Andreas Krause

Chapter 3 Selling information

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

Outline

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
●000	000000	0000		0000
				/

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
○●○○	000000	0000		0000

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Investment banks have superior information on investment opportunities
- They could use this information for their own investments

- Investment banks have superior information on investment opportunities
- They could use this information for their own investments
- Additionally, they could sell the information to clients

- Investment banks have superior information on investment opportunities
- ▶ They could use this information for their own investments
- Additionally, they could sell the information to clients
- Information cannot be verified ex-ante, customers would want a verification mechanism to ensure it exists

- Investment banks have superior information on investment opportunities
- They could use this information for their own investments
- Additionally, they could sell the information to clients
- Information cannot be verified ex-ante, customers would want a verification mechanism to ensure it exists

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
Signals				

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
○○●○	000000	0000		0000
Signals				

Informed investment banks receive an imperfect signal on the return:
 R = s + ε

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
○○●○	000000	0000		0000
Signals				

- Informed investment banks receive an imperfect signal on the return:
 R = s + ε
- ▶ For uninformed investment banks it is $E[s] = \mu$, $Var[s] = \sigma_S^2$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
00●0	000000	0000		0000
Signals				

- Informed investment banks receive an imperfect signal on the return:
- $\blacktriangleright R = s + \varepsilon$
- For uninformed investment banks it is $E[s] = \mu$, $Var[s] = \sigma_S^2$
- $\blacktriangleright \ E\left[\varepsilon\right] = 0, \ Var\left[\varepsilon\right] = \sigma_{\varepsilon}^{2}$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
00●0	000000	0000		0000
Signals				

- Informed investment banks receive an imperfect signal on the return:
- $\blacktriangleright R = s + \varepsilon$
- For uninformed investment banks it is $E[s] = \mu$, $Var[s] = \sigma_S^2$
- $\blacktriangleright \ E\left[\varepsilon\right] = 0, \ Var\left[\varepsilon\right] = \sigma_{\varepsilon}^{2}$
- $\blacktriangleright Var[R] = \sigma_R^2 = \sigma_S^2 + \sigma_\varepsilon^2$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
○○●○	000000	0000		0000
Signals				

Informed investment banks receive an imperfect signal on the return:

$$\blacktriangleright R = s + \varepsilon$$

For uninformed investment banks it is $E[s] = \mu$, $Var[s] = \sigma_S^2$

$$\blacktriangleright E[\varepsilon] = 0, \ Var[\varepsilon] = \sigma_{\varepsilon}^{2}$$

$$\blacktriangleright Var[R] = \sigma_R^2 = \sigma_S^2 + \sigma_\varepsilon^2$$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
Investments				

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
000●	000000	0000		0000

- Investment banks invest into risk-free government securities
- The final value is $W_1 = (1+r) G$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
000●	000000	0000		0000

- Investment banks invest into risk-free government securities and the risky asset
- The final value is $W_1 = (1+r)G + (1+R)V$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Investment banks invest into risk-free government securities and the risky asset
- ▶ The final value is $W_1 = (1+r)G + (1+R)V = (1+r)W_0 + (R-r)V$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Investment banks invest into risk-free government securities and the risky asset
- ▶ The final value is $W_1 = (1+r) G + (1+R) V = (1+r) W_0 + (R-r) V$
- Expected utility is then given by $U_B = E[W_1] \frac{1}{2}zVar[W_1]$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Investment banks invest into risk-free government securities and the risky asset
- ▶ The final value is $W_1 = (1+r) G + (1+R) V = (1+r) W_0 + (R-r) V$
- Expected utility is then given by $U_B = E[W_1] \frac{1}{2}zVar[W_1]$

Problem and assumptions	Uninformed banks ●00000	Informed banks 0000	Purchase of information	Summary 0000

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000

Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000

If investment banks are uninformed, they observe no signal
 Then E [R] = µ

Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000

- If investment banks are uninformed, they observe no signal
- Then $E[R] = \mu$ and $Var[R] = \sigma_R^2$

Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000

- If investment banks are uninformed, they observe no signal
- Then $E[R] = \mu$ and $Var[R] = \sigma_R^2$
- This gives $E[W_1] = (1+r) W_0 + (\mu r) V$

Problem and assumptions	Uninformed banks ○●○○○○	Purchase of information	Summary 0000

