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Abstract

We consider second order infinite-dimensional systems with force con-
trol and collocated position measurement interconnected with finite-dimensional
controllers of the same type. We show that under assumptions that gener-
alize those in the finite-dimensional case (the theory of negative imaginary
systems), asymptotic stability of the closed-loop system can be concluded,
but that the closed-loop system may not be exponentially stable nor input-
output stable.

1 Introduction

Flexible systems with force control and collocated velocity measurement lead
to positive real transfer functions. This class of systems is very well studied.
The case of collocated position measurement has received far less attention. An
important recent contribution to the latter situation was the introduction of the
concept of a negative imaginary transfer function [7, 8, 10]. Many flexible sys-
tems (such as beams, strings and plates) are best described by partial differential
equations and are therefore infinite-dimensional systems. These are not covered
by the current theory on negative imaginary functions. In this article we inves-
tigate in how far the existing theory on negative imaginary functions generalizes
to infinite-dimensional systems. The for applications most relevant case is that
of second order systems with force control and collocated position measurement
interconnected with finite-dimensional controllers of the same form, and we re-
strict ourselves to this case. We make extensive use of existing theory of second
order infinite-dimensional systems, see e.g. [6] for an extensive discussion and
bibliography of such systems.
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The paradigmatic example in this article is the following wave equation
with boundary force control and collocated position measurement (see e.g. [12,
Chapter 9] and see [4] for the similar situation involving a beam equation):

wtt(x, t) = wxx(x, t), wx(0, t) = u(t), w(1, t) = 0, y(t) = −w(0, t).

Here w(x, t) denotes the displacement at position x ∈ [0, 1] and time t ≥ 0.
This can be written in an abstract second order operator-theoretic form as (the
details are in Section 4):

ẅp(t) +Kpwp(t) = Gpu(t), y(t) = G∗pwp(t), (1)

where the state space is infinite-dimensional. Systems of this form, but with
a finite-dimensional state space, are shown in the theory of negative imaginary
systems to be stabilized by a finite-dimensional controller of the form

ẅc(t) +Dcẇc(t) +Kcwc(t) = Gcy(t), u(t) = G∗cwc(t),

under some assumptions on the controller parameters [14, Theorem 1], [15]. Sta-
bilization means here that the closed-loop A-matrix which appears in the first
order form of the closed-loop system is Hurwitz. We show that –under essentially
the same conditions as in the finite-dimensional case– in the infinite-dimensional
case the closed-loop system is asymptotically stable, but not necessarily expo-
nentially stable (the eigenvalues are in the left half-plane, but can converge to
the imaginary axis). If we add an input disturbance to the plant (i.e. replace u
in (1) by u+ d) and consider the transfer function from this input disturbance
to the output y of the plant, then contrary to the finite-dimensional case, this
transfer function is generally not stable.

2 Abstract second order systems

We review the set-up of abstract second order infinite-dimensional systems in
the special case of bounded damping operators (a more general case can be
found in e.g. [6]). How the above wave equation fits into this framework is
explained in Section 4.

The second order equation that we consider is

ẅ(t) +Dẇ(t) +Kw(t) = Gu(t), y(t) = Hw(t). (2)

The stiffness operator K is assumed to be a densely defined nonnegative self-
adjoint operator on the Hilbert space H with a bounded inverse. We denote
the domain of K by K1 and that of its (nonnegative self-adjoint) square root
by K1/2, we equip these spaces with their graph norm, thus making them into
Hilbert spaces. The space K−1/2 is defined as the completion of H under the

norm ‖x‖−1/2 := ‖(I +K1/2)−1x‖H , which makes it into a Hilbert space. The
operator K extends to a bounded operator from K1/2 to K−1/2.
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We assume that the damping operator D is a bounded operator on H . The
second order control operator G is assumed to be a bounded operator from
the Hilbert space U (the input space) to K−1/2. The second order observation
operator H is assumed to be a bounded operator from K1/2 to the Hilbert space
Y (the output space).

The first order form of the second order equation (2) is

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t),

with state space X := K1/2×H (which in physical situations will be the finite
energy space) and

A =

[
0 I
−K −D

]
, B =

[
0
G

]
, C =

[
H 0

]
.

