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Abstract

We solve the problem of robust stabilization with respect to right-
coprime factor perturbations for irrational discrete-time transfer func-
tions. The key condition is that the associated dynamical system and
its dual should satisfy a finite-cost condition so that two optimal cost
operators exist. We obtain explicit state space formulas for a robustly
stabilizing controller in terms of these optimal cost operators and the
generating operators of the realization. Along the way we also obtain
state space formulas for Bezout factors.
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1 Introduction

The problem of robust stabilization with respect to coprime factor perturbations
was first solved in the rational continuous-time case in Glover and McFarlane
[9]. The irrational continuous-time case was solved in Georgiou and Smith [8],
but in contrast to the work by Glover and McFarlane no state space formulas
were given. State space formulas for the irrational continuous-time case were
given under increasingly weaker assumptions in Curtain and Zwart [7, Chapter
9.4], Curtain [1], Oostveen [13, Chapter 7] and Curtain [2], [3]. Here we con-
sider the problem for discrete-time infinite-dimensional systems. As in all the
above articles, the state space formulas for the robustly stabilizing controller are
based on state space formulas for the Nehari problem for a normalized coprime
factorization. In the literature these formulas for the solution of the Nehari
problem are usually given under the assumption of exponential stabilizability
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and detectability, however in [5] we obtained them for discrete-time systems un-
der weaker assumptions. As we did in [4] for the continuous-time case, we also
use the state space formulas for the Nehari problem to obtain state space formu-
las for the Bezout factors of the normalized coprime factorization. The robust
stabilization problem is formulated in Section 2. Background results on the sub-
optimal control problem, normalized factorizations and coprime factorizations
for discrete-time infinite-dimensional systems are summarized in Sections 2, 3
and 4, respectively. The formulas for the robustly stabilizing controllers are
then derived in Section 6. Various routine calculations have been relegated to
the appendix in Section 7.

Finally, we remark that, using the Cayley transform approach as in Opmeer
[14, 15], these discrete-time results can be used to obtain explicit formulas for
robustly stabilizing controllers with internal loop for continuous-time systems
under slightly less restrictive assumptions than those in Curtain [2], [3].

2 Formulation of the problem

We consider dynamical systems in discrete-time given by

xn+1 = Axn +Bun, n ∈ Z+

x0 = x0, (1)

yn = Cxn +Dun, n ∈ Z+,

where A ∈ L(X ), B ∈ L(U ,X ), C ∈ L(X ,Y ), D ∈ L(U ,Y ). Here U ,
X and Y are separable Hilbert spaces and e.g. L(X ,Y ) denotes the Banach
space of bounded linear operators from X to Y . The transfer function of such
a system is given by

G(z) = D +

∞∑
k=0

CAkBzk,

for those z in the largest disc centered at zero for which the series converges.
The series converges at least on the disc centered at the origin and with radius
1/r(A), where r(A) is the spectral radius of the operator A, and on that possibly
smaller disc the transfer function is alternatively given by G(z) = D + zC(I −
zA)−1B.

We recall that the Hardy space H∞(D;L(U ,Y )) is the space of uniformly
bounded analytic functions D→ L(U ,Y ), where D denotes the open unit disc.
A system is called input-output stable if its transfer function is in H∞. We
also recall that a H∞(D;L(U ,Y )) function induces a bounded operator from
H2(D; U ) to H2(D; Y ) by multiplication. A system is called output stable if its
observation Lyapunov equation A∗LcA−Lc +C∗C = 0 has a nonnegative self-
adjoint solution and input stable if its control Lyapunov equation ALbA

∗−Lb+
BB∗ = 0 has a nonnegative self-adjoint solution. The smallest nonnegative self-
adjoint solution of the Lyapunov equations are called the observability Gramian
(denoted by LC) and the controllability Gramian (denoted by LB), respectively.
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A system is called exponentially (or power) stable if the spectral radius of A is
strictly smaller than 1. Exponential stability implies input stability, output
stability and input-output stability. Any H∞ function has a realization that is
input stable, output stable and input-output stable but not necessarily one that
is exponentially stable.

