

Book-building

Outline

- Problem and model assumptions
- Efficient pricing
- Bidding process
- Book-building mechanism
- Summary

- Problem and model assumptions
- Efficient pricing

Problem and assumptions

- Bidding process
- Book-building mechanism
- Summary

Problem and assumptions

000

Slide 4 of 24

Investment banks obtain non-binding bids for a security by selected investors

Problem and assumptions

► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured

- ► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined

- Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined such that all securities can be sold

- ► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined such that all securities can be sold
- Investors will be reluctant to reveal their positive opinion

- ► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined such that all securities can be sold
- ► Investors will be reluctant to reveal their positive opinion as it may increase the price they have to pay

- ► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined such that all securities can be sold
- Investors will be reluctant to reveal their positive opinion as it may increase the price they have to pay
- ► The allocation of shares can be used to solicit truthful bids

- ► Investment banks obtain non-binding bids for a security by selected investors, but bids are expected to be honoured
- ▶ Based on these bids, an offer price range is determined such that all securities can be sold
- Investors will be reluctant to reveal their positive opinion as it may increase the price they have to pay
- ► The allocation of shares can be used to solicit truthful bids

000

Slide 5 of 24

lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- lacktriangle The value of the security V is uniformly distributed on $[\underline{V};\overline{V}]$

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- ▶ The value of the security V is uniformly distributed on $[\underline{V}; \overline{V}]$, but we normalize this and use $\hat{V} \in [0;1]$

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- ▶ The value of the security V is uniformly distributed on $\left[\underline{V};\overline{V}\right]$, but we normalize this and use $\hat{V} \in [0;1]$
- lackbox We assume that the a high signal is observed with probability \hat{V} if the security is worth \hat{V}

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- ▶ The value of the security V is uniformly distributed on $\left[\underline{V};\overline{V}\right]$, but we normalize this and use $\hat{V} \in [0;1]$
- We assume that the a high signal is observed with probability \hat{V} if the security is worth \hat{V} : $Prob\left(H|\hat{V}\right) = \hat{V}$

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- ▶ The value of the security V is uniformly distributed on $\left[\underline{V};\overline{V}\right]$, but we normalize this and use $\hat{V} \in [0;1]$
- We assume that the a high signal is observed with probability \hat{V} if the security is worth \hat{V} : $Prob\left(H|\hat{V}\right)=\hat{V}$
- ► Each possible number of high signals is equally likely at $Prob(h) = \frac{1}{N+1}$

- lacktriangle Each of the N investors receives a high (H) or low (L) signal on the value of the security
- ▶ The value of the security V is uniformly distributed on $\left[\underline{V};\overline{V}\right]$, but we normalize this and use $\hat{V} \in [0;1]$
- We assume that the a high signal is observed with probability \hat{V} if the security is worth \hat{V} : $Prob\left(H|\hat{V}\right)=\hat{V}$
- ▶ Each possible number of high signals is equally likely at $Prob(h) = \frac{1}{N+1}$

- Problem and model assumptions
- Efficient pricing
- Bidding process
- Book-building mechanism
- Summary

Slide 7 of 24

 \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received

- \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received
- \blacktriangleright Prices are set such that they reflect the information in the market, h^* high signals:

$$S = E\left[\hat{V}|h^*\right]$$

- \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received
- Prices are set such that they reflect the information in the market, h^* high signals: $S = E\left[\hat{V}|h^*\right]$
- lacktriangle We assume that an issue only goes ahead if all Q securities can be sold at price S

- \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received
- Prices are set such that they reflect the information in the market, h^* high signals: $S = E\left[\hat{V}|h^*\right]$
- lacktriangle We assume that an issue only goes ahead if all Q securities can be sold at price S
- lacksquare Proceeds to issuer: $\Pi_C = Prob \, (h \geq h^*) E \, \Big[\hat{V} | h^* \Big] \, Q$