The position w is the first component of the state and the velocity ẇ is the second
component of the state. The state operator A has domain D(A) = K1 ×K1/2

and (by the Lumer-Philips theorem, see e.g. [1, Theorem 3.4.5], [9, Proposition
2.25], [11, Theorem 3.4.8], [13, Theorem 3.8.4]) generates a strongly continuous
contraction semigroup on the state space. The first order control operator B is
a bounded operator from U to H ×K−1/2 (but not necessarily to the state
space) and the first order observation operator C is a bounded operator from
the state space to Y .

We note for future reference that

A−1 =

[
−K−1D −K−1

I 0

]
, (3)

which is a bounded operator on the state space.

3 Asymptotic stability of the closed-loop system

For the plant

ẅp(t) +Kpwp(t) = Gpu(t), y(t) = G∗pwp(t),

we make the assumptions of Section 2 (with D = 0) and denote the correspond-
ing spaces with a superscript p. We further assume that the input and output
spaces are finite-dimensional. For the controller

ẅc(t) +Dcẇc(t) +Kcwc(t) = Gcuc(t), yc(t) = G∗cwc(t),

we assume that Dc and Kc are positive self-adjoint operators on the finite-
dimensional space H c. Naturally, the input space of the controller equals the
output space of the plant and the output space of the controller equals the input
space of the plant. This makes the controller a very special case of the abstract
second order systems of Section 2. The interconnected system (with u = yc + d
and uc = y) then has the second order representation

ẅ(t) +Dẇ(t) +Kw(t) = Gd(t), y(t) = Hw(t),
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with w = [wp
wc

] and

D =

[
0 0
0 Dc

]
, K =

[
Kp −GpG∗c
−GcG∗p Kc

]
, G =

[
Gp
0

]
, H =

[
G∗p 0

]
,

where D is a bounded operator on H p ×H c, K is an operator on H p ×H c

with domain

D(K) =

{[
zp
zh

]
∈ K p

1/2 ×H c : Kpzp −GpG∗czh ∈H p

}
,

G is a bounded operator from U to K p
−1/2 and H is a bounded operator from

K p
1/2 ×H c to Y .

For now we disregard the control and observation operators of this closed-
loop system and concentrate on the state operators (we return to the control
and observation operators in the example in Section 4). For the closed-loop
system to fit into the abstract second order framework of Section 2, we need
K to be nonnegative self-adjoint with a bounded inverse on H p ×H c. The
following lemma provides a necessary and sufficient condition for this. It involves
the DC loop gain condition known in the theory of negative imaginary systems
[8, 10, 14, 15]. The transfer function of a system is denoted by G with the
relevant subscript (p for the plant, c for the controller).

Lemma 1. The above operator K is nonnegative self-adjoint with a bounded
inverse on H p × H c if and only if the spectral radius of the DC loop gain
Gp(0)Gc(0) is strictly smaller than 1.

Proof. By Schur complements, K being nonnegative self-adjoint with a bounded
inverse is equivalent to the same property holding for

Kc −GcG∗pK−1p GpG
∗
c .

We recognize G∗pK
−1
p Gp as the transfer function of the plant evaluated in zero,

Gp(0), so that the condition is equivalent to (using finite-dimensionality of H c):

Kc −GcGp(0)G∗c > 0.

This is equivalent to
K−1/2c GcGp(0)G∗cK

−1/2
c < I,

which in turn is equivalent to the spectral radius condition

r(K−1/2c GcGp(0)G∗cK
−1/2
c ) < 1.

The ordering of operators is irrelevant for the spectral radius of a product (so
long as the involved products make sense), so that the above condition is equiv-
alent to

r(Gp(0)GcK
−1
c G∗c) < 1.

We recognize that GcK
−1
c G∗c = Gc(0) and the result follows.
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By the theory of Section 2, under the assumption of Lemma 1, the closed-
loop state operator A generates a strongly continuous contraction semigroup
on the state space K1/2 ×H . We note that this state space is generally not
equal to the product (up to re-ordering) of the state spaces of the plant and the
controller, i.e. it is not generally equal to K p

1/2 ×K c
1/2 ×H p ×H c.

The following is our main theorem. It uses the notion of approximate ob-
servability which can be found in e.g. [3, Section 4.1], [11, Section 9.4], [13,
Chapter 6].

