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Abstract

We study the optimal input-output stabilization of discrete time-invariant
linear systems in Hilbert spaces by output injection. We show that a nec-
essary and sufficient condition for this problem to be solvable is that the
transfer function has a left factorization over H-infinity. Another equiva-
lent condition is that the filter Riccati equation (of an arbitrary realiza-
tion) has a solution (in general unbounded and even non densely defined).
We further show that after renorming the state space in terms of the
inverse of the smallest solution of the filter Riccati equation, the closed-
loop system is not only input-output stable, but also strongly internally
∗-stable.

1 Introduction

This is the second in a series of articles dealing in a novel way with the quadratic
cost minimization problem for infinite-dimensional time-invariant linear sys-
tems in discrete and continuous time. In the first article [17] we investigated
the discrete-time full information infinite-horizon linear quadratic problem, and
here we will study a deterministic version of the discrete time infinite-horizon
Kalman filtering problem. In the forthcoming third part we will combine the re-
sults from these first two articles to examine coprime factorization and dynamic
stabilization. The continuous-time equivalents will be the subject of subsequent
articles.
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for its hospitality and the Academy of Finland and the Magnus Ehrnrooth Foundation for
their financial support during his visit to Åbo.
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1.1 Stabilization by output injection

In [17] we studied the linear dynamical system in discrete future time defined
by

xn+1 = Axn +Bun, yn = Cxn +Dun, n ∈ Z+; x0 = z, (1)

where A : X → X , B : U → X , C : X → Y , and D : U → Y are bounded
linear operators, X , U and Y are Hilbert spaces, and Z+ is the set of nonneg-
ative integers. Here we’ll study the same system in discrete past time

xn+1 = Axn +Bun, yn = Cxn +Dun, n ∈ Z−; x0 = z,

∃N ∈ Z+ : xn = 0 = un ∀n ≤ −N,
(2)

where Z− is the set of negative integers and the last line indicates that the
sequences have support bounded to the left, which is a sufficient condition for
the difference equations to make sense in past time.

A classical problem is to modify the properties of these systems by using
either state feedback or output injection. State feedback was studied in [17], and
here we focus on output injection. Output injection is of importance since it
naturally occurs in observer design. In the case of state feedback one chooses
the control u to be given by un = Kxn + vn, where K : X → U is bounded
linear (state feedback) operator, which in the future time setting results in the
closed loop state feedback system

xn+1 = (A+BK)xn +Bvn, n ∈ Z+,

yn = (C +DK)xn +Dvn, n ∈ Z+,

un = Kxn + vn, n ∈ Z+,

x0 = z.

(3)

Here the input u of the original system plays the role of one of the two outputs
of the closed loop system, and the new input sequence to the closed loop system
is v. In the case of output injection we relax the output equation in (2) by
allowing a nonzero error term wn := Cxn +Dun − yn, and injecting a multiple
Hwn of this term back into the state equation in (2), where H : Y →X . Thus,
we now treat y like an input. This leads to the closed loop output injection
system

xn+1 = (A−HC)xn + (B −HD)un +Hyn, n ∈ Z−,
wn = Cxn +Dun − yn, n ∈ Z−,
x0 = z,

∃N ∈ Z+ : xn = 0 = un = yn ∀n ≤ −N.

(4)

One typical goal is to make this closed loop system stable, or at least input-
output stable in the sense that the mapping from the two input sequences u and
y to the output sequence w is bounded from `2(Z−; U × Y ) to `2(Z−; Y ). In
the optimal version of this problem one does not only require this input-output
map to be bounded, but to have the smallest possible norm.
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A solution can be found in the following way by means of an optimal control
problem if we assume for the moment (to avoid some technical issues to be
discussed later) X , U and Y to be finite-dimensional and the system [A B

C D ] to
be minimal.

For each z ∈ X we look for the infimum of
∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ) over

all input sequences u in (2) with finite support for which the final state satisfies
x0 = z. It is possible to find unique `2-sequences u and y and a corresponding
sequence x tending to zero as n → −∞ satisfying the first line of (2) which

minimizes
∑−1
n=−∞(‖yn‖2Y +‖un‖2U ) within this class of solutions. The optimal

cost of a given final state z ∈ X can be written in the form 〈P−1z, z〉X for
some bounded nonnegative self-adjoint invertible operator P , and the operator
H is given by H = −(APC∗ + BD∗)S−1

P where SP = I + DD∗ + CPC∗. The
operator P is the minimal nonnegative self-adjoint solution of the so called filter
Riccati equation

APA∗ −P +BB∗ − (APC∗ +BD∗)(I +DD∗ +CPC∗)−1(CPA∗ +DB∗) = 0.

The output injection H that we get in this way is optimal even in a stronger
sense: if we replace wn in (4) by Wwn for some bounded linear operator
W : Y → W , then it is still true that the same output injection operator min-
imizes the `2 operator norm from the pair [ yu ] to Ww, but also the `2 to `∞

operator norm from the pair [ yu ] to Ww, as well as the `2 to W norm of the
operator from [ yu ] to Ww−1. The optimal norm of all these operators is equal
to the norm of (WSpW

∗)1/2.
Since the `2 operator norm is the same as the H∞ norm of the transfer

function, the above is a (very special) H∞ problem. The [ du ] to Ww−1 norm
gives the `2 norm of the impulse response, which equals the H2 norm of the
transfer function, so that we also solve a (very special) H2 problem.

In stochastic control theory the system (4) with this particular choice of
H is known as the Kalman filter, and x0 in (4) is interpreted as the minimal
variance estimate of the state at time zero based on past values of [ yu ] of a
stochastic version of (2). We refer the reader to Limebeer and Green [9, Section
5.3], Kwakernaak and Sivan [14, Chapter 6] or Kailath [10, Section 7.2] for a
discussion of the stochastic interpretation of (4). The first two of these refer-
ences also contain more information about the importance of output injection
in observer design and consequently its importance in dynamic stabilization by
output feedback through the separation principle.

The transfer function of the system (4) has an additional interesting prop-
erty. Let us denote the different transfer functions u 7→ y, y 7→ w, and u 7→ w
of the systems (2) and (4) by, respectively,

Gu,y(z) = zC(I − zA)−1B +D,

Gy,w(z) = zC(I − z(A−HC))−1H − I,
Gu,w(z) = zC(I − z(A−HC))−1(B −HD) +D.

Then all of these are defined in a neighbourhood of the origin and satisfy
Gu,y(z) = −Gy,w(z)−1Gu,w(z) in this neighbourhood. The input-output stabil-
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ity of (4) implies that both Gy,w and Gu,w are stable transfer functions. This
connects the Kalman filtering problem to the factorization approach to systems
theory: the transfer function of the optimal closed-loop system (4) gives a left
factorization of the transfer function of the original system (2).

In this article we will show that, even in the infinite-dimensional nonminimal
case, once the necessary condition that the transfer function Gu,y has a left
factorization over H∞ of the unit disc is satisfied, the procedure outlined above
to obtain an optimal output injection operator can be slightly modified so that
it always applies. However, the operator P and the output injection operator H
need no longer be bounded, their domains need not be dense in the original state
space, and the ‘natural’ state space of the optimal closed-loop system need not
coincide with the state space of the original system. In the infinite-dimensional
case this may happen even in the case where the original system is minimal.
The solution of the filter Riccati equation can be used to renorm the state space,
and with this new state space the closed-loop system is not only input-output
stable, but also internally stable in an appropriate sense.

We continue this introduction in Section 1.2 with some finite-dimensional
nonminimal examples, and return to the infinite-dimensional case in Section
1.3. In particular, there we give some simple infinite-dimensional examples that
indicate possible applications of the theory. We compare our results to the
existing literature in Section 1.4, and in Section 1.5 we give a brief outline of
the remainder of the article.

1.2 Two finite-dimensional examples

Already in the finite-dimensional case the above solution is a bit too restrictive.
Minimality of the system is not needed. Without any change in the argument
it can be replaced by the following weaker state coercive past cost condition:
There exists a finite constant M such that all solutions of (2) satisfy ‖z‖2X ≤
M2

∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ). However, even this weaker condition is unduly

restrictive: it is possible to slightly modify the solution so that no assumption
whatsoever of this type is needed in the finite-dimensional case. This is due
to the fact that the problem is essentially an input-output problem and we
may at the outset replace the original system by a minimal realization of the
same transfer function. In light of the infinite-dimensional case it is however
instructive not to do this, but to stay with the original realization even when it
does not satisfy the state coercive past cost condition. In this case the operator
P and therefore the output injection operator H are only defined on a subspace
of the state space. The state space of the closed-loop system equals this subspace
of the state space of the original system. We illustrate this with two simple
examples.

