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Abstract

We show that control systems with an analytic semigroup and con-
trol and observation operators that are not too unbounded have a Hankel
operator that belongs to the Schatten class Sp for all positive p. This
implies that the Hankel singular values converge to zero faster than any
polynomial rate. This in turn implies fast convergence of balanced trunca-
tions. As a corollary, decay rates for the eigenvalues of the controllability
and observability gramians are also provided. Applications to the heat
equation and a plate equation are given.

1 Introduction

The Hankel singular values σk of a transfer function G ∈ H∞ capture how well
the transfer function can be approximated by stable transfer functions of smaller
McMillan degree. For all stable transfer functions Gn of McMillan degree n we
have

σn+1 ≤ ‖G− Gn‖H∞ ,

and there always exist stable transfer functions Gn of McMillan degree n (for
example those resulting from balanced truncation [7]) such that

‖G− Gn‖H∞ ≤ 2

∞∑
k=n+1

σk.

We are interested here in the case where G is irrational (and thus has infinite
McMillan degree). The above estimates show that a necessary condition for con-
vergence of finite McMillan degree approximations is compactness of the Hankel
operator of G and that a sufficient condition is nuclearity (i.e. membership of
the trace class) of the Hankel operator of G. These two conditions are discussed
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in [4]. However, the estimates provide more information: if we have a conver-
gence rate of the Hankel singular values, then these provide a convergence rate
for the (e.g. balanced truncation) approximations. For delay equations this
issue is treated in detail in [6]. For discrete-time infinite-dimensional systems
this is treated in [3]. For applications in random matrix theory the decay rate
of Hankel singular values (under for control theory applications unreasonably
strict assumptions) is studied in [2]. For finite-dimensional systems an investi-
gation of the decay of Hankel singular values was carried out in [1], where also
the decay of the eigenvalues of the systems gramians is studied.

In this article we show that for control systems with an analytic semigroup
and control and observation operators that are not too unbounded, the Hankel
singular values satisfy

∞∑
k=1

σpk <∞,

(i.e. the Hankel operator is in the Schatten class Sp) for all p > 0. This implies
that nqσn → 0 for all q > 0, so that the Hankel singular values of such systems
decay very rapidly. The proof of this fact is based on the characterization of
Schatten class Hankel operators in terms of their transfer function belonging
to a certain Besov space which was proven independently by Peller [13] and
Semmes [15] for the case 0 < p < 1 most relevant here (and earlier by Peller
[12] and [11] for the case p ≥ 1).

In Section 2 we precisely state this characterization theorem and provide the
needed definitions. In Section 3 we then state exactly which control systems we
study and give some partial differential equation examples. The main result
and its proof follow in Section 4. As corollaries in that section we also obtain
results on the decay rate of the eigenvalues of the systems gramians.

2 Bergman spaces, Besov spaces and the char-
acterization theorem

The Bergman space Ap(C+
0 ; B) with p > 0, C+

0 the open right half complex
plane and B a Banach space consists of the analytic functions f : C+

0 → B that
satisfy ∫ ∞

0

∫ ∞
−∞
‖f(x+ iy)‖pB dy dx <∞.

The Bergman kernel (for the right half-plane) is defined on C+
0 × C+

0 as

K(z, w) :=
1

(z + w̄)2
. (1)

The weighted Bergman space Ap,r(C+
0 ; B) with p > 0 and r > − 1

2 consists of

those analytic functions f : C+
0 → B that satisfy∫ ∞

0

∫ ∞
−∞
‖f(x+ iy)‖pB K(x+ iy, x+ iy)−r dy dx <∞,
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or equivalently ∫ ∞
0

∫ ∞
−∞
‖f(x+ iy)‖pB x2r dy dx <∞,

(see Semmes [15]). The Besov spaceBp(C+
0 ; B) consists of the analytic functions

f : C+
0 → B that satisfy

f( 2
p ) ∈ Ap(C+

0 ; B).

Here f( 2
p ) is a fractional derivative. Equivalently (without having to deal with

fractional derivatives) the Besov space Bp(C+
0 ; B) consists of the analytic func-

tions f : C+
0 → B that satisfy

f (n) ∈ Ap,
np
2 −1(C+

0 ; B),

for some integer n > 1
p (equivalently: for all n > 1

p ). See e.g. Semmes [15] or

Peller [13, page 490] for this definition of Besov spaces.

Remark 1. For future reference we note that with K the Bergman kernel from
(1), we have for fixed w ∈ C+

0 that

K(·, w)η ∈ Bp(C+
0 ),

for all η > 0 and all p > 0. This is (up to notation) the same statement as [15,
Lemma 5]. Defining for η > 0 and w ∈ C+

0 the function f : C+
0 → C as

f(z) := K(z, w)η,

we then see that any analytic function g : C+
0 → B with the property that for

all n ∈ N there exists a Mn > 0 such that for all s ∈ C+
0

‖g(n)(s)‖B ≤Mn|f (n)(s)|, (2)

belongs to Bp(C+
0 ; B) for all p > 0.

