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Abstract— We show that the Gramians of a control system
with an analytic semigroup, control and observation operators
that are not too unbounded and which have finite-dimensional
input and output spaces have singular values which decay
exponentially in the square root. As a corollary it is shown that
the Hankel singular values of such control systems also decay
exponentially in the square root. Another corollary shows that
solutions of algebraic Riccati equations for such systems also
have singular values which decay exponentially in the square
root.

I. INTRODUCTION

The Hankel singular values of a control system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

provide fundamental information about how well the system
can be approximated by lower dimensional ones. If G is a
transfer function with Hankel singular values (σk)∞k=1, then
for any transfer function Gn of McMillan degree n there
holds:

σn+1 ≤ ‖G−Gn‖∞,

where ‖ · ‖∞ is the H∞ norm. Moreover, there exists a
transfer function Gn of McMillan degree n such that

‖G−Gn‖∞ ≤
∞∑

k=n+1

σk.

See for example [10, page 346 and Lemma 10.5.3] for the
finite-dimensional case and [12] for the general case.

A popular model reduction method is balanced truncation
[15], [6], [8], [10, Chapter 9], [28, Chapter 7]. To implement
this method, two Lyapunov equations have to be solved to
obtain the controllability and observability Gramians of the
system. For large scale systems, for computational feasibil-
ity, usually low rank approximations are computed instead
[13], [3]. A fundamental question is when such low rank
approximations exist. To answer this question, it is necessary
and sufficient to analyze the decay of the singular values
of the Gramians. The same question regarding low rank
approximations is relevant for algebraic Riccati equations
instead of Lyapunov equations.

The above two questions are closely related since the Han-
kel singular values of a system are equal to the square roots
of the singular values of the product of the controllability
and observability Gramians. Also the singular values of the
solution of a Riccati equation can be related to the singular
values of a Gramian.
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There are various articles which deal with the above ques-
tions in the context of finite-dimensional systems [21], [1],
[9]. However, the obtained bounds depend on the condition
number of the matrix A. Since for discretizations of partial
differential equations this condition number converges to
infinity as the discretization is refined, these bounds are
not very satisfactory. In [18], the infinite-dimensional case
was considered and it was shown that for a large class
of infinite-dimensional systems the Hankel singular values
decay superpolynomially. This implies a result on super-
polynomial decay of the singular values of the Gramians.
Recently, in [11], it was shown that the singular values of
the Gramians of certain infinite-dimensional systems decay at
a rate exponential in the square root. However, in this result
from [11], a nonstandard definition of singular value is used.
This coincides with the standard definition of singular value
only if B and C are bounded. In particular, the results of
[11] can only be used to deduce decay at a rate exponential
in the square root for the Hankel singular values in case B
and C are bounded.

In this article we prove decay of the singular values (in the
standard sense) of the Gramians at a rate exponential in the
square root for a large class of infinite-dimensional systems
(which includes many systems of interest with unbounded B
and C), improving the results of [11]. From this we conclude
decay at a rate exponential in the square root for the Hankel
singular values for this class of systems, thereby improving
the results of [18]. We also show that for a wide range of
algebraic Riccati equations the singular values of the positive
semidefinite solution decay at a rate exponential in the square
root.

We now briefly outline the method of proof. The observ-
ability Gramian L is explicitly given by

L =

∫ ∞
0

eA
∗tC∗CeAt dt. (1)

As in [11], we use sinc quadrature on this integral to obtain
an explicit approximation of the Gramian of the required
rank. In the case of unbounded C, the integrand is unbounded
at t = 0. What is essentially done in [11] is that instead

A−αLA−α =

∫ ∞
0

eA
∗tA−αC∗CA−αeAt dt,

is considered. Under the assumption that CA−α is bounded
for some α ∈ [0, 1] (which is a reasonable assumption for
applications to PDEs), the integrand is no longer unbounded
at t = 0. However, the additional factors A−α lead to
the nonstandard singular values of L considered in [11].
Contrary to what is done in [11], we deal directly with the



singularity of the integrand at t = 0 in (1). Using the theory
of analytic semigroups it can be shown that, for the class
of systems considered, the integrand has what is called an
integrable algebraic singularity at t = 0, i.e. it behaves like
t−γ for γ ∈ [0, 1) near t = 0. Since sinc quadrature still
gives a convergence rate exponential in the square root in
the presence of such a singularity, the decay rate follows.