We first return to the state coercive past cost condition mentioned earlier.
A simple example where this condition is not satisfied is

A =

[
0 0
0 2

]
, B =

[
1
1

]
, C =

[
1, 0
]
, D = 0.
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This can be seen as follows. For any natural number n > 1, the input sequence
{unk}k∈Z− defined by unk = 2k+1δ−n,k (delta is the Kronecker delta) reaches the
state x0 = [ 0

1 ]. Since the second component is unobservable, the infimum of the
cost to reach [ 0

1 ] is clearly zero, but [ 0
1 ] 6= 0 so that the state coercive past cost

condition does not hold. We consider the filter Riccati equation

APA∗ − P +BB∗ − (APC∗ +BD∗)(I +DD∗ +CPC∗)−1(CPA∗ +DB∗) = 0

for this system. It is easily computed that the unique solution is the indefinite
matrix

1

3

[
3 3
3 1

]
,

so that the filter Riccati equation has no nonnegative self-adjoint everywhere
defined solution. It does have a nonnegative definite self-adjoint solution defined
on a proper subspace of the state space, namely the identity on the subspace
spanned by [ 1

0 ]. By a (possibly not everywhere defined) solution we mean a
self-adjoint operator P with domain D(P ) such that

〈
[
APA∗ − P +BB∗ − (APC∗ +BD∗)(I +DD∗ + CPC∗)−1(CPA∗ +DB∗)

]
x, x〉

is equal to zero for all x ∈ D(P ). For a finite-dimensional system, a nonneg-
ative self-adjoint solution, with D(P ) equal to the orthogonal complement of
the unobservable subspace, always exists. The corresponding output injection
operator H is defined by the same formula as in the minimal case, followed by
the orthogonal projection onto the range of P (the operator C∗ maps into the
domain of P so that those equations are well-defined).

The output injection corresponding to the indefinite solution of the filter
Riccati equation is H =

[
0
−1

]
(but this output feedback is not relevant for the

problem at hand). The output injection operator derived from the (not every-
where defined) nonnegative self-adjoint solution of the filter Riccati equation is
in this case the zero operator Y → R(P ), where R(P ) is the image of P which
in the example is the subspace of the state space spanned by [ 1

0 ].
The optimal closed-loop system is only defined on the subspace R(P ). This

is the system with A = 0, B = [1, 0], C = 1 and D = [0,−1]. Note that this
optimal closed-loop system is exponentially stable. In the finite-dimensional
case this will always be true. In the infinite-dimensional case the optimal closed-
loop system will not necessarily be exponentially stable, but it will be stable in
a weaker sense (Theorem 7.2).

Later in this article we will consider the following output coercive past cost
condition: There exists a finite constant M such that all solutions of (2) satisfy

‖Cz‖2Y ≤ M2
∑−1
n=−∞(‖yn‖2Y + ‖un‖2U ). This condition becomes a triviality

for finite-dimensional systems: it is always satisfied.
The main problem with the above example was that it was unobservable,

which led to some final states having zero cost. It is also interesting to see what
happens when we have an uncontrollable system, which can lead to some final
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states having infinite cost. A particular example is

A =

[
0 0
0 2

]
, B =

[
1
0

]
, C =

[
1, 1
]
, D = 0.

For this system the subspace spanned by [ 0
1 ] is unreachable. The smallest

nonnegative self-adjoint solution of the filter Riccati equation is P = [ 1 0
0 0 ]. The

optimal cost for reaching the state z is 〈P−1z, z〉 and this illustrates that the
subspace spanned by [ 0

1 ] (the orthogonal complement of the reachable subspace)
has infinite cost. In contrast to the unobservable case, we could now in principle
use the same formulas as in the minimal case for the optimal closed-loop system,
but the natural state space for the optimal closed-loop system is as before R(P ),
which in this case is the subspace spanned by [ 1

0 ] (the reachable subspace).

1.3 The infinite-dimensional case

We saw earlier that the transfer function of the optimal closed-loop system
provides a left factorization of the transfer function of the original system. As
we will show in this article, this carries over to the infinite-dimensional case. In
the finite-dimensional case every transfer function has a left factorization, but
this is not true in the infinite-dimensional case. The function

√
1 + 2z is not

meromorphic on the unit disc (it has an essential singularity in z = −1
2 ) and

therefore it does not have a left factorization over H∞ of the unit disc. From
its Taylor series

∞∑
n=0

(−1)n(2n)!

(1− 2n)(n!)22n
zn,

we can however construct a realization on the state space `2(Z≥1) as

(Ax)n = 4xn+1, (Bu)n =
(−1)n(2n)!

(1− 2n)(n!)28n
u, Cx = 4x1 D = 1.

So this is an example of a transfer function that does not have a left factorization
over H∞. No output injection operator that is stabilizing in any meaningful
sense exists for such a transfer function.

The ‘correct’ state space assumption on the original system is the output
coercive past cost condition: There exists a finite constant M such that all
solutions of (2) satisfy ‖Cz‖2Y ≤M2

∑−1
n=−∞(‖yn‖2Y +‖un‖2U ). This condition

is satisfied for any realization of a transfer function that has a left factorization
over H∞ of the unit disc and it being satisfied for some realization implies that
the transfer function has such a left factorization (Theorem 6.10).

When we replace the state space of the original system (which is assumed to
satisfy the output coercive past cost condition) with the natural state space for
its optimal closed-loop system (which is the closure in an appropriate norm of
the range of the operator P ), then the original system with this state space does
satisfy the state coercive past cost condition (Theorem 3.11). Finding a state
space on which the state coercive past cost condition is satisfied is therefore
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not a prerequisite for the solution of the optimal output injection problem, but
it is a consequence of this solution. The optimal closed-loop system with this
re-normed state space is internally stable in a suitable sense (Theorem 7.2).

We’ll next illustrate these facts by means of three infinite-dimensional exam-
ples, which due to space constraints are relatively simple. They are primarily
intended to highlight some of the specific features of the theory and to point
out some directions where to look for possible applications, without any claim
of completeness.

Consider the formal set of (identical) scalar difference equations indexed by
k ∈ Z+

xkn+1 =
1

2
xkn + ukn, ykn = xkn, n ∈ Z+.

We can write this as an abstract system

xn+1 = Axn +Bun, yn = Cxn,

where

A =
1

2
IX , B = IL(U ,X ), C = IL(X ,Y ),

and IL(H ,K ) denotes the inclusion operator of H into K . Here X , U , Y
are Hilbert sequences spaces (say: weighted `2 spaces). For well-posedness of
this system (i.e. boundedness of the operators) it is obviously necessary and
sufficient to choose U ⊂ X ⊂ Y with continuous inclusions. It is not difficult
to see, given U and Y such that U ⊂ Y with continuous inclusion, that for
any state space X wedged in between the input and output space the state
coercive past cost condition is satisfied. Note that when U is strictly contained
in Y then there are infinitely many such spaces. The state space with the
strongest possible norm so that the system is well-posed and the state coercive
past cost condition is satisfied is of particular interest (in this case—of course
up to similarity—it equals U ). This will be studied in a more abstract setting
right at the end of Section 3 (in terms of what is there called the completed
Ip-compression).

Next we treat two examples that are slightly outside the scope of this article
since they also use some results that will only be presented in later articles in
this series. However, they are important for the motivation of the present article
and the ideas (if maybe not all the details) are hopefully simple enough for the
reader to follow.

Let us consider the wave equation on the interval [0, 1] with some rather
special boundary conditions:

wtt = wξξ, wt(t, 0)−wx(t, 0) = u(t), w(t, 1) = 0, y(t) = wt(t, 0) +wx(t, 0).

At this moment we will treat this as a formal equation, and we do not yet choose
a state space. Using the D’Alembert solution it can be easily calculated that
y(t) = u(t− 2) for t ≥ 2, and if we assume zero initial conditions then y(t) = 0
for t ∈ [0, 2]. So the output is just a delayed version of the input (due to the
the specific boundary conditions). It follows that the transfer function is e−2s.
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Since this transfer function is itself in H∞ of the right half-plane it trivially
has a left factorization over H∞ of the right half-plane. Using e.g. the Cayley
transform between continuous-time and discrete-time (details will be given in
[16]) and the results in this article it follows that there exists a state space on
which the state coercive past cost condition is satisfied. Not surprisingly, the
finite energy space W 1,2(0, 1) × L2(0, 1) is such a state space. If we equip this
space with the energy norm then both the optimal cost operator for future time
(treated in [17]) and for past time is the identity (in future time the optimal
control is clearly zero and the cost is simply equal to the energy of the initial
condition; in past time the optimal input is chosen zero for t < −2 and on [−2, 0]
it is chosen so as to reach the given final state, the required cost is the energy
of this final state, the corresponding optimal output is equal to zero). It follows
that the energy space is—up to similarity—the only state space on which both
the state coercive past cost condition and the finite future cost condition hold.
So from a control theory point of view this is the only reasonable state space to
consider the formal wave equation on to make it into a properly posed problem.

