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Abstract

We study the optimal input-output stabilization of discrete time-invariant
linear systems in Hilbert spaces by state feedback. We show that a nec-
essary and sufficient condition for this problem to be solvable is that the
transfer function has a right factorization over H-infinity. A necessary
and sufficient condition in terms of an (arbitrary) realization is that each
state which can be reached in a finite time from the zero initial state has a
finite cost. Another equivalent condition is that the control Riccati equa-
tion has a solution (in general unbounded and even non densely defined).
The optimal state feedback input-output stabilization problem can then
be solved explicitly in terms of the smallest solution of this control Riccati
equation. We further show that after renorming the state space in terms
of the solution of the control Riccati equation, the closed-loop system is
not only input-output stable, but also strongly internally stable.

1 Introduction

This is the first in a series of articles dealing in a novel way with the quadratic
cost minimization problem for infinite-dimensional time-invariant linear systems
in discrete and continuous time. Much of the motivation comes from the con-
tinuous time case, but since that case is technically more difficult, and since
the continuous time theory to some extent can be reduced to the discrete time
theory, we begin with the discrete time case. In this article we investigate the
full information infinite-horizon LQ (Linear Quadratic) problem, and our next
article will deal with the discrete time infinite-horizon optimal output injection
problem.

We consider a linear dynamical system in discrete time defined by

xn+1 = Axn + Bun, yn = Cxn + Dun, n ∈ Z+; x0 = z, (1.1)

where A : X → X , B : U → X , C : X → Y, and D : U → Y are bounded linear
operators, X , U and Y are Hilbert spaces, and Z+ is the set of nonnegative
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integers. A classical problem is to modify the properties of this system by
using state feedback of the type un = Kxn + vn, where K : X → U is another
bounded linear operator. For example, one may require that the resulting closed
loop system

xn+1 = (A + BK)xn + Bvn, n ∈ Z+,

yn = (C + DK)xn + Dvn, n ∈ Z+,

un = Kxn + vn, n ∈ Z+,

x0 = z,

(1.2)

is stable, or at least input-output stable in the sense that if we take z = 0 in
(1.2) then the mapping from the input sequence {vn}n∈Z+ to the two output
sequences {yn}n∈Z+ and {un}n∈Z+ is bounded from `2(Z+;U) to `2(Z+;Y×U).
In the optimal version of this problem one does not only require this input-
output map to be bounded, but to have the smallest possible norm.

A special solution to this optimal control problem is well known in the case
where X , U , and Y are finite-dimensional: If for each z ∈ X we choose the
sequence {un}n∈Z+ in (1.1) so that it minimizes

∑∞
n=0(‖yn‖2Y + ‖un‖2U ), then

un is of feedback form, i.e., un = Kxn for some bounded feedback operator
K, and this operator K minimizes the norm of the map from {vn}n∈Z+ to
{yn}n∈Z+ and {un}n∈Z+ in (1.2). Of course, in order for the existence of an
optimal sequence {un}n∈Z+ for each z ∈ X we must require that the finite cost
condition holds, i.e., that for every z ∈ X there is a control {un}n∈Z+ such that
the solution of (1.1) satisfies

∑∞
n=0(‖yn‖2Y + ‖un‖2U ) < ∞. Then the optimal

cost of a given initial state z ∈ X can be written in the form 〈z, Qz〉X for some
bounded nonnegative self-adjoint operator Q, and the feedback operator K is
explicitly given by K = −S−1(B∗QA + D∗C) where S = I + D∗D + B∗QB.
The optimal cost operator Q is the minimal nonnegative self-adjoint solution of
the so called control Riccati equation. The feedback K that we get in this way
is optimal even in a stronger sense: if we replace vn in (1.2) by Ewn for some
bounded linear operator E : W → U , then it is still true that the same feedback
operator minimizes the `2 operator norm from w to the pair [y; u]. The optimal
norm of this operator is equal to the norm of (E∗SE)1/2. Additionaly, the same
feedback operator also minimizes the l1 to l2 operator norm from w to the pair
[y; u].

In the above formulation of the input-output stabilization problem there is
a hidden assumption which is redundant in the finite-dimensional case, but not
in the infinite-dimensional case. Let us denote the different transfer functions
u 7→ y, v 7→ u, and v 7→ y of the systems (1.1)–(1.2) by, respectively,

Gu,y(z) = zC(I − zA)−1B + D,

Gv,u(z) = zK(I − z(A + BK))−1B + I,

Gv,y(z) = z(C + DK)z(I − z(A + BK))−1B + D.

(1.3)

Then all of these are defined in a neighborhood of the origin and satisfy Gu,y(z) =
Gv,y(z)Gv,u(z)−1 in this neighborhood. The input-output stability of (1.2) im-
plies that both Gv,y and Gv,u can be extended to H∞-functions (i.e., bounded
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analytic functions) in the open unit disc D. Thus, a necessary condition for
the input-output stabilizability of (1.1) is that the transfer function Gu,y has a
right H∞ factorization in the unit disc. This factorization condition is always
satisfied in the finite-dimensional case. Moreover, in the finite-dimensional case
every controllable realization satisfies the finite cost condition, so that the above
outlined procedure can be applied after one restricts the system to the control-
lable subspace. In the infinite-dimensional case the situation is considerably
more complicated. Obtaining a realization that satisfies the finite cost condi-
tion is no longer a matter of simply restricting to the controllable subspace: one
has to choose the realization (and especially the norm in the state space) with
care. In the continuous-time case this question is strongly related to choosing
the proper function spaces on which to consider a given (formal) partial differ-
ential equation, a problem that is well-known to be extremely delicate. In the
continuous-time sequel to the present article we will consider this connection
with partial differential equations in more detail. Choosing the proper state
space is usually considered to be something that has to be done before one can
solve control problems. One of the main points of the present series of articles is
that it should instead be considered as an integral part of the control problem.

We note that, using abstract realization theory, one can show that a function
that has a right H∞ factorization in the unit disc has a realization that satisfies
the finite cost condition. This abstract realization procedure has the downside
that the partial differential equation itself is changed, not just the space on
which it is studied. The (continuous-time version of the) method outlined below
only changes the space on which the partial differential equation is studied, not
the equation itself.

The first main novelty in the present article is the introduction of a condition,
which we call the finite future incremental cost condition, which is weaker than
the finite cost condition. This condition simply says that each state which
can be reached in a finite time from the zero initial state should have a finite
cost. We show (in Theorem 6.3) that every realization of a function that has a
right H∞ factorization satisfies this finite future incremental cost condition and
that conversely the transfer function of any system that satisfies the finite future
incremental cost condition has a right H∞ factorization. Theorem 6.3 also gives
a third equivalent condition: the control Riccati equation has a solution. This
solution may not be bounded, or even densely defined. By allowing the optimal
cost operator and the optimal feedback operator to be unbounded we are able
(in Theorem 5.1) to extend the procedure described above so that it can always
be applied to the given system, as soon as the necessary condition that Gu,y has
a right H∞ factorization holds. The resulting closed loop system will be input-
output stable and have a minimal input-output norm, but it is not necessarily
internally stable (it may not even be internally well-posed). By changing the
norm in the state space (where the new norm is defined in terms of the solution of
the input-output stabilization problem) and keeping the same formal operators
we construct a new realization that does satisfy the finite cost condition and
whose closed-loop system is strongly internally stable. This change of norm
for the open-loop system is considered in Theorems 4.12 and 4.13 and for the
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closed-loop system in Theorems 5.3 and 5.4. Both cases depend crucially on
the results in Appendix B, where we generalize one of the usual procedures of
obtaining a minimal realization from a given realization.

Another notable novelty in the present article is our treatment of the control
Riccati equation. As mentioned above, we (are forced to) consider unbounded
and even non densely defined solutions of this equation. We overcome some of
the technical difficulties due to this by rewriting the control Riccati equation
in terms of sesquilinear forms. The usual operator formulation is considered in
Appendix A. Our research led us to the observation that the control Riccati
equation is most properly viewed as the synthesis of two separate equations:
one that we coin the optimal continuation equation and one that we name the
orthogonality equation. The first of these is obtained in Section 2 without any
condition on the system whatsoever (apart from well-posedness). It is only
in the orthogonality equation that the finite future incremental cost condition
comes into play (see Section 3).

Below, instead of talking about the “finite cost condition” as we have done
above, we shall use the name finite future cost condition. The inclusion of
the word “future” is motivated by the fact that the optimal cost that we have
described above can be interpreted as a “future” cost, i.e., it is the minimal
cost associated to a given initial condition. There is a related problem where
one instead of the future cost looks at the past cost, which is the cost that is
associated to a given terminal condition. The latter problem is closely connected
to the optimal filtering problem, and we shall return to this in our next article
in this series [13].

The present article extends or complements several existing studies. In par-
ticular we mention the work of DaPrato and Delfour on unbounded solutions of
Riccati equations [5], [6]; the work of Arov, Kaashoek and Pik on unbounded
solutions of the Kalman-Yakubovich-Popov inequality and its relation to Schur
functions in discrete-time [1] and the continuous-time analogue of this last result
by Arov and Staffans [3].

2 Existence and uniqueness of the optimal con-
trol

In this section we discuss the solution of the following problem that was men-
tioned in the introduction: for a given z ∈ X , choose the sequence {un}n∈Z+ in
(1.1) that minimizes

∑∞
n=0(‖yn‖2Y + ‖un‖2U ). We show in this section that this

problem is uniquely solvable if z ∈ X is such that there is a control {un}n∈Z+

such that the solution of (1.1) satisfies
∑∞

n=0(‖yn‖2Y +‖un‖2U ) <∞. We further
show that the optimal cost is given by a closed nonnegative symmetric sesquilin-
ear form and that the optimal control is given by a (in general unbounded and
non densely defined) state feedback. The pair consisting of the sesquilinear form
that gives the optimal cost and the state feedback operator that produces the
optimal control solves what we call the optimal continuation equation. This
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equation can be seen as one of the constituents of the control Riccati equation
(the other constituent being the orthogonality equation that we will introduce
in a later section).