Recall that the Schatten class Sp consists of those operators whose singular
values form an `p(N) sequence. Also recall that the Hardy space H2(C+

0 ; H )
with H a separable Hilbert space consists of the analytic functions f : C+

0 →H
that satisfy

sup
x>0

∫ ∞
−∞
‖f(x+ iy)‖2H dy <∞,

and carries the obvious inner-product. By taking non-tangential limits, H2(C+
0 ; H )

can be identified with a closed subspace of L2(iR; H ). Similarly, H2(C−0 ; H )
can be identified with the orthogonal complement of H2(C+

0 ; H ) in L2(iR; H ).
The Hardy space H∞(C+

0 ; B) consists of all bounded analytic functions C+
0 →

B and carries the obvious norm. By taking non-tangential limits, H∞(C+
0 ; B)

can be identified with a closed subspace of L∞(iR; B). We recall that a function
in H∞(C+

0 ;L(U ,Y )) –using the above identification– induces by multiplica-
tion a bounded operator from L2(iR; U ) to L2(iR; Y ). The Hankel operator
associated to this H∞(C+

0 ;L(U ,Y )) function is obtained by restricting this
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multiplication operator to H2(C−0 ; H ) and projecting onto H2(C+
0 ; H ) (where

again the above identifications are used).
The following theorem that follows from Peller [13] and Semmes [15] char-

acterizes Schatten class Hankel operators in terms of their transfer functions.

Theorem 2. Let U and Y be separable Hilbert spaces at least one of which is
finite-dimensional and let p > 0. The function G ∈ H∞(C+

0 ;L(U ,Y )) has a
Sp Hankel operator if and only if G ∈ Bp(C+

0 ;L(U ,Y )).

Proof. In Semmes [15] and Peller [13] the case where U = Y = C can be found.
Peller [14, Corollary 6.9.4] includes the general case of separable Hilbert spaces
U and Y . This is for the disc case, but as in [13, page 490], the half-plane case
can be reduced to the disc case. The condition in [14, Corollary 6.9.4] is that
G ∈ Bp(C+

0 ;Sp(U ,Y )). This only leaves to show that G ∈ Bp(C+
0 ;L(U ,Y )) is

equivalent to G ∈ Bp(C+
0 ;Sp(U ,Y )) when either U or Y is finite-dimensional.

Let n ∈ N and denote the singular values of G(n)(s) (ordered by magnitude)
by µk(s). At most m := min{dimU ,dimY } of these are nonzero. We have

µ1(s)p ≤
m∑
k=1

µk(s)p ≤ mµ1(s)p.

It follows that

‖G(n)(s)‖pL(U ,Y ) ≤ ‖G
(n)(s)‖pSp(U ,Y ) ≤ m‖G

(n)(s)‖pL(U ,Y ).

The result then follows from the definition of Besov space.

3 Analytic control systems

We recall that associated to a strongly continuous semigroup on a Hilbert space
X there is a scale of fractional power Hilbert spaces Xγ with γ ∈ R. See e.g.
Staffans [16, Section 3.9], Pazy [10, Section 2.6], Engel and Nagel [5, Section
2.5].

In this article we consider dynamical systems of the form

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

where A generates an exponentially stable analytic semigroup, B ∈ L(U ,Xβ),
C ∈ L(Xα,Y ), D ∈ L(U ,Y ) with α − β < 1 and at least one of U and
Y is finite-dimensional. More information on such system can be found in
e.g. Staffans [16, Section 5.7] where among other things it is shown that the
transfer function is well-defined by the formula G(s) = C(sI − A)−1B + D. In
Curtain–Sasane [4] it is shown that the Hankel operator of such a system (with
the additional condition that both U and Y are finite-dimensional) is in S1. In
this article we will show –by a completely different method– that the Hankel
operator of such a system is in fact in the Schatten class Sp for all p > 0.
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We give a couple of example of such systems.
Consider the one-dimensional heat equation with Neumann (heat flux) con-

trol and Dirichlet (temperature) observation at one end and zero Dirichlet con-
dition at the other end (to ensure that the system is exponentially stable):

wt(t, ξ) = wξξ(t, ξ), wξ(t, 0) = u(t), w(t, 1) = 0, y(t) = w(t, 0).