Finally we consider the heat equation on the interval [0, 1] with Neumann
boundary control at one end and Dirichlet observation at the same end:

wt = wξξ, wξ(t, 0) = u(t), w(t, 1) = 0, y(t) = w(t, 0).

The transfer function is easily seen to be in H∞ of the right half-plane, so that
it trivially has a left factorization over H∞. As above it follows that there
exists a state space on which the state coercive past cost condition is satisfied.
Actually there are many state spaces on which both the state coercive past cost
condition and the finite future cost condition are satisfied. Any of the spaces
W s,2(0, 1) with s ∈ (− 1

2 ,
1
2 ) will do (essentially because the system is well-posed

and exponentially stable on all of these spaces). So this heat equation example
is very different in nature from the above wave equation example: now there are
infinitely many non-isomorphic state spaces that are perfectly reasonable from
a control theory perspective.

1.4 The literature

The stabilization by output injection problem is of course classical since it ap-
pears naturally in observer and filter design. The stochastic finite-dimensional
version goes back to Kalman [11] and Kalman and Bucy [12]. There are many
deterministic estimation problems that also have the Kalman filter as their so-
lution and therefore can be interpreted as deterministic versions of the Kalman
filtering problem. The best known is probably the H2 output estimation prob-
lem (see e.g. [7] for the finite-dimensional case). Another deterministic interpre-
tation of the Kalman filter (which differs from our approach) is given in Willems
[20], where also the history of this issue is further addressed. The problem that
we study is however really a special H∞ problem instead of the H2 problem.
Due to the special nature of this H∞ problem it can be solved using the fil-
ter Riccati equation instead of the more complicated H∞ Riccati equation. In
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essence the special case of the H∞ problem treated here is the output estimation
equivalent (and the problem studied in [17] was the full information equivalent)
of the special output feedback H∞ problem from Glover and McFarlane [8].
Their solution was also based on the control and filter Riccati equation instead
of the H∞ Riccati equations. Our approach is radically different from the one
in [8] since our solution is based directly on the linear quadratic optimal control
problem, whereas [8] is based on the solution of the Nehari problem.

In the infinite-dimensional case the final state estimation problem was treated
for continuous-time deterministic systems in Weiss and Rebarber [19]. This
problem was there solved solely by duality, the optimal control problem on
the negative time axis as we consider here was not explicitly treated, and in
particular, the coercive cost conditions were not identified.

Unbounded solutions to Riccati equations seem to have first been systemat-
ically studied in DaPrato and Delfour [5, 6]. We also mention the work of Arov
et al. [1] and Arov and Staffans [2] on unbounded solutions of the Kalman-
Yakubovich-Popov inequality in discrete and continuous-time respectively.

1.5 Outline of the article

In Section 2 we recall some basic definitions concerning discrete time-invariant
infinite dimensional systems. The open loop final state optimal control problem
mentioned above is solved in Section 3 and in Section 4 the results on the initial
state optimal control problem from [17] are reviewed. Duality is treated in
Section 5 and then applied to the optimal control problems in Section 6. Finally,
in Section 7 the closed-loop final state optimal control problem is treated.

2 Discrete-time systems

In this section we collect definitions and known results on discrete-time systems
that are needed in this article. A collection of bounded operators A,B,C,D as
before will be called a node and will often be denoted as [A B

C D ].
We first associate some operators on sequences spaces to the dynamical

systems (1) and (2). In the following definition `pc(Z−; H ) with 1 ≤ p ≤ ∞ is
the subspace of `p(Z−; H ) consisting of sequences with compact support and
s(Z+; H ) is the space of all sequences Z+ →H .

Definition 2.1. • The input map B : `pc(Z−; U ) → X is the map that
sends {un}n∈Z− to z:

Bu =

∞∑
k=0

AkBu−k−1.

• The output map C : X → s(Z+; Y ) is the map that sends z to {yn}n∈Z+ :

(Cz)n = CAnz.
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• The future input-output map D : s(Z+; U ) → s(Z+; Y ) is the map that
sends {un}n∈Z+ to {yn}n∈Z+ :

(Du)n =

n−1∑
k=0

CAkBuk +Dun.

• The past input-output map D− : `pc(Z−; U )→ `pc(Z−; Y ) is the map that
sends {un}n∈Z− to {yn}n∈Z− :

(D−u)n =

n−1∑
k=−∞

CAn−1−kBuk +Dun.

If we equip `pc(Z−; U ) with its natural LF topology and s(Z+; H ) with its
natural Fréchet topology, then the above maps are continuous.

Definition 2.2. A state z is called finite-time reachable if there exist sequences
u, x, y such that (2) holds. The set of finite-time reachable states is denoted by
Ξ−. If the closure of Ξ− equals X , then the node [A B

C D ] is called controllable.

Note that Ξ− = R(B).

Definition 2.3. A state z is called unobservable if for initial condition z and
zero input u the output y of the system (1) is zero. The set of unobservable
states is denoted by N . The node [A B

C D ] is called observable if N = {0}.

Note that N = N(C).

Definition 2.4. The node [A B
C D ] is called

• exponentially stable if r(A) < 1 (spectral radius),

• strongly stable if limk→∞Akz = 0 for all z ∈X ,

• strongly ∗-stable if limk→∞A∗kz∗ = 0 for all z∗ ∈X ′,

• input stable if B extends to a bounded operator `2(Z−; U )→X ,

• output stable if C is a bounded operator X → `2(Z+; Y ),

• input-output stable if D restricts to a bounded operator
`2(Z+; U )→ `2(Z+; Y ),

• strongly internally stable if it is strongly stable, input stable, output stable
and input-output stable,

• strongly internally ∗-stable if it is strongly ∗-stable, input stable, output
stable and input-output stable,

Exponential stability implies strong internal stability and strong internal
∗-stability, but the converse is not true. As announced in the introduction,
by changing the norm in the state space we will be able to make the optimal
closed-loop system strongly internally ∗-stable, but it will in general not be
exponentially stable.
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3 The final state optimal control problem

In this section we investigate the open loop final state optimal control problem
introduced in the introduction. The synthesis of the optimal control as an
output injection is considered in Section 7.

We first of all define some spaces and operators that allow us to re-phrase
the open loop final state optimal control problem in a form appropriate for
the application of a standard optimization technique (the orthogonal projection
lemma).

For a finite-time reachable state z define

Wc(z) =

{[
y
u

]
∈ `2c(Z−; Y ×U ) : ∃x such that (2) holds

}
,

the set of compactly supported input-output trajectories with z as final state.
Further define

Gc :=

{[
y
u

]
∈ `2c(Z−; Y ×U ) : ∃x, z such that (2) holds

}
,

the set of compactly supported input-output trajectories. Note that Gc is the
inverse graph of the past input-output map.

Define the operator

Jc : Gc →X , Jc
[
y
u

]
= z,

where u, y and z are related by (2); i.e. Jc maps a compactly supported input-
output trajectory to the corresponding final state.

Further define the operator

Γp : Gc → s(Z+; Y ), Γp = CJc,

that maps a compactly supported input-output trajectory on Z− to the corre-
sponding output on Z+ when the input is chosen to be zero on Z+. Finally,
define the set of stable past input-output trajectories G as the closure of Gc in
`2(Z−; Y ×U ). Note that G is the closure of the inverse graph of the past input-
output map considered as an unbounded operator `2(Z−; U )→ `2(Z−; Y ).

To obtain a satisfactory theory for the final state optimal control problem
mentioned in the introduction, it is crucial to extend Γp to G . For that we make
the following assumption.

Definition 3.1. A node satisfies the output coercive past cost condition if there
exists a M > 0 such that for all z ∈ Ξ− and all [ yu ] ∈ Wc(z)

‖Cz‖Y ≤M
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

.

A stronger condition (which ensures that Jc extends to G ) is the following.
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Definition 3.2. A node satisfies the state coercive past cost condition if there
exists a M > 0 such that for all z ∈ Ξ− and all [ yu ] ∈ Wc(z)

‖z‖X ≤M
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

.

Remark 3.3. The output coercive past cost condition is equivalent to CJc : Gc →
Y extending to a bounded operator G → Y and is equivalent to Γp : Gc →
s(Z+; Y ) extending to a bounded operator G → s(Z+; Y ), where this latter
space is equipped with its natural Fréchet space topology. The state coercive
past cost condition is equivalent to Jc : Gc → X extending to a bounded
operator G →X .