We note that some of our results in this section parallel those that DaPrato
and Delfour [5], [6] obtained for continuous-time systems. Our proofs are how-
ever radically different and in our opinion much simpler.

The principal ingredient in the solution of the above optimal control problem
is the following well-known result, which is often referred to as the orthogonal
projection lemma.

Theorem 2.1. Let H be a Hilbert space and K a nonempty closed subspace of
H. Define, for h0 ∈ H, the affine set

K(h0) := {h ∈ H : h = h0 + k for some k ∈ K}.

Then there exists a unique hmin ∈ K(h0) such that

‖hmin‖ = min
h∈K(h0)

‖h‖.

The vector hmin is characterized by the fact that K(h0) ∩ K⊥ = {hmin}.

Proof. A proof can be found in many books, e.g. [8, Section 3.2]. �
To put our problem into the framework of the orthogonal projection lemma,
we first analyze a certain set associated with the system. For a given system
consider the affine set of stable input-output pairs

V(z) :=
{[

u
y

]
∈
[

l2(Z+;U)
l2(Z+;Y)

]
: (1.1) is satisfied

}
. (2.1)

Definition 2.2. An element z of the state space is said to have finite future
cost if there exists an input u ∈ l2(Z+;U) such that the output y defined by
(1.1) is in l2(Z+;Y). The set of finite future cost states is denoted by Ξ+.

The node [ A B
C D ] is said to satisfy the finite future cost condition if Ξ+ = X .

Note that the set of finite future cost states is a subspace and that V(z) is
nonempty if and only if z ∈ Ξ+. The set V(z) will play the role of K(h0) in the
orthogonal projection lemma. Since V(0) then plays the role of K we have to
show that it is closed.

Lemma 2.3. V(0) is a nonempty closed subspace of l2(Z+;U × Y).

Proof. We first note that the V(0) is nonempty since it contains zero. If [u; y] ∈
V(0), then

yn =
n−1∑
k=0

CAkBun−k−1 + Dun. (2.2)

From this it is easily seen that V(0) is a linear space. We now prove that V(0)
is closed. Let [um; ym] ∈ V(0) and assume that there exist u ∈ l2(Z+;U) and
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y ∈ l2(Z+;Y) such that um → u in l2(Z+;U) and ym → y in l2(Z+;Y). Then
um

n → un in U , from which we obtain

ym
n =

n−1∑
k=0

CAkBum
n−k−1 + Dum

n →
n−1∑
k=0

CAkBun−k−1 + Dun,

since we also have ym
n → yn in Y we obtain that y is the output corresponding

to u. This shows that V(0) is closed. �
The optimal control problem considered in this section can be reformulated as
follows: find the element of minimal norm in V(z). The next lemma shows that
such an element indeed exists and is unique (provided that z ∈ Ξ+).

Lemma 2.4. For z ∈ Ξ+, there exists a unique element [umin
z ; ymin

z ] ∈ V(z) with
minimal norm. This element is characterized by the fact that it is the unique
element of V(z) ∩ V(0)⊥.

Proof. We apply Theorem 2.1 with H = l2(Z+,U × Y) and K = V(0). Note
that if (u1, y1), (u2, y2) ∈ V(z), then (u1 − u2, y1 − y2) ∈ V(0). So V(z) is a
translation of the closed subspace V(0) just like K(h0) is a translation of the
closed set K. That V(0) is a nonempty closed subspace is the content of Lemma
2.3. The above shows that all the conditions of Theorem 2.1 are fulfilled. This
theorem now gives the desired result. �
The operator that assigns the optimal input and output to a given initial state
plays an important role.

Definition 2.5. The operator

If : Ξ+ → l2(Z+;U × Y), Ifz :=
[

umin
z

ymin
z

]
,

that assigns to z ∈ Ξ+ the elements of V(z) with minimal norm, is called the
future minimizing operator of the node [ A B

C D ].

Lemma 2.6. The future minimizing operator is a closed linear operator.

Proof. Let z1, z2 ∈ Ξ+. We shall prove that If (z1 + z2) = Ifz1 + Ifz2. Since
the system is linear we have that the output for initial state z1 + z2 and input
umin

z1
+ umin

z2
is ymin

z1
+ ymin

z2
. Hence Ifz1 + Ifz2 ∈ V(z1 + z2). Since Ifz1 and

Ifz2 are both in it V(0)⊥ it follows that Ifz1 + Ifz2 is. So Ifz1 + Ifz2 is in
V(z1 +z2)∩V(0)⊥. Since by Lemma 2.4 the element of V(z1 +z2) with minimal
norm is the unique element of this set it follows that Ifz1 + Ifz2 is the element
of minimal norm in V(z1 + z2). Hence If (z1 + z2) = Ifz1 + Ifz2.

We now show that If is closed. Let zk ∈ Ξ+ → z∞ in X , Ifzk =
[umin

zk ; ymin
zk ] → [u∞; y∞] in l2(Z+;U × Y). We need to show that z∞ ∈ Ξ+

and Ifz∞ = [u∞; y∞]. The output y for initial condition z and input u is given
by

yn = CAnz +
n−1∑
i=0

CAiBun−1−i + Dun.
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Applying this with z = zk and u = umin
zk we obtain

(
ymin

zk

)
n

= CAnzk +
n−1∑
i=0

CAiB
(
umin

zk

)
n−1−i

+ D
(
umin

zk

)
n

.

Taking the limit for k →∞ we obtain

y∞n = CAnz∞ +
n−1∑
i=0

CAiBu∞n−1−i + Du∞n .

This shows that the output for initial state z∞ and input u∞ is y∞. This shows
that z∞ ∈ Ξ+ and [u∞; y∞] ∈ V(z∞). Since V(0)⊥ is closed and Ifzk ∈ V(0)⊥,
it follows that [u∞; y∞] ∈ V(0)⊥. So [u∞; y∞] ∈ V(z∞) ∩ V(0)⊥, from which it
follows that we have [u∞; y∞] = Ifz∞. So If is closed. �

Corollary 2.7. If a node satisfies the finite future cost condition, then its future
minimizing operator is bounded.

Proof. This follows from the closed graph theorem. �

Since If is closed, we can define a closed nonnegative symmetric sesquilinear
form qf in X by qf (z1, z2) := 〈Ifz1, Ifz2〉. Note that this sesquilinear form may
not be densely defined.

Definition 2.8. The closed nonnegative symmetric sesquilinear form qf on Ξ+

defined by

qf (z1, z2) =
〈[

umin
z1

ymin
z1

]
,

[
umin

z2

ymin
z2

]〉
l2(Z+;U×Y)

is called the future optimal cost sesquilinear form of the node [ A B
C D ]. The opera-

tor z 7→ (umin
z )0, with domain Ξ+, is called the future optimal feedback operator

and is denoted by Kf .

The following theorem easily follows from the results obtained sofar in this
section.

Theorem 2.9. For every z ∈ Ξ+ there exists a unique input umin such that

∞∑
n=0

(‖ymin
n ‖2Y + ‖umin

n ‖2U ) = inf
u

∞∑
n=0

(‖yn‖2Y + ‖un‖2U )

under the constraint (1.1). The minimum is equal to qf (z, z).

Proof. This is just a reformulation of Lemma 2.4 and the definition of qf . �

The following result is known as Bellman’s principle of optimality.
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Lemma 2.10. For z ∈ Ξ+ and u0 ∈ U we have (with x1 = Az + Bu0, y0 =
Cz + Du0)

qf (z, z) ≤ qf (x1, x1) + ‖u0‖2 + ‖y0‖2,

where we have equality if and only if u0 = Kfz. (Here qf (x1, x1) should be
interpreted as infinity if x1 /∈ Ξ+).

Proof. This follows using a simple contradiction argument and uniqueness of
the optimal control. �

Definition 2.11. The pair (q, K) is called a (nonnegative) solution of the op-
timal continuation equation of the node [ A B

C D ] if

1. q is a closed nonnegative symmetric sesquilinear form in X .

2. K : D(q)→ U is a linear operator.

3. For all z ∈ D(q), we have (A + BK)z ∈ D(q) and

q((A + BK)z, (A + BK)z) + ‖(C + DK)z‖2Y + ‖Kz‖2U = q(z, z). (2.3)

The solutions of the optimal continuation equation are ordered according
to the sesquilinear form q. We recall that for sesquilinear forms t1 and t2
(defined in the same space) we have t1 ≤ t2 by definition if D(t1) ⊃ D(t2) and
t1(h, h) ≤ t2(h, h) for all h ∈ D(t2).

Lemma 2.12. The pair (qf , Kf ) is the smallest solution of the optimal contin-
uation equation.

Proof. We first show that (qf , Kf ) is indeed a solution. We have (A+BKf )z ∈
Ξ+ since V((A+BKf )z) contains the element [ũ; ỹ] defined by [ũ; ỹ]n := (Ifz)n+1.
That (qf , Kf ) satisfies (2.3) follows immediately from the equality case in Bell-
man’s principle of optimality, Lemma 2.10.

To show that (qf , Kf ) is the smallest solution we assume that (q, K) is
another solution and apply the feedback input un = Kxn to the system (1.1),
where z ∈ D(q). By induction we obtain from (2.3)

q(z, z) = q(xn, xn) +
n−1∑
k=0

‖yk‖2 + ‖uk‖2,

which implies
n−1∑
k=0

‖yk‖2 + ‖uk‖2 ≤ q(z, z).

