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Abstract— It is well-known that the algebraic Riccati equa-
tion for infinite-dimensional systems with very unbounded
control operators in its classical form is not well-defined. Several
alternatives have been proposed in the literature. We review
some of these and give special emphasis to the recently proposed
operator node Riccati equation, which is a generalization of the
Lur’e form of the algebraic Riccati equation. We show how the
other reviewed alternative Riccati equations can be obtained
from this operator node Riccati equation.

I. INTRODUCTION
The (control) algebraic Riccati equation associated to the

continuous time system

ẋ(t) = Ax(t) +Bu(t),

x(0) = x0, (1)
y(t) = Cx(t) +Du(t),

with A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m is

A∗X +XA+ C∗C (2)

= (XB + C∗D)(I +D∗D)−1(B∗X +D∗C).

One of the reasons for the importance of this algebraic
Riccati equation is that its smallest nonnegative definite
solution is the optimal cost operator for the classical linear
quadratic optimal control problem:

〈Xx0, x0〉 = inf
u∈L2(0,∞;Cm)

∫ ∞
0

‖u(t)‖2 + ‖y(t)‖2 dt.

Infinite-dimensional systems (i.e. systems for which the state
space is not Cn, but is some possibly infinite-dimensional
Hilbert space) arise from, for example, partial differential
equations and delay differential equations. Also for infinite-
dimensional systems the linear quadratic optimal control
problem is of great importance. As in the finite-dimensional
case, the algebraic Riccati equation often plays an important
role in the numerical solution of the linear quadratic optimal
control problem. If A generates a strongly continuous semi-
group on the Hilbert space X , B : U →X , C : X → Y
and D : U → Y are bounded operators and the finite
cost condition holds, i.e. for all x0 ∈ X there exists a
u ∈ L2(0,∞; U ) such that y ∈ L2(0,∞; Y ), then the
classical algebraic Riccati equation (2) is still the correct
equation when considered in the weak form [1, Theorem
6.2.4]: for all x ∈ D(A)

〈Xx,Ax〉+ 〈Ax,Xx〉+ 〈Cx,Cx〉 (3)

= 〈(I +D∗D)−1(B∗X +D∗C)x, (B∗X +D∗C)x〉.
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However, if B is very unbounded, then it may happen
that with X the optimal cost operator, Xx /∈ D(B∗) for
some x ∈ D(A) and therefore the weak form (3) of the
algebraic Riccati equation doesn’t even make sense. We
briefly review the classical example where this occurs in
Section II. Several alternative Riccati equations have been
proposed in the literature. In this paper we concentrate on the
operator node Riccati equation recently obtained in [2]. We
show how it is the natural generalization of the Lur’e form
of the Riccati equation (Section III), we illustrate it using the
earlier considered example (Section IV) and we show how
other alternative Riccati equations proposed in the literature
may be obtained from the operator node Riccati equation
(Section V).

II. REVIEW OF AN EXAMPLE
The classical example which shows that the weak form (3)

of the classical form of the algebraic Riccati equation has
insurmountable problems when B is very unbounded (while
C is bounded) is given in [3]. We briefly present a trivial
variation on this. Firstly, we consider the optimal control
problem

inf
u∈L2(0,∞;Cm)

∫ ∞
0

〈Ru(t), u(t)〉+ ‖y(t)‖2 dt,

where R > 0 for which the weak form of the Riccati equation
becomes

〈Xx,Ax〉+ 〈Ax,Xx〉+ 〈Cx,Cx〉 (4)

= 〈(R+D∗D)−1(B∗X +D∗C)x, (B∗X +D∗C)x〉,

(in [3] the case R = I was considered). Secondly, we
consider a bounded spatial interval (0, 2) rather than the
semi-infinite spatial interval (0,∞) considered in [3] (the
reason for making this modification is that a bounded spatial
interval is more convenient for numerical calculations; these
however are not presented here). The PDE considered is

dw

dt
(t, ξ) =

dw

dξ
(t, ξ), t > 0, ξ ∈ (0, 1) ∪ (1, 2),

w(t, 1−)− w(t, 1+) = u(t), t > 0,

w(t, 2) = 0, t > 0,

w(0, ξ) = w0(ξ), ξ ∈ (0, 2),

y(t) = ξ 7→ w(t, ξ)|(0,1).