We choose as state space X = L2(Ω) with Ω = (0, 1). We then have

X1 = {f ∈W 2,2(Ω) : f ′(0) = 0, f(1) = 0},

(where W 2,2 denotes the standard Sobolev space) and the Laplacian with this
domain generates an exponentially stable analytic semigroup. It follows from
Grisvard [8] that

Xγ = {f ∈W 2γ,2(Ω) : f ′(0) = 0, f(1) = 0}, γ ∈
(

3

4
, 1

)
,

Xγ = {f ∈W 2γ,2(Ω) : f(1) = 0}, γ ∈
(

1

4
,

3

4

)
,

Xγ = W 2γ,2(Ω), γ ∈
(

0,
1

4

)
.

Since the trace operator is continuous W γ,2(Ω) → W γ− 1
2 ,2(∂Ω) we have C ∈

L(Xα,C) for all α > 1
4 . Since B = C∗, it follows that for any β < − 1

4 we have
B ∈ L(C,Xβ). So all the conditions are satisfied.

If Ω is a bounded domain in Rn with smooth boundary consisting of two
nonempty parts Γ1 and Γ2 such that Γ1 ∩ Γ2 = ∅ (e.g. Ω an annulus with Γ1

the inner boundary and Γ2 the outer boundary) then the above analysis still
holds when we control and observe on Γ1 and have zero Dirichlet condition on
Γ2. To obtain a finite-dimensional output space we could observe the average
temperature on Γ1 instead of the point-wise temperature. This gives the system

wt = ∆w,
∂w

∂n
|Γ1(t) = u(t), w|Γ2(t) = 0, y(t) =

∫
Γ1

w(t, ξ) dξ,

with state space L2(Ω), input space L2(Γ1) and output space C.
Consider the heat equation on a bounded domain Ω ⊂ Rn with smooth

boundary Γ with Dirichlet control and observation of the average temperature
over the whole of the domain:

wt = ∆w, w|Γ(t) = u(t), y(t) =

∫
Ω

w(t, ξ) dξ.

Then A (being the Dirichlet Laplacian) again generates an exponentially stable
analytic semigroup on L2(Ω), α = 0, β can be chosen to be any number strictly
smaller than − 3

4 if we choose the input space to be L2(Γ) and the output space
is one-dimensional. So the assumptions are again satisfied.
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We can also consider the case where there is a point source inside the domain:

wt(t, ξ) = ∆w(t, ξ) + δξ0(ξ)u(t), w|Γ(t) = 0, y(t) =

∫
Ω

w(t, ξ) dξ.

Then A (being the Dirichlet Laplacian) again generates an exponentially stable
analytic semigroup in L2(Ω) and α = 0. The control operator δξ0 belongs to
W k,2(Ω) for k > n

2 when Ω ⊂ Rn so that B ∈ L(C,Xβ) for any β < −n4 . It
follows that the assumptions are satisfied provided that n = 1, 2, 3. In the cases
n = 1, 2 we can even allow for Dirichlet observation on part of the boundary
(which gives α > 1

4 ) where instead of the zero Dirichlet condition we then impose
zero Neumann condition (these parts Γ1 and Γ2 should satisfy the conditions
above; e.g. be the inner and outer boundary of an annulus):

wt(t, ξ) = ∆w(t, ξ) + δξ0(ξ)u(t),
∂w

∂n
|Γ1(t) = 0 w|Γ2(t) = 0, y(t) = w|Γ1(t).

The output space in this case is L2(Γ1) and the input space is again one-
dimensional.

Apart from classical parabolic PDEs such as the heat equation considered
above also strongly damped beam and plate equations give rise to analytic
systems. As a case in point we consider a hinged Euler-Bernoulli plate with
interior point control and boundary velocity observation (but there are many
other possibilities) on a domain Ω ⊂ R2 with smooth boundary Γ:

wtt(t, ξ)−∆wt(t, ξ) + ∆2w(t, ξ) = δξ0(ξ)u(t),

w|Γ(t) = 0,

∆w|Γ(t) = 0,

y(t) = wt|Γ(t).

The state space (finite energy space) is now [H2(Ω) ∩ H1
0 (Ω)] × L2(Ω). The

input space is one-dimensional and the output space is L2(Γ). We can choose
any α > 1

4 and β < − 1
2 (see [9, Section 3.4]). So the conditions are again

satisfied.

4 The main result

The following is the main result of this article.

Theorem 3. Assume that A generates an exponentially stable analytic semi-
group, B ∈ L(U ,Xβ), C ∈ L(Xα,Y ), D ∈ L(U ,Y ) with α − β < 1 and that
at least one of U and Y is finite-dimensional. Then the Hankel operator of this
system is in Sp for all p > 0.

Proof. By the generation theorem for analytic semigroup (see e.g. [5, Theorem
II.4.6], [10, Theorem 2.5.2] or [16, Theorem 3.10.6]) we have: for all ω > ωA
(ωA being the growth bound of the semigroup) there exists a C > 0 such that
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for all s ∈ C+
ω (the open right half plane consisting of elements with real part

larger than ω):

‖(sI −A)−1‖ ≤ C

|ω − s|
.