Theorem 2. If the following hold:

1. the standing assumptions on the plant and the controller mentioned at the
beginning of this section, namely

• Kp is a densely defined nonnegative self-adjoint operator on the Hilbert
space H p with a bounded inverse,

• Gp is a bounded operator from the finite-dimensional space U to
K p
−1/2,

• Kc is a bounded nonnegative self-adjoint operator on the finite-dimensional
space H c with a bounded inverse,

• Dc is a bounded nonnegative self-adjoint operator on the finite-dimensional
space H c with a bounded inverse,

• Gc is a bounded operator from the finite-dimensional space Y to H c,

2. the DC loop gain condition r(Gp(0)Gc(0)) < 1,

3. the plant is approximately observable,

4. Gc is injective,

5. K−1p is compact,

then the strongly continuous semigroup generated by the closed-loop A is asymp-
totically stable.

Proof. Since the closed-loop state operator A generates a strongly continuous
contraction semigroup, its spectrum is contained in the closed left half-plane.
We now show that in fact A has no eigenvalues on the imaginary axis. We note
that this doesn’t use assumption 5.

It follows from (3) applied to the closed-loop system that zero is not an

eigenvalue of A. So suppose that Aφ = iωφ with ω ∈ R, ω 6= 0, and φ =
[
φ1

φ2

]
∈

D(A). Then
(−ω2 + iωD +K)φ1 = 0, φ2 = iωφ1.

Consider the inner-product on D(K1/2)×H given by

〈x, z〉K := 〈x2, z2〉H + 〈K1/2x1,K
1/2z1〉H ,
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which is equivalent to the inner-product obtained from the graph norm. Then
on the one hand

〈Aφ, φ〉K = iω〈φ, φ〉K ,

so that Re〈Aφ, φ〉K = 0, and on the other hand

〈Aφ, φ〉K = −〈Kφ1+Dφ2, φ2〉H +〈φ2,Kφ1〉H = −〈Dφ2, φ2〉H −2i Im〈Kφ1, φ2〉H ,
(4)

so that Re〈Aφ, φ〉K = −〈Dφ2, φ2〉H . It follows that 〈Dφ2, φ2〉H = 0. Since

D =
[
0 0
0 Dc

]
, it follows that 〈Dcφ

c
2, φ

c
2〉 = 0, where φ2 =

[
φp
2

φc
2

]
. Since Dc is

assumed to be positive, it follows that φc2 = 0. It then follows from φ2 = iωφ1
that φc1 = 0. The equation (−ω2 + iωD +K)φ1 = 0 then becomes

0 =

[
−ω2 +Kp GpG

∗
c

GcG
∗
p −ω2 + iωDc +Kc

] [
φp1
0

]
.

It follows that
GcG

∗
pφ
p
1 = 0, Kpφ

p
1 = ω2φp1.

Since Gc is assumed to be injective, it follows that

G∗pφ
p
1 = 0, Kpφ

p
1 = ω2φp1,

we also have
φp2 = iωφp1,

so that φp is unobservable for the plant. It follows that φp = 0 because the plant
is assumed to be approximately observable. We conclude that φ = 0, which is
a contradiction. We conclude that A has no eigenvalues on the imaginary axis.

We note that in the finite-dimensional case, the above eigenvalue result im-
plies stability. In the infinite-dimensional case, it does not [3, Example 5.1.4],
[9, Example 3.6], [1, Example 5.1.10], more information is needed. The eigen-
value result together with A−1 being compact does provide enough information
to conclude asymptotic stability [9, Theorem 3.26]. We now show that A−1 is
indeed compact. This does use assumption 5.

By Schur complements and the fact that G∗pK
−1
p Gp = G(0) we have

K−1 =

[
K−1p +K−1p GpG

∗
c(Kc −GcGp(0)G∗c)

−1GcG
∗
pK
−1
p −K−1p GpG

∗
c(Kc −GcGp(0)G∗c)

−1

−(Kc −GcGp(0)G∗c)
−1GcG

∗
pK
−1
p (Kc −GcGp(0)G∗c)

−1

]
.