II. ANALYTIC CONTROL SYSTEMS

In this section we define the class of systems to which
our results apply and prove some properties for this class of
systems. We first recall the definition of an exponentially sta-
ble analytic semigroup. Standard references for this include
[24], [2], [5], [20].

Definition 1: Let X be a Hilbert space, let δ ∈ (0, π/2],
and let ∆δ be the open sector

∆δ := {z ∈ C : z 6= 0, | arg(z)| < δ}.

The family of operators {T (t) ∈ L(X ) : t ∈ ∆δ} is called
an exponentially stable analytic semigroup if

1) z 7→ T (z) is analytic on ∆δ ,
2) T (0) = I and T (z+w) = T (z)T (w) for all z, w ∈ ∆δ ,
3) there exist M ≥ 1 and ω > 0 such that for all z ∈ ∆δ

‖T (z)‖ ≤Me−ωRe(z),

4) for all x ∈X there holds lim
z→0
z∈∆δ

T (z)x = x.

Remark 2: We note that most books consider the case ω =
0 of bounded analytic semigroups. It is easily seen that if S
is a bounded analytic semigroup, then T (z) := e−ωzS(z)
is an exponentially stable analytic semigroup in the sense
of Definition 1. Conversely, if T is an exponentially stable
analytic semigroup in the sense of Definition 1, then S(z) :=
eωzT (z) is a bounded analytic semigroup.

An analytic semigroup is strongly continuous and there-
fore has a generator A (in some sense the semigroup equals
z 7→ eAz). A crucial and well-known property of analytic
semigroups is the following. Since most books only consider
the case of real z in the desired estimate, we give the proof.

Lemma 3: Let T be an exponentially stable analytic semi-
group as in Definition 1. Denote its generator by A. Then
for all a ∈ [0, 1) there exists a constant Ma ≥ 1 such that
for all z ∈ ∆aδ

‖AT (z)‖ ≤ Ma

|z|
e−ωRe(z).

Proof: We adapt the proof from [2, Theorem 3.7.19]
(which only considers the case of real z). We have AT (z) =
T ′(z) and by Cauchy’s integral formula for the derivative we
therefore have

AT (z) =
1

i2π

∫
|w−z|=r

T (w)

(w − z)2
dw,

provided that r > 0 is such that {w ∈ C : |w−z| ≤ r} ⊂ ∆δ .
Estimating this integral gives

‖AT (z)‖ ≤ Me−ωRe(z)

r
,

so that

‖zAT (z)‖ ≤Me−ωRe(z) |z|
r
.

We can choose r := |z| sin(εδ), where ε := 1 − a ∈ (0, 1].
We then have

‖zAT (z)‖ ≤ M

sin(εδ)
e−ωRe(z).

Therefore, defining

Ma :=
M

sin(δ − aδ)
,

we obtain the desired result.
As in [24, Lemma 3.10.9] we obtain a corollary on

fractional powers.
Corollary 4: Let T be an exponentially stable analytic

semigroup as in Definition 1. Denote its generator by A.
Let α ∈ [0, 1]. Then for all a ∈ [0, 1) there exists a constant
M̃a ≥ 1 such that for all z ∈ ∆aδ

‖AαT (z)‖ ≤ M̃a

|z|α
e−ωRe(z).

Proof: By [24, Lemma 3.9.8] there exists a constant
C > 0 such that for all y ∈ D(A)

‖Aαy‖ ≤ C‖y‖1−α ‖Ay‖α.

Let x ∈X and note that then T (z)x ∈ D(A) and therefore
by the above

‖AαT (z)x‖ ≤ C‖T (z)x‖1−α ‖AT (z)x‖α.

Now using the bounds from Definition 1 and Lemma 3 we
have

‖AαT (z)x‖ ≤ CM1−αe−(1−α)ωRe(z)M
α
a

|z|α
e−αωRe(z),

so that with
M̃a := CM1−αMα

a ,

we obtain the desired estimate.
Theorem 5: Let T be an exponentially stable analytic

semigroup as in Definition 1. Denote its generator by A. Let
Y be a Hilbert space, let α ∈ [0, 1] and let C : D(A)→ Y
be such that CA−α ∈ L(X ,Y ). Then for all a ∈ [0, 1)
there exists a constant Ma ≥ 1 such that for all z ∈ ∆aδ

‖CT (z)‖L(X ,Y ) ≤
Ma

|z|α
e−ωRe(z).

