notion of minimal realization and give an equivalent
characterization in terms of controllability and observability. Section 4 deals
with existence of minimal realizations and Section 5 contains the state space
isomorphism theorem. Finally in Section 6 we compare our results to other
results regarding realizations on topological vector spaces available in the liter-
ature. In Appendix A some results from the theory of topological vector spaces
that are needed in this article are collected for easy reference.

2 An example

We consider the example from [2, Section 2.7] (but with a sequence space rather
than the equivalent space of holomorphic functions as state space). The entire
function

θ̂(z) = ez−1,

has power series coefficients

θk = e−1 1

k!
;

this is the impulse response sequence that we wish to realize. Let X := `2(N0)
and for ρ > 0 define the operators

(Aρx)k = ρxk+1, (Bρu)k = ρ−kθk+1u, Cx = x0, Du = θ0u.

It is then easily checked that for n ∈ N0

(Anρx)k = ρnxk+n,

so that
(AnρBρu)k = ρ−kθk+n+1u,

which implies that
CAnρBρu = θn+1u.

This shows that for any ρ > 0 the quintuple (Aρ, Bρ, C,D; X ) is a realization
of θ. It is shown in [2, Section 2.7] that all these realizations are minimal in the
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sense used in [2, Section 2.7] (in contrast to the above calculations, this does use
the specific form of θ). The spectrum of Aρ equals {z ∈ C : |z| ≤ ρ}. Therefore,
Aρ1 and Aρ2 cannot be isomorphic for ρ1 6= ρ2.

Define the sequence bρ by

(bρ)k = ρ−kθk+1,

and consider the space Xρ defined by the Hamel basis

(Akρbρ)
∞
k=0,

i.e.

Xρ := {x : N0 → C such that x =

∞∑
k=0

ckA
k
ρbρ finitely many ck nonzero}.

Then clearly Bρ maps into Xρ and Aρ maps Xρ into itself. Therefore, by the
earlier computations, CAnρBρ = θn+1 and the quintuple (Aρ, Bρ, C,D; Xρ) de-
fines a realization of θ. The space Xρ can be given the structure of a locally
convex topological vector space which is Hausdorff and barrelled and with re-
spect to this topology Aρ, Bρ and C are continuous (this follows as in the proof
of Theorem 22 below). The operator Sρ : Xρ →X1

(Sρx)k := ρkxk,

is continuous and has a continuous inverse (this also follows as in the proof of
Theorem 22 below) and satisfies

SρAρ = A1Sρ, SρBρ = B1, C = CSρ,

so that all the quintuples (Aρ, Bρ, C,D; Xρ) are isomorphic. Because of the
properties of θ, Xρ is dense in `2(N0) for all ρ > 0 (this is proven in [2, Section
2.7] as part of the Hilbert space minimality proof). Note that if ρ > 1, then Sρ
doesn’t extend to a continuous operator on X = `2(N0) and if ρ < 1, then S−1

ρ

doesn’t extend to a continuous operator on X = `2(N0). This explains why the
quintuples (Aρ, Bρ, C,D; X ) with state space X = `2(N0) for different ρ’s are
not isomorphic.

Note that the minimal Hilbert space state space `2(N0) for this example
is “larger” than any of the spaces Xρ. Therefore it is intuitively clear that
if we allow the spaces Xρ as state spaces, then `2(N0) is no longer a “min-
imal state space” for the impulse response sequence θ. Since the quintuples
(Aρ, Bρ, C,D; `2(N0)) are not minimal from this broader perspective, there is
no intrinsic reason for them to be isomorphic.

3 Minimal systems

In this section we define the notion of minimal realization and relate it to specific
notions of controllability and observability.
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Definition 1. A system is a quintuple (A,B,C,D; X ) consisting of a vector
space X and linear operators A : X → X , B : C → X , C : X → C,
D : C→ C. The vector space X is called the state space of the system.

Note that at this point we make no topological assumptions. The follow-
ing definition is that of a dilation as in e.g. [2, Section 2.2]. However, note
that there an orthogonality assumption was made which we don’t make (since
orthogonality doesn’t make sense in a general vector space).