The analytic function K defined on a neighbourhood of zero and taking
values in L(Y ,U ) is said to stabilize G in the input-output sense if

[
I −K
−G I

]
has an inverse in H∞(D; U ×Y ,U ×Y ). This inverse is the transfer function
from [ u1

u2
] to [ e1e2 ] in figure 1. Note that the above condition is equivalent to

I −KG being invertible in a neighbourhood of zero and (I −KG)−1, G(I −
KG)−1, (I −GK)−1K, (I −GK)−1 being in H∞.

6+
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Figure 1: Feedback interconnection of G and K.

We note the following extension of stabilizing controllers from [6]. The an-
alytic function K =

[
K11 K12

K21 K22

]
defined on a neighbourhood of zero and taking

values in L(Y ×R,U ×R) where R is an additional Hilbert space is said to
be a stabilizing controller with internal loop for G if I −K11 −K12

−G I 0
0 −K21 I −K22

 ,
has an inverse in H∞(D; U ×Y ×R,U ×Y ×R). This inverse is the transfer
function from [u1;u2lu3] to [e1; e2; e3] in figure 2. If I −K22 is invertible in a
neigbourhood of zero, then the conventional controller K11+K12(I−K22)−1K21

stabilizes G if and only if K is a stabilizing controller with internal loop for G.
An advantage of controllers with internal loop over conventional controllers is
that an invertibility condition -which is not always satisfied- can be omitted.
We refer to [6] for a further discussion of this.

The transfer function G is said to have a right factorization if there exists
a function [ MN ] ∈ H∞(D;L(U ,U × Y )) such that M(z) is invertible in a
neighbourhood of zero and G(z) = N(z)M(z)−1 in a neighbourhood of zero.
The factorization is called normalized when the multiplication operator on H2

associated with [ MN ] is an isometry (i.e. when [ MN ] is inner). The factorization

is called strongly right coprime if there exists [X̃,−Ỹ] ∈ H∞(D;L(U ×Y ,U ))
such that [X̃,−Ỹ] [ MN ] = I (i.e. when [ MN ] has a left-inverse in H∞). The

function [X̃,−Ỹ] is called a Bezout factor for [ MN ].
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Figure 2: Controller with internal loop

A system is stabilizable in the input-output sense if and only if it has a
strongly right coprime factorization ([10], [17] for the case of finite-dimensional
input and output spaces; [11] for the general case of possibly infinite-dimensional
input and output spaces).

Assume that G has a normalized strongly right coprime factor [ MN ]. A
transfer function G∆ is a ε right-coprime perturbation of G if G∆ = (N +
∆N)(M + ∆M)−1 with ‖∆‖H∞ < ε where ∆ :=

[
∆M
∆N

]
. A controller is called

robustly stabilizing with respect to right-coprime perturbations with robustness
margin ε if it stabilizes all ε-right-coprime perturbations of G. We also use the
term ε-robustly stabilizing controller. The objective in this article is to find
state space formulas for such a robustly stabilizing controller. In the case that
G(0) = 0 we derive explicit formulas for a conventional robustly stabilizing
controller. In the case that G(0) 6= 0 and U is finite-dimensional we can also
obtain explicit formulas for a conventional robustly stabilizing controller. When
G(0) 6= 0 and U is infinite-dimensional it is not clear whether a conventional
robustly stabilizing controller exists. However, we do obtain explicit formulas
for a robustly stabilizing controller with internal loop.

3 The suboptimal Nehari problem

The following main result of [5] is crucial to the results in this article as it forms
the basis for all the state space formulas given here.

Theorem 1. Assume that
[
AF BF

CF DF

]
is input stable, output stable and input-

output stable. Let F denote the transfer function and LB and LC the con-
trollability and observability Gramian respectively. Let σ >

√
r(LBLC), where

r(LBLC) is the spectral radius of the product LBLC , be given. Define L as the
transfer function of the system[

AL BL
CL DL

]
:=

[
AW −AWWC∗F

B∗FLCAW −D∗F −B∗FLCAWWC∗F

]
,
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with AW = AF (I +WC∗FCF )−1 and W = (σ2I − LBLC)−1LB. Then

sup
|z|=1

‖F(z) + L(z)∗‖ ≤ σ.