Not only Jc but also its closure will play an important role. This closure
will allow us to interpret the notion of final state for some non compactly sup-
ported input-output trajectories. In general, Jc need not be a closable operator.
However the closure of the graph of Jc always defines a closed linear relation
(or multi-valued operator) which we will denote by J . The development of a
satisfactory theory does not hinge on J being single-valued. Multi-valuedness
of J relates to ill-posedness of the dynamical system defined on Z− when the
compact support assumption is not made. We recall some basic definitions
regarding multi-valued operators.

Definition 3.4. A multi-valued operator (or relation) T : H1 → H2 is a
subspace VT of H1 ×H2. The operator T is called closed when the subspace
VT is closed. We have for the domain, kernel, range and multi-valued part of T :

D(T ) = {h1 ∈H1 : ∃h2 such that (h1, h2) ∈ VT },
N(T ) = {h1 ∈H1 : (h1, 0) ∈ VT },
R(T ) = {h2 ∈H2 : ∃h1 such that (h1, h2) ∈ VT },
M(T ) = {h2 ∈H2 : (0, h2) ∈ VT }.

Lemma 3.5. If the node [A B
C D ] satisfies the output coercive past cost condition,

then M(J ) = N(C).

Proof. We denote the closure of Γp by Γp. Since Γp = CJ , we have z ∈ M(J )
if and only if Cz ∈M(Γp). Since under the output coercive past cost condition
Γp is single-valued, M(Γp) = {0} and it follows that z ∈ M(J ) if and only if
Cz = 0, i.e. M(J ) = N(C).

Lemma 3.6. If the node [A B
C D ] is observable and satisfies the output coercive

past cost condition, then Jc is a closable operator.

Proof. From Lemma 3.5 and observability it follows that M(J ) = {0} so that
J is single-valued. Hence Jc has a closed extension that is a single valued
operator, so it is a closable operator.

12



We define Ξp := R(J ). This space has the interpretation of finite cost
reachable elements in the state space X . For z ∈ Ξp we define

W (z) :=

{[
y
u

]
∈ D(J ) : J

[
y
u

]
= z

}
,

the set of stable input-output trajectories with z as final state. The final state
optimal control problem consists of finding the element of minimal norm in
W (z). To solve that problem we utilize the following well-known orthogonal
projection lemma.

Lemma 3.7. Let H be a Hilbert space and K a nonempty closed subspace of
H . Define, for h0 ∈H , the affine set

K (h0) := {h ∈H : h = h0 + k for some k ∈ K }.

Then there exists a unique hmin ∈ K (h0) such that

‖hmin‖ = min
h∈K (h0)

‖h‖.

The vector hmin is characterized by the fact that K (h0) ∩ (H 	K ) = {hmin}.

Proof. A proof can be found in many books, e.g. [13, Section 3.2].

Applying this orthogonal projection lemma to our problem gives the follow-
ing.

Lemma 3.8. For any z ∈ Ξp, the space W (z) has a unique element of minimal
norm which is characterized by the fact that it is in `2(Z−; Y ×U )	W (0).

Proof. Apply the orthogonal projection lemma (Lemma 3.7) with
H = `2(Z−; Y × U ) and K = W (0). Then W (z) takes the role of K (h0).
We have that W (0) = N (J ) is a closed subspace since J is closed and W (z) is
nonempty since z ∈ Ξp.

We define the set Gopt := D(J ) 	 W (0). This set has the interpretation
of the set of all optimal input-output trajectories with a final state in X . We
restrict J to this set to obtain the (possibly multi-valued) operator

Jr : Gopt →X .

This operator is clearly closed, injective and has range Ξp. We further define

Ip : Ξp ⊂X → Gopt, Ip = J−1
r ,

the closed operator that maps a final state to the corresponding optimal input-
output trajectory. We note that N(Ip) = M(Jr) = M(J ), so that Ip is not
injective if J is multi-valued (i.e. in that case two different final states have the
same optimal input-output trajectories). Note that

IpJ = P`2(Z−;Y ×U )	W (0)|D(J ), (5)

13



the orthogonal projection onto `2(Z−; Y ×U )	W (0), since both equal the map
that sends an input-output trajectory to the optimal input-output trajectory
with the same final state.

For the final state optimal control problem only the subspace Ξp of finite
cost final states is of importance, the rest of the state space should be ignored.
The norm in the state space is also not relevant in the final state optimal control
problem. There is a more natural semi-norm on Ξp associated with the final
state optimal control problem. On Ξp we define the semi-norm

‖z‖p := ‖Ipz‖`2(Z−;Y ×U ).

Note that since Ip is a closed operator, the associated nonnegative symmetric
sesquilinear form 〈Ipz1, Ipz2〉`2(Z−;Y ×U ) in X is closed.

The following lemma shows that the space Ξp and the semi-norm on it
interact well with the node [A B

C D ] if the output coercive past cost condition is
satisfied.

Lemma 3.9. If the node [A B
C D ] satisfies the output coercive past cost condition,

then it maps Ξp×U into Ξp×Y and its restriction to Ξp×U is bounded with
respect to the semi-norm ‖ · ‖p.

Proof. The operator B obviously maps into Ξ−, the space of finite-time reach-
able states. Since Ξ− ⊂ Ξp, certainly B maps into Ξp. Since the input u defined
by u−1 = v, uk = 0 for k < −1 reaches Bv we have:

‖Bv‖2p = ‖IpBv‖2`2(Z−;Y ×U ) ≤ ‖v‖
2
U + ‖Dv‖2Y .

So B is bounded with respect to the semi-norm ‖ · ‖p. Note that the output
coercive past cost condition was not used for this.

For z ∈ Ξp we have that for all [ yu ] ∈ W (z)

‖Cz‖Y = ‖
(

Γp

[
y
u

])
0

‖Y ≤M‖
[
y
u

]
‖`2(Z−;Y ×U ),

where we have used that Γp : G → s(Z+; Y × U ) is a bounded operator. In
particular, the above holds for the element of minimal norm in W (z): [ yu ] = Ipz.
This shows that C is bounded with respect to the semi-norm ‖ · ‖p.

If z = J [ yu ], then Az is the image under J of the trajectory obtained by
shifting [ yu ] one place to the left and adding [Cz0 ] at the last position. It follows
that Az ∈ Ξp if z ∈ Ξp and that

‖IpAz‖2`2(Z−;Y ×U ) ≤ ‖Ipz‖
2
`2(Z−;Y ×U ) + ‖Cz‖2Y ,

or equivalently that
‖Az‖2p ≤ ‖z‖2p + ‖Cz‖2Y .

Using that C is bounded with respect to the semi-norm ‖ · ‖p it follows that A
is bounded with respect to this semi-norm.
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If Ip is injective, then ‖ · ‖p is a norm and Lemma 3.9 shows that we can
extend the restriction of the node to Ξp×U to a node whose state space is the
completion of Ξp under the norm ‖ · ‖p. This resulting node will be called the
completed Ip-compression of the node [A B

C D ]. Its significance will be clear from
Theorems 3.11 and 7.2 below. In general (when Ip is not necessarily injective),
the situation is slightly more complicated but essentially the same. On the set
PX	N Ξp, the seminorm ‖ · ‖p is in fact a norm since N = N(Ip) by Lemma
3.5. Lemma 3.9 shows that, under the output coercive past cost condition,
the conditions of [17, Theorem B.14] are satisfied so that the completed Ip-
compression of the node [A B

C D ] exists. This has state space Xp, the completion
under the ‖ · ‖p norm of PX	N Ξp. In case Ip is injective these two procedures
obviously coincide.

Note that Xp need not be contained in the state space X .
The completed Ip-compression has Jc, J and Ip operators which we will

denote by JXp
c , JXp and IXp

p respectively.

Lemma 3.10. If the node [A B
C D ] satisfies the output coercive past cost condition,

then Jc = PX	N JXp |Gc
.

Proof. This follows directly from [17, Theorem B.16].

Theorem 3.11. The completed Ip-compression satisfies the state coercive past

cost condition and is observable. The operator IXp
p is a unitary map onto its

range. The operator JXp is a partial isometry with kernel W (0).

Proof. Using (5) we have the following for [ yu ] ∈ Gc∥∥∥∥JXp
c

[
y
u

]∥∥∥∥
p

=

∥∥∥∥IXp
p JXp

c

[
y
u

]∥∥∥∥
`2(Z−;Y ×U )

=

∥∥∥∥P`2(Z−;Y ×U )	N(JXp )

[
y
u

]∥∥∥∥
`2(Z−;Y ×U )

≤
∥∥∥∥[ y

u

]∥∥∥∥
`2(Z−;Y ×U )

,

which shows that JXp
c : Gc →Xp is bounded. It follows that the state coercive

past cost condition is satisfied.