Definition 2 (Dilation). Let Σ := (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ )

be two given systems. Then Σ̃ is called a dilation of Σ and Σ is called a

restriction of Σ̃ if D̃ = D and X̃ has a direct sum decomposition X̃ = E +
X + E∗ such that relative to this decomposition

Ã =

A1 A3 A4

0 A A5

0 0 A2

 , B̃ =

B1

B
0

 , C̃ =
[
0 C C1

]
,

for linear operators A1 : E → E , A2 : E∗ → E∗, A3 : X → E , A4 : E∗ → E ,
A5 : E∗ →X , B1 : C→ E and C1 : E∗ → C.

Remark 3. The Kalman decomposition of the system Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) (see
e.g. [21, Theorem 3.10]) is strongly related to the above notion of dilation. In

the Kalman decomposition the state space X̃ is written as the direct sum of four
spaces: Xco (the controllable and observable subspace), Xc̄o (the uncontrollable
but observable subspace), Xcō (the controllable but unobservable subspace) and
Xc̄ō (the uncontrollable and unobservable subspace). From this decomposition
one can obtain several restrictions of the original system. One may for example
choose X := Xco, E := Xcō, E∗ := Xc̄o + Xc̄ō, but alternatively one may also
choose X := Xco, E := Xcō + Xc̄ō, E∗ := Xc̄o. The “finer” decomposition of
the state space given by the Kalman decomposition turns out not to be needed
for our purposes, the concept of dilation from Definition 2 is sufficient.

Two concepts related to the above definition of dilation are now defined. Also
these concepts can be seen from the point of view of the Kalman decomposition
(see e.g. [21, Theorem 3.8 and Corollary 3.9]).

Definition 4 (C-dilation). Let Σ := (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ )

be two given systems. Then Σ̃ is called a C-dilation of Σ and Σ is called a C-

restriction of Σ̃ if D̃ = D and X̃ has a direct sum decomposition X̃ = X + E∗
such that relative to this decomposition

Ã =

[
A A5

0 A2

]
, B̃ =

[
B
0

]
, C̃ =

[
C C1

]
,

for linear operators A2 : E∗ → E∗, A5 : E∗ →X and C1 : E∗ → C.
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Definition 5 (O-dilation). Let Σ := (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ )

be two given systems. Then Σ̃ is called an O-dilation of Σ and Σ is called an O-

restriction of Σ̃ if D̃ = D and X̃ has a direct sum decomposition X̃ = E + X
such that relative to this decomposition

Ã =

[
A1 A3

0 A

]
, B̃ =

[
B1

B

]
, C̃ =

[
0 C

]
,

for linear operators A1 : E → E , A3 : X → E , and B1 : C→ E .

Definition 6. A restriction (in the sense of Definition 2) is called proper if either
E 6= {0} or E∗ 6= {0} (or both). A C-restriction is called proper if E∗ 6= {0} and
an O-restriction is called proper if E 6= {0}.

Definition 7. A system is called minimal if it does not have a proper restriction.

Definition 8. The impulse response sequence of a system (A,B,C,D; X ) is
the sequence

θ : N0 → C, θk :=

{
D1 k = 0,

CAk−1B1 k > 0.

The following fact is easily verified:

• A system and any of its dilations, C-dilations and O-dilations have the
same impulse response sequence.

Definition 9. The controllable subspace of the system (A,B,C,D; X ) is (here
b := B1) {

z ∈X : z =

∞∑
k=0

ckA
kb finitely many ck nonzero

}
.

The system is called controllable if the controllable subspace equals X .
The unobservable subspace is

∞⋂
n=0

ker(CAn).

The system is called observable if the unobservable subspace equals {0}.

Note that in terms of the dynamical system (1), the controllable subspace is
the space of states reachable from x0 = 0 in a finite time by applying a control
u. The unobservable subspace is the set of initial states x0 which, for zero input
u, give as output y the zero sequence.

Note further that our definition of controllable subspace and controllable
system is different from that in [2, Section 2.3]: in [2] the controllable subspace
is defined to be the closure of what we define as the controllable subspace and
they use the term reachable manifold for what we call the controllable subspace.

Lemma 10. A system is controllable if and only if it has no proper C-restriction.
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Proof. We prove the contrapositive: the system Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) has a
proper C-restriction if and only if it is not controllable.