- \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received
- Prices are set such that they reflect the information in the market, h^* high signals: $S = E\left[\hat{V}|h^*\right]$
- lacktriangle We assume that an issue only goes ahead if all Q securities can be sold at price S
- lacksquare Proceeds to issuer: $\Pi_C = Prob \, (h \geq h^*) E \, \Big[\hat{V} | h^* \Big] \, Q$
- ▶ Using statistics, we get $\Pi_C = \left(1 \frac{h^*}{N+1}\right) \frac{h^*+1}{N+2} Q$

- \blacktriangleright An issuer can sell all Q securities, if at least h^* high signals are received
- Prices are set such that they reflect the information in the market, h^* high signals: $S = E\left[\hat{V}|h^*\right]$
- lacktriangle We assume that an issue only goes ahead if all Q securities can be sold at price S
- Proceeds to issuer: $\Pi_C = Prob \ (h \geq h^*) E \left[\hat{V} | h^* \right] Q$
- lackbox Using statistics, we get $\Pi_C = \left(1 rac{h^*}{N+1}\right) rac{h^*+1}{N+2} Q$

Slide 8 of 24

lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$

- Maximizing proceeds gives the optimal threshold h^* as $h^* = \frac{N}{2}$
- ► This then gives the offer price as $S = \frac{1}{2}$

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- ▶ Issuer proceeds are then $\Pi_C = \frac{1}{4} \frac{N+2}{N+1} Q$

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- ▶ Issuer proceeds are then $\Pi_C = rac{1}{4}rac{N+2}{N+1}Q pprox rac{1}{4}Q$

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- lacksquare Issuer proceeds are then $\Pi_C = rac{1}{4}rac{N+2}{N+1}Q pprox rac{1}{4}Q$
- ► The securities are fairly priced

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- ▶ Issuer proceeds are then $\Pi_C = \frac{1}{4} \frac{N+2}{N+1} Q \approx \frac{1}{4} Q$
- ► The securities are fairly priced, but the issue might not be fully sold

Optimal price and proceeds

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- ▶ Issuer proceeds are then $\Pi_C = \frac{1}{4} \frac{N+2}{N+1} Q \approx \frac{1}{4} Q$
- ► The securities are fairly priced, but the issue might not be fully sold and hence be abandoned

Optimal price and proceeds

- lacktriangle Maximizing proceeds gives the optimal threshold h^* as $h^*=rac{N}{2}$
- ▶ This then gives the offer price as $S = \frac{1}{2}$, which is the expected value
- lacksquare Issuer proceeds are then $\Pi_C = rac{1}{4}rac{N+2}{N+1}Q pprox rac{1}{4}Q$
- ► The securities are fairly priced, but the issue might not be fully sold and hence be abandoned

- Problem and model assumptions
- Efficient pricing
- Bidding process
- Book-building mechanism
- Summary

▶ Investors submit bids based on their own signal

► Investors submit bids based on their own signal, but they also infer what information other investors have

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ► They can determine the probability that there are a total of *h* high signals being observed

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ► They can determine the probability that there are a total of *h* high signals being observed, including their own signal

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of *h* high signals being observed, including their own signal, given they have observed a high or low signal

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: Prob(h|H) and Prob(h|L)

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ▶ Expected value with high signal: $V_H = \sum_{h=1}^{N} Prob(h-1|H) E |\hat{V}|h|$

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ► Expected value with high signal: $V_H = \sum_{h=1}^N Prob(h-1|H) E |\hat{V}|h| = \frac{2}{3}$

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ▶ Expected value with high signal: $V_H = \sum_{h=1}^{N} Prob(h-1|H) E\left[\hat{V}|h\right] = \frac{2}{3}$
- lacktriangle Expected value with low signal: $V_L = \sum_{h=0}^{N-1} Prob\left(h|L\right) E\left[\hat{V}|h\right]$

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ▶ Expected value with high signal: $V_H = \sum_{h=1}^{N} Prob(h-1|H) E\left[\hat{V}|h\right] = \frac{2}{3}$
- ▶ Expected value with low signal: $V_L = \sum_{h=0}^{N-1} Prob(h|L) E\left[\hat{V}|h\right] = \frac{1}{3}$