We just showed that JXp
c has a single valued bounded extension to G and

since the state coercive past cost condition is satisfied (which implies the output
coercive past cost condition), it follows from Lemma 3.5 that N(CXp) = {0},
so that the completed Ip-compression is indeed observable.

By definition of norms, IXp
p is an isometry; so it is a unitary map onto its

range.
By definition of the norm and (5) we have for g ∈ D(JXp)

‖JXpg‖p = ‖IXp
p JXpg‖`2(Z−;Y ×U ) = ‖P`2(Z−;Y ×U )	W (0)g‖`2(Z−;Y ×U ),

which implies that JXp is a partial isometry with kernel W (0).
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Remark 3.12. Define Ip,− := Ip|Ξ− . Similar as for the completed Ip-compression,
it can be shown that the completed Ip,−compression is well-defined. It has as
state space Xp,−, the completion of PX	N Ξ− under the norm ‖ · ‖p, and is
controllable, observable and satisfies the state coercive past cost condition.

4 Recap of the initial state optimal control prob-
lem

In this section we review the relevant results from [17], which by the duality
theory of the next two sections will lead to synthesis of the optimal output
injection in Section 7.

The system under study in this section is the initial state problem (1) with
the associated cost function

∑∞
n=0 ‖un‖2 + ‖yn‖2. For z ∈X , define

V (z) :=

{[
u
y

]
∈ `2(Z+; U × Y ) : ∃x such that (1) holds

}
,

the set of stable input-output trajectories with z as initial state. Further define
Ξf as the subspace of X consisting of those z for which V (z) is non-empty.
This is the subspace of finite future cost states (denotes by Ξ+ in [17]).

The orthogonal projection lemma guarantees that for z ∈ Ξf , V (z) has
a unique element of minimal norm. This provides us with a closed operator
If : Ξf ⊂ X → `2(Z+; U × Y ) 	 V (0), the future minimizing cost operator,
which maps a finite cost initial state to the corresponding optimal input-output
trajectory.

Definition 4.1. The finite future incremental cost condition is the condition
BU ⊂ Ξf (equivalently: Ξ− ⊂ Ξf ). The finite future cost condition is the
condition Ξf = X .

If the finite future incremental cost condition holds, then the operator

Γf := IfB : `2c(Z−; U )→ `2(Z+; U × Y )

that maps a compactly supported past input to the corresponding optimal future
input-output trajectory is well-defined and bounded. If the finite future cost
condition holds, then If : X → `2(Z+; U × Y ) is bounded.

On Ξf define the semi-norm

‖z‖f := ‖Ifz‖`2(Z+;U×Y ).

Lemma 4.2. If the node [A B
C D ] satisfies the finite future incremental cost condi-

tion, then it maps Ξf ×U into Ξf ×Y and its restriction to Ξf ×U is bounded
with respect to the semi-norm ‖ · ‖f .

Proof. This follows from [17, Lemma 4.8] with q = qf .
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Similarly to Xp, the state space Xf is defined as the completion under the
‖ · ‖f norm of PX	N Ξf . The restriction of the node mentioned in Lemma
4.2 extends continuously to a node with this state space. That node is called
the completed If -compression (the completed qf -compression in [17]) and it
satisfies the finite future cost condition and is observable. Similarly, we can
define If,− := If |Ξ− and the completed If,−-compression (the completed q−f -
compression in [17]) which has as state space Xf,−, the completion of PX	N Ξ−
under the norm ‖ · ‖f , and satisfies the finite future cost condition and is both
controllable and observable.

Note that Xf and Xf,− need not be contained in the state space X .

Remark 4.3. Denote the If operator of the completed If -compression by IXf

f ,

then IXf

f is an isometry onto its range (which equals the closure of the range
of the If operator of the original node that the completed If -compression was

constructed from). The inverse of IXf

f (defined on the range of IXf

f ) is a unitary
map that sends the optimal input-output trajectory to the initial state.

The following is the standard control algebraic Riccati equation re-written
in a way (using sesquilinear forms) that easily allows for unbounded solutions.

Definition 4.4. The triple (q, s,K) is called a (nonnegative) solution of the
control Riccati equation of the node [A B

C D ] if

1. q is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies AD(q) ⊂ D(q), BU ⊂ D(q).

2. s is a bounded nonnegative symmetric sesquilinear form on U .

3. K : D(q)→ U is a linear operator.

4. For all z ∈ D(q), u ∈ U we have

q(Az+Bu,Az+Bu)+‖Cz+Du‖2Y +‖u‖2U = q(z, z)+s(Kz−u,Kz−u).
(6)

The solution is called classical when D(q) = X .

Remark 4.5. In Part 1 [17] we gave several equivalent formulations of the control
Riccati equation. Among them is the following in terms of operators instead of
sesquilinear forms. The triple (Q,S,K) is called a (nonnegative) solution of the
operator control Riccati equation of the node [A B

C D ] if:

1. Q is a closed nonnegative self-adjoint operator in X whose domain satisfies
AD(Q1/2) ⊂ D(Q1/2), BU ⊂ D(Q1/2).

2. S is a bounded nonnegative self-adjoint operator on U .

3. K : D(Q1/2)→ U is a linear operator.

4. For all z ∈ D(Q1/2), u ∈ U we have

‖Q1/2(Az+Bu)‖2X +‖Cz+Du‖2Y +‖u‖2U = ‖Q1/2z‖2X +‖S(Kz−u)‖2U .
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The solution is called classical when D(Q) = X .

To discuss transfer functions, we use the following notation: H∞ denotes the
Hardy space of uniformly bounded holomorphic functions and D denotes the unit
disc. The transfer function of the node [A B

C D ] is defined in a neighbourhood of
zero by zC(I − zA)−1B + D. A node is called a realization of a holomorphic
function defined in a neighbourhood of zero if that function is the transfer
function of the node. We note that any holomorphic function defined in a
neighbourhood of zero has a realization (in fact, it has infinitely many).

Definition 4.6. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic at the origin. A
function

[
M
N

]
∈ H∞(D,L(U ,U ×Y )) is called a right factorization of G if M(z)

is invertible for all z in a neighbourhood of the origin and G(z) = N(z)M(z)−1

in a neighbourhood of the origin.

Theorem 4.7. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic at the origin and
let [A B

C D ] be a realization of G. The following are equivalent conditions.

• [A B
C D ] satisfies the finite future incremental cost condition.

• The control Riccati equation of [A B
C D ] has a (nonnegative self-adjoint) so-

lution.

• G has a right factorization.

Under these equivalent conditions, the triple (qf , sf ,Kf ) defined by

qf (z1, z2) := 〈Ifz1, Ifz2〉`2(Z+;U×Y ),

sf (u, v) := 〈u, v〉U + 〈Du,Dv〉Y + qf (Bu,Bv),

Kfz = PU (Ifz)0,

is the smallest nonnegative self-adjoint solution of the control Riccati equation.
Here PU is the canonical projection U × Y → U .

Proof. This follows from [17, Theorem 6.3] combined with [17, Theorem 3.14].

We consider the closed-loop system

xn+1 = (A+BK)xn +BEwn, n ∈ Z+,

yn = (C +DK)xn +DEwn, n ∈ Z+,

un = Kxn + Ewn, n ∈ Z+,

x0 = z,

(7)

where E : W → U is a bounded linear operator and K : D(K) ⊂ X → U is a
linear operator with a domain that is A-invariant and that contains the image
of B. For such a K, the map from {wn}n∈Z+ to {[ un

yn ]}n∈Z+ in (7) (with z = 0)
is well-defined on the sequences with compact support.
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Theorem 4.8. Assume that the finite future incremental cost condition holds.
Then Kf minimizes both the L(`1(Z+,W ), `2(Z+,U × Y )) and the
L(`2(Z+,W ), `2(Z+,U × Y )) norm of the map from {wn}n∈Z+ to {[ un

yn ]}n∈Z+

in (7) (with z = 0), where K ranges over all linear maps D(K) ⊂X → U with
a domain that is A-invariant and that contains the image of B. The operator
Kf also minimizes the L(W , `2(Z+,U × Y )) norm of the map w0 → [ uy ] over
the same set of feedback operators.

These minimum norms all equal the square root of sup‖v‖=1 sf (Ev,Ev).

Proof. The statements on the L(`1(Z+,W ), `2(Z+,U × Y )) and
L(`2(Z+,W ), `2(Z+,U ×Y )) norms follow directly from [17, Theorem 5.1]. The
statement about the L(W , `2(Z+,U ×Y )) norm follows from slightly adapting
the proof of [17, Theorem 5.1] as follows. The lower bound proof remains
unchanged and in the upper bound proof v now has to be chosen as v0 = Ew0

and vk = 0 for k > 0.