By letting n→∞, it follows that [u; y] ∈ l2(Z+,U × Y), so z ∈ Ξ+, and

qf (z, z) =
∞∑

k=0

(‖ymin
k ‖2Y + ‖umin

k ‖2U ) ≤
∞∑

k=0

(‖yk‖2Y + ‖uk‖2U ) ≤ q(z, z).
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So indeed qf ≤ q. �
We remind the reader that the kernel of a nonnegative symmetric sesquilinear
form q consists of all the elements z in the domain of the sesquilinear form for
which q(z, z) = 0.

Lemma 2.13. Let q be a closed nonnegative symmetric sesquilinear form. Then
the kernel N (q) of q has the following properties:

1. N (q) is closed.

2. N (q1) ⊃ N (q2) if q1 ≤ q2.

If (q, K) is a solution of the optimal continuation equation, then N (q) is A-
invariant.

Proof. 1. This follows from the fact that q is closed.
2. Let z ∈ N (q2). It follows that z ∈ D(q1) and q1(z, z) ≤ q2(z, z) = 0, so
q1(z, z) = 0. Hence z ∈ N (q1).
The claim that N (q) is A-invariant is established as follows. Let z ∈ N (q).
Then the right-hand side of (2.3) is zero. From this we obtain that Kz = 0 and
q((A+BK)z, (A+BK)z) = 0. This implies that q(Az, Az) = 0, so Az ∈ N (q).
�

3 The control Riccati equation

We saw in Section 2 that the pair consisting of the sesquilinear form that gives
the optimal cost and the state feedback operator that produces the optimal
control provide a solution to the optimal continuation equation. In the classical
situation of a bounded feedback more can be said: the above mentioned pair
satisfies the control Riccati equation. In this section we show that in the case
of an unbounded feedback operator the same is true if and only if the finite
future incremental cost condition holds. Alternative formulations of the control
Riccati equation are given in Appendix A.

To precisely formulate this finite future incremental cost condition we need
the following concept.

Definition 3.1. An element w of the state space is said to be finite time reach-
able if there exists a N and an input u : Z+ → U such that the state x defined
by (1.1) with z = 0 satisfies xN = w. The set of finite-time reachable states is
denoted by Ξ−.

Remark 3.2. It is easily seen that the set of finite time reachable states is an
A-invariant subspace.

The following concept is new and is fundamental to the present article.

Definition 3.3. A node satisfies the finite future incremental cost condition if
every element of the state space that is finite time reachable has finite future
cost.
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Note that a node that satisfies the finite future cost condition satisfies the
finite future incremental cost condition, but that the converse may not be true.

The following lemma provides a further connection between the optimal
control problem and the finite future incremental cost condition.

Lemma 3.4. The finite future incremental cost condition holds if and only if
all the elements in the image of B have finite cost. If this condition holds, then
Ξ+ is A-invariant.

Proof. That the finite future incremental cost condition implies that all the
elements in the image of B have finite cost is trivial.

We next show that if all the elements in the image of B have finite cost, then
Ξ+ is A-invariant. Let z ∈ Ξ+. Then there exists a [u; y] ∈ V(z). It follows that
x1 := Az + Bu0 ∈ Ξ+ since [(u1, . . .), (y1, . . .)] ∈ V(x1). Since Bu0 ∈ Ξ+ it then
follows that Az = x1 −Bu0 ∈ Ξ+.

Assume that all the elements in the image of B have finite cost. It is easily
seen that Ξ− is the smallest A-invariant subspace that contains the image of
B. In the preceding paragraph it was proven that Ξ+ is also an A-invariant
subspace that contains the image of B. Hence Ξ− ⊂ Ξ+, i.e., the finite future
incremental cost condition condition holds. �

The sesquilinear form that we introduce in the following definition, as we
will show later, is closely related to the minimal norm of the mapping from the
input sequence {vn}n∈Z+ to the two output sequences {yn}n∈Z+ and {un}n∈Z+

(with initial condition z = 0) in (1.2).

Definition 3.5. If the node [ A B
C D ] satisfies the finite future incremental cost

condition, then we define its optimal sensitivity sesquilinear form sf on U by
sf (u1, u2) = qf (Bu1, Bu2) + 〈u1, u2〉+ 〈Du1, Du2〉.

Note that sf is a bounded nonnegative symmetric sesquilinear form on U ,
since it is closed and everywhere defined.

The following orthogonality equation together with the optimal continuation
equation will provide the control Riccati equation.

Definition 3.6. The pair (q, K) is called a (nonnegative) solution of the or-
thogonality equation of the node [ A B

C D ] if

1. q is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies AD(q) ⊂ D(q), BU ⊂ D(q).

2. K : D(q)→ U is a linear operator.

3. For all z ∈ D(q) and u ∈ U we have

〈(C + DK)z, Du〉Y + 〈Kz, u〉U + q((A + BK)z, Bu) = 0. (3.1)

The following lemma shows that the pair consisting of the sesquilinear form
that gives the optimal cost and the state feedback operator that produces the
optimal control satisfy the orthogonality equation.
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Lemma 3.7. Assume that the finite future incremental cost condition holds.
Then the pair (qf , Kf ) is a solution of the orthogonality equation.

Proof. By Lemma 2.4 [umin
z ; ymin

z ] is orthogonal to every element of V(0). It is
easily seen that [v; y] defined by [v; y]0 := [u; Du], [v; y]n := (IfBu)n−1 is an
element of V(0). So〈[

umin
z

ymin
z

]
0

,

[
u

Du

]〉
+

〈[
umin

z

ymin
z

]
≥1

,

[
umin

Bu

ymin
Bu

]〉
= 0.

Using that (qf , Kf ) is a solution of the optimal continuation equation (Lemma
2.12) we obtain〈[

Kfz
(C + DKf )z

]
,

[
u

Du

]〉
+ 〈If (A + BKf )z, IfBu〉 = 0,

which gives the desired result. �

The optimal cost continuation equation and the orthogonality equation can
be combined into one equation.

Definition 3.8. The triple (q, s, K) is called a (nonnegative) solution of the
closed-loop control Riccati equation of the node [ A B

C D ] if

1. q is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies AD(q) ⊂ D(q), BU ⊂ D(q).

2. s is a bounded nonnegative symmetric sesquilinear form on U .

3. K : D(q)→ U is a linear operator.

4. For all z ∈ D(q) and v ∈ U we have

q((A + BK)z + Bv, (A + BK)z + Bv) + ‖Kz + v‖2U + ‖(C + DK)z + Dv‖2Y(3.2)
= q(z, z) + s(v, v).

Lemma 3.9. The triple (q, s, K) is a solution of the closed-loop control Ric-
cati equation of [ A B

C D ] if and only if the pair (q, K) satisfies both the optimal
continuation equation and the orthogonality equation of [ A B

C D ] and s is given by

s(u1, u2) := 〈u1, u2〉+ 〈Du1, Du2〉+ q(Bu1, Bu2).

Proof. The proof is entirely similar to the proof of Lemma A.2 and hence omit-
ted. �

Definition 3.10. The triple (q, s,K) is called a (nonnegative) solution of the
control Riccati equation of the node [ A B

C D ] if

11



1. q is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies AD(q) ⊂ D(q), BU ⊂ D(q).

2. s is a bounded nonnegative symmetric sesquilinear form on U .

3. K : D(q)→ U is a linear operator.

4. For all z ∈ D(q), u ∈ U we have

q(Az +Bu, Az +Bu)+‖Cz +Du‖2Y +‖u‖2U = q(z, z)+s(Kz−u, Kz−u).
(3.3)

The solution is called classical when D(q) = X .

Remark 3.11. Note that for a classical solution of the control Riccati equation
the sesquilinear form q is bounded by the closed graph theorem. It can be shown
that in this case K is bounded as well.

Remark 3.12. Solutions of the control Riccati equation are orderded by the
usual ordering of unbounded sesquilinear forms, i.e. q1 ≤ q2 if D(q1) ⊃ D(q2)
and q1(z, z) ≤ q2(z, z) for all z ∈ D(q2). Note that we only consider q and not
s and K in this definition of order.

The following lemma shows that the closed-loop control Riccati equation
and the control Riccati equation are simply reformulations of each other.

Lemma 3.13. The triple (q, s, K) satisfies the closed-loop control Riccati equa-
tion of [ A B

C D ] if and only if it satisfies the control Riccati equation of [ A B
C D ].

Proof. We use Lemma 3.9 and several results from Appendix A here.
Assume (q, s,K) satisfies the control Riccati equation. That (q, K) satisfies

the optimal continuation equation follows by substituting u = Kz in (3.3). The
only thing left to check is the equation (3.1). By Lemma A.2 the triple (q, s, K)
satisfies the Lure control Riccati equation. It follows that, for z ∈ D(q) and
u, u1, u2 ∈ U ,

s(u1, u2) = 〈u1, u2〉U + 〈Du1, Du2〉Y + q(Bu1, Bu2), (3.4)
−s(Kz, u) = 〈Cz,Du〉Y + q(Az, Bu)

(to obtain the first equation we polarize the middle equation in (A.1)). Writing
out the left-hand side of (3.1) in full gives

〈Cz, Du〉Y + 〈DKz, Du〉Y + 〈Kz, u〉U + q(Az, Bu) + q(BKz,Bu). (3.5)

Applying (3.4) with u1 = Kz, u2 = u shows that the expression (3.5) equals
zero as desired.