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ▶ Expected value with high signal: $V_H = \sum_{h=1}^{N} Prob(h-1|H) E\left[\hat{V}|h\right] = \frac{2}{3}$
- **Expected** value with low signal: $V_L = \sum_{h=0}^{N-1} Prob\left(h|L\right) E\left[\hat{V}|h\right] = \frac{1}{3}$
- lacktriangle All investors assess the value of the issue to be either $\frac{1}{3}$ or $\frac{2}{3}$

- ► Investors submit bids based on their own signal, but they also infer what information other investors have
- ▶ They can determine the probability that there are a total of h high signals being observed, including their own signal, given they have observed a high or low signal: $Prob\left(h|H\right)$ and $Prob\left(h|L\right)$
- ▶ Expected value with high signal: $V_H = \sum_{h=1}^{N} Prob(h-1|H) E\left[\hat{V}|h\right] = \frac{2}{3}$
- **Expected** value with low signal: $V_L = \sum_{h=0}^{N-1} Prob\left(h|L\right) E\left[\hat{V}|h\right] = \frac{1}{3}$
- \blacktriangleright All investors assess the value of the issue to be either $\frac{1}{3}$ or $\frac{2}{3}$

Slide 11 of 24

▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit

▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds

▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ► Setting $S > \frac{2}{3}$ would not sell any securities

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- At $S = \frac{2}{3}$, not all securities might be sold

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- At $S=\frac{2}{3}$, not all securities might be sold if not enough high signals are observed

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- At $S=\frac{2}{3}$, not all securities might be sold if not enough high signals are observed
- ▶ We set $S = \frac{1}{3}$ to ensure the issue is fully sold

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- ▶ At $S = \frac{2}{3}$, not all securities might be sold if not enough high signals are observed
- ▶ We set $S=\frac{1}{3}$ to ensure the issue is fully sold and the proceeds are $\Pi_C=\frac{1}{3}Q$

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- ▶ At $S = \frac{2}{3}$, not all securities might be sold if not enough high signals are observed
- $lackbox{ We set } S=rac{1}{3}$ to ensure the issue is fully sold and the proceeds are $\Pi_C=rac{1}{3}Q$
- ► The price is lower than in efficient pricing

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- At $S=\frac{2}{3}$, not all securities might be sold if not enough high signals are observed
- $lackbox{ We set } S = rac{1}{3} \ ext{to ensure the issue is fully sold and the proceeds are } \Pi_C = rac{1}{3}Q$
- ► The price is lower than in efficient pricing, but as all securities are sold, the proceeds are higher

- ▶ Setting $S \leq \frac{1}{3}$ ensures all securities are sold as every investor makes profit, setting $S < \frac{1}{3}$ would reduce proceeds and not be chosen
- ▶ Setting $S > \frac{2}{3}$ would not sell any securities as all investors value it lower
- At $S=\frac{2}{3}$, not all securities might be sold if not enough high signals are observed
- $lackbox{ We set } S = rac{1}{3}$ to ensure the issue is fully sold and the proceeds are $\Pi_C = rac{1}{3}Q$
- ► The price is lower than in efficient pricing, but as all securities are sold, the proceeds are higher

- Problem and model assumptions
- Efficient pricing
- Bidding process
- Book-building mechanism
- Summary

Copyright 🔘 2024 by Andreas Krause

Slide 13 of 24

Investors submit bids for securities

► Investors submit bids for securities and once all bids are submitted, a price is determined and securities allocated

- ▶ Investors submit bids for securities and once all bids are submitted, a price is determined and securities allocated
- ▶ Bids report whether they claim to have obtained a high or a low signal

- ▶ Investors submit bids for securities and once all bids are submitted, a price is determined and securities allocated
- Bids report whether they claim to have obtained a high or a low signal
- Allocation can depend on the signal they have reported

- ▶ Investors submit bids for securities and once all bids are submitted, a price is determined and securities allocated
- Bids report whether they claim to have obtained a high or a low signal
- Allocation can depend on the signal they have reported
- ► The aim would be to ensure they report their signal truthfully

Bidding process

- ▶ Investors submit bids for securities and once all bids are submitted, a price is determined and securities allocated
- Bids report whether they claim to have obtained a high or a low signal
- Allocation can depend on the signal they have reported
- ▶ The aim would be to ensure they report their signal truthfully