4 Normalized factorizations

In [4] we obtained the continuous-time analogues of the results reviewed in this
section on normalized factorizations. The discrete-time results presented here
can be proven similarly (details are given in [15] and [16]).

To the dynamical system (1) we associate the finite cost condition: for all
x0 ∈X there exists a u ∈ `2(Z+; U ) such that y ∈ `2(Z+; Y ). Under this con-
dition, for each x0 ∈X , there exists an optimal control uopt with corresponding
output yopt minimizing the cost function ‖[ uy ]‖2`2(Z+;U×Y ) and a nonnegative,

self-adjoint operator Q such that
∥∥∥[ uopt

yopt

]∥∥∥2

`2
= 〈Qx0, x0〉. This operator Q is

the smallest nonnegative self-adjoint solution of the control algebraic Riccati
equation

A∗QA−Q+ C∗C − (C∗D +A∗QB)(I +D∗D +B∗QB)(D∗C +B∗QA) = 0.

The corresponding closed-loop system

[
AF BF
CF DF

]
:=

 A+BF BS−1/2

F S−1/2

C +DF DS−1/2

 , (2)

with
S := I +D∗D +B∗QB, F := −S−1(D∗C +B∗QA), (3)

is a state space realization of a normalized right factorization of G. The observ-
ability gramian LC of this closed-loop system equals the optimal cost operator
Q. The closed-loop system (2) is output stable and input-output stable (but
it is not necessarily input stable). Its transfer function provides a weakly right
coprime factorization of the transfer function of [A B

C D ] (see [12]), but not neces-
sarily a strongly right coprime one. In the next section we discuss an assumption
that does guarantee input stability and strong right coprimeness.

5 Coprime factorizations

The dual finite cost condition is the condition that the finite cost condition holds
for the dynamical system

xn+1 = A∗xn + C∗un, n ∈ Z+

x0 = x0,

yn = B∗xn +D∗un, n ∈ Z+.
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We denote the optimal cost operator of this dual system by P . This operator
P is the smallest nonnegative self-adjoint solution of the filter algebraic Riccati
equation

APA∗ − P +BB∗ − (BD∗ +APC∗)(I +DD∗ + CPC∗)(DB∗ + CPA∗) = 0.

For the observability and controllability gramian of the closed-loop system (2)
we have respectively, LC = Q and LB = (I + PQ)−1P . It follows that, when
both the finite cost condition and the dual finite cost condition hold, the closed-
loop system (2) is not only output stable and input-output stable but also
input stable. Moreover, r(LBLC) = r((I + PQ)−1PQ) < 1. Proofs of the
above statements can be found in [16] or [15]. (In [16, Lemma 6.9] an additional
controllability assumption is made to obtain LB = (I + PQ)−1P , but this
condition is superfluous as shown in [15, Proposition 6.43]. The argument there
is essentially the same as was used in continuous-time in [12, Lemma 4.9]).

Denote the normalized right factor that is the transfer function of the closed-
loop system (2) by F = [ MN ]. Under the assumption that both the finite
cost condition and the dual finite cost condition hold, applying Theorem 1
we conclude that for any σ with r((I + PQ)−1PQ) < σ < 1 there exists a
L ∈ H∞(D;L(U × Y ,U )) with

‖F− L∗‖∞ = ‖ [ MN ]− L∗‖∞ ≤ σ < 1,

and L has a realization

AL :=AW ,

BL :=[−AWWF ∗,−AWW (C∗ + F ∗D∗)], (4)

CL :=S−1/2B∗QAW ,

DL :=[−S−1/2(I +B∗QAWWF ∗),−S−1/2(D∗ +B∗QAWW (C∗ + F ∗D∗))],

where we use the notation of (2) and (3).
Noting that F∗F = I by the normalization condition we obtain

‖I + LF‖H∞ = ‖F∗F + LF‖L∞ ≤ ‖F∗ + L‖L∞ ‖F‖L∞ = ‖F + L∗‖L∞ < 1.