Now assume that (q,K) satisfies the optimal continuation equation and the
orthogonality equation. It follows that the expression (3.5) equals zero. Using
the definition of s, it follows that the second equation of (3.4) holds true. Using
Lemma A.2 we see that this only leaves to show, that for all z ∈ D(q),

q(Az, Az) + ‖Cz‖2Y = q(z, z) + s(Kz). (3.6)

12



Writing out the given (2.3) in full results in

q(Az, Az) + q(BKz,BKz) + q(Az, BKz) + q(BKz,Az) + ‖Cz‖2Y
+‖DKz‖2Y + 〈Cz, DKz〉Y + 〈DKz, Cz〉Y + ‖Kz‖2U = q(z, z).

Using the definition of s to evaluate s(Kz, Kz) and the just proven second equa-
tion of (3.4) with u = Kz, this gives (3.6). �

The following theorem shows that the sesquilinear form that gives the opti-
mal cost gives rise to the smallest solution of the control Riccati equation.

Theorem 3.14. Assume that the node [ A B
C D ] satisfies the finite future incre-

mental cost condition. Then the triple (qf , sf , Kf ) is a solution of the control
Riccati equation of [ A B

C D ]. Moreover, it is the smallest solution.

Proof. That the pair (qf , Kf ) satisfies the optimal continuation equation follows
from Lemma 2.12. That it is a solution of the orthogonality equation is the
content of Lemma 3.7. By Lemmas 3.9 and 3.13 the triple (qf , sf , Kf ) is a
solution of the control Riccati equation.

Since by Lemma 2.12 the pair (qf , Kf ) is the smallest solution of the optimal
continuation equation and by Lemmas 3.9 and 3.13 every solution (q, s, K) of
the control Riccati equation gives a solution (q, K) of the optimal continuation
equation, it follows that (qf , sf , Kf ) is the smallest solution of the control Ric-
cati equation. �

The next two lemmas gives some consequences of the control Riccati equation
that will be useful in the forthcoming sections.

Lemma 3.15. Let (q, s, K) be a solution of the control Riccati equation of the
node [ A B

C D ]. Then Ξ− ⊂ D(q) ⊂ Ξ+.

Proof. That Ξ− ⊂ D(q) follows from the domain inclusions in the definition of
the control Riccati equation. That D(q) ⊂ Ξ+ follows from the fact that qf

is the smallest solution of the control Riccati equation by Theorem 3.14 and
D(qf ) = Ξ+. �

Lemma 3.16. Assume that (q, s, K) is a solution of the control Riccati equation
of [ A B

C D ]. Then, for the sequences v, u, y, x related by (1.2), we have for all
n ∈ Z+

q(xn+1, xn+1) +
n∑

k=0

‖uk‖2U + ‖yk‖2Y = q(z, z) +
n∑

k=0

s(vk, vk). (3.7)

Proof. By (1.2) and (3.2) with z replaced by xk and v replaced by vk, for all
k ∈ Z+,

q(xk+1, xk+1) + ‖uk‖2U + ‖yk‖2Y = q(xk, xk) + s(vk, vk).

Adding these identities over k = 0, 1, . . . , n we get (3.7). �
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4 Special realizations

In this section we show, using an unbounded solution of the control Riccati
equation, how it is possible to construct a node with the same transfer function
as the original node and with a classical solution to its control Riccati equa-
tion. We make extensive use of Appendix B on completions of compressions of
systems.

We first study observability and the observable part of a node.

Definition 4.1. An element z of the state space is called unobservable if for
zero input u the output y defined by (1.1) is zero.

Remark 4.2. The set of all unobservable elements is easily seen to be a closed
A-invariant subspace of the state space. It is called the unobservable subspace
and is denoted by N .

Definition 4.3. A node is called observable if its unobservable subspace is the
zero vectorspace.

The following lemma relates observability and the optimal control problem.

Lemma 4.4. We have N (qf ) = N .

Proof. Suppose that z ∈ N (qf ). Then the optimal cost for initial state z is zero,
so the output for zero input and initial state z is zero. So z ∈ N .

If for zero input and initial state z the output is zero, then obviously z ∈ Ξ+

and the optimal cost is zero, so qf (z, z) = 0, so z ∈ N (qf ). �

In the next definition we extend the classical definition of observable part.

Definition 4.5. Let q be a closed nonnegative symmetric sesquilinear form
such that N (q) is A-invariant and is contained in N . The q-observable part of
the node [ A B

C D ] is[
Aq

o Bq
o

Cq
o Dq

o

]
:=
[

PN (q)⊥A|N (q)⊥ PN (q)⊥B
C|N (q)⊥ D

]
,

with state space N (q)⊥ (with the subspace topology).
In the special case where q = qf this node is simply called the observable

part.

If q is not just any closed nonnegative symmetric sesquilinear form, but a
solution of the optimal continuation equation, then the q-observable part has
many interesting properties. We collect some of these in the following lemma.

Lemma 4.6. Let (q, K) be a solution of the optimal continuation equation of
[ A B
C D ].

1. For the same initial state z ∈ N (q)⊥ and input {un}n∈Z+ , the state and
output of [ A B

C D ] and its q-observable part are related by xo
n = PN (q)⊥xn,

yo
n = yn (for all n ∈ Z+).
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2. The finite-time reachable states of the q-observable part are exactly the
elements of PN (q)⊥Ξ−.

3. The elements of PN (q)⊥Ξ+ are exactly the finite cost states for the q-
observable part.

4. The future minimizing operator of the q-observable part is If |PN(q)⊥Ξ+ .

5. If [ A B
C D ] satisfies the finite future incremental cost condition, then so does

its q-observable part.

6. If [ A B
C D ] satisfies the finite future cost condition, then so does its q-observable

part.

Proof. 1. This is a special case of Theorem B.1 with V = N (q) and W = X .
Lemma 2.13 and the fact that N ⊂ ker C show that the assumptions of Theo-
rem B.1 are satisfied.
2. This is vitually identical to the proof of Lemma B.16 and is therefore omit-
ted.
3. and 4. It follows from part 1 of this lemma that the finite cost states for the
q-observable part are exactly those elements of N (q)⊥ that are finite cost states
for the original node (i.e. the elements of Ξ+∩N (q)⊥) and that in this case the
optimal control and the optimal output are equal for both nodes. From Lemma
B.9 with V = N (q) and W = Ξ+ we obtain PN (q)⊥Ξ+ = Ξ+ ∩ N (q)⊥. Note
that the assumption V ⊂ W is satisfied since N (q) ⊂ D(q) and D(q) ⊂ Ξ+ by
Lemma 2.12. The desired conclusions follow.
5. If the original node satisfies the finite future incremental cost condition, then
Ξ− ⊂ Ξ+. Obviously this implies that PN (q)⊥Ξ− ⊂ PN (q)⊥Ξ+. The assertion
then follows from parts 2 and 3 of this lemma.
6. It follows from Ξ+ = X that PN (q)⊥Ξ+ = N (q)⊥, which proves the assertion.
�

Next we define what it means for (components of) a node to be bounded
with respect to a nonnegative symmetric sesquilinear form.

Definition 4.7. Let q be a nonnegative symmetric sesquilinear form in X .

• An operator T ∈ L(X ) is called bounded with respect to q if D(q) is T -
invariant and there exists a M ≥ 0 such that q(Tz, Tz) ≤Mq(z, z) for all
z ∈ D(q).

• An operator T ∈ L(U ,X ) is called bounded with respect to q if TU ⊂ D(q)
and there exists a M ≥ 0 such that q(Tu, Tu) ≤M‖u‖2U for all u ∈ U .

• An operator T ∈ L(X ,Y) is called bounded with respect to q if there exists
a M ≥ 0 such that ‖Tz‖2Y ≤Mq(z, z) for all z ∈ D(q).

As the next lemma shows, the optimal continuation equation and the control
Riccati equation imply that certain operators are bounded with respect to the
solution of the equation.
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Lemma 4.8. If (q, K) is a solution of the optimal continuation equation of
[ A B
C D ], then K, C and A + BK are bounded with respect to q.

If (q, s, K) is a solution of the control Riccati equation of [ A B
C D ], then A, B, C

and K are bounded with respect to q.

Proof. From the optimal continuation equation we obtain, for all z ∈ D(q),
‖Kz‖2 ≤ q(z, z), which implies that K is bounded with respect to q. Similarly
we obtain that C + DK is bounded with respect to q. Since DK is bounded
with respect to q, it follows from this that C is. From the optimal continuation
equation we also immediately obtain that A + BK is bounded with respect to
q.

Now assume that (q, s, K) is a solution of the control Riccati equation. The
q-boundedness of K and C follows from the first part of the lemma and the
fact that a solution of the control Riccati equation is a solution of the opti-
mal continuation equation (Lemmas 3.9 and 3.13). That A is bounded with
respect to q follows from (3.3) with u = 0, which gives q(Az, Az) ≤ q(z, z).
That B is bounded with respect to q follows from (3.3) with z = 0, which gives
q(Bu, Bu) ≤ s(u) and using that s is bounded. �

For a nonnegative symmetric sesquilinear form q in X it is easily seen that

〈z1, z2〉g := 〈z1, z2〉X + q(z1, z2)

is an inner product on D(q). We will call this the graph inner product induced
by q.

Lemma 4.9. Let (q, s,K) be a solution of the control Riccati equation of [ A B
C D ].

Then A, B and C are bounded with respect to the graph norm induced by q on
D(q).

Proof. This follows immediately from Lemma 4.8 and the fact that A, B, C are
bounded with respect to the X -norm. For example for A we have q(Az, Az) ≤
M1q(z, z) and ‖Az‖2X ≤M2‖z‖2X , so

q(Az, Az) + ‖Az‖2X ≤ max{M1, M2}
(
q(z, z) + ‖z‖2X

)
,

and the proofs for B and C are similar. �
Lemma 4.9 enables us to make the following definition.