If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$

- If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ► The offer price will be S_H^h

- If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ▶ The offer price will be S_H^h
- The amount of the security allocated to this investor is Q_H

- If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ▶ The offer price will be S_H^h
- lacktriangle The amount of the security allocated to this investor is Q_H
- ▶ This needs to be weighed for the likelihood of having h high signals

- If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ▶ The offer price will be S_H^h
- lacktriangle The amount of the security allocated to this investor is Q_H
- This needs to be weighed for the likelihood of having h high signals, across all possibilities

- ▶ If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ▶ The offer price will be S_H^h
- ► The amount of the security allocated to this investor is Q_H
- This needs to be weighed for the likelihood of having h high signals, across all possibilities

- If reporting high signal truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$
- ▶ The offer price will be S_H^h
- lacktriangle The amount of the security allocated to this investor is Q_H
- This needs to be weighed for the likelihood of having h high signals, across all possibilities
- ▶ Profits are: $\Pi_D^{HH} = \sum_{h=0}^{N-1} Prob\left(h|H\right) \left(E\left[\hat{V}|h+1\right] S_H^h\right) Q_H$

Slide 15 of 24

▶ If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$

If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information

- If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information
- ► The offer price will be S_L^h

- If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information
- ▶ The offer price will be S_L^h
- The amount of the security allocated to this investor is Q_L

- If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information
- ▶ The offer price will be S_L^h
- lacktriangle The amount of the security allocated to this investor is Q_L
- ightharpoonup This needs to be weighed for the likelihood of having h high signals

- If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information
- ▶ The offer price will be S_L^h
- lacktriangle The amount of the security allocated to this investor is Q_L
- ► This needs to be weighed for the likelihood of having *h* high signals, across all possibilities

- If reporting high signal not truthfully and h other high signal have been reported. the value of the security is $E\left|\hat{V}|h+1\right|$, unchanged as the investor has the same information
- ightharpoonup The offer price will be S_r^h
- ▶ The amount of the security allocated to this investor is Q_L
- This needs to be weighed for the likelihood of having h high signals, across all possibilities
- ▶ Profits are: $\Pi_D^{HL} = \sum_{h=0}^{N-1} Prob(h|H) \left(E \left[\hat{V} | h+1 \right] S_L^h \right) Q_L$

- If reporting high signal not truthfully and h other high signal have been reported, the value of the security is $E\left[\hat{V}|h+1\right]$, unchanged as the investor has the same information
- ▶ The offer price will be S_L^h
- lacktriangle The amount of the security allocated to this investor is Q_L
- ► This needs to be weighed for the likelihood of having *h* high signals, across all possibilities
- ▶ Profits are: $\Pi_D^{HL} = \sum_{h=0}^{N-1} Prob\left(h|H\right) \left(E\left[\hat{V}|h+1\right] S_L^h\right) Q_L$

Copyright © 2024 by Andreas Kraus

Slide 16 of 24

► An investor receiving a low signal, would not report a high signal

An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price

An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits

- An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits
- lacktriangle An investor receiving a high signal would report it truthfully if $\Pi_D^{HH} \geq \Pi_D^{HL}$

- An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits
- lacktriangle An investor receiving a high signal would report it truthfully if $\Pi_D^{HH} \geq \Pi_D^{HL}$
- If we set $S_H^h < S_L^h$, the issuers receive less proceeds from the issue

- An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits
- lacktriangle An investor receiving a high signal would report it truthfully if $\Pi_D^{HH} \geq \Pi_D^{HL}$
- ▶ If we set $S_H^h < S_L^h$, the issuers receive less proceeds from the issue, optimally we have $S_H^h = S_L^h = S^h$ to maximize proceeds

- An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits
- lacktriangle An investor receiving a high signal would report it truthfully if $\Pi_D^{HH} \geq \Pi_D^{HL}$
- ▶ If we set $S_H^h < S_L^h$, the issuers receive less proceeds from the issue, optimally we have $S_H^h = S_L^h = S^h$ to maximize proceeds
- lnstead we set $Q_L < Q_H$ to ensure signals are revealed truthfully