The inverses here are well-defined by the DC loop gain condition (see the proof
of Lemma 1). The fact that the state space of the controller is finite-dimensional
implies that all operators except possibly the operator in the upper left corner
are compact. Compactness of that operator however follows from the fact that
K−1p is compact. Using (3) for the closed-loop system it now follows that A−1 is
compact on the state space (the fact that the damping operator D is bounded
is important here).
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Remark 3. Note that the DC loop gain condition r(Gp(0)Gc(0)) < 1 looks
different from the one in previous articles on negative imaginary systems, which
have the condition that the largest eigenvalue of Gp(0)Gc(0) must be strictly
smaller than one. However, since Gp(0) and Gc(0) are nonnegative self-adjoint,
the eigenvalues of their product are nonnegative, so that the two conditions
–in the particular case of second order systems considered here– are in fact
equivalent.

The example in the next section shows that the closed-loop semigroup need
not be exponentially stable under the conditions of Theorem 2 and that the
closed-loop system need not be input-output stable under the conditions of
Theorem 2 either.

4 An example

We return to the example of a wave equation with force control and position
measurement introduced in the introduction:

wtt(x, t) = wxx(x, t), wx(0, t) = u(t), w(1, t) = 0, y(t) = −w(0, t). (5)

This can be written in abstract second order operator-theoretic form as:

ẅp(t) +Kpwp(t) = Gpu(t), y(t) = G∗pwp(t),

where H p := L2(0, 1) and (with W 2,2 the standard Sobolev space)

Kp := − ∂2

∂x2
, K p = D(Kp) := {z ∈W 2,2(0, 1) : z′(0) = 0, z(1) = 0},

and
G∗pz := −z(0), K p

1/2 = D(G∗p) = {z ∈W 1,2(0, 1) : z(1) = 0}.

That the operator K−1p is compact on L2(0, 1) can be shown similarly as in
[3, Example A4.26] (or more abstractly by invoking Sobolev embedding). This
system is approximately observable since putting y = 0 and u = 0 gives the
boundary value problem

wtt(x, t) = wxx(x, t), wx(0, t) = 0, w(1, t) = 0, w(0, t) = 0,

which has only the zero solution (e.g by Laplace transforming in t and then
considering it as an initial value problem in x with zero initial conditions at
x = 0). The open-loop transfer function can be calculated (as in [3, Section 4.3]
or [2]) to be

Gp(s) =
sinh s

s cosh s
.

It follows from Theorem 2 that with the one-dimensional controller

ẅc(t) +Dcẇc(t) +Kcwc(t) = y(t), u(t) = wc(t),
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with Dc > 0 and Kc > 1 (to satisfy the DC loop gain condition), the closed-loop
system is asymptotically stable.

The closed-loop transfer function can be calculated to be

G(s) =
sinh s

s cosh s− sinh s
s2+Dcs+Kc

.

Consider the points sn := π
2 i+nπi with n ∈ Z (which are the open-loop poles).

We have cosh sn = 0 and sinh sn = ±1 so that G(sn) = −(s2n +Dcsn +Kc). It
follows that |G(sn)| → ∞ as n→∞ so that G /∈ L∞(iR) and hence the closed-
loop system is not input-output stable. The eigenvalues λn of the closed-loop
state operator coincide with the poles of the closed-loop transfer function, i.e.
they are the solutions of the equation

s cosh s− sinh s

s2 +Dcs+Kc
= 0.

This equation can be re-written as

−e2s =
s3 +Dcs

2 +Kcs+ 1

s3 +Dcs2 +Kcs− 1
.

By keeping only the asymptotically largest term on the right hand-side, we
obtain the asymptotic equation −e2s = 1, which has as solutions the eigenvalues
of the open-loop system sn := π

2 i + nπi. It can be easily shown (e.g. using
the method described in [5] or in a more elementary way by an application of
Rouché’s theorem) that λn − sn → 0, so that Re λn → 0 as n→∞. Hence the
closed-loop system is not exponentially stable.

5 Conclusion

We have shown that –at least for second order systems with force control and
position measurement and for finite-dimensional controllers of the same type–
negative imaginary stability theory carries over to the infinite-dimensional case
if stability is understood as asymptotic stability, but not if it is understood as
exponential stability or as input-output stability.
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[14] Junlin Xiong, Alexander Lanzon, and Ian R. Petersen. A negative imagi-
nary lemma and the stability of interconnections of linear negative imagi-
nary systems. IEEE Trans. Automat. Control, 55(10):2342–2347, 2010.

[15] Junlin Xiong, Ian R. Petersen, and Alexander Lanzon. On lossless negative
imaginary systems. In Proc. of the Asian Control Conference, pages 824–
829, 2009.

9