Definition 4.10. Assume that the node [ A B
C D ] has a solution (q, s,K) to its

control Riccati equation. Then the restriction of [ A B
C D ] to D(q) × U and with

codomain D(q) × Y, where D(q) is equipped with the graph norm in both
instances, is called the graph node induced by (q, s, K).

We note that the graph inner product and the graph node were used in
DaPrato and Delfour [5], [6] as well.

The following lemma gives some properties of the graph node.

Lemma 4.11. Let (q, s, K) be a solution of the control Riccati equation of
[ A B
C D ].
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1. For the same initial state z ∈ D(q) and input {un}n∈Z+ , the state and the
output of [ A B

C D ] and its graph node are equal.

2. The finite-time reachable states of the graph node are the elements of Ξ−.

3. The triple (q, s,K) is a classical solution of the control Riccati equation of
the graph node.

Proof. 1. This is obvious from the domain inclusions in the definition of the
control Riccati equation.
2. This follows from part 1 of this lemma and the fact that Ξ− ⊂ D(q).
3. The equation (3.3) obviously holds for the graph node since it holds for the
original node. The sesquilinear form q is defined on the whole of D(q) and is
bounded in the graph norm: q(z, z) ≤ ‖z‖2g = ‖z‖2X + q(z, z). So we have a
classical solution of the control Riccati equation. �

As Lemma 4.11 shows, the graph node has certain desirable properties. How-
ever, it also lacks certain desirable properties (e.g. internal stability of the
closed-loop system, which we will discuss in Section 5). For this reason we in-
troduce the concept of a completed q-compression. This basically means that
we make q the new inner-product of the state space of the q-observable part and
extend by continuity to again obtain a node (see Appendix B for the precise
details).

Theorem 4.12. Let (q, s,K) be a solution of the control Riccati equation of
[ A B
C D ].

1. The completed q-compression is well-defined.

2. For the same initial state z ∈ PN (q)⊥D(q) and input {un}n∈Z+ , the state
and output of the node [ A B

C D ] and its completed q-compression are related
by xq

n = PN (q)⊥xn, yq
n = yn (for all n ∈ Z+).

3. The finite-time reachable states of the completed q-compression are exactly
the elements of PN (q)⊥Ξ−.

4. The control Riccati equation of the completed q-compression has a classical
solution in which the sesquilinear form in the state space coincides with
the inner-product in the state space.

5. The future minimizing operator of the completed qf -compression is an
isometry.

6. The completed qf -compression is observable.

Proof. 1. We check the conditions of Theorem B.14. That q is a closable
(even closed) nonnegative symmetric sesquilinear form and that its domain is
strongly-invariant follows immediately from the control Riccati equation. That
the node [ A B

C D ] is bounded with respect to the semi-norm induced by q on D(q)
is guaranteed by Lemma 4.8. Hence Theorem B.14 applies and the completed

17



q-compression of [ A B
C D ] is well-defined.

2. and 3. follow directly from Lemma B.16.
4. We first note that PN (q)⊥D(q) ⊂ D(q) by Corollary B.10 and that (using
P 2
N (q)⊥ = PN (q)⊥)

q(PN (q)⊥z1, PN (q)⊥z2) = q(z1, z2) z1, z2 ∈ PN (q)⊥D(q). (4.1)

Equation (3.3) holds for z ∈ PN (q)⊥D(q) by the above inclusion and A, B, C can
be replaced by the corresponding operators of the completed q-compression by
the equality (4.1). Since PN (q)⊥D(q) is dense in the state space of the completed
q-compression and by continuity of the involved operators and sesquilinear forms
the equation holds for all z in the state space of the completed q-compression.
So we obtain a classical solution of the control Riccati equation of the completed
q-compression. The first component of this solution is a continuous extension of
a compression of q, which is the inner-product of the completed q-compression.
5. It follows from part 1 of this lemma that the optimal control and the opti-
mal output for an initial condition in PN (q)⊥D(q) are the same for the original
node and for its completed q-compression, so the future minimizing operators
are the same when restricted to PN (q)⊥D(q). Since the norm in the state space
for the completed qf -compression is ‖Ifz‖l2(Z+,U×Y) for z in the dense subspace
PN (q)⊥D(q), it follows that the future minimizing operator of the completed
qf -compression is an isometry.
6. It follows from Lemma 4.4 that the kernel of the optimal cost sesquilinear
form of the completed qf -compression equals the unobservable subspace of the
completed qf -compression. The kernel of the optimal cost sesquilinear form is
equal to the kernel of the future minimizing operator. Since by part 5 of this
lemma the kernel of the future minimizing operator is trivial, it follows that the
completed qf -compression is observable. �

An unfortunate thing about the completed q-compression from Theorem
4.12 is that it is in general not controllable. We take care of this problem in the
following lemma by considering a restriction of q instead of q itself.

Theorem 4.13. Let (q, s,K) be a solution of the control Riccati equation of
[ A B
C D ]. Denote q|Ξ− by q−.

1. The completed q−-compression is well-defined.

2. For the same initial state z ∈ PN (q)⊥Ξ− and input {un}n∈Z+ , the state
and output of a node and its completed q−-compression are related by
xq

n = PN (q)⊥xn, yq
n = yn (for all n ∈ Z+).

3. The finite-time reachable states of the completed q−-compression are ex-
actly the elements of PN (q)⊥Ξ−.

4. The control Riccati equation of the completed q−-compression has a clas-
sical solution in which the sesquilinear form in the state space coincides
with the inner-product in the state space.
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5. The completed q−-compression is controllable.

6. The future minimizing operator of the completed q−f -compression is an
isometry.

7. The completed q−f -compression is observable.

Proof. 1. We check the conditions of Theorem B.14. That q− is a closable
nonnegative symmetric sesquilinear form follows from the fact that it is a re-
striction of the closed nonnegative symmetric sesquilinear form q. That its
domain, Ξ−, is strongly invariant is obvious. That the node [ A B

C D ] is bounded
with respect to the semi-norm induced by q− on D(q−) is guaranteed by Lemma
4.8. Hence Theorem B.14 applies and the completed q−-compression of [ A B

C D ]
is well-defined.
2. and 3. follow directly from Lemma B.16.
4. follows in the same way as the corresponding statement in Theorem 4.12,
now using that PN (q)⊥Ξ− ⊂ D(q) by Corollary B.10 and Ξ− ⊂ D(q).
5. Controllability follows since the finite-time reachable states (which are the
elements of PN (q)⊥Ξ− by part 3 of this lemma) are by definition of the state
space dense.
6. Follows in exactly the same way as the corresponding statement in Theorem
4.12.
7. Observability follows in exactly the same way as the corresponding statement
in Theorem 4.12. �

5 The closed-loop system

In this section we study the closed-loop system (1.2). We first establish for which
unbounded feedback operators K the problem is well-defined. Next we show
that the future optimal cost feedback operator minimizes the closed-loop input-
output norm among the allowed feedback operators. We then discuss stability
properties of the closed-loop system. To obtain good stability properties we
have to consider completed q-compressions (see Appendix B).

Instead of the system (1.2) we initially study the more general system

xn+1 = (A + BK)xn + BEwn, n ∈ Z+,

yn = (C + DK)xn + DEwn, n ∈ Z+,

un = Kxn + Ewn, n ∈ Z+,

x0 = z,

(5.1)

where E : W → U is a bounded linear operator and K : D(K) ⊂ X → U is a
linear operator with a domain that is A-invariant and that contains the image
of B.

In the next theorem we first show that with the above assumptions on K
the input-output map of (5.1) is well-defined. We then show that the future
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optimal feedback operator minimizes both the L(l1(Z+,W), l2(Z+,Y ×U)) and
the L(l2(Z+,W), l2(Z+,Y × U)) norm of this input-output map and how this
minimal norm can be expressed in terms of the optimal sensitivity sesquilinear
form.

Theorem 5.1. 1. For K : D(K) ⊂ X → U with a domain that is A-
invariant and that contains the image of B, the map from {wn}n∈Z+ to
{[yn; un]}n∈Z+ in (5.1) (with z = 0) is well-defined on the sequences with
finite support.

2. Assume that the finite future incremental cost condition holds. Then the
future optimal feedback operator Kf minimizes both the L(l1(Z+,W), l2(Z+,Y×
U)) and the L(l2(Z+,W), l2(Z+,Y×U)) norm of the map from {wn}n∈Z+

to {[yn; un]}n∈Z+ in (5.1) (with z = 0), where K ranges over all linear
maps D(K) ⊂ X → U with a domain that is A-invariant and that con-
tains the image of B. These minimum norms both equal the square root of
sup‖v‖=1 sf (Ev,Ev), where sf is the optimal sensitivity sesquilinear form.

Proof. 1. Since D(K) is A-invariant and contains the image of B, it follows
that (C + DK)(A + BK)nBE, K(A + BK)nBE are well-defined for n ≥ 0. It
follows that the map from {wn}n∈Z+ to {[yn; un]}n∈Z+ in (5.1) is well-defined
on the sequences with finite support.
2. We first show that sup‖v‖=1 sf (Ev,Ev) is a lower bound for the the square
of the L(lp(Z+,W), l2(Z+,Y ×U)) norm for any p ≥ 1. In (5.1) take z = 0 and
w as w0 = v, wk = 0 if k > 0. Note that the lp norm of w is ‖v‖W , which is
independent of p. Also note that with this choice of w, the trajectories of (5.1)
with initial condition zero are the same as those for (1.1) with un = Kxn and
initial condition z = BEv shifted by one time unit. It follows that with this
choice we have

‖u‖2l2(Z+,U) + ‖y‖2l2(Z+,Y) = ‖Ev‖2 + ‖DEv‖2 +
∞∑

k=1

‖uk‖2U + ‖yk‖2Y

≥ ‖Ev‖2 + ‖DEv‖2 + qf (BEv,BEv) = sf (Ev,Ev).