- An investor receiving a low signal, would not report a high signal as that would increase the expected value and hence the price, reducing his profits
- lacktriangle An investor receiving a high signal would report it truthfully if $\Pi_D^{HH} \geq \Pi_D^{HL}$
- ▶ If we set $S_H^h < S_L^h$, the issuers receive less proceeds from the issue, optimally we have $S_H^h = S_L^h = S^h$ to maximize proceeds
- lnstead we set $Q_L < Q_H$ to ensure signals are revealed truthfully

Copyright (C) 2024 by Andreas Krause

Slide 17 of 24

 \triangleright Securities issued are held by those with high signals getting Q_H each

Securities issued are held by those with high signals getting Q_H each and low signals getting Q_L each

- ightharpoonup Securities issued are held by those with high signals getting Q_H each and low signals getting Q_L each

- \triangleright Securities issued are held by those with high signals getting Q_H each and low signals getting Q_L each
- $\triangleright Q = hQ_H + (N-h)Q_L$
- Investor profits are identical to losses by the issuer from selling the issue below value

- Securities issued are held by those with high signals getting Q_H each and low signals getting Q_L each
- $Q = hQ_H + (N h) Q_L$
- Investor profits are identical to losses by the issuer from selling the issue below value
- $\hat{\Pi}_C = \sum_{h=0}^{N} Prob(h) \left(E \left[\hat{V} | h \right] S_h \right) Q$

- Securities issued are held by those with high signals getting Q_H each and low signals getting Q_L each
- $Q = hQ_H + (N h) Q_L$
- Investor profits are identical to losses by the issuer from selling the issue below value
- $\hat{\Pi}_C = \sum_{h=0}^{N} Prob(h) \left(E \left[\hat{V} | h \right] S_h \right) Q$

Minimizing losses

Slide 18 of 24

Minimizing losses

► These losses can be rewritten as

$$\begin{split} \hat{\Pi}_{C} &= \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} \\ &+ \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob\left(h|H\right) + Prob\left(h|L\right) \right) \left(E\left[\hat{V}|h\right] - S_{h} \right) Q_{L} \end{split}$$

► These losses can be rewritten as

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} (Prob(h|H) + Prob(h|L)) \left(E \left[\hat{V} | h \right] - S_{h} \right) Q_{L}$$

► This is minimized if the second term vanishes

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} (Prob(h|H) + Prob(h|L)) \left(E \left[\hat{V} | h \right] - S_{h} \right) Q_{L}$$

- ▶ This is minimized if the second term vanishes
- ightharpoonup Either set $Q_L = 0$

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(E \left[\hat{V} | h \right] - S_{h} \right) Q_{L}$$

- ▶ This is minimized if the second term vanishes
- lacksquare Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(E \left[\hat{V}|h \right] - S_{h} \right) Q_{L}$$

- ► This is minimized if the second term vanishes
- lackbox Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$ as the price cannot be set above its value

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(\frac{E}{V} |h| - S_{h} \right) Q_{L}$$

- ► This is minimized if the second term vanishes
- lacksquare Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$ as the price cannot be set above its value
- We can set $Q_L = 0$ if investors with high signals could buy the entire issue

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(E \left[\hat{V}|h \right] - S_{h} \right) Q_{L}$$

- ► This is minimized if the second term vanishes
- lacksquare Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$ as the price cannot be set above its value
- We can set $Q_L=0$ if investors with high signals could buy the entire issue, otherwise $Q_L>0$ and the offer price is set at $S_h=E\left[\hat{V}|h\right]$

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(E\left[\hat{V}|h\right] - S_{h} \right) Q_{L}$$

- ► This is minimized if the second term vanishes
- lacksquare Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$ as the price cannot be set above its value
- We can set $Q_L=0$ if investors with high signals could buy the entire issue, otherwise $Q_L>0$ and the offer price is set at $S_h=E\left[\hat{V}|h\right]$
- \blacktriangleright We focus on the more realistic case that $Q_L > 0$

$$\hat{\Pi}_{C} = \frac{N}{2} \sum_{h=0}^{N-1} \frac{Prob(h|H)}{N+2} Q_{L} + \frac{N}{2} \sum_{h=0}^{N-1} \left(Prob(h|H) + Prob(h|L) \right) \left(E \left[\hat{V}|h \right] - S_{h} \right) Q_{L}$$