First assume that Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) has a proper C-restriction. We use
the notation from Definition 4. We have

ÃkB̃ =

[
AkB

0

]
,

so that no nonzero element of E∗ is in the controllable subspace. Since E∗ 6= {0},
it follows that the controllable subspace doesn’t equal X̃ . Therefore, Σ̃ is not
controllable.

Now assume that Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) is not controllable. Denote its con-

trollable subspace by X . Then there exists a vector space E∗ such that X̃ is
the direct sum of X and E∗ (this follows from Zorn’s Lemma). Since Σ̃ is not
controllable, E∗ is nonzero. The operators decompose as follows with respect to
the above direct sum:

Ã =

[
A11 A12

A21 A22

]
, B̃ =

[
B1

B2

]
, C̃ =

[
C1 C2

]
,

for linear operators A11 : X → X , A12 : E∗ → X , A21 : X → E∗, A22 :
E∗ → E∗, B1 : C → X , B2 : C → E∗, C1 : X → C, C2 : E∗ → C. Since
B̃ maps into the controllable subspace, we have B2 = 0. Similarly, since Ã
maps the controllable subspace into itself we have A21 = 0. It follows that
(A11, B1, C1, D̃; X ) is a proper C-restriction of Σ̃.

Lemma 11. A system is observable if and only if it has no proper O-restriction.

Proof. We prove the contrapositive: the system Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) has a
proper O-restriction if and only if it is not observable.

First assume that Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) has a proper O-restriction. We use
the notation from Definition 5. We have

C̃Ãk =
[
0 CAk

]
,

from which it follows that E is contained in the unobservable subspace. Since
E is nonzero it follows that the unobservable subspace is nonzero. Therefore, Σ̃
is not observable.

Now assume that Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) is not observable. Denote the un-

observable subspace by E . Then there exists a vector space X such that X̃ is
the direct sum of E and X (this follows from Zorn’s Lemma). The operators
decompose as follows with respect to the above direct sum:

Ã =

[
A11 A12

A21 A22

]
, B̃ =

[
B1

B2

]
, C̃ =

[
C1 C2

]
,

for linear operators A11 : E → E , A12 : X → E , A21 : E →X , A22 : X →X ,
B1 : C → E , B2 : C → X , C1 : E → C, C2 : X → C. Since E is contained
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in the kernel of C̃ we have C1 = 0. Similarly, since Ã maps the unobservable
subspace into itself we have A12 = 0. It follows that (A22, B2, C2, D̃; X ) is a

proper O-restriction of Σ̃.

Theorem 12. A system is minimal if and only if it is both controllable and
observable.

Proof. A system has a proper restriction if and only if it has either a proper
C-restriction or a proper O-restriction (or both). The result then follows from
Lemmas 10 and 11.

Remark 13. Note that Theorem 12 at first sight seems to be the same as [2,
Theorem 2.1]. However our definition of controllable is different from that in [2]
and so is our definition of minimal (since our definition of dilation is different).

Lemma 14. Let Σ = (A,B,C,D; X ) be a controllable system. Denote b :=
B1. Then either dim X < ∞ and (Akb)dim X−1

k=0 is a Hamel basis for X or
dim X =∞ and (Akb)∞k=0 is a Hamel basis for X .

Proof. We only consider the case dim X = ∞ (the finite-dimensional case can
be proven similarly). Since the system is controllable, X equals the control-
lable subspace and clearly the Hamel-span of (Akb)∞k=0 equals this controllable
subspace. It remains to show that the vectors in the set {Akb : k = 0, . . . ,∞}
are (Hamel-) linearly independent. Assume that they are not; then there exist
a m ∈ N and (ck)m−1

k=0 ⊂ C such that

Amb =

m−1∑
k=0

ckA
kb.

It follows that any vector Anb for n ∈ N with n ≥ m can be written as a
linear combination of {Akb : k = 0, . . . ,m − 1}. This contradicts infinite-
dimensionality of X .

3.1 The Hankel operator

The following definition uses the space

c00 := {v : N0 → C : finitely many vk nonzero} .

Definition 15. The controllability map C : c00 →X of the system (A,B,C,D; X )
is defined by

Cv :=

∞∑
k=0

AkBvk.

Note that a system is controllable if and only if its controllability map is
onto.

In the following definition we use the notation CN0 for the space of all se-
quences from N0 to C.
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Definition 16. The observability map O : X → CN0 of the system (A,B,C,D; X )
is defined by

(Ox)k := CAkx.