SinceH∞(D;L(U )) is a Banach algebra, it follows from the Neumann series that
LF has an inverse in H∞(D;L(U )). Hence (LF)−1LF = I, and F has a left-
inverse in H∞(D;L(U ×Y ,U )), namely (LF)−1L. In other words, [X̃,−Ỹ] :=
(L [ MN ])−1L is a Bezout factor for [ MN ]. From the state space formulas for L given
by Theorem 1 and the state space formulas (2) for the normalized right factor,
state space formulas for the Bezout factors can be obtained as (see Corollary 10
in the appendix):

A = AW + (I +AWWA∗FQ)B[I +D∗D −B∗QAWWA∗FQB]−1B∗QAW ,

B = −AWW [F ∗, C∗ + F ∗D∗]

− (I +AWWA∗FQ)B[I +D∗D −B∗QAWWA∗FQB]−1([I,D∗] +B∗QAWW [F ∗, C∗ + F ∗D∗]),

C = −S1/2[I +D∗D −B∗QAWWA∗FQB]−1B∗QAW ,

D = S1/2[I +D∗D −B∗QAWWA∗FQB]−1([I,D∗] +B∗QAWW [F ∗, C∗ + F ∗D∗]),
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where

AF = A+BF,

Eσ := σ2I + (σ2 − 1)PQ,

W = E−1
σ P,

AW = AF (Eσ + P (C∗C + F ∗SF ))−1Eσ,

and S and F are as in (3). This gives the following theorem.

Theorem 2. Assume that [A B
C D ] with transfer function G satisfies the finite

cost condition and the dual finite cost condition. Then the transfer function of
the system (2) is a normalized strongly right coprime factorization of G. The

transfer function of the system
[
A B
C D

]
given above is a Bezout factor for this

factorization.

Proof. That the transfer function is a normalized strongly right coprime factor-
ization was proven as mentioned above in [16] and also in [15]. The statement
on the Bezout factor is proven as Corollary 10 in the appendix.

By duality, under the conditions of Theorem 2, G also has a normalized
strongly left coprime factorization [M̃, Ñ]. In the following lemma we provide a
result on a function obtained from the normalized strongly left and right coprime
factorizations that will be used in the proof of existence of robustly stabilizing
controllers.

Lemma 3. Assume that G has a strongly right coprime factorization [ MN ] and

a strongly left coprime factorization [M̃, Ñ]. Define W almost everywhere on
the unit circle by

W(z) :=

[
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
.

Then W(z) is unitary for almost all z on the unit circle.

Proof. We first show that W(z) is an isometry, i.e. that W(z)∗W(z) = I for
almost all z on the unit circle. We have

W(z)∗W(z) =

[
M(z)∗ N(z)∗

−Ñ(z) M̃(z)

] [
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
=

[
M(z)∗M(z) + N(z)∗N(z) N(z)∗M̃(z)∗ −M(z)∗Ñ(z)∗

M̃(z)N(z)− Ñ(z)M(z) M̃(z)M̃(z)∗ + Ñ(z)Ñ(z)∗

]
.

The diagonal entries equal the identity since both the right and the left fac-
torization is normalized. The off-diagonal entries are zero by by the fact that
G = NM−1 = M̃−1Ñ in a neighbourhood of zero so that ÑM = M̃N in a
neighbourhood of zero which by analyticity on the open unit disc, the identity
theorem and nontangential limits implies equality on the unit circle. We show
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that W(z) is surjective. Since a surjective isometry is unitary, this will com-
plete the proof of the lemma. We use that an operator is surjective if and only
if its range is closed and its adjoint is injective. As is well-known, the range
of any isometry is closed. So it remains to show that W(z)∗ is injective. It is
well-known [7, Lemma A.7.44] that Bezout factors can be chosen so that[

M Y
N X

]
=

[
X̃ −Ỹ
−Ñ M̃

]−1

. (5)

We use (5) and the normalization property to obtain

[M∗,N∗] = [M∗,N∗]

[
M Y
N X

] [
X̃ −Ỹ
−Ñ M̃

]
= [I,M∗Y + N∗X]

[
X̃ −Ỹ
−Ñ M̃

]
= [X̃−M∗YÑ−N∗XÑ, −Ỹ + M∗YM̃ + N∗XM̃], (6)

on the unit circle. Suppose that [u; y] ∈ kerW(z)∗. Then M∗u+ N∗y = 0 and
−Ñu+ M̃y = 0. Multiplying (6) by [u; y] we obtain 0 = X̃u− Ỹy. Hence[

X̃ −Ỹ
−Ñ M̃

] [
u
y

]
= 0.