Taking the supremum over all v ∈ W with norm 1 gives the desired result.
The next thing we show is that if (q, s,K) is a solution of the control Ric-

cati equation, then sup‖v‖=1 s(Ev,Ev) is an upper bound for the square of the
L(l2(Z+,W), l2(Z+,Y × U)) norm of the closed-loop system with the feedback
operator K. By Lemma 3.16 with z = 0 and vk = Ewk we have

n∑
k=0

‖uk‖2U + ‖yk‖2Y ≤
n∑

k=0

s(Ewk, Ewk). (5.2)

It follows that we have
n∑

k=0

‖uk‖2U + ‖yk‖2Y ≤M

n∑
k=0

‖wk‖2U ,
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where M := sup‖w‖=1 s(Ew,Ew). This establishes that sup‖w‖=1 s(Ew,Ew) is
an upper bound for the square of the L(l2(Z+,W), l2(Z+,Y × U)) norm.

We conclude that the square root of sup‖w‖=1 sf (w, w) is the smallest possi-
ble L(l2(Z+,W), l2(Z+,Y ×U)) norm and that this minimum is reached by the
feedback operator Kf .

Next we note that ‖w‖l2(Z+,W) ≤ ‖w‖l1(Z+,W), so that sup‖w‖=1 s(w, w) is
also an upper bound for the L(l1(Z+,W), l2(Z+,Y × U)) norm if K is chosen
such that (q, s,K) is a solution of the control Riccati equation. Combining this
with the earlier established lower-bound, it follows that the feedback operator
Kf also minimizes this norm. �

Since K : D(K)→ U will in general be an unbounded operator on the state
space X , the operator  A + BK B

C + DK D
K I

 (5.3)

will in general not be a node with state space X . If (q, s,K) is a solution of the
control Riccati equation, then (5.3) is a node with as state space D(q) equipped
with the graph norm. We call this the graph closed-loop node. If (q, K) is only
a solution of the optimal continuation equation, then (5.3) is not necessarily a
node, but the operator  A + BK 0

C + DK 0
K 0

 (5.4)

is a node with as state space D(q) equipped with the graph norm. We call this
the partial graph closed-loop system.

The so defined nodes do not behave vey well in general, but they are a
convenient starting point for the procedure outlined in Appendix B which does
produce nodes with very good properties.

Definition 5.2. The node [ A B
C D ] with trajectories given by (1.1) is called

• strongly stable if, for each initial condition and input zero, the state xn

converges to zero as n goes to infinity.

• Input stable if the sequence of maps from the input {uk}k=1,...,n to xn (with
initial condition zero) is uniformly bounded (in n) in the L(l2(Z+,U),X )
norm.

• output stable if the map from the initial state to the output is bounded
from X into l2(Z+,Y).

• input-output stable if the map from the input {uk}k∈Z+ to the output (for
initial condition zero) is bounded from l2(Z+,U) into l2(Z+,Y).

Theorem 5.3. 1. Let (q, K) be a solution of the optimal continuation equa-
tion of [ A B

C D ]. Then the corresponding partial graph closed-loop node has a
completed q-compression. This completed q-compression is output stable.
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2. The completed qf -compression of the partial graph closed-loop node is
strongly stable and output stable.

3. Let (q, s, K) be a solution of the control Riccati equation of [ A B
C D ]. Then

the corresponding graph closed-loop node has a completed q-compression.
This completed q-compression is input stable, output stable and input-
output stable.

4. Assume that the finite future incremental condition holds. Then the com-
pleted qf -compression of the graph closed-loop node is strongly stable, input
stable, output stable and input-output stable.

Proof. 1. We check the conditions of Theorem B.14. We obviously have the
q is a closable (even bounded) nonnegative symmetric sesquilinear form in the
state space of the partial graph closed-loop node. Since its domain is the whole
state space, it is obviously strongly invariant. That the partial graph closed-
loop node is bounded with respect to the semi-norm induced by q follows from
Lemma 4.8. So the partial graph closed-loop node has a well-defined completed
q-compression.

Note that, by continuity, the optimal continuation equation holds for all z
in the state space. From (2.3) we easily obtain that

q(xn, xn) +
n−1∑
k=0

‖yk‖2Y + ‖uk‖2U = q(z, z), (5.5)

where u, x, y and z are related by (1.2) with v = 0. It follows that the map from
z to {[y; u]}k∈Z+ is bounded from the state space into l2(Z+,Y × U), i.e. that
the system is output stable.
2. Output stability follows from part 1 of this lemma (together with Lemma
2.12). From (5.5) with q = qf we obtain by letting n → ∞ and noting that∑∞

k=0 ‖yk‖2Y + ‖uk‖2U = qf (z, z) that qf (xn, xn) → 0. Since qf is the inner-
product in the state space of the completed qf -compression we have that this
node is strongly stable.
3. Existence of the completed q-compression follows in a manner completely
analoguous to part 1 of this lemma. All the statements on stability easily follow
from Lemma 3.16 once we note that the control Riccati equation by continuity
holds for all z in the state space.
4. All these statement except the one about strong stability follow from part 3
of this lemma. The strong stability follows from part 2. �
The closed-loop node from Theorem 5.3 is the closed-loop system (in the classical
sense with a bounded feedback operator) of the node from Theorem 4.12. We
can similarly arrive at and prove properties of the closed-loop system in the
classical sense of the node from Theorem 4.13.

Theorem 5.4. All the statements of Theorem 5.3 still hold if we consider the
completed q−-compression (completed q−f -compression) instead of the completed
q-compression (completed qf -compression).
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Proof. The proof is virtually identical to that of Theorem 5.3 and is therefore
omitted. �

Remark 5.5. The closed-loop control Riccati equation (3.2) (or its summed
version (3.7)) shows exactly that the completed q-compression of the graph
node is scattering energy-preserving (in the sense of e.g. [9]) once we replace
the inner product in the input space by the equivalent inner-product s(v1, v2).
The input, output and input-output stability established in Theorem 5.3 follow
from this energy-preservation property.

6 Right factorizations

In this section we consider the relation between right factorizations, the finite
future incremental cost condition and solvability of the control Riccati equation.

We use the following notation: H∞ denotes the Hardy space of uniformly
bounded holomorphic functions, D denotes the unit disc, [−,−] is a row vector
and [−;−] is a column vector. The transfer function of the node [ A B

C D ] is defined
in a neigbourhood of zero by zC(I−zA)−1B +D. A node is called a realization
of a holomorphic function defined in a neigbourhood of zero if that function is
the transfer function of the node.

Definition 6.1. Let G : D(G) ⊂ C→ L(U ,Y) be holomorphic at the origin. A
function [M ; N ] ∈ H∞(D,L(U ,U×Y)) is called a right factorization of G if M(z)
is invertible for all z in a neighborhood of the origin and G(z) = N(z)M(z)−1

in a neighborhood of the origin.

The following theorem is known.

Theorem 6.2. The following are equivalent conditions for a node.

• The finite future cost condition is satisfied.

• The control Riccati equation of the node has a classical solution.

In this case the transfer function of the node has a right factorization.
Conversely, let G : D(G) ⊂ C → L(U ,Y) be holomorphic at the origin. If

G has a right factorization, then it has a realization that satisfies the above two
equivalent conditions.

Proof. Proofs of all the above can be found in [11, Propositions 6.36, 7.12, 7.13].
Alternatively, the equivalence of the finite future cost condition and the solvabil-
ity of the control Riccati equation follows as in Curtain and Zwart [4, Chapter
6] and the connection with factorization properties of the transfer function is
treated in [12]. �

The following theorem is a significant improvement of the above result.

Theorem 6.3. Let G : D(G) ⊂ C→ L(U ,Y) be holomorphic at the origin and
let [ A B

C D ] be a realization of G. The following are equivalent conditions.
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• [ A B
C D ] satisfies the finite future incremental cost condition.

• The control Riccati equation of [ A B
C D ] has a solution.

• G has a right factorization.

Proof. 1. implies 2. This follows from Lemma 3.14.
2. implies 3. If the control Riccati equation of the node [ A B

C D ] has a solution,
then the corresponding graph node has a classical solution to its control Riccati
equation by Lemma 4.11 (part 3). By part 1 of Lemma 4.11 the graph node has
transfer function G. It follows from Theorem 6.2 that G has a right factorization.
3. implies 1. We first recall that the Z-transform of a sequence h : Z → H is
defined as

ĥ(z) =
∞∑

k=−∞

hkzk,

for those z ∈ C for which this power series converges absolutely.
Denote the right factorization of G by [M ; N ]. Let u ∈ U , we show that Bu has
finite cost. Define r0 := M(0)−1v, rn = 0 for n > 0, and v and y through their Z-
transforms by v̂(s) = M(s)r̂(s), ŷ(s) = N(s)r̂(s). Then, since r ∈ l2(Z+;U) and
[M ; N ] ∈ H∞, we have v ∈ l2(Z+;U), y ∈ l2(Z+;Y). Since [M ; N ] is a right
factorization of G, y is the output for the input v and initial condition zero.
Since v̂(0) = M(0)r̂(0) = u we have v0 = u. From this it follows that the state
corresponding to input v (and with initial condition zero) satisfies x1 = Bu. We
now see that the state Bu has finite cost: for the input (v1, v2, . . .) we obtain a
finite cost. The result then follows from Lemma 3.4. �
Note that the difference between Theorems 6.2 and 6.3 is that in the latter case
the conditions hold for all realizations, not just some specific ones.

Remark 6.4. Even more is true: the right factorization can be chosen to be
normalized and weakly coprime. See Smith [14] (for the case that U and Y are
finite-dimensional) and Mikkola [10] (for the general case). Using the results
in Mikkola [10] it is not too difficult to show that the input-output map of the
system (5.1) with K = Kf and E = S

−1/2
f provides a normalized weakly right

coprime factorization.