Note that a system is observable if and only if its observability map is injec-
tive.

Definition 17. The Hankel operator H : c00 → CN0 of the system (A,B,C,D; X )
is defined by H = OC, where C is the controllability map and O is the observ-
ability map of the system.

Remark 18. Note that with (θk)∞k=0 the impulse response sequence of the system
we have

(Hv)k =

∞∑
j=0

θk+j+1vj .

Therefore the impulse response sequence uniquely determines the Hankel oper-
ator and the Hankel operator together with θ0 uniquely determines the impulse
response sequence.

We note that it follows from Lemma 14 that the state space of a controllable
system is either finite-dimensional or its dimension is countably infinite. There-
fore, the dimension of a controllable system is a well-defined element of N0∪{∞}
where ∞ is used to denote that the dimension is countably infinite. Also, the
dimension of the range of the Hankel operator is either finite-dimensional or its
dimension is countably infinite. Therefore, we can use the same convention for
its dimension.

Lemma 19. Let Σ = (A,B,C,D; X ) be a minimal system with Hankel operator
H. Then dim X = dim ran(H).

Proof. We use that by Theorem 12 minimality is equivalent to controllability
plus observability. Since H = OC and the observability map O is injective by
observability, dim ran(H) = dim ran(C). From Lemma 14 we see that dim ran(C)
equals dim X by controllability.

Corollary 20. Let Σ = (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) be minimal

systems with the same impulse response sequence. Then dim X = dim X̃ .

Proof. By Remark 18 the two systems have the same Hankel operator. Therefore

by Lemma 19, dim X = dim ran(H) = dim X̃ .

4 Existence of minimal realizations

Definition 21. A topological system is a quintuple (A,B,C,D; X ) consisting
of a topological vector space X and continuous linear operators A : X → X ,
B : C → X , C : X → C, D : C → C where C is equipped with its usual
topology.
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Note that a topological system is a system according to Definition 1, but
that the converse is not true. When we refer to a minimal topological system
we mean a topological system which after applying the “forgetful functor” (i.e.
we “forget” that there is a topology) is minimal in the sense of Definition 7 (in
particular: the considered restrictions do not have to be topological systems).

The following is one of our two main theorems. We note that the definition
of strict LF-space is recalled in the appendix (Definition 28).

Theorem 22. Every sequence (θk)∞k=0 is the impulse response sequence of some
minimal topological system. Moreover, the state space can be taken to be a strict
LF-space with a countable Hamel basis.

Proof. Define D : C → C by Du = θ0u. Define the space X̃ as the space of

all sequences N0 → C and define the operators Ã : X̃ → X̃ , B̃ : C → X̃ and

C̃ : X̃ → C by

(Ãx)k := xk+1, (B̃u)k := θk+1u, C̃x := x0.

Then as in Section 2, we see that the system Σ̃ := (Ã, B̃, C̃,D; X̃ ) has (θk)∞k=0 as

its impulse response sequence. We note that Σ̃ is observable since x ∈ ker(CAn)
implies xn = 0 and therefore x ∈ ∩∞n=0 ker(CAn) implies x = 0. Let X be the

controllable subspace of Σ̃. Since Ã maps the controllable subspace to itself,
we can define A : X → X as the restriction of Ã to X . Since B̃ maps
into the controllable subspace, we can define B : C → X as B̃ seen as an
operator to X . We further define C as the restriction of C̃ to X . It is trivial
that Σ := (A,B,C,D; X ) also has (θk)∞k=0 as its impulse response sequence. By

construction, Σ is controllable. Since Σ̃ is observable we see that Σ is observable.
Therefore, by Theorem 12, the system Σ is minimal.

It remains to show that X can be made into a topological vector space
in such a way as to make Σ a topological system. Note that X is the strict
inductive limit of the finite-dimensional spaces (here as before b := B1)

Xn :=

{
n−1∑
k=0

ckA
kb : ck ∈ C

}
.

Therefore, we can equip X with the inductive limit topology making it into a
strict LF-space (Definition 28). The space X clearly has the countable Hamel
basis (Akb)∞k=0 (or (Akb)dim X−1

k=0 if dim X < ∞). By Theorem 32 (from the
appendix) it follows that A and C are continuous. By Lemma 31 (from the
appendix), B is continuous.