Remark 4.9. The operator underlying the closed-loop system (7) is generally
not a node with state space X (because K is generally not bounded on X ),
but it does become a node with state space Xf once we replace [A B

C D ] with its
completed If -compression. This resulting closed-loop node equals what is called
the completed qf -compression of the graph closed-loop node in [17, Theorem
5.3]. Hence, by that theorem, it is strongly internally stable.

5 Duality of discrete-time systems

In this section we re-consider duality for discrete-time systems in order to in-
vestigate the duality between the initial state and final state optimal control
problems in the next section. The duality that we consider is somewhat non-
standard (e.g. we identify `2(Z−) with `2(Z+) instead of with `2(Z−) itself).
This is to make the duality between the initial state and final state optimal
control problems work. See Remark 5.3 for a further elaboration on this issue.

We consider the adjoint of the node [A B
C D ] as an operator from X ′ × Y ′

to X ′ × U ′ where H ′ denotes the dual space of the Hilbert space H . A
dual space is not identified with the Hilbert space itself unless this is explicitly
stated. We denote the duality product between H and its dual H ′ by 〈·, ·〉H ,H ′

and consider this to be linear in the H component and anti-linear in the H ′

component.
The dynamical system that we associate to [A B

C D ]
∗

is the following initial
state problem

x∗n+1 = A∗x∗n + C∗y∗n, u∗n = B∗x∗n +D∗y∗n, n ∈ Z+; x∗0 = z∗, (8)

with state space X ′, input space Y ′ and output space U ′. We throughout
apply the theory from Section 4 to this dual system. To indicate the distinction
between spaces associated to the primal system and the dual system we often
use the subscript d, so e.g Vd(z∗) is the space introduced in the beginning of
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Section 4 consisting of stable input-output trajectories but now for the dual
system with initial state z∗.

We define the weighted `p spaces

`pr(Z−; U ) = {u : Z− → U : (r−nun)n∈Z− ∈ `p(Z−; U )},
`pr(Z+; Y ) = {y : Z+ → Y : (r−nyn)n∈Z+ ∈ `p(Z+; Y )}.

Any continuous linear functional on `2r(Z−; H ) is of the form

∞∑
n=0

〈h−−n−1, h
+
n 〉H ,H ′ (9)

for some h+ ∈ `2r(Z+; H ′) and any such h+ through the expression (9) gives
rise to a continuous linear functional on `2r(Z−; H ). Similarly, any continuous
anti-linear functional on `2r(Z+; H ′) is of the form (9) for some h− ∈ `2r(Z−; H )
and any such h− gives rise to a continuous anti-linear functional. So we may
treat `2r(Z−; H ) and `2r(Z+; H ′) as each others duals. With some abuse of
notation we denote the duality product by

〈h−, h+〉`2(H ) :=

∞∑
n=0

〈h−−n−1, h
+
n 〉H ,H ′ . (10)

The dual of `1r(Z+; H ) can similarly be identified with `∞r (Z−; H ′) through
the expression (9). The dual of the subspace `∞r,0(Z−; H ) of `∞r (Z−; H ) con-

sisting of those sequences h such that limk→−∞ r−khk = 0 can be identified
with `1r(Z+; H ′) through (9).

If r > r(A), the spectral radius of A, then the input map extends to a
bounded operator `2r(Z−; U )→X and the output map is a bounded operator
X → `2r(Z+; Y ). The input map B of the node [A B

C D ] is adjoint to the output
map Cd of the dual node [A B

C D ]
∗

in the sense that

〈Bu, z∗〉X ,X ′ = 〈u, Cdz∗〉`2(U ).

The past input-output map of the node [A B
C D ] extends to a bounded operator

`2r(Z−; U ) → `2r(Z−; Y ) and the future input-output map of the dual node
[A B
C D ]

∗
restricts to a bounded operator `2r(Z+; Y ′) → `2r(Z+; U ′). With the

above identification of dual spaces, these operators are adjoints. Similarly, the
restriction of the future input-output map of the adjoint node to a bounded
operator `1r(Z+; Y ′) → `2r(Z+; U ′) and the extension of the past input-output
map to a bounded operator `2r(Z−; U )→ `∞r,0(Z−; Y ) are adjoint operators with
the above identification of dual spaces.

The following lemma characterizes duality in terms of trajectories without
explicit reference to the node. It can be derived from [3, Lemma 4.6], but for
the convenience of the reader we include a direct proof.
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Lemma 5.1. If [ yu ] ∈ Gc, z = Jc [ yu ] and
[
y∗

u∗

]
is a trajectory of (8) with initial

condition z∗, then

〈z, z∗〉X ,X ′ =

〈
R
[
y
u

]
,

[
y∗

u∗

]〉
`2(Y ×U )

, (11)

where the operator R is defined by

R : `2(Z−; Y ×U )→ `2(Z−; Y ×U ), R
[
y
u

]
=

[
−y
u

]
,

and we have used the duality (10). Conversely, if
[
y∗

u∗

]
∈ s(Z+; Y ′ ×U ′) and

z∗ ∈X ′ satisfy (11) for all [ yu ] ∈ Gc with z = Jc [ yu ], then
[
y∗

u∗

]
is a trajectory

of (8) with initial condition z∗.

Proof. The first part of the lemma simply follows by substitution. The converse
follows by iteratively applying the assumption as follows. Apply (11) with [ yu ]
the sequence that is zero everywhere except at position −1 where it equals [Dvv ]
with v ∈ U arbitrary. It follows that

〈v, u∗0 −D∗y∗0〉U ,U ′ =

〈[
−Dv
v

]
,

[
y∗0
u∗0

]〉
= 〈Bv, z∗〉 = 〈v,B∗z∗〉,

which since v was arbitrary implies u∗0 = B∗z∗ + D∗y∗0 . Taking the element
of Gc whose second component is zero everywhere except at position −2 where
it equals v and whose first component is the corresponding output (i.e. Dv at
position −2, CBv at position −1 and zero elsewhere) gives u∗1 = B∗A∗z∗ +

D∗y∗1 +B∗C∗y∗0 . Continuing in this fashion shows that
[
y∗

u∗

]
is an input-output

trajectory of the node [A B
C D ]

∗
with initial condition z∗ as desired.

We will also use the adjoint of R:

R∗ : `2(Z+; Y ′ ×U ′)→ `2(Z+; Y ′ ×U ′), R∗
[
y∗

u∗

]
=

[
−y∗
u∗

]
.

Since we do not identify the dual of a Hilbert space with itself, a subspace
V of a Hilbert space H has two orthogonal subspaces: the subspace V ⊥ ⊂H ′

of continuous linear functionals on H that are zero on the subspace V and
the subspace H 	 V that is the orthogonal complement of V in the sense that
V ⊕ (H 	 V ) = H . In this article we use both of these notions of orthogonal
subspace and use the notations ⊥ and 	 as above to distinguish these two
notions.

Remark 5.2. We identify the dual G′ of a closed subspace G of H by the cor-
responding subspace of H ′, so that 〈g, g′〉G,G′ = 〈g, g′〉H,H′ for all g ∈ G and
g′ ∈ G′. Under this identification G′ = H ′ 	 G⊥ and G⊥ = (H 	 G)′. In
particular, we have G ′ = `2(Z+; Y ′ ×U ′)	 G⊥.
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Remark 5.3. The above duality set-up is somewhat non-standard. We would in
principle lose nothing by using the standard duality set-up (i.e. identifying the
dual of a Hilbert space with the Hilbert space itself and sequences spaces on Z+

with sequence spaces on Z+) which has dual systems running backwards in time.
However, in [16] we will consider an optimal control problem on Z where the
state has to pass through a target state x0 at n = 0 and this problem naturally
breaks down into a final state problem on Z− and an initial state problem on
Z+. This is our main reason for wanting to study final state systems defined on
Z− and therefore to identify the dual of an initial state system defined on Z+ to
be a final state system defined on Z−. The Kalman filter is also most naturally
posed on Z−, which is another reason for treating the equivalent optimal output
injection problem on Z− as well. Not identifying the state space X with its
dual is appropriate since we want to identify the ‘natural state space’ Xp on
which to consider the final state problem as the dual of the ‘natural state space’
Xf,d on which to consider the initial state problem for the dual system (Lemma
6.6). The only reason for not identifying U and Y with their respective duals
is consistency.

6 Duality between the optimal control problems

The next lemma relates the spaces G and Vd(0) of stable past and future input-
output trajectories.

Lemma 6.1. We have RG = Vd(0)⊥.