By exponential stability we can choose ω < 0. It follows that for all δ ≥ 0 there
exists a M > 0 such that for all s ∈ C+

ω

‖(sI −A)−δ‖ ≤ M

|ω − s|δ
. (3)

We have for n ∈ N and fixed γ ∈ C+
ω

1
n!‖G

(n)(s)‖L(U ,Y ) = ‖C(sI −A)−n−1B‖L(U ,Y )

≤ ‖C(γI −A)−α‖L(X ,Y ) ‖(γI −A)α(sI −A)−α‖L(X )

‖(sI −A)−n−1+α−β‖L(X )

‖(γI −A)−β(sI −A)β‖L(X ) ‖(γI −A)βB‖L(U ,X ).

Using Lemma 4 and the assumptions B ∈ L(U ,Xβ), C ∈ L(Xα,Y ) it follows
that there exists a Q > 0 such that

‖G(n)(s)‖L(U ,Y ) ≤ Q‖(sI −A)−n−1+α−β‖L(X ).

Using (3) then gives that there exists a P > 0 such that

‖G(n)(s)‖L(U ,Y ) ≤
P

|ω − s|n+1−α+β
,

which with η := 1−α+β
2 > 0 and w := −ω ∈ C+

0 is exactly condition (2). It

follows from Remark 1 that G ∈ Bp(C+
0 ;L(U ,Y )) for all p > 0. It then follows

from Theorem 2 that the Hankel operator is in Sp for all p > 0.

The following lemma was used in the proof of Theorem 3.

Lemma 4. Let A be the generator of an analytic semigroup with growth bound
ωA and let ω > ωA and γ ∈ C+

ω (the open right half plane of elements with real
part larger than ω). Then there exists a M > 0 such that for all s ∈ C+

ω and all
δ ∈ [0, 1]:

‖(γI −A)δ(sI −A)−δ‖ ≤M.

Proof. We have for γ, s ∈ C+
ωA

(using e.g. the explicit expression from Pazy [10,
Section 2.6, (6.4) and (6.16)]) that

(γI −A)δ(sI −A)−δ =
[
(γI −A)(sI −A)−1

]δ
,

so that it is sufficient to prove the estimate for δ = 1.
For all γ, s ∈ ρ(A) there holds

(γI −A)(sI −A)−1 = 1 + (γ − s)(sI −A)−1, (4)

7



and by the generation theorem for analytic semigroups we have that for all
σ > ωA there exists a K > 0 such that for all s ∈ C+

σ

‖(sI −A)−1‖X ≤
K

|σ − s|
. (5)

Combining (4) and (5) gives

‖(γI −A)(sI −A)−1‖X ≤ 1 +K

∣∣∣∣γ − sσ − s

∣∣∣∣ . (6)

This upper bound is uniformly bounded in s on C+
ω for any ω > σ, so that the

result follows.

As corollaries, we obtain the following results regarding the singular values
(which equal the eigenvalues) of the controllability and observability gramians.

Corollary 5. Assume that A generates an exponentially stable analytic semi-
group, B ∈ L(U ,Xβ) with −β < 1

2 and that U is finite-dimensional. Then the
controllability gramian of this system is in Sp(X ) for all p > 0.

Proof. Consider the system with output space Y := X , C = I and D = 0.
This system satisfies the conditions of Theorem 3 so that its Hankel operator
is in Sp for all p > 0. The conditions imposed also ensure [16, Theorem 5.7.3]
that this system is L2(0,∞) well-posed on this state space. In particular, its
observability and controllability gramians are bounded operators on X . Since
C = I this system is exactly observable so that the observability gramian is co-
ercive [17, Remark 6.1.4], and since the observability gramian is also bounded it
is a similarity transformation on X . The singular values of the Hankel operator
equal the square roots of the singular values of the product LBLC . Since LC is
a similarity transformation on X we have that

‖L−1
C ‖ σk(LBLC) ≤ σk(LB) ≤ ‖LC‖−1 σk(LBLC),

so that it follows that

‖L−1
C ‖ σ

2
k ≤ σk(LB) ≤ ‖LC‖−1 σ2

k,

with σk the k-th singular value of the Hankel operator. Using this inequality
and the fact that the Hankel operator is in Sp for all p > 0, it follows that LB
is in Sp(X ) for all p > 0.

Corollary 6. Assume that A generates an exponentially stable analytic semi-
group, C ∈ L(Xα,Y ) with α < 1

2 and that Y is finite-dimensional. Then the
observability gramian of this system is in Sp(X ) for all p > 0.

Proof. This follows by duality from Corollary 5.
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