- ► This is minimized if the second term vanishes
- lacksquare Either set $Q_L=0$ or $S_h=E\left[\hat{V}|h
 ight]$ as the price cannot be set above its value
- We can set $Q_L=0$ if investors with high signals could buy the entire issue, otherwise $Q_L>0$ and the offer price is set at $S_h=E\left[\hat{V}|h\right]$
- \blacktriangleright We focus on the more realistic case that $Q_L>0$

Book-building mechanism 0000000000

Optimal pricing

► Losses from issuers per security are $\frac{\Pi_C}{O}$

- \blacktriangleright Losses from issuers per security are $\frac{\hat{\Pi}_C}{Q}$
- $lackbox{ Profits for investors are } E\left[\hat{V}|h
 ight] S_h$

- ▶ Losses from issuers per security are $\frac{\hat{\Pi}_C}{Q}$
- $lackbox{ Profits for investors are } E\left[\hat{V}|h
 ight] S_h$
- lackbox These are identical, hence $E\left[\hat{V}|h
 ight]-S_h=rac{\hat{\Pi}_C}{Q}$

- \blacktriangleright Losses from issuers per security are $\frac{\hat{\Pi}_C}{Q}$
- $lackbox{ Profits for investors are } E\left[\hat{V}|h\right] S_h$
- ▶ These are identical, hence $E\left[\hat{V}|h\right] S_h = \frac{\hat{\Pi}_C}{Q}$
- ▶ We have $E\left[E\left[\hat{V}|h\right]\right] = E\left[\hat{V}\right] = \frac{1}{2}$

- lackbox Losses from issuers per security are $\frac{\hat{\Pi}_C}{Q}$
- $lackbox{ Profits for investors are } E\left[\hat{V}|h
 ight]-S_h$
- lacksquare These are identical, hence $E\left[\hat{V}|h
 ight]-S_h=rac{\hat{\Pi}_C}{Q}$
- ▶ We have $E\left[E\left[\hat{V}|h\right]\right] = E\left[\hat{V}\right] = \frac{1}{2}$
- lacksquare This gives taking an expected price of $E\left[S_h
 ight]=rac{1}{2}-rac{\hat{\Pi}_C}{Q}$

- lackbox Losses from issuers per security are $\frac{\hat{\Pi}_C}{Q}$
- $lackbox{ Profits for investors are } E\left[\hat{V}|h
 ight]-S_h$
- lacksquare These are identical, hence $E\left[\hat{V}|h
 ight]-S_h=rac{\hat{\Pi}_C}{Q}$
- $lackbox{ We have } E\left[E\left[\hat{V}|h
 ight]
 ight]=E\left[\hat{V}
 ight]=rac{1}{2}$
- lacktriangle This gives taking an expected price of $E\left[S_h
 ight]=rac{1}{2}-rac{\Pi_C}{Q}$

Slide 20 of 24

ightharpoonup We can derive that $rac{\partial \hat{\Pi}_C}{\partial N} < 0$

Slide 20 of 24

We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers

- We can derive that $\frac{\partial \Pi_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- ightharpoonup Smallest possible N is if all investors having positive signals would buy the entire issue

- We can derive that $\frac{\partial \Pi_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- ▶ If each investor takes \overline{Q} securities at most, $h\overline{Q} = N\overline{Q} = Q$

- We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- ▶ If each investor takes \overline{Q} securities at most, $h\overline{Q} = N\overline{Q} = Q$
- ► This gives $\hat{\Pi}_C \ge \frac{Q}{2(N+2)}$

- We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- ▶ If each investor takes \overline{Q} securities at most, $h\overline{Q} = N\overline{Q} = Q$
- ▶ This gives $\hat{\Pi}_C \ge \frac{Q}{2(N+2)}$
- ▶ Implying $E[S_h] \ge \frac{1}{2} \frac{1}{2(N+2)}$