Proof. It immediately follows from (11) with z∗ = 0 that RGc ⊥ Vd(0). By
continuity of R we conclude that RG ⊥ Vd(0), so that RG ⊂ Vd(0)⊥.

We now prove that (RGc)⊥ ⊂ Vd(0), which through Vd(0)⊥ ⊂ (RGc)⊥⊥ =

RGc = RGc = RG gives the desired other inclusion. So assume that
[
y∗

u∗

]
is

orthogonal to RGc. Then
[
y∗

u∗

]
satisfies (11) for all [ yu ] ∈ Gc with z∗ = 0 and it

follows from Lemma 5.1 that
[
y∗

u∗

]
is a trajectory of the dual system with initial

condition zero. Since by assumption
[
y∗

u∗

]
∈ `2(Z+; Y ′×U ′) we have that it is

an element of Vd(0) as desired.

Lemma 6.2. We have R∗
(
`2(Z+; Y ′ ×U ′)	 Vd(0)

)
= G ′.

Proof. Denote the identification map implicit in (10) by I : `2(Z−; Y ×U ) →
`2(Z+; Y ′×U ′) (i.e. if we would identify Y and U with their respective duals
then it is simply the reflection). Then it is easily seen that I∗R∗IR = I. From
Lemma 6.1 it follows thatRG = Vd(0)⊥ so that IRG = `2(Z+; Y ′×U ′)	Vd(0).
We conclude that I∗R∗

(
`2(Z+; Y ′ ×U ′)	 Vd(0)

)
= G from which the result

follows using that I∗ is an isomorphism from G ′ onto G .
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Lemma 6.3. The input-output trajectory to final state map Jc for the node
[A B
C D ] and the future minimizing operator If,d of its dual node [A B

C D ]
∗

are related
by

J ∗c = R∗If,d (12)

as unbounded operators X ′ → G ′.

Proof. The basic duality relationship (11) with z∗ ∈ Ξf,d and
[
y∗

u∗

]
= If,dz∗

gives for [ yu ] ∈ Gc:〈
Jc
[
y
u

]
, z∗
〉

X ,X ′
=

〈
R
[
y
u

]
, If,dz∗

〉
`2(Y ×U )

.

By Lemma 6.2 we have R∗If,dz∗ ∈ G ′ so the above can be re-written as〈
Jc
[
y
u

]
, z∗
〉

X ,X ′
=

〈[
y
u

]
,R∗If,dz∗

〉
G ,G ′

,

which shows that Jc and R∗If,d are adjoint to each other. So we only still need
to show D(If,d) ⊃ D(J ∗c ). By definition

D(J ∗c ) =

{
z∗ ∈X ′ : ∃

[
y$

u$

]
∈ G ′ such that ∀

[
y
u

]
∈ Gc〈

Jc
[
y
u

]
, z∗
〉

X ,X ′
=

〈[
y
u

]
,

[
y$

u$

]〉
G ,G ′

}
.

Using Lemma 6.2 it follows that

D(J ∗c ) =

{
z∗ ∈X ′ : ∃

[
y#

u#

]
∈ `2(Z+; Y ′ ×U ′)	 Vd(0) such that ∀

[
y
u

]
∈ Gc〈

Jc
[
y
u

]
, z∗
〉

X ,X ′
=

〈
R
[
y
u

]
,

[
y#

u#

]〉
`2(Y ×U )

}
.

Using Lemma 5.1 it follows from the equality in the domain definition that
[
y#

u#

]
is a trajectory of the dual node for initial condition z∗. So z∗ ∈ D(J ∗c ) has finite
cost and so z∗ ∈ D(If,d). Hence J ∗c = R∗If,d.

Theorem 6.4. The node [A B
C D ] satisfies the output coercive past cost condition

if and only if its dual node [A B
C D ]

∗
satisfies the finite future incremental cost

condition.

Proof. The output coercive past cost condition implies that CJc : Gc → Y
extends to a bounded operator G → Y . By [18, Theorem 13.2] its adjoint equals
J ∗c C∗. It follows that J ∗c C∗ is a bounded operator Y ′ → G ′. In particular the
range of C∗ is contained in the domain of J ∗c , which by Lemma 6.3 equals Ξf,d.
This is exactly the finite future incremental cost condition for the dual node.
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Conversely, assume that the range of C∗ is contained in Ξf,d. The operator
J ∗c C∗ is closed as it is the adjoint of the densely defined operator CJc (we
again use that (CJc)∗ = J ∗c C∗ by [18, Theorem 13.2]). By the range assump-
tion J ∗c C∗ is defined on all of Y ′, so that by the closed graph theorem it is
a bounded operator Y ′ → G ′. Since (CJc)∗ is a bounded (and everywhere
defined) operator, the operator CJc is closable, and its closure is the bounded
operator ((CJc)∗)∗. Thus, CJc extends to a bounded operator G → Y . So the
output coercive past cost condition holds.

In the next proposition, we again use the weighted `2 space duality from (9).

Lemma 6.5. The map Γp : Gc → s(Z+; Y ) for the node [A B
C D ] and the map

Γf,d : `2c(Z−; Y ′)→ Vd(0) for the dual node [A B
C D ]

∗
are related by

Γ∗p = R∗Γf,d.

Proof. Using Lemma 6.3 we have

Γ∗p = (CJc)∗ = J ∗c C∗ = R∗If,dBd = R∗Γf,d.

As the next lemma shows, the dual space of the state space of the completed
Ip-compression can be identified with the state space of the completed If -
compression of the dual node of the completed Ip-compression.

Lemma 6.6. Any bounded linear functional on Xp can be identified with an
element z∗ of (Xp)f,d through

〈z, z∗〉Xp,X ′
p

=
〈
IXp
p z,R∗I

(Xp)f,d
f,d z∗

〉
`2(Y ×U )

. (13)

This duality is with respect to the pivot space X in the sense that

〈z, z∗〉Xp,X ′
p

= 〈z, z∗〉X ,X ′

if z ∈Xp∩X and z∗ ∈ (Xp)f,d∩X ′. Moreover, this duality is norm-preserving

in the sense that ‖z∗‖(Xp)f,d equals the X ′
p norm of the corresponding functional.

Proof. It is easily seen that for a given z∗ ∈ (Xp)f,d the expression (13) defines
a bounded linear functional on Xp, so it remains the prove the converse. By
the duality between `2(Z−; Y ×U ) and `2(Z+; Y ′×U ′) and the identification

of Xp with R(IXp
p ) it follows that any linear functional on Xp must be of the

form 〈
IXp
p z, v

〉
`2(Y ×U )

for some v ∈ `2(Z+; Y ′ × U ′). We have R(IXp
p ) = D(JXp

r ) = D(JXp) 	
N(JXp) so we may assume that v ∈ N(JXp)⊥. So v ∈ R(JXp∗) since JXp

as a partial isometry has closed range. Applying Lemma 6.3 to the completed
Ip-compression (and using that J ∗c = J ∗) then gives the result.
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That the duality is with respect to X follows from (11) with [ yu ] = IXp
p z and[

y∗

u∗

]
= I

(Xp)f,d
f,d z∗. The norm preservation follows from the fact that I

(Xp)f,d
f,d ,

R and IXp
p are isometries.

Lemma 6.7. The operator JXp is a co-isometry.

Proof. According to Lemma 6.3 this is equivalent to showing that If,d : X ′
p →

`2(Z+; Y ′ × U ′) is an isometry. By the identification of the dual space in
Lemma 6.6 this in turn is equivalent to If,d : (Xp)f,d → `2(Z+; Y ′×U ′) being
an isometry, which is true by definition of the norm in (Xp)f,d.

The filter Riccati equation of the node [A B
C D ] is simply the control Riccati

equation of the dual node [A B
C D ]

∗
.

Definition 6.8. The triple (p, r, T ) is called a (nonnegative) solution of the
filter Riccati equation of the node [A B

C D ] if

1. p is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies A∗D(p) ⊂ D(p), C∗Y ⊂ D(p).

2. r is a bounded nonnegative symmetric sesquilinear form on Y .

3. T : D(p)→ Y is a linear operator.

4. For all z ∈ D(p), y ∈ Y we have

p(A∗z+C∗y,A∗z+C∗y)+‖B∗z+D∗y‖2U +‖y‖2Y = p(z, z)+r(Tz−y, Tz−y).
(14)

The solution is called classical when D(p) = X .

Remark 4.5 can be applied to the filter Riccati equation to obtain an oper-
ator version instead of a sesquilinear form version of the filter Riccati equation.
Similarly, [17, Appendix A] can be applied to obtain other equivalent forms.