Proof: We have, using Corollary 4 for the second
inequality,

‖CT (z)‖L(X ,Y ) ≤ ‖CA−α‖L(X ,Y )‖AαT (z)‖L(X )

≤ ‖CA−α‖L(X ,Y )
M̃a

|z|α
e−ωRe(z),

so that with

Ma := ‖CA−α‖L(X ,Y )M̃a,

we obtained the desired inequality.



Remark 6: From Theorem 5 it follows that, for A and C
as in that theorem and with α ∈ [0, 1/2), the observability
Gramian

L :=

∫ ∞
0

T (t)∗C∗CT (t) dt,

is a well-defined bounded operator on X . See e.g. [24,
Chapter 10] and [26, Chapter 5] for more information on
Gramians for infinite-dimensional systems.

Remark 7: Let A and C be as in Theorem 5. For x, y ∈
D(A) the function f : ∆δ → C

f(z) := 〈CT (z)x,CT (z̄)y〉,

is holomorphic on ∆δ and by Theorem 5 for all a ∈ [0, 1)
there exists a constant Ma ≥ 1 such that for all z ∈ ∆aδ

|f(z)| ≤ M2
a

|z|2α
e−2ωRe(z)‖x‖ ‖y‖.

Note that with L the observability Gramian from Remark 6

〈Lx, y〉 =

∫ ∞
0

f(t) dt.

III. SINC QUADRATURE

We quote the following result from [14] regarding sinc
quadrature.

Theorem 8: Assume that for ϑ ∈ (0, π/2), the complex-
valued function f is analytic on the sector

∆ϑ := {z ∈ C : z 6= 0, | arg(z)| ≤ ϑ},

and is such that

sup
r≥0

∫ ϑ

−ϑ
|f(reiθ)|r dθ <∞, (2)∫ ∞

0

|f(reiϑ)| dr <∞, (3)

and such that there exist M,β, γ > 0, such that

|f(x)| ≤M

{
xγ−1 x ∈ (0, 1),

e−βx x ∈ (1,∞).
(4)

Define for m ∈ N0

h :=

√
2πϑ

γm
, N :=

⌈
1

h
log

(
γ

β
mh

)
+ 1

⌉
.

Then there exists a M̃ > 0 such that for all m ∈ N0∣∣∣∣∣
∫ ∞

0

f(x) dx− h
N∑

k=−m

ekhf
(
ekh
)∣∣∣∣∣ ≤ M̃e−

√
2πϑγm.

Proof: This is [14, Theorem 3.9] with the modification
of N for exponential decay from [14, page 77].

The following lemma gives a sufficient condition for the
conditions from Theorem 8 to hold.

Lemma 9: If, for ϑ ∈ (0, π/2), the complex-valued func-
tion f is analytic on the sector

∆ϑ := {z ∈ C : z 6= 0, | arg(z)| ≤ ϑ},

and is such that there exist M,β > 0 and γ ∈ (0, 1] such
that for all z ∈ ∆ϑ

|f(z)| ≤M |z|γ−1e−βRe(z),

then f satisfies (2), (3) and (4).
Proof: That the condition implies (4) is clear. Note that

for θ ∈ [−ϑ, ϑ] there holds

|f(reiθ)| ≤Mrγ−1e−βr cos θ ≤Mrγ−1e−βr cosϑ.

It follows that (2) holds since∫ ϑ

−ϑ
|f(reiθ)|r dθ ≤ 2ϑMrγe−βr cosϑ,

which is uniformly bounded in r ≥ 0 since γ > 0 and since
ϑ ∈ (0, π/2) and β > 0 we have β cosϑ > 0. It also follows
that (3) holds since∫ ∞

0

|f(reiϑ)| dr ≤
∫ ∞

0

Mrγ−1e−βr cosϑ dr

≤M
∫ 1

0

rγ−1 dr +M

∫ ∞
1

e−βr cosϑ dr,

and the first integral on the right-hand side is finite since
γ > 0 and the second integral on the right-hand side is finite
since β cosϑ > 0.

Remark 10: Alternatively, sinc quadrature with regard to
a bullet-shaped region rather than with regard to a sector
can be used to obtain the same convergence rate under
slightly weaker assumptions (which are not relevant for our
application); see [25, Example 4.2.11].

IV. THE MAIN RESULT

We now combine the results from Sections II and III to
prove our main result. Recall that the singular values of an
operator T : X →X are defined for k ∈ N by

σk(T ) := inf{‖T − Tk‖ : rank(Tk) < k}.

Theorem 11: Let T be an exponentially stable analytic
semigroup as in Definition 1. Denote its generator by A. Let
Y be a finite-dimensional Hilbert space, let α ∈ [0, 1/2) and
let C : D(A)→ Y be such that CA−α ∈ L(X ,Y ). Denote
the observability Gramian of the pair A,C by L. Then there
exist M, c > 0 such that for all k ∈ N

σk(L) ≤Me−c
√
k.

Proof: Let x, y ∈ D(A). By Remark 7, the function
f : ∆δ → C defined by

f(z) := 〈CT (z)x,CT (z̄)y〉,

satisfies the conditions of Lemma 9 (with γ := 1 − 2α,
β := 2ω and ϑ := aδ with a ∈ (0, 1)) and therefore the
conditions of Theorem 8.

With N and h as in Theorem 8, define for m ∈ N0 the
operator Lm : X →X by

Lm := h

N∑
k=−m

ekhT
(
ekh
)∗
C∗CT

(
ekh
)
.



Note that since ekh > 0 and the range of T (t) is in D(A)
for t > 0, the operator Lm is well-defined and bounded.

As Lm is the sum of m+N +1 operators of rank at most
dim Y , we have

rank(Lm) ≤ (m+N + 1) dim Y .

Since N is bounded by a constant times m, it follows that
there exists a ` ∈ N such that for all m ∈ N

rank(Lm) < `m.

We note that

〈Lmx, y〉 = h

N∑
k=−m

ekhf
(
ekh
)
,

and
〈Lx, y〉 =

∫ ∞
0

f(x) dx,

so that by Theorem 8, there exists a M̃ such that

|〈Lx, y〉 − 〈Lmx, y〉| ≤ M̃e−
√

2πϑγm.

Using that the constant in Remark 7 is of the form a constant
independent of x and y times ‖x‖ times ‖y‖ and keeping
track of the constants in the proof of Theorem 8 in [14], we
deduce that M̃ = M̃1‖x‖ ‖y‖, where M̃1 is independent of
x and y. We infer that

|〈Lx, y〉 − 〈Lmx, y〉| ≤ M̃1e−
√

2πϑγm‖x‖ ‖y‖.

Recall that for a self-adjoint operator T there holds

‖T‖ = sup
x∈D:‖x‖=1

|〈Tx, x〉|,

where D is a dense subspace. Applying this with T := L−
Lm and D = D(A) gives

‖L− Lm‖ ≤ M̃1e−
√

2πϑγm.

Since, as mentioned above, rank(Lm) < `m, it follows that

σ`m(L) ≤ M̃1e−
√

2πϑγm.

Standard arguments using monotonicity of the singular val-
ues then give that there exists M, c > 0 such that for all
k ∈ N

σk(L) ≤Me−c
√
k.

The following corollary proves decay of the Hankel sin-
gular values.

Corollary 12: Let T be an exponentially stable analytic
semigroup as in Definition 1. Denote its generator by A.
Let U and Y be Hilbert spaces, at least one of which is
finite-dimensional. Let α ∈ [0, 1/2) and let C : D(A)→ Y
be such that CA−α ∈ L(X ,Y ). Let β ∈ [0, 1/2) and let
B : U → D(A∗)′ be such that B∗A−β∗ ∈ L(X ,U ). Let
the Hankel operator of the triple (A,B,C) be given by

H : L2(0,∞; U )→ L2(0,∞; Y ),

(Hu)(t) =

∫ ∞
0

CT−1(t+ s)Bu(s) ds,

where T−1 is the extension of the semigroup T to the space
D(A∗)′. Then there exist M, c > 0 such that for all k ∈ N

σk(H) ≤Me−c
√
k.

Proof: Denote the observability Gramian of the system
by LC and the controllability Gramian of the system by
LB . Assume that Y is finite-dimensional (if U is finite-
dimensional, then the roles of LB and LC below have to be
reversed).

The assumptions imply that LB is bounded and that LC is
compact. It follows that the product LBLC is compact. It also
follows from the assumptions that H is compact. Therefore
the nonzero singular values of H equal the square roots of
the nonzero eigenvalues of the product LBLC (this can be
proven as in [4, Lemma 8.2.9]). The nonzero eigenvalues
of LBLC equal the nonzero eigenvalues of L1/2

B LCL
1/2
B

and since this operator is self-adjoint, these are equal to the
nonzero singular values of L1/2

B LCL
1/2
B . So for all k ∈ N

σk(H) =

√
σk(L

1/2
B LCL

1/2
B ).

It therefore suffices to show that there exists M̃, c̃ > 0 such
that for all k ∈ N

σk(L
1/2
B LCL

1/2
B ) ≤ M̃e−c̃

√
k.

If X ∈ L(X ) has rank at most k, then L1/2
B XL

1/2
B also has

rank at most k. We further have

‖L1/2
B LCL

1/2
B − L1/2

B XL
1/2
B ‖

≤ ‖L1/2
B ‖ ‖LC −X‖ ‖L

1/2
B ‖ = ‖LB‖ ‖LC −X‖.

We conclude that for all k ∈ N

σk(L
1/2
B LCL

1/2
B ) ≤ ‖LB‖σk(LC).

The singular value bound for LC proven in Theorem 11 then
gives the desired result.

We now give a corollary regarding Riccati equations. Note
that condition (5) below is in particular satisfied in the
“standard case”

[
Q N
N∗ R

]
= [ I 0

0 I ]. It is also satisfied for
“strictly bounded real” and “strictly positive real” systems.

Corollary 13: Let T be an exponentially stable analytic
semigroup as in Definition 1. Denote its generator by A.
Let U be a Hilbert space and let Y be a finite-dimensional
Hilbert space. Let α ∈ [0, 1/2) and let C : D(A) → Y be
such that CA−α ∈ L(X ,Y ). Let β ∈ [0, 1/2) and let B :
U → D(A∗)′ be such that B∗A−β∗ ∈ L(X ,U ). Let D ∈
L(U ,Y ). Let the weighting operator

[
Q N
N∗ R

]
∈ L(Y ×U )

be self-adjoint and such that there exists a ε > 0 such that
for all u ∈ L2(0,∞; U )∫ ∞

0

〈[
Q N
N∗ R

] [
y(t)
u(t)

]
,

[
y(t)
u(t)

]〉
dt

≥ ε
∫ ∞

0

‖u(t)‖2 + ‖y(t)‖2 dt, (5)

where y is the output for initial condition zero and input u
for the system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t).



Then the Riccati equation

XA+A∗X + C∗QC

= (B∗X +D∗QC +N∗C)∗·
(D∗QD +D∗N +N∗D +R)−1·

(B∗X +D∗QC +N∗C),

has a unique positive semidefinite solution X ∈ L(X ) and
this solution is such that there exist M, c > 0 such that for
all k ∈ N

σk(X) ≤Me−c
√
k.

Proof: It follows from [24, Theorem 5.7.3] that
(A,B,C,D) generate a regular linear system. The existence
of a unique positive semidefinite solution of the Riccati
equation then follows from [27] or [23]. We note that for the
special class of systems considered here, the Riccati equation
given above coincides with the Riccati equations from [27]
and [23] (see [22]). From [23, Proposition 7.2] we obtain
that

X = Ψ∗
[
Q− (QF +N)R−1(F∗Q+N∗)

]
Ψ, (6)

where Ψ ∈ L(X , L2(0,∞; Y )) is the output map, F ∈
L(L2(0,∞; U ), L2(0,∞; Y )) is the input-output map and
R ∈ L(L2(0,∞; U ), L2(0,∞; U )) is the Popov-Toeplitz
operator defined by

R := R+N∗F + F∗N + F∗QF.

We note that the observability Gramian of the system equals
L := Ψ∗Ψ. By Theorem 11 we have that the singular
values of L decay exponentially in the square root. Since the
nonzero singular values of Ψ equal the square roots of the
nonzero eigenvalues of Ψ∗Ψ, and since Ψ∗Ψ is self-adjoint
implies that its eigenvalues equal its singular values, we see
that the singular values of Ψ decay exponentially in the
square root. By (6) we have that X equals a bounded operator
times an operator whose singular values decay exponentially
in the square root. It follows that the singular values of X
decay exponentially in the square root. To see this, consider
a bounded operator S and an operator T whose singular
values decay exponentially in the square root. Then there
exist M, c > 0 such that for all k ∈ N there exists an operator
Tk of rank less than k such that

‖T − Tk‖ ≤Me−c
√
k.

It follows that STk has rank less than k and that

‖ST − STk‖ ≤ ‖S‖ ‖T − Tk‖ ≤ ‖S‖Me−c
√
k,

so that the singular values of ST decay exponentially in the
square root.

Remark 14: We note that a result similar to Corollary 13
also holds when the system is exponentially stabilizable (in
a suitable sense) rather than exponentially stable. However, a
proof of that result requires some infinite-dimensional control
theory which is beyond the scope of this article; therefore
this result will be presented elsewhere.

V. EXAMPLES

For some examples where the conditions of Theorem 11
and Corollary 12 are satisfied we refer to [18, Section 3].
In this section we give some examples where the singular
values do not decay at a rate exponential in the square root,
highlighting the importance of the assumptions in Theorem
11 and Corollary 12.

We first consider what may happen if U and Y are
allowed to be infinite-dimensional.

Example 15: If A is a negative self-adjoint operator with
a bounded inverse on a Hilbert space X and C = I (with
therefore Y = X ), then the observability Gramian equals
− 1

2A
−1. Using this, by a suitable choice of X and A,

the singular values of the observability Gramian can made
equal to any desired sequence of nonnegative numbers. By
choosing B = I , the same is true for the Hankel singular
values.

Note that the assumptions of Theorem 11 and Corollary
12 are not satisfied in this case because both Y and U are
allowed to be infinite-dimensional in this example. The other
assumptions of Theorem 11 and Corollary 12 are satisfied.

As the following example shows, even for one-
dimensional Y and U arbitrary singular values can be
obtained.

Example 16: This example is taken from [17]. Let
(σk)∞k=1 be a strictly decreasing sequence of positive num-
bers. Define

ck :=
σk
k
, Aij :=

−cicj
σi + σj

.

Then c defines a bounded operator C : `2(N)→ C by Cx :=
〈x, c〉 and A defines a bounded negative self-adjoint operator
on `2(N). The observability Gramian of the pair A,C is
represented by the diagonal matrix with diagonal entries σk.
Therefore the singular values of the observability Gramian
equal the given sequence (σk)∞k=1. If we choose B = C∗,
then the Hankel operator of the triple A,B,C has singular
values equal to the given sequence (σk)∞k=1.

In this example all the conditions of Theorem 11 and
Corollary 12 are satisfied except for the exponential stability
assumption. The semigroup generated by A is strongly
stable, but not exponentially stable.

With a slightly more complicated construction the same
conclusions can be drawn if (σk)∞k=1 is a non-increasing
sequence of positive numbers, see [16].

We note that this example can be easily adapted to show
that any finite non-increasing sequence of positive numbers
(σk)nk=1 can occur as the singular values of the Gramian of a
finite-dimensional system with dim X = n and dim U = 1
and as the sequence of nonzero Hankel singular values of a
system with dim X = n and dim U = 1 = dim Y .

The following example illustrates that B and C should not
be “too unbounded” for the singular values to decay at a rate
exponential in the square root.

Example 17: We consider the following one-dimensional



heat equation on the unit interval

∂w

∂t
=
∂2w

∂ξ2
,

w(t, 0) = −u(t), w(t, 1) = 0, y(t) =
∂w

∂ξ
(t, 0).

In this case CA−α is not in L(X ,Y ) for any α < 3/4.
Therefore, one of the conditions of Theorem 11 is not
satisfied; the other conditions of Theorem 11 are satisfied. It
can be shown that the observability Gramian is unbounded.
The Hankel operator is also unbounded. In particular, all
the singular values of the observability Gramian and all the
Hankel singular values are infinite.

The next example is from [19]. It illustrates the importance
of the analyticity of the semigroup.

Example 18: Consider the following first order damped
hyperbolic PDE with dynamic boundary control and obser-
vation.

∂w

∂t
= −∂w

∂ξ
− εw, t > 0, ξ ∈ (0, 1),

wt(t, 0) + w(t, 0) = u(t),

zt(t) + z(t) = w(t, 1),

y(t) = z(t).

The transfer function of this system is

G(s) =
1

(s+ 1)2
e−(s+ε).

This system satisfies all the assumptions of Corollary 12
(with α = β = 0) except that the exponentially stable
semigroup generated by A isn’t analytic. Using the explicit
description of the transfer function, it follows from [7] that
for (σk)∞k=1 the Hankel singular values

k2σk → C 6= 0.

In particular, the Hankel singular values of this system do
not decay at a rate exponential in

√
k.
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operator semigroups. Birkhäuser Verlag, Basel, 2009.

[27] Martin Weiss and George Weiss. Optimal control of stable weakly
regular linear systems. Math. Control Signals Systems, 10(4):287–
330, 1997.

[28] Kemin Zhou, John C. Doyle, and Keith Glover. Robust and optimal
control. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.