A Alternative forms of the Riccati equation

In this appendix we present several alternative forms of the control Riccati
equation, including ones in terms of operators instead of in terms of sesquilinear
forms.

Definition A.1. The triple (q, s,K) is called a (nonnegative) solution of the
Lure control Riccati equation of the node [ A B

C D ] if:

1. q is a closed nonnegative symmetric sesquilinear form in X whose domain
satisfies AD(q) ⊂ D(q), BU ⊂ D(q).
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2. s is a bounded nonnegative symmetric sesquilinear form on U .

3. K : D(q)→ U is a linear operator.

4. For all z ∈ D(q), u ∈ U we have

q(Az, Az) + ‖Cz‖2Y = q(z, z) + s(Kz, Kz),
s(u, u) = ‖u‖2U + ‖Du‖2Y + q(Bu, Bu), (A.1)

−s(Kz, u) = 〈Cz, Du〉Y + q(Az, Bu).

The solution is called classical when D(q) = X .

Lemma A.2. The triple (q, s, K) is a solution of the Lure control Riccati equa-
tion of [ A B

C D ] if and only if it is a solution of the control Riccati equation of
[ A B
C D ].

Proof. Expanding (3.3) gives

q(Az, Az) + q(Bu, Bu) + q(Az, Bu) + q(Bu, Az) + ‖Cz‖2 + ‖Du‖2

+〈Cz, Du〉+ 〈Du,Cz〉+ ‖u‖2 (A.2)
= q(z, z) + s(Kz, Kz) + s(u, u)− s(Kz, u)− s(u, Kz).

It is easy to see that (A.1) implies (A.2). Conversely, the first and second
equations of (A.1) are (A.2) with u = 0 and z = 0, respectively. The third
equation of (A.1) follows from the first and second equation of (A.1) together
with (A.2) applied to z (for equality of the real parts) and iz (for equality of
the imaginary parts). �
In the main article we have worked with sesquilinear forms and not the usual
operators as solutions for the Riccati equation. One of the reasons for this is that
this makes it easier to handle the nondensely defined case. We now consider the
technicalities involved in the operator versions of the Riccati equation. We first
define what we mean by a not necessarily densely defined symmetric operator.

Definition A.3. An operator T inH is called symmetric if its range is contained
in the closure of its domain and 〈Th1, h2〉 = 〈h1, Th2〉 for all h1, h2 ∈ D(T ).

Note that a symmetric operator is densely defined and symmetric when
considered as an operator in the closure of its domain. We will denote this
associated densely defined symmetric operator by Ť .

Definition A.4. A symmetric operator T is called self-adjoint if Ť is self-
adjoint (in the usual sense).

Note that T is nonnegative (meaning 〈Th, h〉 ≥ 0 for all h ∈ D(T )) if and
only if Ť is. If T is nonnegative self-adjoint, then we define T 1/2 := Ť 1/2.

Lemma A.5. There is a one-to-one correspondence between closed nonnega-
tive symmetric sesquilinear forms t and closed nonnegative self-adjoint linear
operators T through t(x, y) = 〈T 1/2x, T 1/2y〉, D(t) = D(T 1/2).
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Proof. For the densely defined case this can be found in Kato [7, Chapter 6].
The non densely defined case follows from the densely defined case by employing
Ť . �

Definition A.6. The triple (Q, S,K) is called a (nonnegative) solution of the
operator control Riccati equation of the node [ A B

C D ] if:

1. Q is a closed nonnegative self-adjoint operator in X whose domain satisfies
AD(Q1/2) ⊂ D(Q1/2), BU ⊂ D(Q1/2).

2. S is a bounded nonnegative self-adjoint operator on U .

3. K : D(Q1/2)→ U is a linear operator.

4. For all z ∈ D(Q1/2), u ∈ U we have

‖Q1/2(Az + Bu)‖2X + ‖Cz + Du‖2Y + ‖u‖2U = ‖Q1/2z‖2X + ‖S(Kz − u)‖2U .

The solution is called classical when D(Q) = X .

Definition A.7. The triple (Q, S,K) is called a (nonnegative) solution of the
operator Lure control Riccati equation of the node [ A B

C D ] if:

1. Q is a closed nonnegative self-adjoint operator in X whose domain satisfies
AD(Q1/2) ⊂ D(Q1/2), BU ⊂ D(Q1/2).

2. S : U → U is a linear operator.

3. K : D(Q1/2)→ U is a linear operator.

4. For all z ∈ D(Q1/2) we have

‖Q1/2Az‖2X + ‖Cz‖2Y = ‖Q1/2z‖2X + ‖S1/2Kz‖2U ,

S = I + D∗D +
(
Q1/2B

)∗
Q1/2B,

−SK =
(
Q1/2B

)∗
Q1/2A + D∗C.

The solution is called classical when D(Q) = X .

Note that the operator Q1/2B in the preceding definition is bounded (so
its adjoint is well-defined), and that S is bounded and symmetric and has a
bounded inverse.

Lemma A.8. Let the triples (q, s, K) and (Q, S,K) correspond to each other
as indicated in Lemma A.5. Then the following are equivalent.

• (q, s,K) is a solution of the control Riccati equation of [ A B
C D ],

• (q, s,K) is a solution of the Lure control Riccati equation of [ A B
C D ],
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• (Q, S,K) is a solution of the operator control Riccati equation of [ A B
C D ],

• (Q, S,K) is a solution of the operator Lure control Riccati equation of
[ A B
C D ].

Proof. That the control Riccati equation and the Lure control Riccati equation
are equivalent was shown in Lemma A.2. The operator versions are simply re-
formulations. �

Corollary A.9. Let (qi, si, Ki) (i = 1, 2) be two solutions of the control Riccati
equation of [ A B

C D ]. If q1 = q2, then s1 = s2 and K1 = K2.

Proof. This is obvious from the operator Lure control Riccati equation since S
and K are expressed in terms of Q. �

Corollary A.10. If the triple (q, s,K) is a classical solution of the control
Riccati equation, then there exists a nonnegative symmetric Q ∈ L(X ) such that

(A∗QB+C∗D)(I+B∗QB+D∗D)−1(B∗QA+D∗C) = A∗QA−Q+C∗C. (A.3)

The sesquilinear form q then is the sesquilinear form corresponding to the oper-
ator Q, s is the sesquilinear form corresponding to the operator S = I+B∗QB+
D∗D and K = −S−1(B∗QA + D∗C).

Conversely, if there exists a nonnegative symmetric Q ∈ L(X ) that satis-
fies (A.3), then (q, s,K) as above is a classical solution of the control Riccati
equation.

Proof. This is easily seen from Lemma A.8. �

Remark A.11. The equation (A.3) is the one that usually appears in the liter-
ature and not the equations involving sesquilinear forms. When dealing with
unbounded solutions, as we do, the formulation in terms of sesquilinear forms
however seems more practical.

B Extension and compression of systems

In this appendix we study rather general extensions of compressions of a given
node. In the main part of this article we require several special instances of this
general result. We start with a theorem on compressions.

Theorem B.1. Assume V,W are closed A-invariant subspaces with V ⊂ W,
that BU ⊂ W and that V ⊂ ker C. Then the node [ A B

C D ] has the decomposition
A11 0 0 0
A21 A22 0 B2

A31 A32 A33 B3

C1 C2 0 D

 (B.1)
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with respect to the decomposition of the state space X =W⊥ ⊕ (W 	V)⊕ V.
The compression

ΣS :=
[

PSA|S PSB
C|S D

]
=
[

A22 B2

C2 D

]
of the node to S := W 	 V has the following property: for the same initial
state z ∈ S and input {un}n∈Z+ , the state and output of the node [ A B

C D ] and its
compression ΣS are related by xSn = PSxn, ySn = yn (for all n ∈ Z+).

Proof. That B1 = 0 follows from the assumption BU ⊂ W and that C3 = 0
from the assumption C|V = 0. That A13 and A23 are zero follows from the
A-invariance of V. That A12 = 0 follows from the A-invariance of W (which
equals (W 	V)⊕ V since V ⊂ W).

Since A is lower-triangular, so is An (for all n ∈ Z+) and moreover (An)ii =
(Aii)n for i = 1, 2, 3. It follows that the state of [ A B

C D ] for an initial condition in
S and zero input is (A22)nx0 +(An)32x0, so PSxn = PSA

nx0 = (A22)nx0 = xSn .
Similarly it follows that PSA

nB = An
22B2, CAn = C2A

n
22 (on S) and CAnB =

C2A
n
22B2. The statements about the state and output for [ A B

C D ] and ΣS follow
from these equalities. �

Corollary B.2. Under the assumptions of Theorem B.1 the node [ A B
C D ] and its

compression ΣS have the same transfer function.

Proof. This is true since for each input and zero initial condition the outputs
are equal. �

The following lemma on subspaces gives alternative characterizations of the
state space S of the compressed system from Theorem B.1.

Lemma B.3. Let V ⊂ W be closed subspaces of a Hilbert space. Then

W 	V = V⊥ ∩W
= PV⊥W
= PWV⊥.

Denoting the above subspace by S, we have PS = PV⊥ on W.

Proof. All the equalities easily follow from the decomposition of the whole space
as W⊥ ⊕ (W 	V)⊕ V.

The final claim also directly follows from the decomposition of the whole
space as W⊥ ⊕ S ⊕ V: PS(x1, x2, x3) = (0, x2, 0), PV⊥(x1, x2, x3) = (x1, x2, 0)
and since (x1, x2, x3) ∈ W we have x1 = 0. �

The following notion of strong invariance of a subspace appeared in [2] in
the more general context of state/signal systems.
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Definition B.4. A subspace X of the state space X of a node is called strongly
invariant if, for an initial state z ∈X and input {un}n∈Z+ , the state xn of the
node is in X (for all n ∈ Z+).