Definition 6.9. Let G : D(G) ⊂ C→ L(U ,Y ) be holomorphic at the origin. A
function [M̃, Ñ] ∈ H∞(D,L(Y ×U ,Y )) is called a left factorization of G if M̃(z)
is invertible for all z in a neighbourhood of the origin and G(z) = M̃(z)−1Ñ(z)
in a neighbourhood of the origin.

Theorem 6.10. Let G : D(G) ⊂ C → L(U ,Y ) be holomorphic at the origin
and let [A B

C D ] be a realization of G. The following are equivalent conditions.

• [A B
C D ] satisfies the output coercive past cost condition.

• The filter Riccati equation of [A B
C D ] has a (nonnegative self-adjoint) solu-

tion.

• G has a left factorization.
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Under these equivalent conditions, the filter Riccati equation of [A B
C D ] has a

smallest (nonnegative self-adjoint) solution (pp, Tp, rp) with domain Ξf,d.

Proof. According to Theorem 6.4 the output coercive past cost condition implies
that the dual node [A B

C D ] satisfies the finite future incremental cost condition.
Theorem 4.7 then shows that the dual node has a solution to its control Riccati
equation. This implies that the original node has a solution to its filter Riccati
equation.

If the node has a solution to its filter Riccati equation, then the dual node
has a solution to its control Riccati equation. It follows from Theorem 4.7
that the transfer function of the dual node has a right factorization: Gd(z) =
N(z)M(z)−1. Realizing that the transfer function of the original node G and that
of the dual node Gd are related by Gd(z) = G(z̄)∗ we obtain G(z) = M̃(z)−1Ñ(z)
with M̃(z) := M(z̄)∗ and Ñ(z) := N(z̄)∗. So the transfer function of the original
node has a left factorization.

Assuming that the transfer function of the original node has a left factoriza-
tion, it is easily seen as above that the transfer function of the dual node has
a right factorization. It follows from Theorem 4.7 that the dual node satisfies
the finite future incremental cost condition. Theorem 6.4 then shows that the
original node satisfies the output coercive past cost condition.

Existence of the smallest solution follows from the existence of the smallest
solution (qf ,Kf , sf ) of the control Riccati equation of the dual node.

Remark 6.11. As mentioned in the introduction, the transfer function of the
closed-loop system (4) provides the left factorization of the transfer function of
the open-loop system. This factorization is in fact weakly coprime (see Mikkola
[15]), but it may not always be strongly coprime (i.e. Bezout coprime). This
question is treated in detail in the forthcoming part 3 of this series of articles
[16].

7 The optimal output injection problem

We consider the closed-loop system

xn+1 = (A−HC)xn + (B −HD)un +Hyn, n ∈ Z−,
wn = WCxn +WDun −Wyn, n ∈ Z−,
x0 = z,

∃N ∈ Z− : xn = 0 = un ∀n ≤ −N.

(15)

where W : Y → W is a given bounded linear operator and H : Y → Xe is a
bounded linear operator. Here W is a Hilbert space and Xe is a Hilbert space
that contains PX	N Ξp as a dense subspace and is such that the restriction
of the node [A B

C D ] to PX	N Ξp ×U extends continuously to a bounded linear
operator from Xe ×U to Xe × Y .
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Theorem 7.1. Assume that [A B
C D ] satisfies the output coercive past cost condi-

tion. Define Hp : Y →Xp by

Hpy = JXpPG g, (16)

where g−1 = [ y0 ] and gn = 0 for n < −1 and PG is the orthogonal projection
`2(Z−; Y ×U )→ G .

Then Hp minimizes both the L(`2(Z−,Y ×U ), `∞(Z−,W )) and the L(`2(Z−,Y ×
U ), `2(Z−,W )) norm of the map from {[ ynun

]}n∈Z− to {wn}n∈Z− in (15), where
H ranges over all linear maps Y → Xe with Xe a Hilbert space that con-
tains PX	N Ξp as a dense subspace and is such the restriction of the node
[A B
C D ] to PX	N Ξp×U extends continuously to a node with Xe as state space.

The operator Hp also minimizes the L(`2(Z−,Y × U ),W ) norm of the map
{[ ynun

]}n∈Z− 7→ w−1.
Denote the smallest nonnegative self-adjoint solution of the filter Riccati

equation of [A B
C D ] by (pp, Tp, rp). Then the minimum norms mentioned above

all equal the square root of sup‖h‖=1 rp(W
∗h,W ∗h).

Proof. The assumption that PX	N Ξp ⊂Xe implies that PX	N Ξ− ⊂Xe and
so ensures that the extended node has the same transfer function as the original
node. In particular, it too satisfies the output coercive past cost condition (this
follows from Theorem 6.10). So the dual of the extended node satisfies the finite
future incremental cost condition by Theorem 6.4.

We have that K := −H∗ is a bounded operator from X ′
e to Y ′ and E := W ∗

is a bounded operator from W ′ to Y ′. Obviously, the domain of K (which equals
the whole state space X ′

e ) is A∗ invariant and contains the range of C∗. The
adjoint of the closed-loop system (15) considered as a dynamical system on Z+

then is
xdn+1 = (A∗ + C∗K)xdn + C∗Ew∗n, n ∈ Z+,

u∗n = (B∗ +D∗K)xdn +D∗Ew∗n, n ∈ Z+,

−y∗n = Kxdn + Ew∗n, n ∈ Z+,

xd0 = z∗,

(17)

i.e. it is the closed-loop system (7) of the adjoint node of the extended node
with an additional minus sign in the third equation.

From the above it follows that the search over H in the optimal output injec-
tion problem translates to the search over K in the optimal feedback problem.

By the discussion in Section 5, the input-output maps of (15) and (17) are
adjoints when both are considered `2 → `2 and also when considered `1 →
`2 and `2 → `∞ respectively. Also the maps {[ ynun

]}n∈Z− 7→ w−1 and w∗0 7→{[
y∗n
u∗n

]}
n∈Z+

are adjoints.

From the fact that the operator norm of an operator equals that of its adjoint
and Theorem 4.8, it follows that the square root of sup‖h‖=1 rp(W

∗h,W ∗h) is a
lower-bound for all three operator norms considered and that this lower-bound
is reached for H = −K∗f,d. The formula for Hp follows once we show that
Hp = −K∗f,d as operators Y →Xp, which we now obtain.
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We have, for y ∈ Y and z∗ ∈ (Xp)f,d = X ′
p (this equality of spaces follows

from Lemma 6.6),

〈Hpy, z
∗〉Xp,X ′

p
= 〈JXpPG g, z

∗〉Xp,X ′
p
,

which by Lemma 6.6 equals〈
IXp
p JXpPG g,R∗I

(Xp)f,d
f,d z∗

〉
`2(Y ×U )

.

By (5) the above equals〈
P`2(Z−;Y ×U )	N(JXp )PG g,R∗I

(Xp)f,d
f,d z∗

〉
`2(Y ×U )

.

By Lemma 6.3 we can omit the projection onto the orthogonal complement
of the kernel in this last formula. By Lemma 6.2 and Remark 5.2 we have

R∗I
(Xp)f,d
f,d z∗ ∈ `2(Z+; Y ′ ×U ′)	 G⊥ so that the projection onto G may also

be omitted. Hence

〈Hpy, z
∗〉Xp,X ′

p
= 〈Rg, I

(Xp)f,d
f,d z∗〉`2(Y ×U ) = −〈y,Kf,dz

∗〉Y ,Y ′ ,

where the last equality holds by definition of Kf,d and R. This proves Hp given
by (16) is indeed the optimal output injection.

The formula (16) shows that the optimal output injection Hpy for the node
[A B
C D ] is the final state of the dynamical system associated to that node for some

input defined on Z− in terms of y.

Theorem 7.2. Assume that [A B
C D ] satisfies the output coercive past cost con-

dition. Then the closed-loop system of the completed Ip-compression with the
optimal output injection is strongly internally ∗-stable.

Proof. The proof of Theorem 7.1 shows that the dual of the closed-loop system of
the completed Ip-compression with the optimal output injection is the closed-
loop system of a completed If -compression with the optimal state feedback.
From Remark 4.9 it follows that this latter system is strongly internally stable.
The result immediately follows.

Remark 7.3. Many of the operators defined here are closely related to analogous
operators introduced in [4]. More precisely, the completed Ip-compression is a
passive observable and backward conservative i/s/o system if we equip its output
space Y with the (equivalent) inner product induced by the quadratic form r in
Definition 6.8 and use U × Y as the input space. With regard to this system,
the co-isometry JXp coincides with the input map BΣi/s/o

in [4, Section 10],
the isometry If,d is the output map of the adjoint system, and the two Hankel
operators Γp and Γf,d can be interpreted as compressions of the past/future
map ΓΣ in [4] and its adjoint.
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