- We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- ▶ If each investor takes \overline{Q} securities at most, $h\overline{Q} = N\overline{Q} = Q$
- ▶ This gives $\hat{\Pi}_C \ge \frac{Q}{2(N+2)}$
- ► Implying $E[S_h] \ge \frac{1}{2} \frac{1}{2(N+2)} \ge \frac{1}{3}$

- We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- \blacktriangleright If each investor takes \overline{Q} securities at most, $h\overline{Q}=N\overline{Q}=Q$
- ▶ This gives $\hat{\Pi}_C \ge \frac{Q}{2(N+2)}$
- ▶ Implying $E[S_h] \ge \frac{1}{2} \frac{1}{2(N+2)} \ge \frac{1}{3}$
- ► The price is at least as high or higher than in a bidding process

- We can derive that $\frac{\partial \hat{\Pi}_C}{\partial N} < 0$ and having more investors reduces the losses to issuers
- lacktriangleright Smallest possible N is if all investors having positive signals would buy the entire issue
- ▶ If each investor takes \overline{Q} securities at most, $h\overline{Q} = N\overline{Q} = Q$
- ▶ This gives $\hat{\Pi}_C \ge \frac{Q}{2(N+2)}$
- ▶ Implying $E[S_h] \ge \frac{1}{2} \frac{1}{2(N+2)} \ge \frac{1}{3}$
- ▶ The price is at least as high or higher than in a bidding process

Slide 21 of 24

ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \rightarrow \frac{1}{2}$

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \rightarrow \frac{1}{2}$, the efficient price

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue
- ► The expected price is higher than in bidding

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue
- ► The expected price is higher than in bidding and can approach the efficient price

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue
- ▶ The expected price is higher than in bidding and can approach the efficient price
- Book-building obtains the highest proceeds to issuers

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue
- ► The expected price is higher than in bidding and can approach the efficient price
- Book-building obtains the highest proceeds to issuers as investors are induced to reveal their information

- ightharpoonup We see that $\lim_{N\to\infty}\hat{\Pi}_C=0$
- ▶ Implying that $E[S_h] \to \frac{1}{2}$, the efficient price, but obtained here with the certainty of selling the entire issue
- ► The expected price is higher than in bidding and can approach the efficient price
- Book-building obtains the highest proceeds to issuers as investors are induced to reveal their information

- Problem and model assumptions
- Efficient pricing
- Bidding process
- Book-building mechanism
- Summary

Book-building induces investors to reveal their information

▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations

▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits

- ▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits
- ▶ Proceeds to issuers are higher than in a bidding process

- ▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits
- Proceeds to issuers are higher than in a bidding process and can approach the efficient price

- ▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits
- ► Proceeds to issuers are higher than in a bidding process and can approach the efficient price, but ensuring selling all securities

- ▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits
- Proceeds to issuers are higher than in a bidding process and can approach the efficient price, but ensuring selling all securities
- Book building is a standard procedure in the underwriting of securities

- ▶ Book-building induces investors to reveal their information, as only then can they obtain high allocations and make profits
- Proceeds to issuers are higher than in a bidding process and can approach the efficient price, but ensuring selling all securities
- Book building is a standard procedure in the underwriting of securities

Slide 24 of 24

▶ Book-building can be used with best efforts contracts and firm commitment contracts

- ▶ Book-building can be used with best efforts contracts and firm commitment contracts
- ▶ The price emerging from book-building is used as a basis for this contract

- ▶ Book-building can be used with best efforts contracts and firm commitment contracts
- ▶ The price emerging from book-building is used as a basis for this contract
- ▶ Obtaining the bids in book-building relies on contacts the investment bank has with investors

- ▶ Book-building can be used with best efforts contracts and firm commitment contracts
- ▶ The price emerging from book-building is used as a basis for this contract
- ▶ Obtaining the bids in book-building relies on contacts the investment bank has with investors

This presentation is based on

Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024 Copyright @ 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf.from.Greenwich.uriverside.2022-03-18.jpg
Back: Seb Tyler, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf.Panorama_Night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk