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Abstract. We study the problem of existence of weak right or left or strong coprime factor-
izations in H-infinity over the right half-plane of an analytic function defined in some subset of the
right half-plane. We give necessary and sufficient conditions for the existence of such coprime fac-
torizations in terms of an optimal control problem over the doubly infinite continuous time axis. In
particular, we show that an equivalent condition for the existence of a strong coprime factorization is
that both the control and the filter algebraic Riccati equation (of an arbitrary realization that need
not be well-posed) have a solution (in general unbounded and not even densely defined) and that
a coupling condition involving these two solutions is satisfied. The proofs that we give are partly
based on corresponding discrete time results which we have recently obtained.
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1. Introduction. Linear finite-dimensional time-invariant systems in continu-
ous time are typically modeled by the equations

ẋ(t) = Ax(t) +Bu(t),(1.1)

y(t) = Cx(t) +Du(t),

x(0) = x0

on a triple of finite-dimensional vector spaces, namely, the input space U , the state
space X and the output space Y. We have u(t) ∈ U , x(t) ∈ X , and y(t) ∈ Y. In this
article we are interested in the infinite-dimensional generalization of this situation
(which models, e.g., evolutionary partial differential equations). The main subject
of this article is the interplay between linear quadratic optimal control theory, the
factorization approach to control theory, and Riccati equations.

In the remainder of this introduction we describe these connections (highlighting
our new contributions) without getting into too much technical detail (which we leave
for the main body of the article).

In the standard infinite-dimensional setting the main operator A in (1.1) is un-
bounded and it generates a C0 semigroup in X , whereas the control operator B and
the observation operator C may be bounded or unbounded, and the feedthrough op-
erator D is sometimes difficult to define. One common approach to discuss this case
is to rewrite (1.1) into the form
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ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
,(1.2)

x(0) = x0,

where S is an (in general unbounded) operator dom(S) ⊂ [ XU ] → [X
Y
]
. In the case

where B and D in (1.1) are bounded it is usually possible to split S into the block
matrix form S =

[
A B
C D

]
, where dom(A) = dom(C) ⊂ X , dom(B) = dom(D) = U ,

and dom(S) = dom(A)×U . However, in the most interesting cases (e.g., in boundary
control systems) one is forced to use an unbounded operator B, and neither dom (S)
nor S itself is of the above form. In this case we denote S =

[
A&B
C&D

]
, where A&B [ xu ] is

the first component of S [ xu ] and C&D [ xu ] is the second component of S [ xu ]. The above
idea is formalized in the notion of an operator node (see, e.g., [2,17,28] or [33, section
4.7]), which we review in section 2.

One of the most classical problems in control theory, the linear quadratic regulator
(LQR) problem, is to minimize the quadratic cost function

(1.3) Jfut(x0, u) =

∫ ∞

0

(‖u(t)‖2U + ‖y(t)‖2Y
)
dt,

subject to the linear dynamics (1.1). This problem goes back to Kalman [11] (at
least in this formulation; its origins can be traced back further) and has now been a
textbook subject in control theory for decades. The objective is not just to find an
optimal control uopt, but also to prove that it is of feedback form, i.e., that by adding
the equation

u(t) = Kx(t)

to (1.1), the unique solution of this new system of equations is the solution of (1.1) that
minimizes the cost (1.3). Moreover, a crucial aspect of the solution of this problem
is that the optimal feedback operator K can be obtained from the control Riccati
equation as follows: We have

(1.4) K = −W−1(B∗Q+D∗C), W = 1U +D∗D,

where Q is the minimal nonnegative solution of the control Riccati equation

(1.5) QA+A∗Q+ C∗C = (B∗Q+D∗C)∗W−1(B∗Q+D∗C),

which can also be written in the form

(1.6) QA+A∗Q+ C∗C = K∗WK.

We note that (1.5) depends on the individual operators A, B, C, and D and not
only on the “unsplit” operators A&B and C&D. This precludes a straightforward
generalization of that form of the Riccati equation to operator nodes, except in the
special case where B and D are bounded. In particular, the interpretation of the
term B∗Q in (1.4) and (1.5) causes significant problems. The Riccati equation has
proved to be a notoriously difficult issue for unbounded control operators B; see,
e.g., [10, 15, 16, 29, 30, 32, 39, 40] and Remark 5.11.

In order to also include the case of an unbounded control operator B we replace
the above “standard” Riccati equation by the Lure form of the Riccati equation (which



1960 MARK R. OPMEER AND OLOF J. STAFFANS

is in common use for singular optimal control problems). Instead of defining K by
(1.4) we define K and F by (the sign change in K compared to (1.4) is not significant,
but it leads to a slight simplification of the formulas)

(1.7) K = W−1/2(B∗Q+D∗C), F = W 1/2, W = 1U +D∗D.

Then (1.6) is replaced by

(1.8) QA+A∗Q+ C∗C = K∗K,

and (1.7) and (1.8) can be rewritten in block matrix form as[
QA+A∗Q+ C∗C QB + C∗D

B∗Q +D∗C 1U +D∗D

]
=

[
K∗K K∗F

F ∗K F ∗F

]
.

This in turn can be rewritten as (applying the above equation to [ xu ], taking the inner
product with [ xu ], and rearranging)〈[

A B
] [x

u

]
, Qx

〉
+

〈
Qx,

[
A B

] [x
u

]〉
+

∥∥∥∥[C D
] [x

u

]∥∥∥∥2+‖u‖2 =
∥∥∥∥[K F

] [x
u

]∥∥∥∥2 .
As we show in section 5, replacing

[
A B

]
by A&B,

[
C D

]
by C&D, and

[
K F

]
by K&F and requiring this equation to hold only for [ xu ] ∈ dom(S) (or for [ xu ] in a
subspace of dom(S) if Q is unbounded), this is indeed the correct Riccati equation
in the sense that it provides the solution to the optimal control problem. We note
that the nonsingularity condition that F is invertible in general has to be replaced
by another condition (since in general only the combination K&F exists); this is
discussed further in Remark 5.11. We believe that the use of Lure’s form of the
Riccati equation is crucial to avoiding some of the pitfalls in the existing Riccati
equation theory in the case of an unbounded control operator.

The classical companion to the LQR problem is the optimal filtering problem
[12,13]. In its original formulation the filtering problem (whose solution is the Kalman
filter) amounts to finding the best estimate of the state at some given time t0 based
on measurements of the past values of a signal. If we take t0 = 0, then this leads to
a minimization problem over R−, namely, to the problem of minimizing the past cost
function

(1.9) Jpast(x0, u) =

∫ 0

−∞

(‖u(t)‖2U + ‖y(t)‖2Y
)
dt,

where this time x0 is the final value in (1.1). The optimal cost is a quadratic function
of the state x0, which can be written in the form 〈x0, Rx0〉X . Here R−1 turns out to
be the minimal nonnegative solution of the control Riccati equation for the adjoint
system, i.e., the system that one gets by replacing

[
A B
C D

]
by
[
A B
C D

]∗
=
[
A∗ C∗
B∗ D∗

]
. The

control Riccati equation for the adjoint system is commonly called the filter Riccati
equation of the original problem.1 Observe that in the case of the filter Riccati
equation it is the possible unboundedness of the observation operator C that becomes

1The name “filter Riccati equation” is somewhat misleading in the sense that it is the inverse
of the solution of the filter Riccati equation that solves the original filtering problem, and not the
solution itself!
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problematic if one wants to rewrite it in “standard form,” as the control operator of
the adjoint system is C∗.

Since most infinite-dimensional systems cannot be solved backward in time, the
minimization problem on R− is a genuinely different problem from the minimization
problem on R+. In particular, it is typical that not every final value x0 can be
reached. This implies that the operator R above will be unbounded in such cases.
Another issue is that existence and uniqueness of solutions on R− is problematic (see,
e.g., [36, section 5]). We overcome this latter problem by considering only linear
combinations of exponential trajectories of the form⎡⎢⎣x(t)u(t)

y(t)

⎤⎥⎦ = eλt

⎡⎢⎣x0

u0

y0

⎤⎥⎦ , t ∈ R−.

In the finite-dimensional case x0 = (λ−A)−1Bu0 and y0 = C(λ−A)−1Bu0+Du0 and
in the general case, appropriate generalizations of these formulas turn out to hold.
It is clear from these formulas that we should restrict λ to lie in the resolvent set of
A. It is also clear that to have a meaningful infimization of (1.9), we should consider
“enough” trajectories, i.e., we should consider all λ ∈ Ω for some large enough set Ω.
In the standard setting where the main operator A in (1.1) generates a C0 semigroup
we can, e.g., take Ω to be the right half-plane Cω(A) := {λ ∈ C | �λ > ω(A)}, where
ω(A) is the growth bound of the semigroup generated by A, but other choices of Ω are
also possible (especially in those cases where A does not generate a C0 semigroup).

To obtain the filter Riccati equation we employ duality, i.e., we relate the opti-
mization problem on R− for the system [ A B

C D ] to the optimization problem on R+ for
the system [A B

C D ]
∗
. Because of this it makes sense to minimize (1.3) over the set of

trajectories on R+ which is dual to the set of exponential trajectories considered on
R−. A pair of functions [ uy ] belongs to this set if and only if both u and y belong to
L2(R+) and if the Laplace transforms of u and y satisfy

(1.10) ŷ(λ) = C(λ− A)−1x0 +
(
D + C(λ−A)−1B

)
û(λ), λ ∈ Ω,

where Ω is the same set as before. This equation coincides with the equation that one
gets by taking formal Laplace transforms in (1.1).

Before commenting on the optimal control problem on R, we indicate how the
above considered optimal control problems on R+ and R− relate to the factorization
approach to control theory.

The factorization approach [35] leads to a parameterization of all stabilizing con-
trollers and also has links to metrics that measure robustness of controllers. There
are well-known connections between the optimal control problem and the factoriza-
tion approach. See, e.g., [14, 18, 21] for the finite-dimensional case, the bibliography
of [5, Chapter 9] for the infinite-dimensional case, and [4, 19, 31] for more recent con-
tributions in the infinite-dimensional case. The characteristic function (or transfer
function) of the system (1.1) is defined and analytic on the resolvent set ρ(A) of the
main operator A, and it is given by G(λ) := D+C(λ−A)−1B, λ ∈ ρ(A). It is possible
to introduce the notion of the characteristic function G of (1.2) in an analogous way,
and it is still defined and analytic on ρ(A), where A is the main operator of (1.2)
(see section 2 for details). For simplicity, let us assume that this transfer function
G is well-posed, i.e., that ρ(A) contains some open right half-plane Ω, and G is uni-
formly bounded on this half-plane Ω. The basic idea in the factorization approach
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is to write the restriction of G to Ω as a quotient G(λ) = N(λ)M(λ)−1, λ ∈ Ω, of
two analytic functions N and M which are defined and uniformly bounded on the full
open right half-plane C+ := {λ ∈ C | �λ > 0}, and in addition, M(λ) is invertible
for all λ ∈ Ω and M−1 is uniformly bounded in Ω. In the finite-dimensional case, G
is a rational function and such a factorization always exists. This is not true in the
infinite-dimensional case (e.g., when G has an essential singularity in the right half-
plane). Given a function G, a system (1.1) with G as its transfer function is called a
realization. We note that realizations are never unique.

To relate the optimal control problem on R+ to right factorizations, we recall the
state finite future cost condition, i.e., the condition that for every x0 ∈ X there exists
a control u such that Jfut(x0, u) < ∞. It is known that that if G is well-posed, then G
has a right factorization of the type described above if and only if G has a realization
of the type (1.2) which is well-posed in the sense of [33] and which satisfies the state
finite future cost condition (see [20]). Even though this is a necessary and sufficient
condition, it is still problematic in two respects: first, the condition that (1.2) must
be well-posed is not a natural assumption for this problem (i.e., in order to define G
there is no need to assume that (1.2) is well-posed, only that it is given by an operator
node), and second, if it turns out that a given realization (1.2) (well-posed or not)
of G does not satisfy the state finite future cost condition, then the above result says
nothing. In Theorem 5.9 below we improve the above mentioned result from [20] by
giving a necessary and sufficient condition for the existence of a right factorization
over H∞ in terms of an arbitrary operator node realization of G (which need not
be well-posed and which need not satisfy the state finite future cost condition). In
this theorem the state finite future cost condition has been replaced by the weaker
input finite future cost condition (see Definition 5.7). It follows from our results that
for finite-dimensional systems the input finite future cost condition always holds (the
state finite future cost condition may not hold), although this is not obvious from
the definition. Another necessary and sufficient condition in terms of an arbitrary
operator node realization is that the control Riccati equation of this realization has a
solution (Theorem 5.9); however this solution may be unbounded. This is the main
reason we have to allow for unbounded solutions of our Riccati equations. In this case
it is technically more convenient to work with the sesquilinear form q associated to
the operator Q through

q[x, y] = 〈Qx, y〉, x, y ∈ dom(Q),

rather than with Q itself, and we therefore formulate our Riccati equations in terms
of sesquilinear forms.

The optimal control problem on R− is related to left factorizations in a similar
manner (Theorem 6.5), and it can be reduced to the problem on R+ by means of
duality. The dual of the input finite future cost condition, which we call the output
coercive past cost condition (Definition 6.2), says roughly that the cost of reaching an
observable state should have a nonzero lower bound.

A right factorization is called strongly coprime if there exist uniformly bounded
analytic functions X̃ and Ỹ on the open right half-plane such that X̃M− ỸN = 1U on
the open right half-plane. Not every transfer function which has a right factorization
has a strongly coprime right factorization. It is known that a transfer function has
a strongly coprime right factorization if and only if it has a realization for which the
state finite future cost condition is satisfied both for the system itself and for the
dual system (see [4, 20]). In our context this is also equivalent to the existence of a
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realization for which both the control and the filter Riccati equation have a bounded
solution. For a general realization it is not sufficient to have (unbounded) solutions to
both the control and the filter Riccati equation. It turns out that there is an additional
coupling condition: we show in Theorem 7.5 that for a general realization the necessary
and sufficient condition is that both the control and the filter Riccati equation have
a (possibly unbounded) solution Q, respectively, P , and that there exists a finite
constant M such that Q ≤ MP−1 (in the sense of nonnegative self-adjoint operators
or, more generally, in the sense of nonnegative self-adjoint relations). We remark that
this is reminiscent of the famous “coupling condition” in H∞ control [9]. Also the
solution of the H∞ control problem involves the solutions of two algebraic Riccati
equations. One of them is of “control” type and the other of “filter” type, and they
tend to the LQG/H2 control and filter Riccati equations that we consider in this
article when a certain parameter γ tends to infinity. Let us call these solutions X and
Y , respectively. The standard coupling condition in H∞ control is that r(XY ) < γ2,
where r denotes the spectral radius. If Y is invertible, then this is equivalent to the
condition X < γ2Y −1 in the sense of nonnegative self-adjoint operators. (If Y is
not invertible, then it is still true in the sense of nonnegative self-adjoint relations.)
Thus, in this article we prove that in the LQG/H2 setting the H∞ coupling condition
X < γ2Y −1 must be replaced by the analogous coupling condition Q ≤ MP−1,
where M must be finite, but without any size limitation on M . The reason this
LQG/H2 coupling condition had not been discovered before is that in the existing
literature on LQG/H2 control it has been hidden in the general setting: if both P
and Q are required to be bounded, then automatically r(PQ) < ∞, and we may take
M = r(PQ).

The optimal control problem related to strongly coprime factorizations is the one
given by the two-sided cost function obtained by adding the past and future costs, i.e.,

(1.11) J(x0, u) =

∫ ∞

−∞

(‖u(t)‖2U + ‖y(t)‖2Y
)
dt,

where this time x0 is the intermediate value in (1.1). In this setting the LQG/H2

coupling condition that we mentioned above is equivalent to the past cost domi-
nance condition (Definition 7.2), which says that the future cost should be domi-
nated by the past cost or, equivalently, that the full cost should be dominated by the
past cost.

One characteristic feature of this article is that we allow solutions of the con-
trol and filter Riccati equations to be unbounded (and not even densely defined).
For the results that we present here this amount of generality is unavoidable, since
our main theorems would be false in a less general setting. Unbounded solutions of
Riccati equations have been considered before, but not in the present setting. In
the discrete time setting unbounded solutions appear in, e.g., [1, 23, 24, 25]. Techni-
cally the discrete time setting is much easier than the continuous time setting due
to the boundedness of the discrete time versions of the operators A, B, C, and D.
Unbounded solutions in the continuous time setting with bounded B and D are dis-
cussed in [6, 7, 8], and also this special setting is technically much easier than the
setting in this article. The most closely related result that we have been able to
find in the literature is the study of the continuous time Kalman–Yakubovich–Popov
(KYP) inequality in [3] (which has been the main source of inspiration for this article
in addition to [23, 24, 25]). There the setting is essentially the same as our present
setting, apart from the fact that there A is throughout required to generate a C0
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semigroup, and our positive cost function is replaced by an indefinite cost function of
KYP type. The connection with the factorization approach is absent from the above
references, and the connections with optimal control described there were far more
limited.

The discrete time counterpart of the present theory has recently been developed
in a series of three papers [23,24,25]. This article is the first in a series of three where
we discuss the continuous time case, and it is partly based on the above discrete time
results. To round off this introduction, we comment on why in this first article we
have chosen to work with systems of type (1.2), where S is an operator node.

In the discrete time setting it is natural to assume that the operators A, B, C,
and D appearing in the discrete time equation

xn+1 = Axn +Bun,(1.12)

yn = Cxn +Dun

are bounded, but in continuous time the choice of the setting in which the problem
is studied is less obvious. Basically we can think of the following four alternatives (in
increasing order of generality):

(A) operator nodes of the type (1.2) which are well-posed in the sense of [33];
(B) systems nodes in the sense of [33], i.e., operator nodes with the extra property

that the main operator A generates a C0 semigroup (see section 2 for details);
(C) operator nodes for which the main operator A satisfies ρ(A) ∩ C+ �= ∅ (so

that the transfer function G is defined at least in some part of the right
half-plane C+);

(D) resolvent linear systems in the sense of [22].
As we mentioned above, of these possibilities we have in this article chosen to work in
class (C). In our opinion, this is the class of systems that most resembles the standard
finite-dimensional setup (1.1) and therefore the one which is intuitively easiest to
comprehend. It is also the class of systems which is easiest to use in applications
in the following sense. To show that a given system is of type (A) or type (B) one
must first show that it is of type (C), and then one needs additional, often nontrivial,
arguments to show that it is actually of type (A) or type (B). By working directly
in class (C) those additional arguments are no longer needed. Furthermore, as it
turns out, the additional structure present in classes (A) and (B) does not lead to
any significant simplifications of either the statements of our main results or of their
proofs. The setting (D) is, of course, much more general than the settings (A)–(C),
but it is very different from (A)–(C), and in the setting (D) both the statements of the
main results and their proofs become more complicated. We shall return to settings
(A) and (B) in our second article in this series and to class (D) in the third.

To model a continuous time system one often starts with a (formal) partial dif-
ferential equation, a (formal) input operator, and a (formal) output operator, and
then tries to show that the system belongs to one of the classes (A)–(D) above. To
do so one must first choose a function space in which to study this partial differential
equation, which will then become the state space of the realization. As we observed
in the discrete time setting in [23, p. 481], “Choosing the proper state space is usually
considered to be something that has to be done before one can solve control problems.
One of the main points of the present series of articles is that it should instead be
considered as an integral part of the control problem.” The same statement is even
more true in the continuous time setting. As we shall show in our second continuous
time article, the results that we obtain here can in some cases be used in the following
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way: we start with a realization of class (C), solve the future or past cost minimization
problem, and then use the solution of this problem to get a realization of class (A)
by redefining the norm in the state space. This is illustrated by two simple examples
(a one-dimensional wave equation and a one-dimensional heat equation) in [24, pp.
5089–5090], as well as in the example given in section 8 below. More precisely, the
following additional claims are true (as will be proved in our next paper):

(i) Both the optimal state feedback system that one gets from the future cost
minimization problem and the optimal output injection system that one gets
from the past cost minimization problem are actually well-posed with respect
to the appropriate norm in the state space (i.e., the norm induced by the
optimal future and past costs respectively).

(ii) If the transfer function is well-posed (in the sense described earlier), then the
open loop system is also well-posed with respect to the appropriate norms
derived from the optimization problems.

(iii) The norm derived from the future cost minimization problem is in a certain
sense the weakest possible norm within the class of all operator node realiza-
tions that satisfy the state finite future cost condition, and the norm derived
from the past cost minimization problem is in a certain sense the strongest
possible norm within the class of all operator node realizations that satisfy
the state coercive past cost condition.

Unfortunately, if the transfer function is not well-posed, then the open loop system
with the appropriate norms derived from the optimization problems does not always
seem to be an operator node. However, under some relatively weak assumptions it
can be shown that it is a system of class (D). We shall return to this question in our
third article on the continuous time cost minimization problem.

The present article consists of nine sections and an appendix, this introduction
being the first section. In section 2 we collect some background material on operator
nodes, the class of systems that we consider in this article. In section 3 we solve
the optimal control problems on R+, R−, and R. The main result in this section is
Theorem 3.18, which describes the connection between the past cost minimization
problem for the original system and the future cost minimization problem for the
adjoint system. Section 4 describes the connection between the present continuous
time setting and the discrete time setting used in [23, 24, 25]. In section 5 we con-
sider the control Riccati equation and right factorizations. That section contains the
already mentioned Theorem 5.9, which is the first of our three main results. Section
6 contains results on the filter Riccati equation and left factorizations. The results
presented there (including the second of our main results, Theorem 6.5) follow easily
from those in section 5 with the help of Theorem 3.18. Section 7 contains our results
on doubly coprime factorizations, including our third main result, Theorem 7.5. This
third main result contains the already mentioned new LQG/H2 coupling condition.
In section 8 we apply our theory to investigate a partial differential equation example
originally presented in [6, section 2.2] and which turns out to have a transfer function
which does have right and left factorizations but no strongly coprime factorization.
This example also shows how one may start from a system of type (C) and arrive at a
system of type (A) by solving the forward and backward cost minimization problems.
Finally, section 9 contains an example which illustrates that the minimization and
factorization results obtained here depend on the component Ω of ρ(A) ∩ C+ that is
chosen in the precise problem formulation.
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2. Continuous time operator nodes. In this article we will use a natural
continuous time setting (that of operator nodes), earlier used in, e.g., [2,17,27,28,33]
(in slightly different forms). In this section, for easy reference, we collect some results
on operator nodes from the literature that we will need in this article.

In what follows, we think about the block matrix S =
[
A B
C D

]
as one single closed

(possibly unbounded) linear operator from [XU ] = X ⊕ U to
[X
Y
]
with dense domain

dom (S) ⊂ [XU ], and we write (1.1) in the form

(2.1) Σ:

{[
ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
, t ∈ (−∞,∞), x(0) = x0.

In the infinite-dimensional case such an operator S need not have a four block decom-
position corresponding to the decompositions [XU ] and

[ X
Y
]
of the domain and range

spaces. However, we shall throughout assume that the operator

Ax := PXS

[
x

0

]
,(2.2)

x ∈ dom (A) :=

{
x ∈ X

∣∣∣∣
[
x

0

]
∈ dom(S)

}
is closed and densely defined in X . (Here PX is the orthogonal projection onto X .)
We define X 1 := dom (A) with the graph norm of A, define X 1

∗ := dom (A∗) with the
graph norm of A∗, and let X−1 be the dual of X 1

∗ when we identify the dual of X
with itself. Then X 1 ⊂ X ⊂ X−1 with continuous and dense embeddings, and the
operator A has a unique extension to an operator A|X = (A∗)∗ ∈ B(X ;X−1) (with the
same spectrum as A), where we interpret A∗ as an operator in B(X 1∗ ;X ). Additional
assumptions on S will be imposed in Definition 2.1 below.

The remaining blocks of S are only partially defined. The “block” B will be an
operator in B(U ;X−1). In particular, it may happen that img (B) ∩ X = {0}. The
“block” C will be an operator in B(X 1;Y). We shall make no attempt to define
the “block” D in general since this can be done only under additional assumptions
(see, e.g., [33, Chapter 5] or [34, 37, 38]). Nevertheless, we still use a modified block
notation S =

[
A&B
C&D

]
, where A&B = PXS and C&D = PYS.

Definition 2.1. By an operator node on a triple of Hilbert spaces (X ,U ,Y)
we mean a (possibly unbounded) linear operator S : [XU ] → [X

Y
]
with the following

properties. We decompose S into S =
[
A&B
C&D

]
, where A&B = PXS : dom (S) → X

and C&D = PYS : dom (S) → Y. We denote dom(A) =
{
x ∈ X ∣∣ [ x0 ] ∈ dom (S)

}
,

define A : dom (A) → X by Ax = A&B [ x0 ], and require the following conditions to
hold:

(i) S is closed as an operator from [XU ] to
[X
Y
]
(with domain dom(S)).

(ii) A&B is closed as an operator from [XU ] to X (with domain dom (S)).
(iii) A has a nonempty resolvent set, and dom(A) is dense in X .
(iv) For every u ∈ U there exists a x ∈ X with [ xu ] ∈ dom(S).

We call S a system node if, in addition, A is the generator of a C0 semigroup.
Lemma 2.2. Every operator node S on (X ,U ,Y) has the following additional

properties:
(v) The operator A&B (with dom(A&B) = dom (S)) can be extended to an op-

erator
[
A|X B

] ∈ B([XU ] ;X−1).

(vi) dom (S) =
{
[ xu ] ∈ [XU ]

∣∣ A|Xx+Bu ∈ X}.
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(vii) For every u ∈ U , the set
{
x ∈ X ∣∣ [ xu ] ∈ dom(S)

}
is dense in X . (Thus, in

particular, dom (S) is dense in [XU ].)
(viii) C&D ∈ B(dom(S) ;Y), where we use the graph norm

(2.3)

∥∥∥∥∥
[
x

u

]∥∥∥∥∥
2

dom(A&B)

=

∥∥∥∥∥A&B

[
x

u

]∥∥∥∥∥
2

X
+ ‖x‖2X + ‖u‖2U

of A&B on dom (S).
(ix) The graph norm of A&B on dom (S) defined above is equivalent to the full

graph norm

(2.4)

∥∥∥∥∥
[
x

u

]∥∥∥∥∥
2

dom(S)

=

∥∥∥∥∥A&B

[
x

u

]∥∥∥∥∥
2

X
+

∥∥∥∥∥C&D

[
x

u

]∥∥∥∥∥
2

X
+ ‖x‖2X + ‖u‖2U

of S on dom(S).

(x) For every α ∈ ρ(A) = ρ(A|X ), the operator
[
1X −(α−A|X )−1B
0 1U

]
maps dom (S)

one-to-one onto
[ X1

U
]
and it is bounded and invertible on [XU ]. The inverse of

this operator (which maps
[X1

U
]
one-to-one onto dom (S) and [XU ] one-to-one

onto itself) is
[
1X (α−A|X )−1B
0 1U

]
.

(xi) For each α ∈ ρ(A) the graph norm of S is equivalent to the norm∥∥∥∥∥
[
x

u

]∥∥∥∥∥ := (‖x− (α−A|X )−1Bu‖2X1
+ ‖u‖2U

)1/2
.

Proof. See [33, Lemmas 4.7.3 and 4.7.7].
Each operator node has a main operator, a control operator, an observation op-

erator, and a transfer function.
Definition 2.3. Let S =

[
A&B
C&D

]
be an operator node on (X ,U ,Y).

(i) The operator A in Definition 2.1 is called the main operator of S. If S is a
system node, then we shall also refer to A as the semigroup generator of S.

(ii) The operator B in Lemma 2.2 is called the control operator of S.
(iii) The operator C : X1 → Y defined by Cx = C&D [ x0 ] is called the observation

operator of S.
(iv) The transfer function of S is the operator-valued function

(2.5) D̂(α) = C&D

[
(α−A|X )−1B

1U

]
, α ∈ ρ(A).

By the resolvent identity, for any two α, β ∈ ρ(A),

D̂(α)− D̂(β) = C&D

[
(β − α)(α −A|X )−1(β −A|X )−1B

0

]
(2.6)

= (β − α)C(α −A)−1(β −A|X )−1B.

Note that if B ∈ B(U ;X ), then dom (S) =
[X1

U
]
, and we can define the operator

D ∈ B(U ;Y) by D = PYS|[ 0U ], after which formula (2.5) can be rewritten in the form

(2.7) D̂(λ) = D + C(λ −A)−1B, λ ∈ ρ(A).
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Let

Gα : =

([
α 0

0 1U

]
−
[
A&B

0 0

])−1

(2.8)

=

[
(α−A)−1 (α−A|X )−1B

0 1U

]
, α ∈ ρ(A).

Then, for all α ∈ ρ(A), Gα is a bounded bijection from [XU ] onto dom (S), and

(2.9)

[
A&B
C&D

]
Gα =

[
A(α−A)−1 α(α −A|X )−1B

C(α −A)−1 D̂(α)

]
, α ∈ ρ(A).

As shown in [33, Lemma 4.7.6], one way to construct an operator node S =
[
A&B
C&D

]
is to specify a densely defined main operator A with nonempty resolvent set, a control
operator B ∈ B(U ;X−1), and an observation operator C ∈ B(X1;Y), to fix some
α ∈ ρ(A) and an operator Dα ∈ B(U ;Y), define dom(S) by condition (vi) in Lemma
2.2, let A&B be the restriction of

[
A|X B

]
to dom (S), and define C&D [ xu ] for all

[ xu ] ∈ dom(S) by

(2.10) C&D

[
x

u

]
:= C(x − (α−A|X )−1Bu) +Dαu.

The transfer function D̂ of this operator node satisfies D̂(α) = Dα.

Lemma 2.4. Let S be an operator node on (X ,U ,Y) with main operator A, control
operator B, observation operator C, and transfer function D̂. Then the adjoint S∗

of S is an operator node on (X ,Y,U). The main operator of S∗ is A∗, the control
operator of S∗ is C∗, the observation operator of S∗ is B∗, and the transfer function
of S∗ is D̂(α)∗, α ∈ ρ(A∗). If S is a system node, then so is S∗. Moreover,(

(α −A|X )−1B
)∗

= B∗(α−A∗)−1,(2.11) (
C(α−A)−1

)∗
= (α−A|∗X )−1C∗, α ∈ ρ(A).

For a proof (and for more details), see, e.g., [2, section 3], [17, Proposition 2.3],
or [33, Lemma 6.2.14].

Definition 2.5. Let S be an operator node on (X ,U ,Y). By a classical tra-
jectory of the system Σ = (S;X ,U ,Y) on some interval I ⊂ R we mean a triple of

functions
[ x
u
y

]
∈
[
C1(I;X )
C(I;U)
C(I;Y)

]
satisfying

[
ẋ(t)

y(t)

]
= S

[
x(t)

u(t)

]
, t ∈ I.

In section 3 we shall extend this definition by introducing the notion of a gener-
alized stable trajectory of Σ in the case where I is one of the intervals I = R−, I = R,
or I = R+. The state of such a trajectory is defined only at time t = 0, and the input
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and output components u and y belong to L2(I). This extended notion is not the
standard one, but it is the natural one for the problem at hand.

3. The future, past, and full cost minimization problem. In principle,
the future, past, and two-sided cost minimization problems are the following:

• In the future cost minimization problem we fix an initial state x0 ∈ X and
minimize the future cost (1.3) over a suitable set of generalized stable future

trajectories
[ x
u
y

]
of Σ with the given initial state x(0) = x0.

• In the past cost minimization problem we fix a final state x0 ∈ X and minimize
the past cost (1.9) over a suitable set of generalized stable past trajectories[ x
u
y

]
of Σ with the given final state x(0) = x0.

• In the two-sided cost minimization problem we fix an intermediate state x0 ∈
X and minimize the two-sided cost (1.11) over all two-sided trajectories

[ x
u
y

]
of Σ with the given intermediate state x(0) = x0, with the property that the
restrictions of these trajectories to R+ and R− are of the type considered
above.

The definition of a classical trajectory of a system Σ = (S;X ,U ,Y) is straight-
forward (see Definition 2.5). However, in the cost minimizations problems we shall
use generalized stable trajectories of Σ instead of classical trajectories. Our defini-
tion of generalized stable trajectories of Σ uses a frequency domain approach. This
approach works under minimal assumptions, and it makes it possible to treat a very
general class of continuous time systems, namely, the class of systems Σ induced by
an operator node S introduced in section 2.

In the definitions of the generalized stable trajectories (future, past, or two-sided)
we throughout fix one particular open subset Ω of ρ(A) ∩ C+, where A is the main
operator of the operator node S.

Remark 3.1. Throughout the rest of this article Σ will be induced by an operator
node S =

[
A&B
C&D

]
with main operator A, and Ω will be a fixed nonempty open subset

of ρ(A) ∩ C+. (Thus in particular, we throughout assume that ρ(A) ∩ C+ �= ∅.)
If A is the generator of a C0 semigroup, then we may take Ω to be the right

half-plane Cω(A) := {λ ∈ C | �λ > ω(A)}, where ω(A) is the growth bound of the
semigroup generated by A, but other choices of Ω are also possible. The result is
actually independent of the choice of Ω under the weak assumption that ρ(A) ∩ C+

is connected, but if ρ(A) ∩ C+ is disconnected, then the result may depend on the
choice of Ω, as we show with an example in section 9.

First, in section 3.1 we consider the future cost minimization problem, then in
section 3.2 we consider the past cost minimization problem, and subsequently in
section 3.3 we consider the two-sided cost minimization problem. Finally, in section
3.4, we consider the duality between the past and future cost minimization problems
that plays a crucial role in the remainder of the article.

3.1. The future cost minimization problem. In the future cost minimization
problem we must first define the set of trajectories over which we minimize the cost
function Jfut(x0, u). If the given operator node is well-posed in the sense of [33],
then we could define the notion of a generalized future trajectory for every given
u ∈ L2(R+;U) in the standard way and define this trajectory to have finite future
cost if the output y is a function in L2(R+;Y), so that the cost is finite. However, for
the purpose of this paper it is more convenient to use a different frequency domain
definition, which works well also in the non-well-posed case.
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To motivate the following definition we look at the Laplace transform of a trajec-
tory satisfying (2.1) on the time interval R+. Formal Laplace transforms give

ŷ(λ) = D̂(λ)û(λ) + C(λ −A)−1x0

for all λ ∈ ρ(A). However, in the definition below we require the above identity to
hold only in the open subset Ω of ρ(A) ∩ C+ that was fixed in Remark 3.1.

Definition 3.2.

(i) By the set of generalized stable future trajectories of Σ we mean the set of

all triples
[ x0

u
y

]
∈
[ X
L2(R+;U)

L2(R+;Y)

]
which satisfy

(3.1) ŷ(λ) = D̂(λ)û(λ) + C(λ−A)−1x0, λ ∈ Ω,

where û and ŷ are the Laplace transforms of u and y, respectively. We denote
this set by W+, and we call x0 the initial state, u the input component, and

y the output component of a triple
[ x0

u
y

]
∈ W+.