5 The state space isomorphism theorem

Definition 23. Two topological systems (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ )
are called topologically isomorphic if there exists a continuous operator S : X →
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X̃ with a continuous inverse such that

ÃS = SA, B̃ = SB C̃S = C, D̃ = D. (3)

The following is our second main theorem. We note that the definition of a
barrelled space is recalled in the appendix (Definition 36).

Theorem 24. Let Σ = (A,B,C,D; X ) and Σ̃ := (Ã, B̃, C̃, D̃; X̃ ) be two min-

imal topological systems with X and X̃ locally convex topological vector spaces
which are additionally Hausdorff and barrelled. If Σ and Σ̃ have the same im-
pulse response sequence, then Σ and Σ̃ are topologically isomorphic.

Proof. By Corollary 20 we have dim X = dim X̃ . We consider only the case
where this dimension is infinite (the case where it is finite is similar). By Theo-

rem 12, Σ and Σ̃ are controllable. Therefore, by Lemma 14, X has Hamel basis

(Akb)∞k=0 and X̃ has Hamel basis (Ãk b̃)∞k=0 where b := B1 and b̃ := B̃1. Define

S : X → X̃ by

S

( ∞∑
k=0

ckA
kb

)
=

∞∑
k=0

ckÃ
k b̃, (4)

where the sequence of coefficients (ck)∞k=0 is finitely nonzero. By the defining
properties of a Hamel basis, S is well-defined and bijective.

We show that the isomorphism equations (3) are satisfied. We denote the

impulse response sequence by (θk)∞k=0. We have D1 = θ0 = D̃1, so that D = D̃.

From (4) with c0 = 1 and ck = 0 for k > 0 we obtain Sb = b̃, which implies

SB = B̃. Let x be an arbitrary element of X . Then x =
∑∞
k=0 xkA

kb for
(xk)∞k=0 a finitely nonzero sequence. Therefore

SAx = S

( ∞∑
k=0

xkA
k+1b

)
= S

 ∞∑
j=1

xj−1A
jb


=

∞∑
j=1

xj−1Ã
j b̃ =

∞∑
k=0

xkÃ
k+1b̃ = Ã

∞∑
k=0

xkÃ
k b̃ = ÃSx.

We conclude that SA = ÃS. Finally, we have for x as above

Cx =

∞∑
k=0

xkCA
kb =

∞∑
k=0

xkθk+1 =

∞∑
k=0

xkC̃Ã
k b̃ = C̃

∞∑
k=0

xkÃ
k b̃ = C̃Sx.

Therefore C = C̃S. Hence the isomorphism equations (3) are satisfied.
It remains to verify that S and its inverse are continuous. By assumption X

is a locally convex topological vector space which is additionally Hausdorff and
barrelled. We saw above that controllability implies that X has a countable
Hamel basis. By Theorem 37 (from the appendix) we see that X is a strict
LF-space with a countable Hamel basis. It follows from Theorem 32 (from the
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appendix)that S is continuous. We similarly have that X̃ is a strict LF-space
with a countable Hamel basis. Therefore it follows from Theorem 32 (from the
appendix) that S−1 is continuous.

Remark 25. We note that the first part of the proof of Theorem 24 shows that
two minimal systems are algebraically isomorphic.

Remark 26. It is not true that two minimal topological systems which have
the same impulse response are topologically isomorphic (i.e. we cannot omit
the additional assumptions on the state spaces made in Theorem 24). Consider
the minimal realization constructed in the proof of Theorem 22. However, now
equip X with the topology induced by CN0 (which carries its natural Fréchet
space topology). If the impulse response sequence is such that dim X = ∞
(for example: the impulse response sequence from Section 2), then X is not
complete (since otherwise it would be an infinite dimensional Fréchet space
with a countable Hamel basis, which does not exist). Therefore X with this
induced topology is not topologically isomorphic to the state space constructed
in the proof of Theorem 22 (which as a strict LF-space is complete). Hence we
have constructed two minimal topological systems which have the same impulse
response and which are not topologically isomorphic.