The optimal control problem is easy to solve explicitly in a
way entirely similar to that used in [3]. The optimal control
is given by

uopt(t) =

{
−1
1+Rw0(t+ 1) t ∈ (0, 1),

0 t ≥ 1.



The optimal trajectory is given by the following formulas.
For ξ ∈ (0, 1) we have

wopt(t, ξ) =


w0(ξ + t) ξ + t ∈ (0, 1),
R

1+Rw0(ξ + t) ξ + t ∈ (1, 2),

0 ξ + t > 2,

and for ξ ∈ (1, 2) we have

wopt(t, ξ) =

{
w0(ξ + t) ξ + t ∈ (1, 2),

0 ξ + t > 2.

Note that we have for t ∈ (0, 1) that

wopt(t, 1−) =
R

1 +R
w0(1 + t),

wopt(t, 1+) = w0(1 + t),

in particular, ξ 7→ wopt(t, ξ) is not continuous at ξ = 1
for t ∈ (0, 1). The optimal cost operator X : L2(0, 2) →
L2(0, 2) is given by

(Xf)(ξ) = p(ξ)f(ξ),

where

p(ξ) =

{
ξ ξ ∈ (0, 1),
R

1+R ξ ∈ (1, 2).

Note that p is not continuous at ξ = 1.
The considered PDE can be written in abstract state space

form as follows. The state space is X := L2(0, 2), the
input space U is one-dimensional, the output space is Y :=
L2(0, 1) and we have

Af = f ′,

D(A) =
{
f ∈ L2(0, 2) : f ′ ∈ L2(0, 2), f(2) = 0

}
,

Cf = f |[0,1],
D(C) = L2(0, 2),

D = 0,

B∗f = f(1),

D(B∗) =
{
f ∈ L2(0, 2) : f ′ ∈ L2(0, 2), f(0) = 0

}
.

Because p is discontinuous at ξ = 1, there exist x ∈ D(A)
such that Xx /∈ D(B∗). It follows that the weak form (4)
of the Riccati equation is not well-defined.

We compute the left-hand side of (4) (which is well-

defined): For x ∈ D(A) we have

〈Xx,Ax〉+ 〈Ax,Xx〉+ 〈Cx,Cx〉

= 2Re

∫ 2

0

p(ξ)x(ξ)x′(ξ) dξ +

∫ 1

0

|x(ξ)|2 dξ

= 2Re

∫ 1

0

ξx(ξ)x′(ξ) dξ + 2Re

∫ 2

1

R

1 +R
x(ξ)x′(ξ) dξ

+

∫ 1

0

|x(ξ)|2 dξ

=
[
ξ|x(ξ)|2

]1
0
−
∫ 1

0

|x(ξ)|2 dξ

+

[
R

1 +R
|x(ξ)|2

]2
1

+

∫ 1

0

|x(ξ)|2 dξ

= |x(1)|2 − R

1 +R
|x(1)|2 =

1

1 +R
|x(1)|2.

The operator B∗ has two ‘obvious’ extensions B̃∗: B̃∗f :=
f(1−) and B̃∗f := f(1+). With these choices the right-hand
side of (4) equals

〈R−1B̃∗Xx, B̃∗Xx〉 =

{
1
R |x(1)|2 B̃∗f := f(1−),

R
(1+R)2 |x(1)|2 B̃∗f := f(1+).

We note that for no R > 0 does this equal the left-hand
side of (4). As mentioned in [3], a correct Riccati equation
is obtained by replacing B∗ in (4) by B̃∗f := f(1−) (the
Yosida extension of B∗) and replacing R in (4) by R + 1.
We come back to this issue later in this paper.

III. THE OPERATOR NODE RICCATI EQUATION

A Riccati equation theory using the concept of a system
node (or more generally: an operator node) was recently
developed in [2]. We first very briefly review the notion of
system node; see [4, Section 4.7] for more information. The
basic idea is to re-write the dynamical system (1) as[

ẋ(t)
y(t)

]
=

[
A B
C D

] [
x(t)
u(t)

]
,

and consider [ A B
C D ] as an operator from

[
X
U

]
to
[

X
Y

]
whose

domain is not necessarily a product space. The following
definition is taken from [4, Definition 1.1.1].

Definition 1: Let X ,U ,Y be Banach spaces. An oper-
ator S : D(S) ⊂

[
X
U

]
→
[

X
Y

]
is called a system node

if

1) S is a closed operator;
2) if we split S =

[
SX
SY

]
in accordance with the splitting

of the range space
[

X
Y

]
, then SX with domain D(S)

is closed;
3) the operator A defined by Ax := SX [ x0 ] with domain

D(A) = {x ∈X : [ x0 ] ∈ D(S)} is the generator of a
strongly continuous semigroup on X ;

4) for every u ∈ U there exists a x such that [ xu ] ∈ D(S).
Like in [4], it is convenient to use the notation SX =: A&B
and SY =: C&D.



For the PDE example from Section II, the system node is
given by

S

[
x
u

]
=

[
x′

x|(0,1)

]
,

D(S) =

{[
x
u

]
∈
[
L2(0, 2)

C

]
: x|′(0,1) ∈ L

2(0, 1),

x|′(1,2) ∈ L
2(1, 2), x(1−)− x(1+) = u, x(2) = 0

}
,

where the derivative in the definition of S has to be under-
stood as x′ := x′(0,1) + x′(1,2).

To motivate the operator node Riccati equation, we first
recall what is essentially its finite-dimensional equivalent:
the Lur’e form of the Riccati equation (usually only used
for singular optimal control problems). The operator X is
called a solution of the Lur’e form of the Riccati equation
if there exist operators K and L such that

A∗X +XA+ C∗C = K∗K,

B∗X +D∗C = L∗K,

R+D∗D = L∗L.

The operator L can be chosen as (R + D∗D)1/2, and if
R + D∗D is invertible, then so is L and K must equal
(R +D∗D)−1/2(B∗X +D∗C) by the second of the Lur’e
equations. Upon substitution, the first of the Lur’e equations
then becomes the standard Riccati equation. The Lur’e
equations are mostly studied for the case when R + D∗D
is not invertible, but in our case they provide a convenient
form even for the case where R + D∗D is invertible since
they generalize to system nodes. We first note that the Lur’e
equations can equivalently be written in the weak matrix
form〈[

A B
] [x
u

]
, Xx

〉
+

〈
Xx,

[
A B

] [x
u

]〉
+ ‖

[
C D

] [x
u

]
‖2 + 〈Ru, u〉 = ‖

[
K L

] [x
u

]
‖2.

The generalization to system nodes considered in [2] is then
immediate.

Definition 2: Let S be a system node and R = R∗. The
operators X = X∗ ∈ L(X ) and K&L : D(S) → U are
called a solution of the operator node Riccati equation for
S if:〈

A&B

[
x
u

]
, Xx

〉
+

〈
Xx,A&B

[
x
u

]〉
+

∥∥∥∥C&D

[
x
u

]∥∥∥∥2
+ 〈Ru, u〉 =

∥∥∥∥K&L

[
x
u

]∥∥∥∥2 , [
x
u

]
∈ D(S).

Remark 3: Note that compared to [2, Definition 5.1 and
Remark 5.2] we have dropped the condition that for some α
larger than the growth bound of the semigroup generated by
A the operator

K&L

[
(α−A)−1B

I

]
,

is invertible in L(U ). This condition is in fact satisfied for
the example from Section II.

IV. THE OPERATOR NODE RICCATI EQUATION
FOR THE EXAMPLE

It is proven in [2] that the optimal cost operator gives rise
to a solution of the operator node Riccati equation. However,
for the example from Section II it is easy and instructive to
verify this directly. We have for [ xu ] ∈ D(S)〈

A&B

[
x
u

]
, Xx

〉
+

〈
Xx,A&B

[
x
u

]〉
+

∥∥∥∥C&D

[
x
u

]∥∥∥∥2 + 〈Ru, u〉

= 2Re

∫ 2

0

p(ξ)x(ξ)x′(ξ) dξ +

∫ 1

0

|x(ξ)|2 dξ +R|u|2.

Elementary computations show that this equals

|x(1−)|2 − R

1 +R
|x(1+)|2 +R|u|2.

Using that since [ xu ] ∈ D(S) we have x(1−)− x(1+) = u,
the above can be written as∣∣∣∣ 1√

1 +R
x(1+) +

√
1 +R u

∣∣∣∣2 .
It follows that we can choose

K&L

[
x
u

]
=

1√
1 +R

x(1+) +
√

1 +R u,

to satisfy the operator node Riccati equation.

Note that setting K&L

[
x
u

]
= 0 leads to 1√

1+R
x(1+) +

√
1 +R u = 0, which can be solved for u to give the

feedback
u =

−1

1 +R
x(1+),

which is the same optimal feedback as obtained in [3] and
as obtained by direct computation of the optimal control and
optimal state in Section II.

V. THE CONNECTION WITH OTHER RICCATI
EQUATIONS

To make the connection with other alternative Riccati
equations proposed in the literature, we consider the more
general operator node Riccati equation〈

A&B

[
x
u

]
, Xx

〉
+

〈
Xx,A&B

[
x
u

]〉
+〈[

Q N
N∗ R

]C&D

[
x
u

]
u

 ,
C&D

[
x
u

]
u

〉

=

∥∥∥∥K&L

[
x
u

]∥∥∥∥2 , [
x
u

]
∈ D(S).

Here S :=
[
A&B
C&D

]
is a system node; Q = Q∗ ∈ L(Y ), N ∈

L(U ,Y ) and R = R∗ ∈ L(U ) are weighting operators
(above we had Q = I and N = 0). The unknowns are
X = X∗ ∈ L(X ) and K&L : D(S)→ U .



Apart from Section V-A we also assume in the remainder
that the system node is L2 well-posed and that the Popov
function

Φ(s1, s2) :=

[
G(s2)
I

]∗ [
Q N
N∗ R

] [
G(s1)
I

]
.

is coercive, since these are the assumptions under which the
discussed alternative Riccati equations were derived.

A. The resolvent Riccati equation
We note that every system node has a control operator B ∈

L(U ,X−1), where X−1 ⊃ X is a certain extrapolation
space (this follows from [4, Lemma 4.7.7]). It is easily shown
that for any [ xu ] ∈ D(S) and s ∈ ρ(A) there exists a unique
z ∈ D(A) such that x = z + (s − A)−1Bu. It is trivially
seen that all elements [ xu ] of this form are in D(S). This all
follows from [4, Lemma 4.7.3viii].

We also note that the transfer function of a system node

is defined by G(s) := C&D

[
(s−A)−1B

I

]
.

We substitute elements
[
zi + (s−A)−1Bui

ui

]
(with i =

1, 2) in the operator node Riccati equation to obtain three
equations that are together equivalent to the operator node
Riccati equation.

The first of these corresponds to the choice u1 = u2 = 0
and is a Lyapunov equation:

〈Az,Xz〉+ 〈Xz,Az〉+ 〈QCz,Cz〉 = ‖Kz‖2, z ∈ D(A).
(5)

The second corresponds to the choice z1 = z2 = 0 and is

(s+ s̄)〈(s−A)−1Bu,X(s−A)−1Bu〉

+

〈[
Q N
N∗ R

] [
G(s)u
u

]
,

[
G(s)u
u

]〉
= ‖X (s)u‖2 , u ∈ U , (6)

where we have used A(s−A)−1B+B = s(s−A)−1B and
where X is the transfer function of

[
A&B
K&L

]
.

The third equation is obtain by the choice u1 = 0 = z2
and is

〈Az,X(s−A)−1Bu〉+ 〈Xz, s(s−A)−1Bu〉

+

〈[
Q N
N∗ R

] [
Cz
0

]
,

[
G(s)u
u

]〉
=

〈Kz,X (s)u〉 , z ∈ D(A), u ∈ U . (7)

It follows that the operator node Riccati equation is equiva-
lent to the three equations (5), (6), (7) combined.

B. The spectral factor
If the semigroup generated by A is exponentially stable,

so that the imaginary axis is contained in the resolvent set
of A, then (6) implies that

Φ(iω, iω) = X (iω)∗X (iω),

so that if X and its inverse are in H∞, X is a spectral factor
of the Popov function. Since the Popov function is assumed
coercive, X as defined in Section V-A is indeed a spectral
factor.

C. The Weiss2–Staffans Riccati equation

We note that a transfer function G of a system node is
called regular if lims→∞G(s) exists, where the limit is taken
along the positive real axis (for infinite-dimensional input
and output spaces, we need to make the distinction between
uniformly, strongly and weakly regular). See [4, Section 5.6].

If the spectral factor X is weakly regular and the system
transfer function G is weakly regular, then we can let s→∞
in (7) to obtain

〈B∗wXx, u〉+ 〈QCx,Du〉+ 〈N∗Cx, u〉
= 〈Kx,Lu〉, x ∈ D(A), u ∈ U , (8)

where we have used that (s−A)−1B → 0 and the definition
of the Yosida extension of B∗ [4, Definition 5.4.1]:

B∗w := lim
s→∞

B∗s(s−A∗)−1.

In (6) we consider the case where on the left we use
s1 and on the right we use s2 (the derivation of this from
the operator node Riccati equation is completely analogues).
This gives instead of (6)

(s1 + s̄2)〈(s1 −A)−1Bu,X(s2 −A)−1Bu〉

+

〈[
Q N
N∗ R

] [
G(s1)u
u

]
,

[
G(s2)u
u

]〉
= 〈X (s1)u,X (s2)u〉 , u ∈ U .

We first let s1 go to infinity and then s2. Note that s̄2〈(s1−
A)−1Bu,X(s2−A)−1Bu〉 → 0 when s1 →∞ since (s1−
A)−1Bu→ 0. We therefore obtain

lim
s→∞
〈u,B∗wX(s−A)−1Bu〉+

〈[
Q N
N∗ R

] [
Du
u

]
,

[
Du
u

]〉
= 〈Lu,Lu〉 , u ∈ U . (9)

Note that the first term is generally not equal to zero. This
amounts to “changing” R when compared to the standard
case when writing down the Riccati equation.

Combining (5) and (8) we obtain, noting that L is invert-
ible since the Popov function is coercive,

〈Az,Xz〉+ 〈Xz,Az〉+ 〈QCz,Cz〉 =〈
(LL∗)−1TXz, TXz

〉
, z ∈ D(A),

where
TX := B∗wX +D∗QC +N∗C.

This Riccati equation was obtained in [5, Theorem 12.8] and
in [6]. The equation (9) for the feedthrough of the spectral
factor appeared in [6, Corollary 7.2].

It is this Riccati equation which was used in [3] for
the example considered in Section II (for the semi-infinite
spatial interval). In that example R has to be replaced by
R+ 1 in the Riccati equation because, contrary to the finite
dimensional case, LL∗ 6= R but instead LL∗ = R+1 for this
example. Equivalently, in this example lims→∞〈u,B∗wX(s−
A)−1Bu〉 = ‖u‖2 and not equal to zero (as it would be for
a finite dimensional system).



D. The Grabowski Riccati equation

Recently Grabowski [7] obtained a Riccati equation which
is “astonishingly not the same” [7, page 38] as that obtained
in [5]. We show that the Grabowski Riccati equation cor-
responds to taking s = 0 in the resolvent Riccati equation
(5), (6), (7) (as noted, the Weiss2–Staffans Riccati equation
corresponds to s = +∞). As Grabowski, we assume here
that the semigroup generated by A is exponentially stable.
For s = 0, equation (6) is

X (0)∗X (0) = R+G(0)∗N +NG(0) +G(0)∗QG(0),

where we note that the right-hand side is denoted R− by
Grabowski and is invertible since the Popov function is
assumed to be coercive. From (7) with s = 0 we then obtain
(this solution may not be unique, but the non-uniqueness
would cancel out later)

K = R
−1/2
− (−B∗A−∗XA+G(0)∗QC +N∗C),

where we note that A−1B is denoted D by Grabowski and
N +QG(0) is denoted N− by Grabowski. Substituting this
in (5) gives for z ∈ D(A)

〈Az,Xz〉+ 〈Xz,Az〉+ 〈QCz,Cz〉
= 〈R−1− (−D∗XA+N∗−C)z, (−D∗XA+N∗−C)z〉,

which is exactly the Riccati equation obtained by Grabowski:
[7, Equation (2.7)].

VI. CONCLUSIONS

If the control operator is sufficiently unbounded, then
it is known that the usual Riccati equation fails to be
well-defined. There are several alternative Riccati equations
available in the literature. We have shown how two of these
(the Weiss2–Staffans Riccati equation and the Grabowski
Riccati equation) can be obtained from the recently proposed
operator node Riccati equation. This operator node Riccati
equation is a generalization of the Lur’e form of the Riccati
equation and appears to be the most natural (and general) of
the available Riccati equations which continue to hold for
very unbounded control operators.
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