(ii) By the stable future behavior of Σ we mean the set of all pairs [ uy ] ∈[
L2(R+;U)

L2(R+;Y)

]
which satisfy

(3.2) ŷ(λ) = D̂(λ)û(λ), λ ∈ Ω.

We denote this set by W0
+, and we call u the input component and y the

output component of a pair [ uy ] ∈ W0
+.

Note that we here do not actually define the state component x(t) of the trajectory
for t > 0, but only for t = 0. However, the input u and output y are almost everywhere
defined L2-functions. If Σ is well-posed in the sense of [33, Definition 2.2.1] and if
we choose Ω to be the right half-plane Ω = Cω := {s ∈ C | �s > ω}, where ω is
the maximum of zero and the growth rate of Σ, then the set W+ coincides with the

set of all triples
[
x(0)
u
y

]
, where

[ x
u
y

]
is a generalized trajectory on R+ (in the sense

of [33]) with the property that both u and y are L2-functions. In the well-posed
case the significance of the set W+ in the solution of the future time quadratic cost
minimization problem is well understood, at least in the case where the state finite
future cost condition holds (see Definition 5.7 below).

Definition 3.3. The future cost minimization problem for Σ is the following:
Given a vector x0 ∈ X , find the generalized stable future trajectory of Σ with initial
state x0 which minimizes the future cost Jfut(x0, u) defined in (1.3).

In the setting described above, it is easy to solve the future cost minimization
problem. It is convenient here to use the language of linear relations in the form
presented in [25, Appendix A].

Lemma 3.4. The set W+ of all generalized stable future trajectories of Σ is a

closed subspace of

[ X
L2(R+;U)

L2(R+;Y)

]
.

Proof. For each λ ∈ Ω, the set of all triples which satisfy (3.1) is a closed subspace

of

[ X
L2(R+;U)

L2(R+;Y)

]
. The set W+ is the intersection over all λ ∈ Ω of these subspaces, and

hence W+ is a closed subspace, too.
Definition 3.5. By the stable state/signal (s/s) output map C of Σ we mean

the relation X →
[
L2(R+;U)

L2(R+;Y)

]
whose graph is W+.
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Lemma 3.6. The output map C defined above is closed. Thus, for each z ∈
dom (C) the set Cz is a closed affine subspace of

[
L2(R+;U)

L2(R+;Y)

]
. In particular, the multi-

valued part C0 = W0
+ of C is a closed subspace of

[
L2(R+;U)

L2(R+;Y)

]
.

Proof. This follows from the fact that the graph of C is closed.
As any closed relation, C has an orthogonal decomposition into an operator part

and a multivalued part (see [25, Appendix A] for details). The multivalued part is
mul (C) = W0

+, and the operator part is the operator Co = P[W0
+]⊥C. Note that the

domain of Co is the same as the domain of C. Moreover, for every z ∈ dom (C) the
vector Coz is the element in Cz which has the minimal norm. Thus, we immediately
get the following solution to the future cost minimization problem.

Theorem 3.7. A necessary and sufficient condition for a vector x0 ∈ X to have
a finite future cost is that x0 ∈ dom (C). The future cost of x0 is then equal to

(3.3) ‖x0‖2fut := inf
[ uy ]∈Cx0

(‖u‖2L2(R+;U) + ‖y‖2L2(R+;Y)

)
= ‖Cox0‖2[L2(R+;U)

L2(R+;Y)

],

and it is achieved for the generalized stable future trajectory
[ x0

Cox0

]
.

3.2. The past cost minimization problem. Also in the past cost minimiza-
tion problem we must first define the set of trajectories over which we minimize the
cost function Jpast(x0, u). We again use a frequency domain approach to define a rea-
sonable set of generalized stable past trajectories. Recall that Ω stands for a particular
fixed open subset of ρ(A) ∩C+ (see Remark 3.1).

Above we commented that the significance of the notion of “stable future tra-
jectories” that we introduced in Definition 3.2 is well understood, at least in the
well-posed case. The same statement is no longer true about the set of “stable past
trajectories” that we shall introduce in Definition 3.8 below. In the discrete time case
we solved the past cost minimization problem by interpreting it as the dual of the
future cost minimization problem for the adjoint system. In order to be able to solve
the continuous time past cost minimization problem in the same way we must choose
the set of stable past trajectories of the system Σ in such a way that this set is “dual”
to the set of all stable future trajectories of Σ∗ (in the sense described in Lemma 3.16
below). When Σ is replaced by Σ∗, then the fixed subset Ω in Remark 3.1 must be
replaced by Ω∗ = {λ | λ ∈ Ω} (recall that ρ(A∗) = {λ | λ ∈ ρ(A)}). If, for example,
y∗ ∈ L2(R+;Y) is the output of the adjoint system Σ∗ and λ ∈ Ω∗, then the Laplace
transform ŷ∗(λ) of a y∗ evaluated at λ can be interpreted as the inner product of y∗
with the function t �→ e−λt. This (combined with a time reflection) motivated us to
take a closer look at the set of classical past trajectories of Σ of the type⎡⎢⎣x(t)u(t)

y(t)

⎤⎥⎦ = eλt

⎡⎢⎣x0

u0

y0

⎤⎥⎦ , t ∈ R−,

where λ ∈ Ω. A direct substitution into the appropriate equation shows that this
triple of functions is a classical trajectory of Σ on R− if and only if

λx0 = A|Xx0 + Bu0 and y0 = D̂(λ)u0,

or equivalently,

(3.4)

[
x0

y0

]
=

[
(λ−A|X )−1B

D̂(λ)

]
u0.
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Definition 3.8. For each λ ∈ C+ we denote the function t �→ eλt, t ∈ R−,
by eλ.

(i) By the set of classical stable past exponential trajectories of Σ we mean

(3.5) V− := span

⎧⎪⎨⎪⎩
⎡⎢⎣(λ−A|X )−1Bu0

eλu0

eλD̂(λ)u0

⎤⎥⎦
∣∣∣∣∣∣∣λ ∈ Ω, u0 ∈ U

⎫⎪⎬⎪⎭ ⊂

⎡⎢⎣ X
L2(R−;U)
L2(R−;Y)

⎤⎥⎦ .
We call x0 the final state, u the input component, and y the output compo-

nent of a triple
[ x0

u
y

]
∈ V−.

(ii) By the set of generalized stable past trajectories of Σ we mean the closure

in

[ X
L2(R−;U)

L2(R−;Y)

]
of V−. We denote this set by W−.

(iii) By the classical exponential past behavior of Σ we mean

(3.6) V0
− := span

{[
eλu0

eλD̂(λ)u0

]∣∣∣∣∣λ ∈ Ω, u0 ∈ U
}

⊂
[
L2(R−;U)
L2(R−;Y)

]
.

We call u the input component and y the output component of a pair [ uy ] ∈ V0
−.

(iv) By the (generalized) stable past behavior of Σ we mean the closure in[
L2(R−;U)

L2(R−;Y)

]
of V0

−. We denote this set by W0
−.

Observe that we again ignore the values of the state component x(t) for t �= 0.
Definition 3.9. The past cost minimization problem is the following: Given

a vector x0 ∈ X , find the generalized stable past trajectory with final state x0 which
minimizes the past cost Jpast(x0, u) defined in (1.9).

As we saw above, the solution of the future cost minimization problem can be
expressed in terms of the (possibly multivalued) s/s output map C of Σ. In the
same way the solution of the past cost minimization can be expressed in terms of the
(possibly multivalued) s/s input map B of Σ.

Definition 3.10. By the stable s/s input map B of Σ we mean the relation[
L2(R−;U)

L2(R−;Y)

]
→ X whose (inverse) graph is W−.

Lemma 3.11. The s/s input map B defined above is closed, and its domain is
a dense subspace of the stable past behavior W0

−. For each x ∈ img (B) the inverse

image (B)−1x is a closed affine subspace of
[
L2(R−;U)

L2(R−;Y)

]
. In particular, the kernel

ker (B) := (B)−10 of B is a closed subspace of W0
−.

Proof. This all follows from the fact that the graph of B is closed, except
for the density of the domain, which follows from the fact that W0− is the closure
of V0

−.
Since the inverse image (B)−1x of any x ∈ img (B) is closed and convex, it has an

element of minimal norm, namely, P[ker(B)]⊥(B)−1x. Thus, the solution to the past
cost minimization problem is the following.

Theorem 3.12. A necessary and sufficient condition for a vector x0 ∈ X to have
a finite past cost is that x0 ∈ img (B). The past cost of x0 is then equal to

‖x0‖2past := inf
[uy ]∈(B)−1x0

(‖u‖2L2(R−;U) + ‖y‖2L2(R−;Y)

)
(3.7)

= ‖P[ker(B)]⊥(B)−1x0‖2[L2(R+;U)

L2(R+;Y)

],

and it is achieved for the generalized stable past trajectory
[

x0

P
[ker(B)]⊥ (B)−1x0

]
.
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3.3. The two-sided cost minimization problem.
Definition 3.13. By the set of generalized stable two-sided trajectories of Σ we

mean the set of all triples
[ x0

u
y

]
∈
[ X
L2(R;U)

L2(R;Y)

]
for which

[ x0
π+u
π+y

]
is a generalized stable

future trajectory of Σ and
[ x0
π−u
π−y

]
is a generalized stable past trajectory of Σ. (Here

π+ and π− are the obvious projections.) We denote this set by W, and we call x0 the
intermediate state, u the input component, and y the output component of a triple[ x0

u
y

]
∈ W.

Definition 3.14. The two-sided cost minimization problem is the following:
Given a vector x0 ∈ X , find the generalized stable two-sided trajectory with interme-
diate state x0 which minimizes the two-sided cost J(x0, u) defined in (1.11).

The solution to the two-sided cost minimization problem can be derived from the
future and past cost minimization problems as follows.

Theorem 3.15. A necessary and sufficient condition for a vector x0 ∈ X to have
a finite two-sided cost is that x0 ∈ dom(C) ∩ img (B). The two-sided cost of x0 is
then equal to the sum of the future and past costs of x0, and it is achieved for the

generalized stable two-sided trajectory
[

x0

Cox0+P
[ker(B)]⊥ (B)−1x0

]
.

3.4. The duality between the past and future cost minimization prob-
lems. The duality of the future and past cost minimization problems depends on
the fact that the set of all generalized stable past trajectories of Σ is the annihila-
tor in a certain sense of the set of all generalized stable future trajectories of the
adjoint system Σ† with the fixed open subset Ω of ρ(A) ∩ C+ replaced by the re-
flected set Ω∗ = {λ | λ ∈ Ω} of ρ(A∗) ∩ C+. To describe this connection we denote

K :=

[ X
L2(R−;U)

L2(R−;Y)

]
and K† :=

[ X
L2(R+;Y)

L2(R+;U)

]
and identify the dual of K with K† by means

of the duality pairing

〈[x
u

y

]
,

[x†

y†

u†

]〉
K,K†

= 〈x, x†〉X −
∫ 0

−∞
〈u(s), u†(−s)〉U ds+

∫ 0

−∞
〈y(s), y†(−s)〉Y ds.

(3.8)

We further denote K0 :=
[
L2(R−;U)

L2(R−;Y)

]
and K†

0 :=
[
L2(R+;Y)

L2(R+;U)

]
and use the corresponding

duality pairing〈[
u

y

]
,

[
y†

u†

]〉
K0,K

†
0

= −
∫ 0

−∞
〈u(s), u†(−s)〉U ds+

∫ 0

−∞
〈y(s), y†(−s)〉Y ds.(3.9)

Lemma 3.16.

(i) The annihilator of the set V− of all classical stable past exponential tra-

jectories of Σ with respect to the duality pairing (3.8) is the set W†
+ of all

generalized stable future trajectories of the adjoint system Σ† induced by the
reflected subset Ω∗ of ρ(A∗) ∩ C+.

(ii) The annihilator of the set W†
+ of all generalized stable future trajectories of

the adjoint system Σ† induced by the reflected subset Ω∗ of ρ(A∗) ∩ C+ with
respect to the duality pairing (3.8) is the set W− of all generalized stable past
trajectories of Σ.
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(iii) The annihilator of the classical exponential past behavior V− of Σ with respect

to the duality pairing (3.9) is the stable future behavior W0†
+ of the adjoint

system Σ† induced by the reflected subset Ω∗ of ρ(A∗) ∩C+.

(iv) The annihilator of the stable future behavior W0†
+ of the adjoint system Σ†

induced by the component Ω∗ of ρ(A∗)∩C+ is equal to the stable past behavior
W0

− of Σ.
Proof. Clearly (ii) follows from (i), and (iv) follows from (iii), so it suffices to

prove (i) and (iii). The proof of (iii) is very similar to the proof of (i), so here we only
given the proof of (i).

By (3.8), a triple

[
x†

y†

u†

]
is orthogonal to

[
(λ−A|X )−1Bu0

eλtu0

eλtD̂(λ)u0

]
∈ V− if and only if

0 = 〈(λ −A|X )−1Bu0, x
†〉X −

∫ 0

−∞
〈eλsu0, u

†(−s)〉U ds

+

∫ 0

−∞
〈eλsD̂(λ)u0, y

†(−s)〉Y ds

= 〈u0, B
∗(λ−A∗)−1x†〉U −

〈
u0,

∫ ∞

0

e−λsu†(s) ds
〉

U

+

〈
u0, D̂(λ)∗

∫ ∞

0

e−λsy†(s) ds
〉

U
= 〈u0, B

∗(λ−A∗)−1x†〉U − 〈u0, û(λ)
〉
U +

〈
u0, D̂(λ)∗ŷ(λ)

〉
U .

This is true for all u0 ∈ U if and only if

û(λ) = D̂(λ)∗ŷ(λ) +B∗(λ −A∗)−1x†,

which is true for all λ ∈ Ω if and only if

[
x†

y†

u†

]
∈ W†

+.

As we shall see below, it follows from Lemma 3.16 that the past cost for the given
system Σ is the inverse and the dual (in to-be-described senses) of the future cost for
the adjoint system Σ†. The proof of this fact is based on the following lemma (which
also describes the notion of inverse and dual of a nonnegative quadratic form). The
consequences for the optimal control problems are drawn in Theorem 3.18.

Lemma 3.17. Let X and W be Hilbert spaces, and let V be a closed subspace of
[ XW ] = X ⊕W. We denote the orthogonal projections in [ XW ] onto X and W by PX
and PW , respectively. Let

XV :=

{
x ∈ X

∣∣∣∣∣
[
x

w

]
∈ V for some w ∈ W

}
,

XV ⊥ :=

{
x† ∈ X

∣∣∣∣∣
[
x†

w†

]
∈ V ⊥ for some w† ∈ W

}
,

and define

‖x‖V := inf

{
‖w‖

∣∣∣∣ [xw
]
∈ V

}
, x ∈ XV ,(3.10)

‖x†‖V ⊥ := inf

{
‖w†‖

∣∣∣∣ [x†

w†

]
∈ V ⊥

}
, x† ∈ XV ⊥ .
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Then the following claims are true:
(i) ‖·‖2V and ‖·‖2V ⊥ are closed nonnegative quadratic forms in X .
(ii) The forms ‖·‖2V and ‖·‖2V ⊥ are inverses of each other in the following sense.

If we denote the self-adjoint relations in X that induce the quadratic forms
‖·‖2V and ‖·‖2V ⊥ by QV and QV ⊥ , respectively, i.e.,

‖x‖2V = 〈x,QV x〉X , x ∈ dom (QV ) ⊂ dom(Q
1/2
V ) = XV ,

‖x‖2V ⊥ = 〈x,QV ⊥x〉X , x ∈ dom (QV ⊥) ⊂ dom(Q
1/2

V ⊥) = XV ⊥ ,

then QV ⊥ = Q−1
V .

(iii) The forms ‖·‖2V and ‖·‖2V ⊥ are dual to each other in the sense that

dom(‖·‖V ) =
{
x ∈ X

∣∣∣∣∣ sup
x†∈X

V ⊥ ,‖x†‖
V ⊥≤1

|〈x, x†〉X | < ∞
}
,(3.11)

dom(‖·‖V ⊥) =

{
x† ∈ X

∣∣∣∣∣ sup
x∈XV ,‖x‖V ≤1

|〈x, x†〉X | < ∞
}
,

and

‖x‖V = sup
x†∈X

V ⊥ ,‖x†‖
V ⊥≤1

|〈x, x†〉X |, x ∈ XV ,(3.12)

‖x†‖V ⊥ = sup
x∈XV ,‖x‖V ≤1

|〈x, x†〉X |, x† ∈ XV ⊥ .

The proof of Lemma 3.17 is given in Appendix A.
Theorem 3.18. Let ‖·‖2past be the past cost defined in Theorem 3.12, and let

‖·‖2fut† be the future cost defined in Theorem 3.7 applied to the adjoint system Σ†.
Then ‖·‖2past and ‖·‖2fut† are closed nonnegative quadratic forms in X which are dual
to each other and inverses of each other in the senses described in Lemma 3.17.

Proof. We replace W in Lemma 3.17 by
[
L2(R−;U)

L2(R−;Y)

]
and take V = W−. By that

lemma, the costs ‖·‖2V and ‖·‖2V ⊥ are duals and inverses of each other. It follows
immediately from the definition of ‖·‖2V and Theorem 3.12 that ‖·‖2V = ‖·‖2past. We
claim that ‖·‖2V ⊥ = ‖·‖2fut†. To see that this is true it suffices to observe that by

definition ‖·‖2V ⊥ is the cost induced by the subspace V ⊥ = W⊥− of X ⊕
[
L2(R−;U)

L2(R−;Y)

]
,

whereas, by Theorem 3.12, ‖·‖2fut† is the cost induced by the subspace W†
+ of X ⊕[

L2(R+;U)

L2(R+;Y)

]
for the adjoint system. By Lemma 3.16,

[ x0
u
y

]
∈ W⊥

− if and only if
[ x0

− Ru
Ry

]
∈

W+, where Ris the reflection operator ( Ru)(t) = u(−t), t ∈ R−. Since the norm of

[ uy ] in
[
L2(R−;U)

L2(R−;Y)

]
is equal to the norm of

[− Ru
Ry

]
in
[
L2(R+;U)

L2(R+;Y)

]
, we find that, indeed,

‖·‖2V ⊥ = ‖·‖2fut†.
4. The connection to the discrete time cost minimization problem. The

continuous time future and past cost minimization problems described above for the
system Σ = (

[
A&B
C&D

]
,X ,U ,Y) can be connected to discrete time problems in the

following way. We fix some α ∈ Ω, define Aα, Bα, Cα, and Dα by

Aα = (α+A)(α −A)−1, Bα =
√
2�α (α−A|X )−1B,(4.1)

Cα =
√
2�αC(α −A)−1, Dα = D̂(α),



1976 MARK R. OPMEER AND OLOF J. STAFFANS

and consider the discrete time system

(4.2) Σα :

{
xn+1 = Aαxn +Bαun,

yn = Cαxn +Dαun

with these coefficients. We denote this system by Σα and call it the (internal) Cayley
transform (with parameter α) of Σ. The (discrete time) transfer function of Σα is
the function

(4.3) D̂α(z) = zCα(1X − zAα)
−1Bα +Dα, z ∈ Λ(Aα),

where Λ(Aα) is the Fredholm resolvent set of Aα, i.e., the set of point z ∈ C for which
the operator 1X − zAα has a bounded inverse. The transform λ �→ z, where

(4.4) λ =
α− αz

1 + z
, z =

α− λ

α+ λ
, λ ∈ ρ(A), z ∈ Λ(Aα),

maps ρ(A) one-to-one onto Λ(Aα) if A is unbounded, and it maps ρ(A) ∪ {∞} one-
to-one onto Λ(Aα) if A is bounded. The connection between the resolvent of A and
the Fredholm resolvent of Aα is

(4.5) z(1X − zAα)
−1 =

α− λ

2�α (α −A)(λ−A)−1, λ ∈ ρ(A), z ∈ Λ(Aα),

and the continuous time transfer function D̂ is related to the discrete time transfer
function D̂α by

(4.6) D̂α(z) = D̂(λ), λ ∈ ρ(A), z ∈ Λ(Aα).

The same transformation maps C+ one-to-one onto the unit disk D := {z ∈ C | |z| <
1}. Thus

Λ(Aα) ∩ D =

{
α− λ

α+ λ

∣∣∣∣λ ∈ ρ(A) ∩ C+

}
.

We denote the image under this transformation of the subset Ω in Remark 3.1 by Ωα.
Then

{0} ⊂ Ωα =

{
α− λ

α+ λ

∣∣∣∣λ ∈ Ω

}
⊂ Λ(Aα) ∩D.

Moreover, Ωα is connected if and only if Ω is connected. See [33, Chapter 12] for
more details. Note, however, that the Cayley transform in [33] is defined in a slightly
different way, so that to pass from the formulas given in [33] to the formulas used here
one needs to replace z by 1/z (and to replace the exterior of the unit disk by the unit
disk itself).

4.1. The discrete time future cost minimization problem. We begin by
solving (4.2) with a given initial state x0 ∈ X and a given input sequence u ∈ UZ

+

.
By solving (4.2) recursively we get

(4.7) yn = Dαun +

n−1∑
k=0

CαA
k
αBαun−k−1 +CαA

n
αx0, n ∈ Z+.
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Definition 4.1.

(i) By the set of stable future trajectories of Σα we mean the set of all triples[ x0
u
y

]
∈
[ X

�2(Z+;U)

�2(Z+;Y)

]
which satisfy (4.7). We denote this set by Wα+, and we

call x0 the initial state, u the input component, and y the output component

of a triple
[ x0

u
y

]
∈ Wα+.

(ii) By the stable future behavior of Σα we mean the set of all pairs [ uy ] ∈[
�2(Z+;U)

�2(Z+;Y)

]
which satisfy (4.7) with x0 = 0. We denote this set by W0

α+,

and we call u the input component and y the output component of a pair
[ uy ] ∈ W0

α+.
Definition 4.2. The future cost minimization problem for Σα is the following:

Given a vector x0 ∈ X , find the stable future trajectory of Σα with initial state x0

which minimizes

Jfut
α (x0, u) := ‖u‖2�2(Z+;U) + ‖y‖2�2(Z+;Y).

Lemma 4.3. If Ω is connected, then the set W+
α of all stable future trajectories

of Σα has the following alternative characterization:
[ x0

u
y

]
∈
[ X

�2(Z+;U)

]
	2(Z+;Y) is a stable future trajectory of Σα if and only if

(4.8) ŷ(z) = D̂α(z)û(z) +Cα(1X − zAα)
−1x0, z ∈ Ωα,

where û and ẑ are the Z-transforms of u and y, defined for all z ∈ D by û(z) =∑
k∈Z+ zkuk and ŷ(z) =

∑
k∈Z+ zkyk.

Proof. Let
[ x0

u
y

]
be a stable future trajectory ofΣα. Then x is power bounded, and

the Z-transform x̂(z) of x converges for all z in some (sufficiently small) neighborhood
O of the origin. By multiplying the two equations in (4.2) by zn, adding over n ∈ Z+,
and simplifying the result we find that (4.8) holds for all z ∈ O. Since Ω is connected,
Ωα is also connected, and since both sides of (4.8) are analytic in Ωα, the same identity
must then hold for all z ∈ Ωα.

The converse direction follows from the fact that a sequence in 	2(Z+) is uniquely
determined by its Z-transform.

Lemma 4.4. If Ω is connected, then the following conditions are equivalent:

(i) The triple
[ x0

u
y

]
∈
[ X
L2(R+;U)

L2(R+;Y)

]
is a generalized stable future trajectory of Σ.

(ii) For some α ∈ Ω, the triple
[ x0

Lαu
Lαy

]
is a stable future trajectory of Σα, where

Lα is the Laguerre transform with parameter α (see [33, Definition 12.3.2]).

(iii) For all α ∈ Ω, the triple
[ x0

Lαu
Lαy

]
is a stable future trajectory of Σα.

Proof. Trivially (iii) ⇒ (ii). That (i) ⇒ (iii) and that (ii) ⇒ (i) follow from
Definition 3.2, Lemma 4.3, (4.1), (4.5), (4.6), and [33, Theorem 12.3.1].

Theorem 4.5. If Ω is connected, then for each x0 ∈ X , the future continuous
time cost of x0 is finite if and only if the future discrete time α-cost is finite for some
or, equivalently, for all α ∈ Ω. Moreover, the optimal costs for all these problems are
the same.

Proof. This follows from Lemma 4.4 and the fact that the Laguerre transform is

a unitary map of
[
L2(R+,U)

L2(R+,Y)

]
onto

[
�2(Z+,U)

�2(Z+,Y)

]
, and hence the cost of a generalized con-
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tinuous time trajectory
[ z
u
y

]
of Σ coincides with the cost of the transformed trajectory[ z

Lαu
Lαy

]
of Σα.

4.2. The discrete time past cost minimization problem. In the discrete
time past cost minimization problem we start with the case where we have a trajectory
of (4.2) on Z− whose support is bounded to the left. Using the fact that xn = 0 and
un = 0 for sufficiently large negative n we can solve x0 and y from (4.2) to get

x0 =

∞∑
k=0

Ak
αBαu−k−1,(4.9)

yn = Dαun +

∞∑
k=0

CαA
k
αBαun−k−1, n ∈ Z−.

Definition 4.6.

(i) By the set of compactly supported past trajectories of Σα we mean the set of

all triples
[ x0

u
y

]
∈
[ X
�2(Z−;U)

�2(Z−;Y)

]
, where the supports of y and u are bounded to

the left, which satisfy (4.9). We denote this set by Vα−, and we call x0 the
final state, u the input component, and y the output component of a triple[ x0

u
y

]
∈ Vα−.

(ii) By the set of generalized stable past trajectories of Σα we mean the closure

in

[ X
�2(Z−;U)

�2(Z−;Y)

]
of Vα−. We denote this set by Wα−.

(iii) By the compactly supported past behavior of Σα we mean the set of com-
pactly supported sequences in

[
�2(Z−;U)

]
	2(Z−;Y) which satisfy the second

equation in (4.9). We denote this set by V0
α−, and we call u the input com-

ponent and y the output component of a pair [ uy ] ∈ V0
α−.

(iv) By the (generalized) stable past behavior of Σα we mean the closure in[
�2(Z−;U)

�2(Z−;Y)

]
of V0

α−. We denote this set by W0
α−.

Definition 4.7. The past cost minimization problem for Σα is the following:
Given a vector x0 ∈ X , find the generalized stable past trajectory of Σα with final
state x0 which minimizes

Jpast
α (x0, u) := ‖u‖2�2(Z−;U) + ‖y‖2�2(Z−;Y).

Remark 4.8. We note that in [24] the compactly support past behavior was
denoted by Gc and the generalized stable past behavior by G . The operator denoted
J in that article is the discrete time equivalent of the s/s input map B defined in
Definition 3.10.

4.3. The duality between the discrete time past and future cost mini-
mization problems. As we shall see below, the discrete time past cost minimization
problem is dual to the future cost minimization problem in a well-defined sense. (This
is the discrete time analogue of Lemma 3.16.) To describe this connection we denote

K :=

[ X
�2(Z−;U)

�2(Z−;Y)

]
and K† :=

[ X
�2(Z+;Y)

�2(Z+;U)

]
and identify the dual of K with K† by means

of the duality pairing
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(4.10)

〈[x
u

y

]
,

[x†

y†

u†

]〉
K,K†

= 〈x, x†〉X −
∞∑
n=0

〈u−n−1, u
†
n〉U +

∞∑
n=0

〈y−n−1, y
†
n〉Y .

We further denote K0 :=
[
�2(Z−;U)

�2(Z−;Y)

]
and K0† :=

[
�2(Z+;Y)

�2(Z+;U)

]
and use the corresponding

duality pairing

(4.11)

〈[
u

y

]
,

[
y†

u†

]〉
K0,K0†

= −
∞∑
n=0

〈u−n−1, u
†
n〉U +

∞∑
n=0

〈y−n−1, y
†
n〉Y .

Lemma 4.9.

(i) The annihilator of the set Vα− of all compactly supported past trajectories of

Σα with respect to the duality pairing (4.10) is the set W†
α+ of all generalized

stable future trajectories of the adjoint system Σ†
α.

(ii) The annihilator of the set W†
α+ of all generalized stable future trajectories

of the adjoint system Σ†
α with respect to the duality pairing (4.10) is the set

Wα− of all stable past trajectories of Σα.
(iii) The annihilator of the compactly supported past behavior V0

α− of Σα with

respect to the duality pairing (4.11) is the stable future behavior W0†
α+ of the

adjoint system Σ†
α.

(iv) The annihilator of the stable future behavior W0†
α+ of the adjoint system Σ†

α

is the stable past behavior V0
α− of Σα.

Proof. As in the case of Lemma 3.16 we only prove (i) and leave the remaining
proofs to the reader.

By (4.10), a triple

[
x†

u†

y†

]
is orthogonal to

[ x0
u
y

]
∈ Vα− if and only if

0 =
∞∑
k=0

〈
Ak

αBαu−k−1, x
†〉

X −
∞∑
n=0

〈u−n−1, u
†
n〉U

+

∞∑
n=0

〈Dαu−n−1, y
†
n〉Y +

∞∑
n=0

∞∑
k=0

〈CαA
k
αBαu−2−n−k, y

†
n〉Y

=
∞∑

n=0

〈
u−n−1,B

∗
αA

∗n
α x† +D∗

αy
†
n − u†

n

〉
X

+

∞∑
k=0

∞∑
n=k+1

〈u−n−1,B
∗
αA

∗k
α C∗

αy
†
n−k−1〉Y

=

∞∑
n=0

〈
u−n−1,B

∗
αA

∗n
α x† +D∗

αy
†
n − u†

n +

n−1∑
k=0

B∗
αA

∗k
α C∗

αy
†
n−k−1

〉
X
.

This is true for all sequences u with finite support if and only if

u†
n = D∗

αy
†
n +

n−1∑
k=0

B∗
αA

∗k
α C∗

αy
†
n−k−1 +B∗

αA
∗n
α x†,

which is equivalent to the condition

[
x†

y†

u†

]
∈ W†

α+.
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Lemma 4.10. If Ω is connected, then the following conditions are equivalent:

(i) The triple
[ x0

u
y

]
∈
[ X
L2(R−;U)

L2(R−;Y)

]
is a generalized stable past trajectory of Σ.

(ii) For some α ∈ Ω, the triple
[ x0

Lαu
Lαy

]
is a stable past trajectory of Σα, where Lα

is the Laguerre transform with parameter α (see [33, Definition 12.3.2]).

(iii) For all α ∈ Ω, the triple
[ x0

Lαu
Lαy

]
is a stable past trajectory of Σα.

Proof. We map L2(R−;U) onto 	2(Z−;U) and L2(R−;Y) onto 	2(Z−;Y) by us-
ing the Laguerre transform Lα (restricted to negative time), and we map L2(R+;U)
onto 	2(Z+;U) and L2(R+;Y) onto 	2(Z+;Y) by using the Laguerre transform Lα

(restricted to positive time). These two transforms are unitary, and they map the du-
ality pairing (3.8) onto the duality pairing (4.10). We know from Lemma 4.4 that the
image of the set of all generalized stable future trajectories of Σ† induced by the set
Ω∗ is equal to the set of all generalized stable future trajectories of Σ†

α. Consequently,
by Lemmas 3.16 and 4.9, the set of all generalized stable past trajectories of Σ induced
by the set Ω is equal to the set of all generalized stable past trajectories of Σα.

Theorem 4.11. If Ω is connected, then for each x0 ∈ X , the past continuous
time cost of x0 is finite if and only if the past discrete time α-cost is finite for some
or, equivalently, for all α ∈ Ω. Moreover, the optimal costs for all these problems are
the same.

Proof. This follows from Lemma 4.10 and the fact that the Laguerre transform

is a unitary map of
[
L2(R−,U)

L2(R−,Y)

]
onto

[
�2(Z−,U)

�2(Z−,Y)

]
, and hence the cost of a generalized

continuous time future trajectory
[ x0

u
y

]
of Σ coincides with the cost of the transformed

past trajectory
[ x0

Lαu
Lαy

]
of Σα.

5. The control Riccati equation and right factorizations. In this section
we consider the control Riccati equation satisfied by the optimal future cost quadratic
form ‖·‖2fut. This equation contains a parameter α ∈ Ω, where Ω is the open subset
of ρ(A) ∩ C+ that was fixed in Remark 3.1. After the formal definition (Definition
5.1), we make the connection with the discrete time Riccati equation (Theorem 5.6)
and, in the main theorem of this section, with right factorizations (Theorem 5.9). In
Remark 5.11 we comment further on how the results in this section relate to known
finite-dimensional results.

As in the discrete time case, considered in [23], we want to show that the mini-
mizing trajectory can be written in feedback form. The underlying idea is as follows.
In the discrete time case we introduced a “state feedback” in the following way: we
take the input u to be given by u = Kx − v, where K is a (unknown and possibly
unbounded) feedback operator, and v is a new disturbance. The minimizing control
u is given by u = Kx, i.e., v = 0. (The minus sign in front of v is not significant, but
it leads to a slight simplification of some later formulas.)

In order to apply the same idea in the continuous time case we reinterpret the
above procedure as follows: We first create an extra output to the original equation,
namely, v = Kx− u, and then we require this output to be zero. This interpretation
can be applied also in the continuous time case. To the original set of equations

(5.1) Σ :

[
ẋ(t)

y(t)

]
=

[
A&B

C&D

][
x(t)

u(t)

]
, t ∈ R+,
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we add one more output,

(5.2) Σ :

⎡⎢⎣ẋ(t)y(t)

v(t)

⎤⎥⎦ =

⎡⎢⎣A&B

C&D

K&F

⎤⎥⎦[x(t)
u(t)

]
, t ∈ R+.

For v = 0, i.e., for

(5.3) K&F

[
x(t)

u(t)

]
= 0, t ∈ R+,

we expect this set of equations to give us the optimal control u which minimizes the
future cost if K&F is chosen appropriately. However, as in the discrete time case,
this will not be true, in general, for all possible initial states x0, but only for a certain
subset of initial states. In the discrete time case this critical set of initial states is
those that can be reached in finite time [23]. It turns out (Theorem 5.9) that in the
continuous time case the critical set of initial states is those that can be reached by
means of a classical stable past exponential trajectory.

After this digression, we now introduce the control Riccati equation.
Definition 5.1. Let Σ :=

([
A&B
C&D

]
;X ,U ,Y) be an operator node with main op-

erator A and control operator B, and let α ∈ ρ(A)∩C+. By an α-normalized solution
of the (generalized) continuous time control Riccati equation induced by

[
A&B
C&D

]
we

mean a form q on X with the following properties:
(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z.
(ii) (α−A)−1Z ⊂ Z.
(iii) (α−A|X )−1BU ⊂ Z.
(iv) There exists an operator [K&F ]α : [XU ] → U with

(5.4)

dom ([K&F ]α) =

{[
x0

u0

]
∈ dom(A&B)

∣∣∣∣x0 ∈ Z and A&B

[
x0

u0

]
∈ Z
}

and a self-adjoint operator Wα ∈ B(U) such that (here �z denotes the real
part of the complex number z)

(5.5)

2�q
[
[A&B]

[
x0

u0

]
, x0

]
+

∥∥∥∥∥C&D

[
x0

u0

]∥∥∥∥∥
2

Y
+ ‖u0‖2U

=

〈
[K&F ]α

[
x0

u0

]
,Wα[K&F ]α

[
x0

u0

]〉
U
,

[
x0

u0

]
∈ dom ([K&F ]α) ,

and

(5.6) [K&F ]α

[
(α−A|X )−1B

1U

]
= −1U .

Here the term [K&F ]α [ x0
u0

] can alternatively be written in the form

(5.7) [K&F ]α

[
x0

u0

]
= Kα

(
x0 − (α−A|X )−1Bu0

)− u0,
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where

(5.8)

Kαx0 := [K&F ]α

[
x0

0

]
, dom(Kα) := {x0 ∈ dom (A) ∩ Z|Ax0 ∈ Z} .

Note that dom ([K&F ]α) and dom (Kα) do not depend on α, but only on Z,
A&B, and dom (S) = dom(A&B).

Remark 5.2. We remark that condition (5.6) above could be weakened, without
loss of generality, to the condition

(5.9) The operator Fα := [K&F ]α

[
(α−A|X )−1B

1U

]
is invertible in B(U).

Indeed, if (5.9) holds, then we get a solution of the generalized control Riccati equation
in the sense of Definition 5.1 by replacing [K&F ]α by −F−1

α [K&F ]α and replacing
Wα by F∗

αWαFα. See also Remark 5.11 below.
As we shall see below, the continuous time control Riccati equation is essentially

equivalent to the discrete time Riccati equation that one gets by applying the Cayley
transform to the continuous time Riccati equation.

Definition 5.3. Let
[
Aα Bα

Cα Dα

] ∈ B([XU ] ;
[X
Y
])
. By a solution of the (generalized)

discrete time control Riccati equation induced by
[
Aα Bα

Cα Dα

]
we mean a form q on X

with the following properties:
(i) q is a closed nonnegative sesquilinear symmetric form on X with domain Z.
(ii) AαZ ⊂ Z.
(iii) img (Bα) ⊂ Z.
(iv) There exists an operator Kα : X → U with dom (Kα) = Z and a self-adjoint

operator Wα ∈ B(U) such that

(5.10)

q[Aαz0 +Bαu0,Aαz0 +Bαu0] + ‖Cαz0 +Dαu0‖2Y + ‖u0‖2U
= q[z0, z0] + 〈Kαz0 − u0,Wα(Kαz0 − u0)〉U , z0 ∈ Z, u0 ∈ U .

We shall also need the following alternative version of the discrete time control
Riccati equation.

Lemma 5.4. Equation (5.10) in Definition 5.3 can be replaced by the equivalent
(Lure) version, still valid for all z0 ∈ Z and u0 ∈ U ,

q[Aαz0,Aαz0] + ‖Cαz0‖2Y = q[z0, z0] + 〈Kαz0,WαKαz0〉U ,(5.11)

〈u0,Wαu0〉U = 〈u0, u0〉U + 〈Dαu0,Dαu0〉Y + q[Bαu0,Bαu0],

〈Kαz0,Wαu0〉U = −q[Aαz0,Bαu0]− 〈Cαz0,Dαu0〉U .
Moreover, Wα is always boundedly invertible.

Proof. The equivalence is proved in [23, Lemma A.2]. That Wα must have a
bounded inverse follows from the self-adjointness of Wα and the fact that, according
to (5.11), Wα ≥ 1U .

In order to connect the continuous and discrete time Riccati equations to each
other we need the following lemma.

Lemma 5.5. Let Σ := (S;X ,U ,Y) be an operator node with S =
[
A&B
C&D

]
, main

operator A, and control operator B, and let Z be a subspace of X . Let α ∈ ρ(A) and
define Gα as in (2.8).
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(i) [ZU ] is invariant under Gα if and only if

(5.12) (α−A)−1Z ⊂ Z, (α−A|X )−1BU ⊂ Z.

(ii) If (5.12) holds, then [ xu ] belongs to the range of Gα|[ZU ] if and only if [ xu ] ∈
dom ([K&F ]α) defined in (5.4).

In particular, the range of Gα|[ZU ] does not depend on the particular α ∈ ρ(A), as

long as [ZU ] is invariant under Gα.

Proof. This lemma is identical to [3, Lemma 4.4], except for the fact that there A
was supposed to generate a C0 semigroup. However, that additional assumption was
not used in the proof given in [3].

The following theorem connects the continuous time Riccati equation for an op-
erator node to the discrete time Riccati equation for its Cayley transform.

Theorem 5.6. Let Σ := (S;X ,U ,Y) = (
[
A&B
C&D

]
,X ,U ,Y) be an operator node

with main operator A, let α ∈ ρ(A) ∩ C+, and let
[
Aα Bα

Cα Dα

]
be the Cayley transform

of
[
A&B
C&D

]
. Then the following claims hold:

(i) q is a solution of the α-normalized continuous time control Riccati equation
induced by

[
A&B
C&D

]
if and only if q is a solution of the discrete time control

Riccati equation induced by
[
Aα Bα

Cα Cα

]
.

(ii) The operators [K&F ]α, Wα, and Kα in parts (iv) of Definitions 5.1 and 5.3
as well as the operator Kα defined in (5.8) are uniquely determined by

[
A&B
C&D

]
,

q, and α, and the discrete time version of Wα coincides with the continuous
time version of Wα. Moreover, Wα always has a bounded inverse.

(iii) The restriction of the operator Gα to [ZU ] maps [ZU ] one-to-one onto
dom ([K&F ]α), and the operators [K&F ]α and Kα can be recovered from
each other by

Kαx0 :=
√
2�α [K&F ]α

[
(α−A)−1x0

0

]
,(5.13)

[K&F ]α =

[
1√
2�αKα −1U

]([
α 0

0 1U

]
−
[
A&B

0 0

])
.

Proof. We begin by proving that if q is a solution of the continuous time control
Riccati equation, then q is also a solution of the discrete time Riccati equation. Thus,
let us suppose that q is a solution of the continuous time control Riccati equation,
let [K&F ]α and Wα be the operators in part (iv) of Definition 5.1, and define Kα by
the first equation in (5.13). By Lemma 5.5, the restriction of Gα to [ZU ] maps [ZU ]
onto dom([K&F ]α), and this operator is injective. In particular, this implies that
dom (Kα) = Z, as required by condition (iv) in Definition 5.3.

The two invariance conditions (ii) and (iii) in Definition 5.3 are equivalent to the
corresponding invariance conditions (ii) and (iii) in Definition 5.1.

By Lemma 5.5, we can replace the parameter [ x0
u0

] in (5.4) by Gα

[√
2
αz0
u0

]
, where

[ z0u0
] is a free parameter in [ZU ]. Doing so, the different terms in (5.10) can be rewritten

in the following form:
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x0 =
1√
2�α

(
Aαz0 + z0 +Bαu0

)
,

A&B

[
x0

u0

]
=

1√
2�α

(
αAαz0 − αz0 + αBαu0

)
,

2�q
[
[A&B]

[
x0

u0

]
, x0

]
= q[Aαz0 +Bαu0,Aαz0 +Bαu0]− q[z0, z0],[

C&D

[K&F ]α

][
x0

u0

]
=

[
Cα Dα

Kα −1U

] [
z0

u0

]
.

Substituting this into (5.5) we get (5.10).
It follows from Lemma 5.4 that Wα and Kα are determined uniquely by

[
Aα Bα

Bα Cα

]
and q, and hence by

[
A&B
C&D

]
, q, and α. According to the same lemma, Wα always has

a bounded inverse. By construction,

[
Aα Bα

Bα Cα

Kα −1U

]
is the Cayley transform of

[
A&B
C&D

[K&F ]α

]
.

By applying the inverse Cayley transform we see that [K&F ]α is determined uniquely
by
[
A&B
C&D

]
, q, and α.

We have now proved (ii) and one half of (i) and (iii). To prove the remaining
claims we assume that q is a solution of the discrete time control Riccati equation
induced by

[
Aα Bα

Cα Cα

]
. Let Kα and Wα be as in part (iv) of Definition 5.3. As above we

find that the restriction of the operator G−1
α to dom([K&F ]α) maps dom ([K&F ]α)

one-to-one onto [ZU ], so that we can define [K&F ]α by the second equation in (5.13).

We can then replace the free parameter [ z0u0
] in (5.10) by

[
1√
2�α

0

0 1U

]
G−1

α [ x0
u0

], where

[ x0
u0 ] is a free parameter in dom ([K&F ]α). All the computations that we did above to
pass from (5.5) to get (5.10) are reversible, and by carrying out the same computation
backward we get from (5.10) to (5.5).

The following conditions are important to connect the Riccati equation to the
future cost minimization problem (which will be done in Theorem 5.9).

Definition 5.7.

(i) The system Σ satisfies the input finite future cost condition at the point α ∈ Ω
if (α−A|X )−1Bu0 has a finite future cost for every u0 ∈ U .

(ii) The system Σ satisfies the state finite future cost condition if every initial
state in X has a finite future cost.

Note that in part (i) of the above definition the vector x0 := (α −A|X )−1Bu0 is
the state of Σ at time zero corresponding to the input u(t) = eαtu0; cf. (3.4).

Definition 5.8. Let D̂ be the transfer function of the system Σ.
(i) D̂ has a right H∞(C+) factorization valid in Ω if there exist two functions

M ∈ H∞(C+;B(U)) and N ∈ H∞(C+;B(U ;Y)) such that M(λ) has a bounded
inverse and D̂(λ) = N(λ)M(λ)−1 for all λ ∈ Ω.

(ii) The factorization in (i) is normalized if the multiplication operator

û �→
[
M

N

]
û : H2(C+;U) →

[
H2(C+;U)
H2(C+;Y)

]

is isometric.
(iii) The factorization in (i) is weakly coprime if the range of the multiplication

operator in (ii) is equal to the Laplace transform of the future behavior W0
+

defined in Definition 3.2.
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Note that by [20, section 2] the above definition of weakly coprime is equivalent
to several seemingly different notions that go by that name in the literature.

The following theorem is the main result in this section.
Theorem 5.9. If Ω is connected, then the following conditions are equivalent for

the system Σ:
(i) Σ satisfies the input finite future cost condition at some point α ∈ Ω.
(ii) Σ satisfies the input finite future cost condition at every point α ∈ Ω.
(iii) The control Riccati equation for Σ has an α-normalized nonnegative solution

q for some α ∈ Ω.
(iv) The control Riccati equation for Σ has an α-normalized nonnegative solution

q for every α ∈ Ω.
(v) The transfer function D̂ of Σ has a right H∞-factorization valid in some open

subset of Ω.
(vi) The transfer function D̂ of Σ has a normalized weakly coprime right H∞-

factorization valid in Ω.
If these equivalent conditions hold, then the optimal future cost is equal to the minimal
α-normalized nonnegative solution of the continuous time control Riccati equation for
all α ∈ Ω, and it is also the minimal nonnegative solution of the corresponding discrete
time control Riccati equations for all α ∈ Ω. In particular, these minimal solutions
do not depend on the value of α ∈ Ω.

Proof of (i) ⇔ (ii). This follows from Theorem 4.5.
Proof of (i) ⇔ (iii) and (ii) ⇔ (iv). This follows from Theorem 5.6 and [23,

Theorem 6.3].
Proof of (i) ⇒ (vi). If (i) holds, then by Theorem 4.5, the discrete time system[

Aα Bα

Cα Cα

]
satisfies the condition which in [25] was called the finite future incremental

cost condition. By [25, Corollary 2.7], the discrete time transfer function D̂α has
a weakly right coprime H∞ factorization over the unit disc D which is valid in Ωα.
(This set was defined at the beginning of section 4.) When this factorization is
mapped into continuous time by replacing the discrete time frequency variable z by
the continuous time frequency variable λ according to the formula (4.4) we get a
weakly right coprime H∞ factorization of D̂ over the right half-plane valid in Ω. For
weak coprimeness, note that the restriction of the Laguerre transform to the stable
future behavior W0

+ of Σ maps W0
+ unitarily onto the stable future behavior W0

α+

of Σα.
Proof of (vi) ⇒ (v). This implication is trivial.
Proof of (v) ⇒ (i). This is essentially the same proof as the proof of the implica-

tion (i) ⇒ (vi) carried out backward.
It is also possible to use the minimal solution of the control Riccati equation to

compute a normalized weakly right coprime factorization of D̂ of the type mentioned
in Theorem 5.9. These generalize the well-known finite-dimensional formulas.

Theorem 5.10. Suppose that Ω is connected, let the equivalent conditions in
Theorem 5.9 hold, and let q be the optimal future cost sesquilinear form obtained from
the quadratic form ‖·‖2fut (so that q is the minimal solution of the α-normalized control
Riccati equation for every α ∈ Ω). For each α ∈ Ω, let [K&F ]α, Kα, Wα, and Kα

be the operators in part (ii) of Theorem 5.6, and for all α, β ∈ Ω define Kα(β) and
Fα(β) by

(5.14)
[
Kα(β) Fα(β)

]
= [K&F ]α

[
(β −A)−1 (β −A|X )−1B

0 1U

][√
2�β 0

0 1U

]
.
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(i) For all α, β ∈ Ω the operator Fα(β) has a bounded inverse, Fα(α) = −1U ,
and Kα(α) = Kα.

(ii) Fix α ∈ Ω and define

(5.15) Mα(λ) := −[W 1/2
α Fα(λ)]

−1, Nα(λ) := D̂(β)Mα(λ), λ ∈ Ω.

Then Mα and Nα can be extended to H∞-functions over C+, and D̂ = NαM
−1
α

is a normalized weakly right coprime H∞ factorization of D̂ valid in Ω.
(iii) For all α, β ∈ Ω we have

[K&F ]β = −Fα(β)
−1[K&F ]α,(5.16)

Kβ(λ) = −Fα(β)
−1Kα(λ),

Fβ(λ) = −Fα(β)
−1Fα(λ),

Kβ = −Fα(β)
−1Kα,

Wβ = Fα(β)
∗WαFα(β).

In particular, the factors Mα and Nα in (ii) differ from the factors Mβ and
Nβ only by the multiplication to the right by a unitary operator (which may
depend on α and β).

Proof of (i) and (ii). The condition Fα(α) = −1U is equivalent to (5.6). That
Fα(β) is invertible and that (ii) holds follow from [25, Corollary 2.7] by mapping that
result back into continuous time using the transformation z �→ λ given in (4.4).

Proof of (iii). We repeat the first part of the proof of Theorem 5.6, starting
from the α-normalized continuous time Riccati equation, but this time we replace
the free parameter [ x0

u0 ] in (5.4) by Gβ

[√
2
βz0
u0

]
, where [ z0u0 ] is a free parameter in

[ZU ]. The result remains the same, except that α is replaced by β and the identity
[K&F ]α = [Kα −1U ] [ z0u0

] is replaced by the identity [K&F ]β = [Kα(β) Fα(β) ] [ z0u0
].

Thus, instead of the β-normalized control Riccati equation (5.5) (with α replaced by
β) we get the slightly modified equation

(5.17)

q[Aαz0 +Bαu0,Aαz0 +Bαu0] + ‖Cαz0 +Dαu0‖2Y + ‖u0‖2U
= q[z0, z0] + 〈Kα(β)z0 + Fα(β)u0,Wα(Kα(β)z0 + Fα(β)u0)〉U , z0 ∈ Z, u0 ∈ U .

Comparing this equation to (5.10) with α replaced by β and using Remark 5.2 and
the uniqueness claim in part (ii) of Theorem 5.6 we find that Kβ = Fα(β)

−1Kα and
Wβ = Fα(β)

∗WαFα(β). Once this is known the proofs of the remaining claims are
straightforward.

The next remark indicates how our results in this section relate to known finite-
dimensional results.

Remark 5.11. In the finite-dimensional setting, if Q, K, and W satisfy (1.4)–

(1.6), and if we add the equation v(t) =
[
K −1U

] [ x(t)
u(t)

]
= Kx(t) − u(t) to (1.1),

then the transfer functions from −v to u and y are given by

M(λ) := [K(λ−A−BK)−1B + 1U ],

N(λ) := [(C +DK)(λ−A−BK)−1B +D],

respectively (cf. Remark 8.2 below). Thus, if we denote the transfer function from u
to y by G, then this gives the right factorization G(λ) = N(λ)M(λ)−1. Note that the
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transfer function from u to −v is −K(λ−A)−1B+1U , and thus M(λ) is invertible for
all λ ∈ ρ(A) with inverse M(λ)−1 = −K(λ−A)−1B+1U . If the system in observable
and if Q is the minimal nonnegative solution of (1.5), then the above factorization
is right coprime. It is “almost” normalized in the sense that it suffices to multiply
both factors to the right by W−1/2 to get the normalized right coprime factorization
G(λ) = NW (λ)MW (λ)−1, where

MW (λ) := [K(λ−A−BK)−1B + 1U ]W−1/2,

NW (λ) := [(C +DK)(λ−A−BK)−1B +D]W−1/2.

This factorization is determined uniquely (among all normalized right coprime factor-
izations of G) by the fact that

(5.18) lim
λ→+∞

MS(λ) = W−1/2 = (1U +D∗D)−1/2.

Under the same assumptions, if we define K&F =
[
K −1U

]
, then the quadratic

form q[·, ·] = 〈·, Q·〉X satisfies the Riccati equation in Definition 5.1 with [K&F ]α and
Wα replaced by K&F and W , respectively, except for the normalization condition
(5.6). Thus, as we saw in Remark 5.2, if we define

Fα := K&F

[
(α−A)−1B

1U

]
= K(α−A)−1B − 1U ,

[K&F ]α := −F−1
α

[
K −1U

]
=
[−F−1

α K F−1
α

]
,

Wα = F∗
αWαFα,

then we get a solution of the Riccati equation in Definition 5.1 which also satisfies the
normalization condition (5.6).

In the general infinite-dimensional case it is not possible to use the normalization
(5.18) due to the fact that the limit in (5.18) need not exist. For the same reason
one cannot expect it to always be possible to rewrite the Riccati equation (5.5) in
the form (1.4)–(1.6) by reversing the steps described above. Moreover, as was first
noticed in [32], even if the limit in (5.18) does exist, the formula for the operator W
should still contain an extra correction term, namely,

W = 1U +D∗D + lim
λ→∞

B∗Q(λ−A|X )−1B,

where B∗ is a certain extension of B∗. (In the finite-dimensional case and also in
some infinite-dimensional cases the above correction term vanishes.) Since we cannot
always normalize M by fixing the value of M at infinity we have instead chosen to
use the different “α-normalization” (5.6), which together with (5.15) results in the

normalization Mα(α) = W
−1/2
α .

6. The filter Riccati equation and left factorizations. In this section we
consider the filter Riccati equation satisfied by the inverse of the optimal past cost
quadatic form ‖ · ‖2past.

Definition 6.1. Let Σ :=
([

A&B
C&D

]
;X ,U ,Y) be an operator node, and let α ∈

ρ(A)∩C+. By an α-normalized solution of the (generalized) continuous time filter Ric-
cati equation induced by

[
A&B
C&D

]
we mean an α-normalized solution of the continuous

time control Riccati equation induced by the adjoint system Σ† = (
[
A&B
C&D

]∗
;X ,Y,U).
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Definition 6.2.

(i) The system Σ satisfies the output coercive past cost condition at the point
α ∈ Ω if there exists a constant M > 0 such that

(6.1) ‖C(α−A)−1x0‖2Y ≤ M
(‖u‖2L2(R−;U) + ‖y‖2L2(R−;Y)

)
for every generalized stable past trajectory

[ x0
u
y

]
of Σ.

(ii) The system Σ satisfies the state coercive past cost condition at the point
α ∈ Ω if there exists a constant M > 0 such that

(6.2) ‖x0‖2X ≤ M
(‖u‖2L2(R−;U) + ‖y‖2L2(R−;Y)

)
for every generalized stable past trajectory

[ x0
u
y

]
of Σ.

Lemma 6.3.

(i) Σ satisfies the output coercive past cost condition at some point α ∈ Ω if and
only if the adjoint system Σ† = (

[
A&B
C&D

]∗
;X ,Y,U) satisfies the input finite

future cost condition at the point α ∈ Ω∗.
(ii) Σ satisfies the state coercive past cost condition at some point α ∈ Ω if and

only if the adjoint system Σ† satisfies the state finite future cost condition at
the point α ∈ Ω∗.

Proof. By Theorem 4.5 the future continuous time cost of an initial state x0

is equal to its future discrete time cost, and by Theorem 4.11, the past continuous
time cost of a final state x0 is equal to its past discrete time cost. Both the claims
above therefore follow from (4.1) and [24, Theorem 6.4] and [24, Lemma 6.3 and
Remark 3.3].

Definition 6.4. Let D̂ be the transfer function of the system Σ.
(i) D̂ has a left H∞(C+) factorization valid in Ω if there exist two functions

M̃ ∈ H∞(C+;B(Y)) and Ñ ∈ H∞(C+;B(U ;Y)) such that M̃(λ) has a bounded

inverse and D̂(λ) = M̃(λ)−1Ñ(λ) for all λ ∈ Ω.
(ii) The factorization in (i) is normalized if the operator[

û

ŷ

]
�→ PH2(C−;Y)

[
−Ñ M̃

] [û
ŷ

]
:

[
H2(C−;U)
H2(C−;Y)

]
→ H2(C−;Y)

is coisometric.
(iii) The factorization in (i) is weakly coprime if the kernel of the operator in (ii)

coincides with the (past time) Laplace transform of the past behavior W0
−.

The following is the main theorem of this section. (We note that the inverse of a
quadratic form is understood here in the sense of part (ii) of Lemma 3.17.)

Theorem 6.5. If Ω is connected, the following conditions are equivalent for the
system Σ:

(i) Σ satisfies the output coercive past cost condition at some point α ∈ Ω.
(ii) Σ satisfies the output coercive past cost condition at every point α ∈ Ω.
(iii) The filter Riccati equation for Σ has an α-normalized nonnegative solution

for some α ∈ Ω.
(iv) The filter Riccati equation for Σ has an α-normalized nonnegative solution

for every α ∈ Ω.
(v) The transfer function D̂ of Σ has a left H∞-factorization valid in some open

subset of Ω.
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(vi) The transfer function D̂ of Σ has a weakly coprime left H∞-factorization
valid in Ω.

If these equivalent conditions hold, then the optimal past cost is the inverse of the
minimal α-normalized nonnegative solution of the continuous time filter Riccati equa-
tion for all α ∈ Ω, and it is also the inverse of the minimal nonnegative solution of
the corresponding discrete time filter Riccati equations for all α ∈ Ω. In particular,
these minimal solutions do not depend on the value of α ∈ Ω.

Proof. This follows from Lemmas 6.3 and 4.9(iv), Theorems 3.18 and 5.9, and the
facts that the transfer function D̂d of the adjoint system Σ† is given by D̂d(λ) = D̂(λ)∗,
that D̂ = NM−1 is a right H∞ factorization of D̂ if and only if D̂d = M̃−1Ñ is a left
H∞ factorization of D̂d where M̃(λ) = M(λ)∗ and Ñ(λ) = N(λ)∗, and that one of these
factorizations is normalized or weakly coprime if and only if the other is normalized
or weakly coprime.

There is also an analogue of Theorem 5.10 for the past cost minimization problem
and left factorizations. We leave the formulation and proof of this result to the reader.

7. Doubly coprime factorizations and past cost dominance. In this sec-
tion we look at the case where both the input finite future cost condition and the
output coercive past cost conditions hold, and the future cost is dominated by the
past cost. This last notion is made precise in the following two definitions.

Definition 7.1. Let q and r be two closed symmetric nonnegative sesquilin-
ear forms on the Hilbert space X . Then we say that r dominates q if dom (r) ⊂
dom (q) and there exists a constant M > 0 such that q[x, x] ≤ Mr[x, x] for all
x ∈ dom (r).

Definition 7.2. The system Σ satisfies the past cost dominance condition (with
respect to Ω) if the optimal future cost ‖·‖2fut is dominated by the optimal past cost
‖·‖2past.

Lemma 7.3. If the system Σ satisfies the past cost dominance condition (with
respect to Ω), then it satisfies both the input finite future cost condition and the output
coercive past cost condition (with respect to Ω). Thus, in particular, the past cost
dominance condition implies that both the control Riccati equation and the filter Riccati
equation for Σ have nonnegative solutions.

Proof. This follows from Theorems 4.5 and 4.11 and the fact that the cor-
responding statement is true for discrete time systems according to [25, Lemma
4.2].

Definition 7.4. Let D̂ be the transfer function of the system Σ.

(i) A right H∞(C+) factorization
[
M
N

]
valid in Ω is strongly coprime if there

exist two functions X̃ ∈ H∞(C+;B(U)) and Ỹ ∈ H∞(C+;B(Y;U)) such that

X̃(λ)M(λ) − Ỹ(λ)N(λ) = 1U for all λ ∈ C+.

(ii) A left H∞(C+) factorization [M̃, Ñ] valid in Ω is strongly coprime if there
exist two functions X ∈ H∞(C+;B(Y)) and Y ∈ H∞(C+;B(U ;Y)) such that

M̃(λ)X(λ) − Ñ(λ)Y(λ) = 1Y for all λ ∈ C+.
(iii) D̂ has a doubly coprime H∞(C+) factorization valid in Ω if there exist func-

tions M ∈ H∞(C+;B(U)), N ∈ H∞(C+;B(U ;Y)), X̃ ∈ H∞(C+;B(U)),
Ỹ ∈ H∞(C+;B(Y;U)), M̃ ∈ H∞(C+;B(Y)), Ñ ∈ H∞(C+;B(U ;Y)), X ∈
H∞(C+;B(Y)), and Y ∈ H∞(C+;B(U ;Y)) such that

[
M
N

]
is a right H∞(C+)

factorization valid in Ω, [M̃, Ñ] is a left H∞(C+) factorization valid in Ω and
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(7.1)[
M Y

N X

] [
X̃ −Ỹ

−Ñ M̃

]
=

[
X̃ −Ỹ

−Ñ M̃

] [
M Y

N X

]
=

[
1U 0

0 1Y

]
,

on C+.

It is well-known that any strongly coprime factorization is weakly coprime in
the corresponding sense (right/left) and that a transfer function has a strongly right
coprime factorization if and only if it has a strongly left coprime factorization if and
only if it has a doubly coprime factorization (all over H∞(C+)); see, e.g., [20].

The following theorem is the final result of this article. It involves the notion of
the inverse of a quadratic form as defined in part (ii) of Lemma 3.17.

Theorem 7.5. If Ω is connected, then the following conditions are equivalent for
the system Σ:

(i) Σ satisfies the past cost dominance condition with respect to Ω.
(ii) Σ satisfies both the input finite future cost condition and the output coercive

past condition at every point α ∈ Ω, and the optimal future cost is dominated
by the optimal past cost.

(iii) For some α ∈ Ω the control Riccati equation for Σ has an α-normalized non-
negative solution q and the filter Riccati equation for Σ has an α-normalized
nonnegative solution p and these are such that q is dominated by the inverse
of p.

(iv) For all α ∈ Ω the control Riccati equation for Σ has an α-normalized solution
q and the filter Riccati equation for Σ has an α-normalized solution p and
these are such that q is dominated by the inverse of p.

(v) The transfer function D̂ of Σ has a doubly coprime H∞-factorization valid
in some open subset of Ω.

(vi) The transfer function D̂ of Σ has a doubly coprime H∞-factorization valid
in Ω.

Proof of (i) ⇔ (vi). This follows from the corresponding discrete time result [25,
Theorem 4.6], the fact that the existence of a strongly coprime factorization implies
the existence of a doubly coprime factorization, and the fact that all statements
translate to discrete time (as in the proof of Theorem 5.9).

Proof of (i) ⇒ (ii). This follows from Lemma 7.3.

Proof of (ii) ⇒ (iv). Existence of solutions follows from Theorems 5.9 and 6.5. It
is the minimal solutions that we consider. The dominance then follows from the fact,
again from Theorems 5.9 and 6.5, that the optimal future cost is given by the minimal
solution of the control Riccati equation and the optimal past cost by the inverse of
the minimal solution of the filter Riccati equation.

Proof of (iii) ⇔ (i). This follows from the corresponding discrete time result [25,
Theorem 4.4] and the fact that all statements translate to discrete time (as in the
proof of Theorem 5.9).

Proof of (v) ⇒ (i). This follows from the corresponding discrete time result [25,
Theorem 4.6] and the fact that all statements translate to discrete time (as in the
proof of Theorem 5.9).

(iv) ⇒ (iii) and (vi) ⇒ (v) are trivial.

8. Example (transfer function without doubly coprime factorization).
We illustrate our theory further by considering an example. We investigate this exam-
ple from two different perspectives presented in this article. In section 8.1 we directly
consider the optimal control problem to verify the input finite future cost condition
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and the output coercive past condition. We also obtain formulas for weakly left and
right coprime factorizations and for a state space on which the state finite future cost
condition is satisfied. In section 8.2 we make an additional compactness assumption
and consider the Riccati equations. This approach allows us to prove more, namely,
that the past cost dominance condition is not satisfied and that therefore a dou-
bly coprime factorization does not exist. This approach also allows us to precisely
characterize the spaces of finite cost states.

In section 8.3 we consider a slight modification of the above mentioned example
where the transfer function does not even have left and right factorizations.

The basic example we consider in this section is somewhat academic. In section
8.4, we consider an example that is physically more relevant. The computations for
that example become too burdensome to carry out algebraically in all detail, but we
indicate how the behavior is the same as that of our basic example.

Our example is the one originally presented in [6, section 2.2]. Given is the
following second order differential equation with input u and output y:

(8.1) ẅ(t) + (−2 + T )ẇ(t)− Tw(t) = u(t), y(t) = w(t).

Here T : dom(T ) ⊂ H → H is a nonnegative self-adjoint unbounded operator with a
bounded inverse on the infinite-dimensional Hilbert space H (e.g., minus the Dirich-
let Laplacian on L2 of some bounded domain). For α ≥ 0 we let Hα = dom(Tα)
with inner product 〈·, ·〉Hα = 〈Tα·, Tα·〉H, and we let H−α be the corresponding ex-
trapolation space (i.e., the dual of Hα with H as pivot space). Then T maps Hα+1

one-to-one onto Hα for all α ≥ 0, and it can be extended to an operator that maps
Hα+1 one-to-one onto Hα for all α < 0. We denote this extended operator by the
same letter T .

The input space U and output space Y are both taken to be H, and the state
space will be a suitable subspace of [HH ]. The second order system (8.1) can be written
as a first order system in several different ways. As is usually done, throughout we
take the state to be [ x1

x2
] := [wẇ ]. This gives the (formal) equation

(8.2) ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t),

where

A

[
z1

z2

]
=

[
0 1H
T 2H − T

][
z1

z2

]
,(8.3)

B =

[
0

1H

]
,(8.4)

C =
[
1H 0

]
.(8.5)

There are several possible choices of state space for which the above system is de-
scribed by an operator node. In all cases this operator node is the restriction of the

operator S :
[H
H
H

]
→
[ H
H−1

H

]
defined by

(8.6) S =

⎡⎢⎣ 0 1H 0

T 2H − T 1H
1H 0 0

⎤⎥⎦ .
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One possibility is to take the state space to be X :=
[
H1/2

H

]
, in which case we take

the domain of the operator node S to be

(8.7) dom(S) =

⎧⎪⎨⎪⎩
⎡⎢⎣z1z2
u

⎤⎥⎦ ∈
⎡⎣H1/2

H1/2

U

⎤⎦
∣∣∣∣∣∣∣ z1 − z2 ∈ H1

⎫⎪⎬⎪⎭ ,

and the domain of the main operator A becomes

(8.8) dom(A) =

{[
z1

z2

]
∈
[H1/2

H1/2

]∣∣∣∣∣ z1 − z2 ∈ H1

}
.

In this setting both the control operator B and the observation operator C are
bounded. Another choice is to take the state space to be X̃ := [HH ], in which case
(8.7) and (8.8) are replaced by

dom(S) =

⎧⎪⎨⎪⎩
⎡⎢⎣z1z2
u

⎤⎥⎦ ∈
⎡⎣HH
U

⎤⎦
∣∣∣∣∣∣∣ z1 − z2 ∈ H1

⎫⎪⎬⎪⎭ ,(8.9)

dom(A) =

{[
z1

z2

]
∈
[H
H
]∣∣∣∣∣ z1 − z2 ∈ H1

}
.(8.10)

Also in this setting both B and C are bounded. A third option is to take the state

space to be X1/2 :=
[

H1

H1/2

]
, in which case (8.7) and (8.8) are replaced by

dom(S) =

⎧⎪⎨⎪⎩
⎡⎢⎣z1z2
u

⎤⎥⎦ ∈
⎡⎣H1

H1

U

⎤⎦
∣∣∣∣∣∣∣T (z1 − z2) + u ∈ H1/2

⎫⎪⎬⎪⎭ ,(8.11)

dom(A) =

{[
z1

z2

]
∈
[H1

H1

]∣∣∣∣∣ z1 − z2 ∈ H3/2

}
.(8.12)

In this setting B is unbounded but C is still bounded.
It is easy to see that in the three cases above the spectrum of A coincides with the

set of points s ∈ C, where the operator s2 + (−2 + T )s− T does not have a bounded
inverse which maps H into H1, and that the resolvent of A is given by

(8.13) (s−A)−1 =

[(
s− 2 + T

)
D̂(s) D̂(s)

T D̂(s) sD̂(s)

]
, s ∈ ρ(A),

where

(8.14) D̂(s) := [s2 + (−2 + T )s− T ]−1, s ∈ ρ(A),

is the transfer function of the operator node. From this it follows that 1 ∈ σ(A) and
that σ(A) ⊂ (−∞, 0)∪ [1, 2). In particular, the system is unstable (since σ(A)∩C+ �=
∅), but ρ(A) ∩ C+ is connected, and we may take Ω = ρ(A) ∩ C+. Note that 2 ∈ Ω
and that

(2−A)−1 =

[
1H T−1

1H 2T−1

]
(8.15)

(where the operator 1H has been restricted to the appropriate subspace of H).
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The function D̂ is well-posed in the sense described in the introduction. More
precisely, D̂ is uniformly bounded in the half-plane C2 = {s ∈ C | �s ≥ 2}, which can
be seen as follows. For �s ≥ 2 we have D̂(s) = (s− 1)−1(z(s) + T )−1, where z(s) =
s(s− 2)/(s− 1). Here |(s− 1)−1| ≤ 1 for �s ≥ 2, and for �s ≥ 2 it can be shown by a
direct computation that �z(s) ≥ 0, which implies that ‖(z(s)+T )−1‖ ≤ ‖T−1‖ < ∞.
Thus, ‖D̂(s)‖ ≤ ‖T−1‖ for �s ≥ 2.

Remark 8.1. We note that the second order differential equation (8.1) is not
written out explicitly in [6] and that the first order system in [6] looks different from
(8.2)–(8.5). However, the system in [6] is simply the first order form of (8.1) with state
variables y1 := w and y2 := ẇ − 2w and T equal to minus the Dirichlet Laplacian on
L2(0, π). Note also that there is a misprint in the (four) boundary conditions [6, (39)
and (40)]; the correct boundary conditions that correspond to the domain [6, (43)] of
the main operator Q in [6] are y1(0, t) + y2(0, t) = 0, and y1(π, t) + y2(π, t) = 0.

8.1. The optimal control problem. As our first approach to this problem,
we consider the optimal control problem directly. In section 8.1.1, we first identify
a stable “target system” that we will convert our unstable system into by using (an
unbounded) feedback. In section 8.1.2 we implement this feedback on our original
example and draw some conclusions. Section 8.1.3 contains formulas for left and right
factorizations obtained by employing this feedback.

8.1.1. A stable second order system. Consider the abstract second order
differential equation

(8.16) ẅ(t) + (β + T )ẇ(t) + γTw(t) = 0.

(Note that the system (8.1) when considered without input and output is the special
case β = −2 and γ = −1.) As in the preceding section we can rewrite this as a first
order system with state variables [ x1

x2
] := [wẇ ] to get

ẋ(t) = Aclx(t),

where Acl is the restriction to the appropriate subspace of the operator Acl : [HH ] →[ H
H−1

]
defined by

(8.17) Acl

[
z1
z2

]
=

[
0 1H

−γT −β − T

] [
z1

z2

]
.

It is easy to check that by the Lumer–Phillips theorem, if we take the state space to

be X =
[
H1/2

H

]
and take dom(Acl) to be

(8.18) dom(Acl) =

{[
z1

z2

]
∈
[H1/2

H1/2

]∣∣∣∣∣ γz1 + z2 ∈ H1

}
,

then Acl generates an exponentially stable strongly continuous contraction semigroup
on X provided that β > 0 and γ > 0. (Recall that the coefficients in (8.3) do not
satisfy these conditions and that the operator A in (8.3) is unstable.)
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We can also consider the same system with state space X1/2 :=
[

H1

H1/2

]
. In that

case the domain of Acl becomes

(8.19) dom(Acl) =

{[
z1

z2

]
∈
[H1

H1

]∣∣∣∣∣ γz1 + z2 ∈ H3/2

}
.

Again, by the Lumer–Phillips theorem, Acl generates an exponentially stable strongly
continuous contraction semigroup on X1/2 provided that β > 0 and γ > 0.

It is easy to see that in the two cases above the spectrum of Acl coincides with the
set of points s ∈ C, where the operator s2 + (β + T )s+ γT does not have a bounded
inverse which maps H into H1, and that the resolvent of Acl is given by

(8.20) (s−Acl)
−1 =

[(
s+ β + T

)
N(s) N(s)

−γTN(s) sN(s)

]
, s ∈ ρ(A),

where

(8.21) N(s) := [s2 + (β + T )s+ γT ]−1, s ∈ ρ(A).

8.1.2. The cost conditions. We now return to the original example (8.1)–(8.5).
With the input

u(t) = −(β + 2)ẇ(t)− (γ + 1)Tw(t)(8.22)

= −(β + 2)x2(t)− (γ + 1)Tx1(t),

the system (8.1) becomes (8.16). (The respective first order systems also correspond.)

This implies that if x(0) =
[
x1(0)
x2(0)

]
∈ X =

[
H1/2

H

]
and if we choose u as in (8.22) with

β > 0 and γ > 0, then the solution x = [ x1
x2 ] of (8.2) satisfies x ∈ L2(0,∞;X ), i.e.,

x1 ∈ L2(0,∞;H1/2) and x2 ∈ L2(0,∞;H). From this it follows that y ∈ L2(0,∞;H),
but it does not follow that u ∈ L2(0,∞;H), only that u ∈ L2(0,∞;H−1).

If we have more smoothness so that x(0) :=
[
x1(0)
x2(0)

]
∈ X1/2 =

[ H1

H1/2

]
, then x ∈

L2(0,∞;X1/2), i.e., x1 ∈ L2(0,∞;H1) and x2 ∈ L2(0,∞;H1/2). In particular, both

u ∈ L2(0,∞;H) and y ∈ L2(0,∞;H). This implies that the subspace X1/2 =
[

H1

H1/2

]
is contained in the set of finite future cost states. We note that

(2−A)−1B =

[
T−1

2T−1

]
,

which maps H into
[H1

H1

]
, so that the input finite future cost condition at the point

α = 2 is satisfied.
By Theorem 5.9, the transfer function D̂ (8.14) has a normalized weakly coprime

right H∞-factorization valid in ρ(A) ∩ C+. Since the restriction of D̂ to (0,∞) is

self-adjoint, it follows that the transfer function D̂d of the adjoint system coincides
with D̂, and therefore D̂ also has a normalized weakly coprime left H∞-factorization
valid in ρ(A) ∩ C. By Theorem 6.5, this means that our example also satisfies the
output coercive past condition (at every point α ∈ Ω).

We finally remark that if we take X1/2 as state space instead of X , then we still
have an operator node with the same transfer function, and in that case the state
finite future cost condition is satisfied.
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8.1.3. Weakly coprime factorizations of the transfer function. Formula
(8.22) with β > 0 and γ > 0 suggests that we can stabilize the original system
(8.3)–(8.5) with the (formal) state feedback

(8.23) K =
[−(γ + 1)T −(β + 2)

]
.

Note that this state feedback operator is unbounded if we choose the state space to

be X :=
[
H1/2

H

]
or X̃ := [HH ], but it is bounded if we choose the state space to be

X1/2 :=
[

H1

H1/2

]
. We also consider the output injection

(8.24) L = δ

[
1

2

]
,

where δ > 2. This output injection operator is unbounded if we choose the state

space to be X :=
[
H1/2

H

]
or X1/2 :=

[ H1

H1/2

]
, but it is bounded if we choose the state

space to be X̃ := [HH ]. Note that for all three considered state spaces either K or L
is unbounded (or both are).

Remark 8.2. For a finite-dimensional system with node [ A B
C 0 ], the usual formulas

for a doubly coprime factorization in terms of a stabilizing state feedback K and a
stabilizing output injection operator L are as follows. A right factorization

[
M
N

]
is

obtained as the transfer function of⎡⎣ A+BK B
K 1U
C 0

⎤⎦ ,
a left factorization

[
M̃ Ñ

]
is obtained as the transfer function of[

A− LC −L B
C 1Y 0

]
,

Bezout factors
[
X̃ Ỹ

]
for the right factorization are the transfer functions of[

A− LC −B L
K 1U 0

]
,

and Bezout factors
[
X
Y

]
for the left factorization are the transfer functions of⎡⎣ A+BK L

C 1Y
K 0

⎤⎦ .
By formally applying the state feedback K in (8.23) to our unstable system (8.3)–

(8.5) we get from Remark 8.2 the (formal) right factorization
[
M
N

]
with

M(s) = [s2 − (2− T )s− T ] [s2 + (β + T )s+ γT ]−1,

N(s) = [s2 + (β + T )s+ γT ]−1.

To see that this actually is an H∞ factorization (which is at the same time both a
right and a left factorization since the two factors commute) we can argue as follows.
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By the boundedness of the resolvent of Acl in the state space X =
[
H1/2

H

]
and the

explicit formula (8.20) for this resolvent, N ∈ H∞(C+;B(H;H1/2)), s �→ sN(s) ∈
H∞(C+;B(H)), and s �→ (s+ β + T )N(s) ∈ H∞(C+;B(H1/2)). Since H1/2 is contin-

uously embedded in H and all the involved operators commute with T 1/2, it follows
that N ∈ H∞(C+;B(H)) and s �→ (s + β + T )N(s) ∈ H∞(C+;B(H)), which implies
that furthermore TN ∈ H∞(C+;B(H)). Since

M(s) = 1H − ((β + 2)s+ (γ + 1)T )N(s), s ∈ C+,

it follows that also M ∈ H∞(C+;B(H)).

If we instead apply the output injection L in (8.24) we get the (formal) left
factorization

[
M̃ Ñ

]
with

M̃(s) = [s2 − (2 − T )s− T ] [s2 + (T + δ − 2)s+ (δ − 1)T ]−1,

Ñ(s) = [s2 + (δ − 2 + T )s+ (δ − 1)T ]−1.

This is the same factorization we obtained above, with β = δ−2 > 0 and γ = δ−1 > 0
(and hence it is a H∞ factorization).

However, the Bezout factors obtained from Remark 8.2 will not be bounded. For
example, for the Bezout factor Ỹ we formally obtain

Ỹ(s) = −δ
[
((γ + 1)T + (2β + 4)) s+ (γ + 1)T 2 + (β + 2)T

]
× [s2 + (T + (δ − 2)) s+ (δ − 1)T ]−1.

Due to the presence of the term T 2, it is clear that Ỹ(s) is not a bounded operator
for any s in the open right half-plane. So the obvious candidate for a Bezout factor
is in fact not a Bezout factor. Similarly it can be seen that the formal equation for
Y(s) gives an unbounded operator for all s in the open right half-plane.

8.2. The Riccati equations. For consideration of the Riccati equations we
follow [6] and use the state space X̃ := [HH ]. (This is not important, but it leads to
simple computations.)

We will make the additional assumption on T that it has a compact inverse. Then
there exists an orthonormal basis of H consisting of eigenvectors {ϕk : k ∈ N} of T .
Denote the corresponding eigenvalues by {λk : k ∈ N} and note that λk → ∞ as

k → ∞. The space X̃ has an orthonormal basis of eigenvectors {[ ϕk

0 ] ,
[

0
ϕk

]
: k ∈ N}.

With respect to that basis, the operators A, B, and C are block diagonal (with the
size of the blocks equal to two). It follows that the sesquilinear forms giving the
optimal cost and the optimal feedback pairs are block diagonal as well.

An elementary calculation using the α-normalized control Riccati equation then
gives that for these diagonal blocks we have

Qk =

[
Qk,1 Qk,0

Qk,0 Qk,2

]
, [K&F ]α,k = [Kk,1 Kk,2 Fk], Wα = Wk,

with
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Qk,0 =
√
λ2
k + 1 + λk,

Qk,1 =

√
2
√
λ2
k + 1 + λ2

k − 2λk + 4− λk + 2,

Qk,2 =
√
λ2
k + 1

√
2
√
λ2
k + 1 + λ2

k − 2λk + 4 + λ2
k − 2λk,

Fk = −
[
1 +

Qk,0 + αQk,2

α2 − 2 + λk(α− 1)

]−1

,

Kk,1 = FQk,0,

Kk,2 = FQk,2,

Wk = F−2;

here the optimal cost sesquilinear form q is defined on a dense subset of its domain
through q[x, z] = 〈Qx, z〉 for x, z ∈ dom(Q).

The asymptotic behavior of the above terms can be seen to be

Qk = λ2
k

[
2 0

0 0

]
+ λk

[
−2 2

2 0

]
+

[
5
2 0

0 2

]
+O

(
1

λk

)
,

Wk =

(
1 + α

1− α

)2

+O

(
1

λk

)
,

Fk =
1− α

1 + α
+O

(
1

λk

)
.

It follows that Wα ∈ B(U) and that

Q
1/2
k =

√
2

(
λk

[
1 0

0 0

]
+

[
−1/2 1

1 0

])
+O

(
1

λk

)
,

from which we can conclude that dom(q) = dom(Q1/2) =
[H1

H
]
. So the set of finite

future cost states Ξf equals
[H1

H
]
.

For the solution of the dual optimal control problem we utilize the filter Riccati
equation. A similar calculation shows that the minimal nonnegative solution corre-
sponds to the block diagonal operator with blocks that have the asymptotic behavior

Pk =

[
2 2

2 2

]
+O

(
1

λk

)
.

As Theorem 6.5 indicates we are, however, interested in the inverse of this operator.
The diagonal blocks of this have the asymptotic expansion

P−1
k = λk

[
2 −2

−2 2

]
+

[
5/2 0

0 −2

]
+O

(
1

λk

)
.

It follows that

P
−1/2
k =

√
λk

[
1 −1

−1 1

]
+O

(
1√
λk

)
,
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and therefore we have for the set Ξp of finite past cost states

Ξp = dom(p−1) = dom(P−1/2) =

{[
z1

z2

]
∈
[H
H
]∣∣∣∣∣− z1 + z2 ∈ H1/2

}
.

Note that since Ξp � Ξf , the past cost dominance condition is not satisfied. This
can also be seen in the following ways. First, from the asymptotic expansions of Q
and P we have for the diagonal blocks of the product QP :

QkPk = λ2
k

[
4 4

0 0

]
+O (λk) .

It follows that QP is unbounded and that therefore the past cost dominance condition
is not satisfied. Second, we can see from the expressions for Qk and P−1

k that Q is
not dominated by a constant times P−1. From this we can also conclude that the
past cost dominance condition is not satisfied.

Since the past cost dominance condition is not satisfied, by Theorem 7.5, the
transfer function D̂ in (8.14) does not have a doubly coprime factorization.

In the introduction we listed the additional conclusions (i)–(iii) which are valid
also in this particular example since D̂ is well-posed. If we choose the state space to
be the space Ξf =

[H1

H
]
of all vectors with finite future cost, then with this state

space both the original system and the optimal state feedback system are well-posed.
This is the weakest possible norm for which the system satisfies the state finite future
cost condition. We may also choose the state space to be the space of Ξp of finite past
cost states described above. Also with this norm both the original system and the
optimal output injection system are well-posed. This is the strongest possible norm
for which the system satisfies the state coercive past cost condition.

8.3. A slightly different example. With the same assumptions on T as in
section 8.2, we now consider

(8.25) ẅ(t) + (−2 + T )ẇ(t)− Tw(t) = hu(t), y(t) = 〈w(t), h〉,
where h ∈ H is nonzero. The transfer function then is

D̂(s) = 〈[s2 + (−2 + T )s− T ]−1h, h〉.
Define

sk :=
−λk + 2 +

√
λ2
k + 4

2
.

It is easily seen that

(s2k + (−2 + T )sk − T )ϕk = 0,

and that therefore sk is a pole of D̂. We have limk→∞ sk = 1, so that the transfer
function D̂ has a nonisolated singularity in the open right-half plane. It follows that D̂
is not meromorphic in the right half-plane and in particular that it has neither a right
nor a left factorization. We conclude that there exists no realization of D̂ for which
the input finite future cost condition holds nor a realization of D̂ for which the output
coercive past cost condition holds. In particular, it is impossible to choose a first order
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representation and a state space for (8.25) that makes the first order representation
into an operator node that satisfies the input finite future cost condition (or output
coercive past cost condition). This implies that is is impossible that an operator node
first order representation exists for which the state finite future cost condition holds.

8.4. A more physical example. We next consider a physically better mo-
tivated example. The basic example from the start of section 8 can be seen as a
simplification of this example.

Consider the plant

ẅp(t) + Tpwp(t) = up(t), yp(t) = wp(t).

Here Tp : dom(Tp) ⊂ H → H is a nonnegative self-adjoint operator with a compact
inverse on the infinite-dimensional Hilbert spaceH (e.g., minus the Dirichlet Laplacian
on L2 of some bounded domain). Denote the eigenvalues of T by λk. The input space
U and output space Y are both taken to be H. This is an undamped flexible system
with force control and position measurement.

Consider a controller of the same form but with damping

ẅc(t) +Dcẇc(t) + Tcwc(t) = uc(t), yc(t) = wc(t).

Interconnect the systems through positive feedback:

up = yc + v, uc = yp,

where v is an additional control to the plant. This is what the theory of nega-
tive imaginary systems [26] suggests we do. That theory ensures (at least in the
finite-dimensional case) stability of the feedback interconnection if the stiffness of the
controller Tc is large enough (plus some more minor conditions).

Assume that the parameters of the controller are

Dc = 1H, Tc =
1

2
T−1
p .

This controller stiffness operator violates the condition from negative imaginary the-
ory. The closed-loop system with as output the output of the plant and with w :=
[wp
wc

] is

ẅ(t) +Dẇ(t) + Tw(t) =

[
1H
0

]
v(t), y(t) =

[
1H 0

]
w(t),

where

D =

[
0 0

0 Dc

]
, T =

[
Tp −1H
−1H Tc

]
.

The operators in the first order form with state [wẇ ] are

A =

[
0 1H
−T −D

]
, B =

⎡⎢⎣ 0[
1H
0

]⎤⎥⎦ ,
C =

[[
1H 0

]
0
]
.
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The solutions Q and P of the control and filter Riccati equation on H4 are now (up to
reordering) block diagonal with block size 4. Numerical computations indicate that
for these blocks we have ‖Qk‖ ≈ 2λk, ‖Pk‖ ≈ λk, and ‖QkPk‖ ≈ λ2

k. It follows that
QP is unbounded. We conclude that the transfer function of the closed-loop system
has a left and a right factorization (since both Riccati equations have solutions), but
no doubly coprime factorization (since the product of the solutions of the Riccati
equations is unbounded).

9. Example (significance of the subset Ω). The following example illustrates
what happens if one replaces the specifically chosen component Ω of ρ(A)∩C+ by some
other component. In particular, we show that the normalized coprime factorizations
obtained by choosing different components can be genuinely different (i.e., not related
by a constant unitary transformation), and that also the optimal costs can be different.

Consider the following function:

D̂(s) :=

{
1

s−2 , |s| < 1,

0, |s| > 1.

An operator node with this transfer function can be constructed as follows. Let
X = 	2(Z) and define the bounded operator A on X by

(Az)k = zk+1.

We note that the spectrum of A equals the unit circle, so that the set σ(A) ∩ C+

consists of two components:

ΩB := {s ∈ C+ : |s| < 1}, ΩU := {s ∈ C+ : |s| > 1}.

Further define B ∈ B(C,X ) by (Bv)k = bkv, where b ∈ X is defined by

bk =

{
2k, k < 0,

0, k ≥ 0,

and define C ∈ B(X ,C) by

Cz = z0.

It follows that for |s| > 1

(
(s−A)−1Bv

)
k
=

⎧⎨⎩
∑−1

j=k s
j2k−j−1, k < 0,

0, k ≥ 0,

and that for |s| < 1

(
(s−A)−1Bv

)
k
=

⎧⎨⎩
2k

s−2 , k < 0,

sk

s−2 , k ≥ 0.

We conclude that for |s| > 1

C(s−A)−1B = 0
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and that for |s| < 1

C(s−A)−1B =
1

s− 2
,

so that the given operator node indeed has the given function as its transfer function.
Normalized strongly coprime factorizations (since we deal with a scalar function,

there is no difference between left and right) for ΩB and ΩU can be easily computed.
If we pick ΩB, then we obtain

MB(s) =
s− 2

s+
√
5
, NB(s) =

1

s+
√
5
,

X̃B(s) =
s+ 2 + 2

√
5

s+
√
5

, ỸB(s) =
−(2 +

√
5)2

s+
√
5

.

However, if we pick ΩU , then we obtain

MU (s) = 1, NU (s) = 0, X̃U (s) = 1, ỸU (s) = 0,

which is clearly genuinely different.
We note that for |s| > 1 we have

C(s−A)−1z =

∞∑
j=0

s−j−1zj

and that for |s| < 1 we have

C(s−A)−1z =

∞∑
j=0

−sjz−j−1.

We see that if we pick ΩU , the output y for initial condition z ∈ X and input u is
given by

y(t) =

∞∑
j=0

tjzj .

Therefore the optimal future control equals zero, the space of finite future cost states
is 	2(Z−), and the optimal cost on this space equals zero. It is easily checked that the
control Riccati equation is satisfied for Z := 	2(Z−) with q := 0, K&F [ x0

u0 ] := −u0,
Wα := 1, and dom(K&F ) = Z.

For ΩB we consider the control Riccati equation. It is easily seen that the above
mentioned solution for ΩU is now not a solution: the conditions (ii) and (iii) from
Definition 5.1 are not satisfied. To obtain a solution for the choice ΩB, we choose
Z := 	2(Z+) ⊕ span{b}. It can then be computed that, with dom(K&F ) as defined
in Definition 5.1,

dom(K&F ) =

{[
z

v

]
∈
[
Z
C

]
: z−1 = 2−1z0

}
.

With respect to the given orthogonal decomposition of Z, define

q

[[
x1

y1

]
,

[
x2

y2

]]
:= (2 +

√
5)y1y2,
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and define K&F on its domain (given above) by

K&F

[
z

v

]
:= (2 +

√
5)z0 + v.

Using that for [ zv ] ∈ dom(K&F ) the projection of A&B [ zv ] onto span{b} equals
2z0 + v, that

C&D

[
z

v

]
= z0,

and the equality

(2 +
√
5)(2z0 + v)z0 + (2 +

√
5)(2z0 + v)z0 + |z0|2 + |v|2 = |(2 +

√
5)z0 + v|2,

it is seen that the control Riccati equation indeed holds with Wα := 1.

We remark that there is noting special about the functions zero and 1
s−2 which

appear in the example given in this section: by an appropriate modification of B,
other functions can be obtained. In particular, it is possible to construct a transfer
function such that if we pick ΩU , then the function has a coprime factorization, and
when we pick ΩB, it doesn’t.

Appendix A. Proof of Lemma 3.17. Let us denote the closed linear relation
X → W whose graph is V by T . Then

Tx =

{
w ∈ W

∣∣∣∣∣
[
x

w

]
∈ V

}
, x ∈ dom (T ) = XV ,(A.1)

ker (T ) =

{
x ∈ X

∣∣∣∣∣
[
x

0

]
∈ V

}
, mul (T ) =

{
w ∈ W

∣∣∣∣∣
[
0

w

]
∈ V

}
,

img (T ) :=

{
w ∈ W

∣∣∣∣∣
[
x

w

]
∈ V for some x ∈ X

}
,

where ker (T ) and mul (T ) are closed subspaces of X and W , respectively. The sub-
space V ⊥ is the graph of the relation −(T−1)∗ = −(T ∗)−1. We denote T−∗ :=
(T−1)∗ = (T ∗)−1. Then

T−∗x† =

{
w† ∈ W

∣∣∣∣∣
[

x†

−w†

]
∈ V ⊥

}
, x† ∈ dom

(
T−∗) = XV ⊥ ,

(A.2)

ker
(
T−∗) = {x† ∈ X

∣∣∣∣∣
[
x†

0

]
∈ V ⊥

}
, mul

(
T−∗) = {w† ∈ W

∣∣∣∣∣
[
0

w†

]
∈ V ⊥

}
,

img
(
T−∗) := {w† ∈ W

∣∣∣∣∣
[

x†

−w†

]
∈ V ⊥ for some x† ∈ X

}
,
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where ker (T−∗) and mul (T−∗) are closed subspaces of X and W , respectively. More-
over, by standard properties of closed relations,

dom(T )
⊥
= mul (T ∗) = ker

(
T−∗) ,

img (T )
⊥
= ker (T ∗) = mul

(
T−∗) ,

dom
(
T−∗)⊥ = mul

(
T−1

)
= ker (T ) ,

img
(
T−∗)⊥ = ker

(
T−1

)
= mul (T ) .

Proof of (i). In terms of the relation T we have ‖x‖V = inf
{‖w‖ ∣∣ w ∈ Tx

}
. It

follows that with To := Pmul(T )⊥T the operator part of T , ‖x‖V = ‖Tox‖W . This

implies that ‖·‖2V is a closed quadratic form on X with domain XV = dom(To) =
dom (T ). An analogous argument shows that ‖x†‖2V ⊥ = ‖T−∗

o x†‖2W and that ‖·‖2V ⊥
is a closed quadratic form on X with domain XV ⊥ = dom (T−∗) = dom (T−∗

o ), where
T−∗
o := Pmul(T−∗)⊥T

−∗ is the operator part of T−∗.
Proof of (ii). In the proof of (ii) we need to further factor out ker (T ) from dom(T )

in order to make the operator Ti := To|dom(T )∩ker(T )⊥ injective. As explained in,

e.g., [25, Appendix A], Ti is a closed injective densely defined operator with dense

range when regarded as an operator from dom (T )∩ ker (T )
⊥
= dom (T )∩dom (T−∗)

to img (T ) ∩ mul (T )
⊥

= img (T ) ∩ img (T−∗). Furthermore, if we decompose the
spaces X and W as

X = ker (T )⊕
(
dom(T ) ∩ ker (T )

⊥)⊕ dom(T )
⊥

(A.3)

= dom
(
T−∗)⊥ ⊕

(
ker
(
T−∗)⊥ ∩ dom(T−∗)

)
⊕ ker

(
T−∗) ,

W = img (T )
⊥ ⊕

(
mul (T )

⊥ ∩ img (T )
)
⊕mul (T )

= mul
(
T−∗)⊕ (img (T−∗) ∩mul

(
T−∗)⊥)⊕ img

(
T−∗)⊥ ,

then with respect to these decompositions (in this order) the (graphs of the) multi-
valued operators T and T−1 and their adjoints are given by

T =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣x0

x1

0

⎤⎥⎦ ,
⎡⎢⎣ 0

Tix1

w0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x0

x1

w0

⎤⎥⎦ ∈

⎡⎢⎣ ker (T )

dom(Ti)

mul (T )

⎤⎥⎦
⎫⎪⎬⎪⎭ ,(A.4)

T−1 =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0

w1

w0

⎤⎥⎦ ,
⎡⎢⎣ x0

T−1
i w1

0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x0

w1

w0

⎤⎥⎦ ∈

⎡⎢⎣ ker (T )

img (Ti)

mul (T )

⎤⎥⎦
⎫⎪⎬⎪⎭ ,

T ∗ =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣w0

w1

0

⎤⎥⎦ ,
⎡⎢⎣ 0

T ∗
i w1

x0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣w0

w1

x0

⎤⎥⎦ ∈

⎡⎢⎣mul (T−∗)

img
(
T−∗
i

)
ker (T−∗)

⎤⎥⎦
⎫⎪⎬⎪⎭ ,

T−∗ =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0

x1

x0

⎤⎥⎦ ,
⎡⎢⎣ w0

T−∗
i x1

0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣w0

x1

x0

⎤⎥⎦ ∈

⎡⎢⎣mul (T−∗)

dom
(
T−∗
i

)
ker (T−∗)

⎤⎥⎦
⎫⎪⎬⎪⎭ .
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From here we can, among others, obtain the corresponding decompositions of the
operator parts of T and T−∗ by restricting them to the closures of their domains and
dropping the multivalued part of the range space, and they are given by

To =

[
0 0

0 Ti

]
, dom (To) =

[
ker (T )

dom (Ti)

]
,(A.5)

T−∗
o =

[
0 0

0 T−∗
i

]
, dom

(
T−∗
o

)
=

[
ker (T−∗)

dom
(
T−∗
i

)] ,
where dom(Ti) = dom(T )∩ker (T )

⊥
and dom

(
T−∗
i

)
= dom(T−∗)∩ker (T−∗)⊥ have

the same closure, equal to the middle component in the decomposition of X given
in (A.3). Here the injective operator part T−∗

i of T−∗ is equal to (T ∗
i )

−1 = (T−1
i )∗.

See [25, Appendix A] for details.

After this digression we now return to the proof of part (ii) of Lemma 3.17.

As we saw in the proof of part (i), ‖x0‖2V = ‖Tox0‖2X and ‖x†
0‖2V ⊥ = ‖T−∗

o x†
0‖2X .

If we interpret To as a densely defined operator on dom (To), then T ∗
o is a (single-

valued) operator, and ‖x0‖2V = 〈x0, T
∗
o Tox0〉X for all x0 ∈ dom (T ∗

o To). However,
if we instead interpret To as an operator acting in X , then T ∗

o is a relation with

mul (T ∗
o ) = dom (To)

⊥
. The self-adjoint relation QV defined in (ii) is equal to QV =

T ∗
o To, where T ∗

o is interpreted in the latter sense. This implies that

mul (QV ) = mul (T ∗
o ) = dom (To)

⊥ = dom (T )⊥ = ker
(
T−∗) ,

ker (QV ) = ker (To) = ker (T ) = dom
(
T−∗)⊥ ,

dom (QV ) = ker (T ) + dom(T ∗
o To) ,

where dom (T ∗
o To) refers to the domain of T ∗

o To with T ∗
o the single-valued operator as

above, and that the graph ofQV can be decomposed with respect to the decomposition
of X in (A.3) as

QV =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣x0

x1

0

⎤⎥⎦ ,
⎡⎢⎣ 0

T ∗
i Tix1

x2

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x0

x1

x2

⎤⎥⎦ ∈

⎡⎢⎣ ker (T )

dom (T ∗
i Ti)

dom (T )
⊥

⎤⎥⎦
⎫⎪⎬⎪⎭ .

The same argument with T replaced by T−∗ gives an analogous decomposition of
QV ⊥ , namely,

QV ⊥ =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0

x†
1

x†
0

⎤⎥⎦ ,
⎡⎢⎣ x†

2

T−1
i T−∗

i x†
1

0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x

†
0

x†
1

x†
2

⎤⎥⎦ ∈

⎡⎢⎣ dom (T−∗)⊥

dom
(
T−1
i T−∗

i

)
ker (T−∗)

⎤⎥⎦
⎫⎪⎬⎪⎭ .

Here ker (T ) = dom(T−∗)⊥, dom (T )⊥ = ker (T−∗), and T−1
i T−∗

i = (T ∗
i Ti)

−1. Thus,
QV ⊥ = Q−1

V .
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Proof of (iii). Let Q
1/2
V and Q

1/2

V ⊥ be the nonnegative self-adjoint square roots of
the relations QV and QV ⊥ whose graphs are given by

Q
1/2
V =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣x0

x1

0

⎤⎥⎦ ,
⎡⎢⎣ 0

Q
1/2
i x1

x2

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x0

x1

x2

⎤⎥⎦ ∈

⎡⎢⎣ ker (‖·‖V )
dom

(
Q

1/2
i

)
ker (‖·‖V ⊥)

⎤⎥⎦
⎫⎪⎬⎪⎭ ,

Q
1/2

V ⊥ =

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎢⎣ 0

x†
1

x†
0

⎤⎥⎦ ,
⎡⎢⎣ x†

2

Q
−1/2
i x†

1

0

⎤⎥⎦
⎞⎟⎠
∣∣∣∣∣∣∣
⎡⎢⎣x

†
0

x†
1

x†
2

⎤⎥⎦ ∈

⎡⎢⎣ ker (‖·‖V )
img
(
Q

1/2
i

)
ker (‖·‖V ⊥)

⎤⎥⎦
⎫⎪⎬⎪⎭ ,

where Qi = T ∗
i Ti is the injective operator part of QV and

XV = ker (T ) + dom
(
Q

1/2
i

)
= ker (‖·‖V ) + dom

(
Q

1/2
i

)
,

XV ⊥ = img
(
Q

1/2
i

)
+ ker

(
T−∗) = img

(
Q

1/2
i

)
+ ker (‖·‖V ⊥) .

Let x ∈ XV and x† ∈ XV ⊥ , and decompose x and x† according to the decomposition of

X above into x = x0+x1 and x† = x†
1+x†

0 with x0 ∈ ker (‖·‖V ), x1 ∈ dom
(
Q

1/2
i

)
, x†

0 ∈
ker (‖·‖V ⊥), and x†

1 ∈ img
(
Q

1/2
i

)
. Then ‖x‖V = ‖Q1/2

i x1‖X , ‖x†‖V ⊥ = ‖Q−1/2
i x†

1‖X ,
and

〈x, x†〉X = 〈x1, x
†
1〉X = 〈Q−1/2

i Q
1/2
i x1, x

†
1〉X = 〈Q1/2

i x1, Q
−1/2
i x†

1〉X .

Therefore, since dom
(
Q

1/2
i

)
= img

(
Q

1/2
i

)
,

‖x‖V = ‖Q1/2
i x1‖X = sup

z†
1∈dom(Q

1/2
i ),‖z†

1‖X≤1

|〈Q1/2
i x1, z

†
1〉X |

= sup
x†
1∈img(Q

1/2
i ),‖Q−1/2

i x†
1‖X≤1

|〈Q1/2
i x1, Q

−1/2
i x†

1〉X |

= sup
x†
1∈img(Q

1/2
i ),‖x†

1‖V ⊥≤1

|〈x1, x
†
1〉X |

= sup
x†∈X

V ⊥ ,‖x†‖
V ⊥≤1

|〈x, x†〉X |,

and thus x ∈ XV . This proves the first half of (3.12). The proof of the second half of
(3.12) is analogous.

It follows from (3.12) that if x ∈ XV , then the first supremum in (3.11) is finite,
and if x† ∈ XV ⊥ , then the second supremum in (3.11) is finite.

Conversely, suppose that the supremum in the first half of (3.11) is finite, and

decompose x into x =
[
x0
x1
x2

]
in accordance with the decomposition in (A.3). Then

x ∈ XV if and only if x1 ∈ dom
(
Q

1/2
i

)
and x2 = 0.

For each x† =

[ 0
x†
1

x†
0

]
∈ XV ⊥ with x†

1 ∈ img
(
Q

1/2
i

)
and x†

0 ∈ ker (‖·‖V ⊥) we have

〈x, x†〉X = 〈x1, x
†
1〉X + 〈x2, x

†
0〉X . Here x†

0 can be an arbitrary vector in ker (‖·‖V †),
so the finiteness of the supremum in the first half of (3.11) implies that x2 = 0. It

remains to show that x1 ∈ dom
(
Q

1/2
i

)
.
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Each x†
1 ∈ img

(
Q

1/2
i

)
can be rewritten in the form x†

1 = Q
1/2
i z†1, where z†1 ∈

dom
(
Q

1/2
i

)
and ‖x†

1‖V ⊥ = ‖Q−1/2
i x†

1‖X = ‖z†1‖X . Thus, the first half of (3.11) can
be rewritten in the form

sup
z†
1∈dom(Q

1/2
i ),‖z†

1‖X≤1

|〈x1, Q
1/2
i z†1〉X | = sup

x†∈X
V ⊥ ,‖x†‖

V ⊥≤1

|〈x, x†〉X | < ∞.

This implies that x1 ∈ dom
(
(Q

1/2
i )∗

)
= dom

(
Q

1/2
i

)
= XV and completes the proof

of the converse part of the first half of (3.11). The proof of the converse part of the
second half of (3.11) is analogous.
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