Remark 27. The natural dual of a quintuple (A,B,C,D; X ) is the quintuple
(A′, C ′, B′, D′; X ′). We note that (in our context of locally convex topological
vector spaces which are additionally Hausdorff and barrelled) for a minimal
quintuple its dual is minimal if and only if X is finite-dimensional. One direction
of this is clear: if X is finite-dimensional and the quintuple is minimal, then
so is its dual. By our results, if (A,B,C,D; X ) is minimal and X is a locally
convex topological vector space which is additionally Hausdorff and barrelled,
then X is in fact a strict LF-space with a countable Hamel basis. If X is
infinite-dimensional, it is therefore isomorphic to c00. It follows that in this
case X ′ is isomorphic to CN0 . This implies that X ′ does not have a countable
Hamel basis and therefore that (A′, C ′, B′, D′; X ′) is not minimal.

6 Conclusion and comparison with the litera-
ture

We note that if the impulse response sequence has values which are linear op-
erators between finite-dimensional spaces, i.e. θk : Cm → Cp for m, p ∈ N
independent of k, then the situation is entirely similar to the scalar case de-
scribed in this article. Since the notation becomes slightly more cumbersome
in this operator-valued situation, we have however chosen to only present the
scalar case. It is also possible to consider impulse response sequences with
θk : U → Y where U and Y are vector spaces independent of k. To obtain a
topological isomorphism result, some assumptions have to be made about the
topology of U and Y . In contrast to the finite-dimensional case, this situation
is more complicated than the scalar case discussed in this article and may be
the subject of future work.
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Most of the literature on realization theory for infinite-dimensional systems
deals with the notion of a canonical system (i.e. a system which is both con-
trollable and observable) rather than that of a minimal system (in the sense of
our Definition 7). There are however different natural notions of controllabil-
ity and observability. We considered the controllability map (Definition 15) to
have domain c00, but other choices are possible, for example `2(N0) (provided
that the system is “stable” so that the infinite sum defining the controllability
map converges for all v ∈ `2). If we define a system to be controllable if its
controllability map is onto, then these different choices of the domain of the
controllability map lead to different notions of controllability. Another natural
notion of controllability is for the controllability map to have dense range rather
than to be onto. Again, this leads to a different notion of controllability. Similar
remarks can be made regarding observability. With certain particular pairs of
choices of controllability and observability, it can be shown that canonical real-
izations are unique up to topological isomorphism. However, systems which are
canonical in different senses are generally not topologically isomorphic. In the
context of continuous-time systems, these issues were investigated in [8]. Also
in the context of continuous-time systems, [20] argued for a particular choice
(on engineering grounds).

We took the notion of minimal (in the sense of our Definition 7) as the central
notion. As mentioned, this notion originates in Hilbert space operator theory
and is also closely connected to the Kalman decomposition. Theorem 12 then
shows that the choices of controllability and observability that we made are the
correct ones (in our context). We note that these notions of controllability and
observability are the same as those of for example [10, Chapter 10].

The key role played by barrelled spaces in canonical realization theory was
partially recognized in [8, Lemma 4.3 and Theorem 4.6]. A result very closely
related to our main results (Theorems 22 and 24) is mentioned in [1, page 206].
However, for details [1, page 206] refers to a book ([13] in our bibliography)
in which we couldn’t find them. We further note that the result stated in
[1, page 206] concerns canonical realizations rather than minimal realizations.
The importance of barrelled spaces is also recognized in [19] where, as in this
article, the failure of the state space isomorphism theorem in Hilbert spaces is
investigated by considering barrelled topological vector spaces. However, the
viewpoint of [19] is very different from that given here.

We now briefly discuss some known conditions from the literature under
which the Hilbert space state space isomorphism theorem does hold. The
quintuple (A,B,C,D; X ) where X is a Hilbert space is called scattering pas-

sive if

∥∥∥∥[A B
C D

]∥∥∥∥ ≤ 1. A sequence (θk)∞k=0 is called Schur if the function

s(z) :=
∑∞
k=0 θkz

k is holomorphic on the open unit disc and satisfies |s(z)| ≤ 1
there. It is well-known that the impulse response sequence of a scattering pas-
sive quintuple is Schur and that conversely, every Schur sequence has a minimal
scattering passive realization. If some additional assumptions are made on the
Schur sequence, then all its minimal scattering passive realizations are unitarily
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similar, see [3, 4]. We remark that scattering passivity is naturally a Banach
space assumption and it is this additionally imposed structure which fundamen-
tally distinguishes this case from the case where the quintuple is only assumed
to be continuous (which is naturally a topological vector space assumption).

Finally we remark that although the example mentioned in Section 2 origi-
nates in [2], there are earlier examples (as acknowledged in [2]) where the state
space isomorphism theorem fails in the Hilbert space context [6, Example 2.5].

A Some results from the theory of topological
vector spaces

In this appendix we collect some results from the theory of topological vector
spaces that are needed in this article. Standard references for this material
include [5, 7, 11, 12, 14, 16, 17, 18].

We first recall the notion of a strict LF-space.

Definition 28. [17, page 126] Let V be a vector space and let (Vk)∞k=1 be a
sequence of subspaces with the following properties:

• Vk ⊂ Vk+1 for all k ∈ N,

•
∞⋃
k=1

Vk = V ,

• Each Vk is a Fréchet space and the topology induced on Vk by Vk+1 equals
the original topology of Vk.

Then we call V a strict LF-space and the sequence (Vk)∞k=1 a defining sequence
for V .

The topology of a strict LF-space is defined as follows: a convex subset U is
a neighbourhood of zero if U ∩Vk is a neighbourhood of zero in Vk for all k ∈ N.

We note that strict LF-spaces are complete [17, Theorem 13.1], Hausdorff
and locally convex [17, p126].

Lemma 29. Let V be a strict LF-space with defining sequence (Vk)∞k=1. If V
has a countable Hamel basis, then Vk is finite-dimensional for all k ∈ N.

Proof. Let k ∈ N. Since V has a countable Hamel basis and Vk ⊂ V , it follows
that Vk has a countable Hamel basis. Since Vk is a Fréchet space, this implies
that Vk is finite-dimensional [15, Chapter 2 Exercise 1].

Lemma 30. [17, Proposition 13.1] Let V be a strict LF-space with defining
sequence (Vk)∞k=1, let W be a locally convex topological vector space and let
T : V → W be a linear operator. Then T is continuous if and only if for all
k ∈ N the operator T |Vk

: Vk → W is continuous.
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Lemma 31. [15, Lemma 1.20] Every linear operator from a finite-dimensional
Hausdorff topological vector space into a locally convex topological vector space
is continuous.

Theorem 32. Let V be a strict LF-space with a countable Hamel basis, let
W be a locally convex topological vector space and let T : V → W be a linear
operator. Then T is continuous.

Proof. Let (Vk)∞k=1 be a defining sequence for V . By Lemma 29, Vk is finite-
dimensional for all k ∈ N. Hence by Lemma 31, T |Vk

: Vk → W is continuous
for all k ∈ N. It then follows from Lemma 30 that T : V → W is continuous.

We recall the definition of a barrelled space.

Definition 33. [17, Definition 3.2] A subset S of a vector space X is called
balanced if for every x ∈ S and every λ ∈ C with |λ| ≤ 1 we have λx ∈ S.

Definition 34. [17, Definition 3.1] A subset S of a vector space X is called
absorbing if for every x ∈ X there exists a c > 0 such that for all λ ∈ C with
|λ| ≤ c we have λx ∈ S.

Definition 35. [17, Definition 7.1] A subset S of a topological vector space X
is called a barrel if it is absorbing, balanced, closed and convex.

Definition 36. [17, Definition 33.1] A topological vector space X is called
barrelled if every barrel in X is a neighbourhood of zero in X .

We note that Hilbert spaces, Banach spaces, Fréchet spaces and strict LF-
spaces are barrelled [17, page 347].

Theorem 37. A locally convex topological vector space which is Hausdorff and
barrelled and has a countable Hamel basis is a strict LF-space.

Proof. Let X be a strict LF-space with a countable Hamel basis and let Y be a
locally convex topological vector space which is Hausdorff and barrelled and has
a countable Hamel basis. As in the proof of Theorem 24, we obtain a bijective
map T : X → Y by mapping one Hamel basis to the other. By Theorem 32, T
is continuous. A strict LF-space with a countable Hamel basis is fully complete
(a.k.a. B-complete or a Ptak space); this follows e.g. from [9, Corollary 9.1]
combined with Lemma 29. Therefore the open mapping theorem implies that
S−1 is continuous; see e.g. [14, Corollary 2 page 116]. Hence Y is topologically
isomorphic to X and is therefore a strict LF-space.
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