Using (5) we obtain [u; y] = 0. It follows that W(z)∗ is injective, which com-
pletes the proof.

6 Robustly stabilizing controllers

The following theorem relates robustly stabilizing controllers to the Nehari prob-
lem.

Theorem 4. Suppose that [ MN ] is a normalized strongly right coprime factor

of G and that ε ∈ (0, 1). If there exists a [Ṽ, Ũ] ∈ H∞(D;L(U × Y ,U )) that
satisfies ∥∥∥[ MN ] +

[
−Ṽ∗
Ũ∗

]∥∥∥ ≤√1− ε2,

then K :=
[

0 I
Ũ I−Ṽ

]
is a an ε-robustly stabilizing controller with internal loop

for G.

Proof. Let G∆ be a ε right-coprime perturbation of G; i.e. G = (N+∆N)(M+
∆M)−1 with ‖∆‖H∞ < ε where ∆ :=

[
∆M
∆N

]
.

It follows from [6, Theorem 4.2] (that article is for continuous-time systems,
but the discrete-time proof is identical) that K is a stabilizing controller with
internal loop for G∆ if and only if ṼM∆ − ŨN∆ has an inverse in H∞.

Let W : T→ L(U × Y ) be the function from Lemma 3, i.e.,

W(z) =

[
M(z) −Ñ(z)∗

N(z) M̃(z)∗

]
.
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Define P ∈ L∞(T,L(U × Y ,U )) by

P :=
(

[M∗,N∗] + [−Ṽ, Ũ]
)
W = [I − ṼM + ŨN, ṼÑ∗ + ŨM̃∗]. (7)

Since W(z) is unitary we have

‖P‖∞ ≤
√

1− ε2.

It follows that ‖I − ṼM + ŨN‖∞ < 1. Since H∞(D,L(U )) is a Banach
algebra, it follows that ṼM − ŨN has an inverse in H∞(D,L(U )). Hence K
is a stabilizing controller with internal loop for G.

Denote ∆ := [∆M; ∆N] = [M∆;N∆]− [M;N]. Then we have

ṼM∆ − ŨN∆ = ṼM− ŨN + [Ṽ,−Ũ]∆ =
(
ṼM− ŨN

)
(I + S∆) ,

where
S := (ṼM− ŨN)−1[Ṽ,−Ũ].

It follows as before from [6, Theorem 4.2] that K is a stabilizing controller with
internal loop for G∆ if and only if I+S∆ has an inverse in H∞(D,L(U )). The
latter is true if ‖S‖∞ < 1/ε. Using the fact that W is unitary, we have

‖S‖2∞ = ‖SW‖2∞ = ‖[I,−(ṼM− ŨN)−1(ṼÑ∗ + ŨM̃∗)]‖2

= 1 + ‖(ṼM− ŨN)−1(ṼÑ∗ + ŨM̃∗)]‖2 = 1 + ‖(I −P1)−1P2‖2,

where P = [P1,P2] is the function from (7). From Lemma 5 below we obtain

‖S‖2∞ ≤
1

ε2
,

as desired. So K is a an ε-robustly stabilizing controller with internal loop for
G.

The following elementary lemma was used in the proof of Theorem 4.

Lemma 5. If in a Banach algebra we have ‖x‖2 + ‖y‖2 ≤ α2 < 1, then I − y
is invertible and ‖(I − y)−1x‖2 ≤ α2/(1− α2).

Proof. That I − y has a bounded inverse follows from the Neumann series the-
orem. From this theorem we also obtain ‖(I − y)−1‖ ≤ 1/(1 − ‖y‖). It follows
that ‖(I − y)−1x‖2 ≤ ‖x‖2/(1− ‖y‖)2. Denote x1 := ‖x‖ and y1 := ‖y‖. Using
elementary vector calculus one sees that the function x2

1/(1 − y1)2 under the
constraint x2

1 + y2
1 ≤ α2 < 1 has the maximum (α2 −α4)/(1−α2). The desired

result follows.

Combining Theorem 4 with the results mentioned earlier in the article gives
the following theorem that provides state space formulas for a robustly stabiliz-
ing controller.
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Theorem 6. Suppose that [A B
C D ] satisfies the finite cost condition and the dual

finite cost condition. Denote the optimal cost operator and the dual optimal cost
operator by Q and P , respectively and the closed-loop system (2) by

[
AF BF

CF DF

]
.

Let σ be such that r((I +PQ)−1PQ) < σ < 1 and L := [−Ṽ, Ũ] the solution of
the Nehari problem with parameter σ given by Theorem 1.

Then K :=
[

0 I
Ũ I−Ṽ

]
is a
√

1− σ2-robustly stabilizing controller with inter-

nal loop for the transfer function of [A B
C D ]. If I+B∗QAWWF ∗ (or equivalently

I+AWWF ∗B∗Q) is invertible then a
√

1− σ2-robustly stabilizing conventional
controller is given by the state space formulas:

Ã = (I +AWWF ∗B∗Q)−1AW ,

B̃ = −(I +AWWF ∗B∗Q)−1AWWC∗,

C̃ = −(I +B∗QAWWF ∗)−1B∗QAW ,

D̃ = D∗ + (I +B∗QAWWF ∗)−1B∗QAWWC∗.

In particular, this invertibility condition is satisfied when D = 0.

Proof. That the given K is a robustly stabilizing controller with internal loop
follows immediately from Theorem 4 and the existence of the solution to the
Nehari problem from Theorem 1.

The invertibility assumption of the theorem is equivalent to invertiblity of
Ṽ in a neighbourhood of zero, so by the general correspondence between con-
trollers with internal loop and conventional controllers under an invertibility
condition that was mentioned in Section 2, Ṽ−1Ũ is a

√
1− σ2-robustly stabi-

lizing conventional controller. That the given formulas are state space formulas
for Ṽ−1Ũ is proven as Corollary 12 in the appendix.

To see that the invertibility condition is satisfied when D = 0 we argue as
follows. By the proof of Theorem 4, ṼM − ŨN, with [ MN ] being the transfer

function of (2), has an inverse in H∞(D,L(U )). In particular, (ṼM− ŨN)(0)
has an inverse in L(U ). If D = 0, then it is seen from (2) that N(0) = 0.
So (ṼM − ŨN)(0) = Ṽ(0)M(0). It follows that Ṽ(0)M(0) is invertible and,
since M(0) is invertible, it follows that Ṽ(0) is. From this it follows that Ṽ
is invertible in a neighbourhood of zero. That in turn is equivalent to the
invertibility conditions mentioned in the theorem.

We note that the Bezout factors from Theorem 2 are the ones such that
X̃−1Ỹ equals the robustly stabilizing controller from Theorem 6.

Remark 7. We note that invertibility of Ṽ in a neighbourhood of zero can be
guaranteed by replacing Ṽ by δIU + Ṽ with δ such that −δ /∈ σ(Ṽ(0)). If U is
finite-dimensional, then such a δ may be chosen positive and arbitrarily small.
It follows that if U is finite-dimensional, replacing Ṽ by δIU + Ṽ leads to a
conventional robustly stabilizing controller with robustness margin arbitrarily
close to the desired

√
1− σ2. In the state space formulas this corresponds to

replacing I + AWWF ∗B∗Q and I + B∗QAWWF ∗ by ηI + AWWF ∗B∗Q and
ηI +B∗QAWWF ∗ respectively where η is chosen close to 1. So at least in the
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case where U is finite-dimensional, controllers with internal loop can be avoided
by slightly tweaking the formulas.

7 Appendix: Calculation of state space formulas

The following elementary lemma is very useful in streamlining the calculations
in this appendix.

Lemma 8. Assume that
[
AT BT

CT DT

]
and

[
AR BR

CR DR

]
are two systems with UT = YR

and that satisfy AT − BTCR = AR and CT = DTCR. Denote the transfer
functions by T and R respectively. Then

[
AT BR+BTDR

CT DTDR

]
is a realization of

TR.

Proof. We have for s of sufficiently large modulus

T

(
1

s

)
R

(
1

s

)
=
[
CT (sI −AT )−1BT +DT

] [
CR(sI −AR)−1BR +DR

]
= CT (sI −AT )−1BTCR(sI −AR)−1BR + CT (sI −AT )−1BTDR +DTCR(sI −AR)−1BR +DTDR

= CT (sI −AT )−1BTCR(sI −AR)−1BR + CT (sI −AT )−1BTDR + CT (sI −AR)−1BR +DTDR

= CT (sI −AT )−1 [BTCR + sI −AT ] (sI −AR)−1BR + CT (sI −AT )−1BTDR +DTDR

= CT (sI −AT )−1 [sI −AR] (sI −AR)−1BR + CT (sI −AT )−1BTDR +DTDR

= CT (sI −AT )−1BR + CT (sI −AT )−1BTDR +DTDR

= CT (sI −AT )−1 [BR +BTDR] +DTDR.

With z = 1
s and using the identity theorem we obtain that TR equals the

transfer function of the given system.

Lemma 9. Assume that
[
AE BE

CE DE

]
and

[
AF BF

CF DF

]
are two systems with UE = YF

and such that AE−BECF = AF and CE = DECF . Further assume that DEDF

is invertible. Denote the transfer functions by E and F respectively. Then EF
is invertible in a neighbourhood of zero and a realization of (EF)−1E is[
AE − (BF +BEDF )(DEDF )−1CE BE − (BF +BEDF )(DEDF )−1DE

(DEDF )−1CE (DEDF )−1DE

]
.

Proof. It follows from Lemma 8 that EF has realization[
AE BF +BEDF

CE DEDF

]
.

It then follows that (EF)−1 has realization[
AT BT
CT DT

]
=

[
AE − (BF +BEDF )(DEDF )−1CE −(BF +BEDF )(DEDF )−1

(DEDF )−1CE (DEDF )−1

]
.

This realization together with the realization of E again satisfies the assumptions
of Lemma 8 and application of that lemma gives the desired result.
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Corollary 10. The transfer function of
[
A B
C D

]
is a Bezout factor as claimed

in Theorem 2.

Proof. Recall from the paragraph leading up to the statement of Theorem 2
that a Bezout factor is (LF)−1L, where F is the transfer function of the sys-
tem

[
AF BF

CF DF

]
(system (2)) and L the transfer function of the system (4). So it

remains to show that the transfer function of
[
A B
C D

]
equals (LF)−1L. This fol-

lows from a application of Lemma 9 with
[
AF BF

CF DF

]
the system (2) and

[
AE BE

CE DE

]
the system

[
AL BL

CL DL

]
given by (4). We verify the details. The conditions on the

state space parameters needed to apply Lemma 9 are checked as follows.
We have

AE −BECF = AL −BLCF = AW +AWWC∗FCF = AW (I +WC∗FCF ) = AF .

We further have

DECF = DLCF = −D∗FCF −B∗FLCAWWC∗FCF ,

and using the above established AWWC∗FCF = AF −AW this equals

−D∗FCF −B∗FLCAF +B∗FLCAW .

Now CE = CL = B∗FLCAW and so it remains to show that D∗FCF +B∗FLCAF =
0. Substituting from (2) and using that the fact that the observability gramian
LC of the closed-loop system equals the smallest nonnegative self-adjoint solu-
tion Q of the control Riccati equation gives:

D∗FCF +B∗FLCAF = S−1/2 (F +D∗C +D∗DF +B∗QA+B∗QBF )

= S−1/2 (D∗C +B∗QA) + S−1/2(I +D∗D +B∗QB)F.

Using the definition of S from (3) this equals

S−1/2 (D∗C +B∗QA) + S1/2F.

and by the definition of F from (3) this is indeed equal to zero. So DECF = CE .
In the paragraph leading up to the statement of Theorem 2 we showed

that LF has an inverse in H∞. In particular, LF evaluated in zero has a
bounded inverse. Since DEDF = DLDF = L(0)F(0), it follows that DEDF has
a bounded inverse.

This shows that the conditions of Lemma 9 are indeed satisfied. We now
verify that the formulas given there indeed give the formulas

[
A B
C D

]
for the

Bezout factor. We first re-write DEDF = DLDF as

−D∗FDF −B∗FQAWWC∗FDF = −S−1/2(I+D∗D)S−1/2−S−1/2B∗QAWC
∗
FDF ,

and using the above established C∗FDF = −A∗FQBF this equals

−S−1/2(I+D∗D)S−1/2+S−1/2B∗QAWA
∗
FQBS

−1/2 = −S−1/2(I+D∗D−B∗QAWA∗FQB)S−1/2.
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We subsequently rewrite BF +BEDF = BF +BLDF as:

BS−1/2 −AWWC∗FDF ,

and using the above established C∗FDF = −A∗FQBF this equals

BS−1/2 +AWWA∗FQBS
−1/2 = (I +AWWA∗FQ)BS−1/2.

We then have for the ‘A’ operator of the Bezout factor:

AL−(BF+BLDF )(DLDF )−1CL = AW+(I+AWWA∗FQ)B[I+D∗D−B∗QAWA∗FQB]−1B∗QAW ,

which is precisely A. Using the above established identities, the formulas for the
other state space parameters for the Bezout factor can be similarly verified.

Lemma 11. Let [G,H] be the transfer function of the system[
A BG BH
C DG DH

]
,

and assume that DG is invertible. Then[
A−BGD−1

G C BH −BGD−1
G DH

D−1
G C D−1

G DH

]
,

is a realization of G−1H.

Proof. It is easily seen that G−1 has realization[
A−BGD−1

G C −BGD−1
G

D−1
G C D−1

G

]
.

This realization and the realization of H satisfy the assumptions of Lemma 8
and the claimed result follows.

Corollary 12. The transfer function of
[
Ã B̃
C̃ D̃

]
is a robustly stabilizing con-

troller as claimed in Theorem 6.

Proof. This follows from a application of Lemma 11 to the system
[
AL BL

CL DL

]
from

(4). To verify the details it is convenient to repeat the formulas for
[
AL BL

CL DL

]
.[

AW −AWWF ∗ −AWW (C∗ + F ∗D∗)
S−1/2B∗QAW −S−1/2(I +B∗QAWWF ∗) −S−1/2(D∗ +B∗QAWW (C∗ + F ∗D∗))

]
.

It then follows as mentioned above from Lemma 11 that the ‘D’ operator of the
robustly stabilizing controller is given by

(I +B∗QAWWF ∗)−1(D∗ +B∗QAWW (C∗ + F ∗D∗))

= (I +B∗QAWWF ∗)−1B∗QAWWC∗ + (I +B∗QAWWF ∗)−1(I +B∗QAWWF ∗)D∗

= (I +B∗QAWWF ∗)−1B∗QAWWC∗ +D∗,
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which checks. Using this formula for D−1
G DH and Lemma 11, the ‘B’ operator

of the robustly stabilizing controller equals

−AWW (C∗ + F ∗D∗) +AWWF ∗
[
D∗ + (I +B∗QAWWF ∗)−1B∗QAWWC∗

]
.

After canceling terms this equals

−AWWC∗ +AWWF ∗(I +B∗QAWWF ∗)−1B∗QAWWC∗,

which may be rewritten as

−AWWC∗ +AWWF ∗B∗Q(I +AWWF ∗B∗Q)−1AWWC∗

= −AWWC∗ +
[
I − (I +AWWF ∗B∗Q)−1

]
AWWC∗

= −(I +AWWF ∗B∗Q)−1AWWC∗,

which checks. By Lemma 11, the ‘A’ operator of the robustly stabilizing con-
troller equals

AW −AWWF ∗(I +B∗QAWWF ∗)−1B∗QAW .

Rewriting gives that this equals

[I −AWWF ∗(I +B∗QAWWF ∗)−1B∗Q]AW

=[I − (I +AWWF ∗B∗Q)−1AWWF ∗B∗Q]AW

=(I +AWWF ∗B∗Q)−1AW ,

which checks. Similarly, by Lemma 11, the ‘C’ operator of the robustly stabi-
lizing controller equals

−(I +B∗QAWWF ∗)−1B∗QAW ,

which checks.
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