The following lemma gives necessary and sufficient conditions under which
a subspace is strongly invariant.

Lemma B.5. A subspace X of the state space X is strongly invariant if and
only if X is an A-invariant subspace such that BU ⊂X .

Proof. By choosing input zero and n = 1 we see that X must be A-invariant.
By choosing the initial state zero and n = 1 we see that BU ⊂X must hold.

By the A-invariance of X we have AnX ⊂ X and (using in addition that
BU ⊂X ) that AnBU ⊂X . It follows that X is strongly invariant. �
The following theorem identifies a subspace that is strongly invariant for the
compressed system from Theorem B.1.

Theorem B.6. Let V ⊂ W be A-invariant subspaces. Define S := PV ⊥W .
Then S ⊂ S, the state space of the node ΣS induced by V and W from Theorem
B.1 and S is an AS-invariant subspace. If in addition BU ⊂ W , then S is
strongly invariant for ΣS .

Proof. We obviously have PV ⊥W ⊂ PV ⊥W , Lemma B.3 then gives S ⊂ S.
Using the decomposition (B.1) from Theorem B.1 (applied with V = V ,W =

W and the node [ A B
0 0 ]) it is easily seen that PV ⊥APV ⊥ = PV ⊥A. Using that

W is A-invariant we obtain PV ⊥AW ⊂ PV ⊥W and so, by the just established
equality of operators, PV ⊥APV ⊥W ⊂ PV ⊥W . This is exactly

PV ⊥AS ⊂ S . (B.2)

We have PS = PV ⊥ on W by Lemma B.3. We also have AS ⊂ AS ⊂ W (again
using the decomposition (B.1) for the last inclusion). It follows from these two
facts that (B.2) is PSAS ⊂ S , which exactly says that S is AS -invariant.

It remains to prove the strong invariance of S under the additional assump-
tion that BU ⊂ W . By Lemma B.5 , to do this it suffices to show that the
range of the control operator PSB of the compression ΣS in Theorem Theorem
B.1 is contained in S . However, this follows from Lemma B.3, which says that
PS = PV ⊥ on W . �

Lemma B.7. Let X be a strongly invariant subspace for the node [ A B
C D ] and t a

symmetric sesquilinear form in X whose domain includes X and that is positive
on X . Assume that the node is bounded with respect to the norm induced by t
on X , i.e. that there exist MA, MB , MC ≥ 0 such that

t(Az, Az) ≤MAt(z, z), t(Bu, Bu) ≤MB‖u‖2U , ‖Cz‖2Y ≤MCt(z, z),

for z ∈ X , u ∈ U . Then the node has a unique continuous extension to the
completion of X under the norm induced by t.
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Proof. This is obvious. �

Lemma B.8. Let t be a nonnegative symmetric sesquilinear form in X whose
domain is a strongly invariant subspace for the node [ A B

C D ]. Assume that the
node [ A B

C D ] is bounded with respect to the semi-norm induced by t on its domain.
Then the kernel N (t) of t is A-invariant and is contained in the kernel of C.

Proof. It follows from the boundedness assumption that t(z, z) = 0 implies that
t(Az, Az) = 0 and Cz = 0, i.e. that z ∈ N (t) implies Az ∈ N (t) and z ∈ ker C.
�

As the next lemma shows, part of the conclusion of Lemma B.3 is still valid
if the larger space is not assumed to be closed.

Lemma B.9. Let V ⊂ W be subspaces of a Hilbert space with V closed. Then
PV⊥W = V⊥ ∩W .

Proof. Decompose w ∈ W as v+v⊥ with v ∈ V and v⊥ ∈ V⊥. Since v+v⊥ ∈ W
and v ∈ V ⊂ W it follows that v⊥ ∈ W . So PV⊥W ⊂ V⊥ ∩W .

If z ∈ V⊥∩W , then z = PV⊥z ∈ PV⊥W . It follows that PV⊥W ⊃ V⊥∩W . �

Corollary B.10. Let t be a closed nonnegative symmetric sesquilinear form in
X . Then PN (t)⊥D(t) = N (t)⊥ ∩D(t).

Proof. This follows from Lemma B.9 with V = N (t) and W = D(t). �

Corollary B.11. Let t be a closable nonnegative symmetric sesquilinear form
in X . Then PN (t)⊥D(t) is contained on the domain of the closure of t and the
closure of t defines an inner-product on this subspace.

Proof. From Corollary B.10 applied to the closure t of t we obtain that PN (t)⊥D(t)
is contained on the domain of the closure of t and that t is positive on PN (t)⊥D(t).
Using that N (t)⊥ = N (t)⊥ and D(t) ⊂ D(t) gives the desired result. �

Lemma B.12. Let t be a closable nonnegative symmetric sesquilinear form in
X and S ∈ L(X ). If the domain of t is S-invariant and S is t-bounded, i.e.
there exists a M > 0 such that t(Sz, Sz) ≤ Mt(z, z), then the domain of the
closure of t is S-invariant.

Proof. The domain of the closure consists of all x ∈ X such that there exists a
sequence xn ∈ D(t) with xn → x and t(xn − xm, xn − xm) → 0 for n, m → ∞
[7, Theorem 6.1.17]. Assume x ∈ D(t), the obvious candidate for the relevant
sequence is Sxn, where xn is a sequence as above. Since S is bounded we have
Sxn → Sx and since S is t-bounded we have t(S(xn − xm), S(xn − xm)) → 0.
So Sx ∈ D(t). �
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Lemma B.13. Let t be a closable nonnegative symmetric sesquilinear form
in X . Assume that the domain of t is strongly invariant and that the node is
bounded with respect to the semi-norm induced by t. Then the domain of the
closure of t is strongly invariant and the node is bounded with respect to the
semi-norm induced by the closure of t.

Proof. The strong invariance follows from the inclusions BU ⊂ D(t) ⊂ D(t) and
Lemma B.12.

The boundedness of the node with respect to t is established as follows.
For z ∈ D(t) pick a sequence zn ∈ D(t) with t(zn, zn) → t(z, z). Then
t(Azn, Azn) → t(Az, Az) and by taking limits in the inequality t(Azn, Azn) ≤
MAt(zn, zn) we obtain t(Az, Az) ≤ MAt(z, z). Boundedness of C with respect
to t follows similarly and boundedness of B with respect to t is immediate. �

Theorem B.14. Let t be a closable nonnegative symmetric sesquilinear form
in X . Assume that the domain of t is strongly invariant and that the node
[ A B
C D ] is bounded with respect to the semi-norm induced by t on its domain.

Then all of the conditions of Theorem B.1 with V = N (t) and W = D(t) are
met, so the compression ΣS of [ A B

C D ] to S := PN (t)⊥D(t) is well defined. The
subspace S := PN (t)⊥D(t) is a ΣS strongly invariant subspace that is contained
in the domain of the closure of t and the closure of t defines a norm on S .
The restriction of the node ΣS to S has a unique continuous extension to the
completion of S under the norm induced by the closure of t.

Proof. We first check the conditions of Theorem B.1. By Lemma B.8 the kernel
of t is A-invariant. Since the closure of an A-invariant subspace is A-invariant
and D(t) is A-invariant by assumption, it follows that V andW are A-invariant.
Obviously we have V ⊂ W. By assumption we have BU ⊂ D(t), so BU ⊂ W.
That V ⊂ ker C follows from Lemma B.8.

That S is a ΣS strongly invariant subspace follows from Theorem B.6. That
S is contained in the domain of the closure of t and the closure of t defines a
norm on S follows from Lemma B.11.

The statement on the continuous extension follows from Lemma B.7 applied
with the subspace S and as sesquilinear form the closure of t; the assumptions
of this lemma are met by Lemma B.13 and Lemma B.11. �

Definition B.15. The continuous extension of the restriction of the node ΣS to
S guaranteed to exist by Theorem B.14 is called the completed t-compression
of [ A B

C D ].

Lemma B.16. Let t be a closable nonnegative symmetric sesquilinear form in
X . Assume that the domain of t is strongly invariant and that the node [ A B

C D ]
is bounded with respect to the semi-norm induced by t on its domain. Then all
of the conditions of Theorem B.1 with V = N (t) and W = D(t) are met, so
the compression ΣS of [ A B

C D ] to S := PN (t)⊥D(t) is well defined. Define the
subspace S := PN (t)⊥D(t).
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For the same initial state z ∈ S and input {un}n∈Z+ , the state and output of
the node [ A B

C D ] and its completed t-compression are related by xSn = PN (t)⊥xn,
ySn = yn (for all n ∈ Z+). Moreover, the finite-time reachable states of the
completed t-compression are exactly the elements of PN (t)⊥Ξ−.

Proof. The result on the relation between the state and output follows immedi-
ately from Theorem B.1 using that S is strongly invariant for ΣS .

Let w ∈ PN (t)⊥Ξ−. Then there exists a z ∈ Ξ− such that w = PN (t)⊥z. Let
u be an input that reaches z from initial state zero in a finite time for [ A B

C D ].
Then the same input reaches w in a finite time for the completed t-compression
by the first part of this lemma. So the elements of PN (t)⊥Ξ− are finite-time
reachable states of the completed t-compression.

Assume that w is a finite-time reachable state of the completed t-compression.
Let u be an input that reaches w from initial state zero in a finite time for the
completed t-compression. Apply this input to [ A B

C D ] with input zero and let z
be the state at the time corresponding to w. By the first part of this lemma we
have w = PN (t)⊥z. Since z ∈ Ξ− it follows that w ∈ PN (t)⊥Ξ−. �
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