- If investment banks are uninformed, they observe no signal
- Then $E[R] = \mu$ and $Var[R] = \sigma_R^2$
- This gives $E[W_1] = (1+r)W_0 + (\mu r)V$ and $Var[W_1] = \sigma_R^2 V^2$

Slide 8 of 23

Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000

• Then
$$E[R] = \mu$$
 and $Var[R] = \sigma_R^2$

- This gives $E[W_1] = (1+r) W_0 + (\mu r) V$ and $Var[W_1] = \sigma_R^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(\mu-r)-z\sigma_R^2 V=0$

<u> </u>	Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000
----------	-------------------------	----------------------------	------------------------	-------------------------	-----------------

• Then
$$E[R] = \mu$$
 and $Var[R] = \sigma_R^2$

- This gives $E[W_1] = (1+r) W_0 + (\mu r) V$ and $Var[W_1] = \sigma_R^2 V^2$
- Maximizing expected utility for the optimal investment V we get
 ^{∂UB}/_{∂V} = (μ − r) − zσ²_RV = 0

 Solving for V* = μ−r/zσ²/zσ²

0000 00000 0000 0000 0000	Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000
----------------------------------	-------------------------	----------------------------	------------------------	-------------------------	-----------------

• Then
$$E[R] = \mu$$
 and $Var[R] = \sigma_R^2$

- This gives $E[W_1] = (1+r) W_0 + (\mu r) V$ and $Var[W_1] = \sigma_R^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(\mu-r)-z\sigma_R^2 V=0$
- Solving for $V^* = \frac{\mu r}{z\sigma_R^2}$
- Expected utility is then $U_B^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_R^2}$

0000 00000 0000 0000 0000	Problem and assumptions	Uninformed banks ○●○○○○	Informed banks 0000	Purchase of information	Summary 0000
----------------------------------	-------------------------	----------------------------	------------------------	-------------------------	-----------------

• Then
$$E[R] = \mu$$
 and $Var[R] = \sigma_R^2$

- This gives $E[W_1] = (1+r) W_0 + (\mu r) V$ and $Var[W_1] = \sigma_R^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(\mu-r)-z\sigma_R^2V=0$
- Solving for $V^* = \frac{\mu r}{z\sigma_R^2}$

• Expected utility is then
$$U_B^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_R^2}$$

Problem and assumptions Unitormed banks Informed banks Purchase of information Summar 0000 0000 0000 0000 0000 0000 0000	Problem and assumptions	Uninformed banks 00●000	Informed banks 0000	Purchase of information	Summary 0000
---	-------------------------	----------------------------	------------------------	-------------------------	-----------------

Problem and assumptions	Uninformed banks 00●000	Informed banks 0000	Purchase of information	Summary 0000

Investment banks can claim they have received a signal

	Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
--	-------------------------	----------------------------	------------------------	-------------------------	-----------------

Investment banks can claim they have received a signal , even if this is not true

- \blacktriangleright Investment banks can claim they have received a signal , even if this is not true
- Investment banks will charge a price for this information

		Uninformed banks ००●०००	Informed banks 0000	Purchase of information	Summary 0000
--	--	----------------------------	------------------------	-------------------------	-----------------

- Investment banks can claim they have received a signal, even if this is not true
- Investment banks will charge a price for this information and obtain this revenue in addition to the utility from investment
- $\hat{U}_B = (1+r) W_0 + (\mu r) V + P \frac{1}{2} z \sigma_R^2 V^2$

Problem and assumptions Uninformed banks	Informed banks	Purchase of information	Summary
0000 00000000000000000000000000000000	0000		0000

- Investment banks can claim they have received a signal, even if this is not true
- Investment banks will charge a price for this information and obtain this revenue in addition to the utility from investment

•
$$\hat{U}_B = (1+r) W_0 + (\mu - r) V + P - \frac{1}{2} z \sigma_R^2 V^2$$

Investment into the risky asset might change if selling information

- Investment banks can claim they have received a signal, even if this is not true
- Investment banks will charge a price for this information and obtain this revenue in addition to the utility from investment

•
$$\hat{U}_B = (1+r) W_0 + (\mu - r) V + P - \frac{1}{2} z \sigma_R^2 V^2$$

- Investment into the risky asset might change if selling information
- \blacktriangleright The investment bank will refrain from selling information it does not hold if $\hat{U}_B \leq U_B^*$

- Investment banks can claim they have received a signal, even if this is not true
- Investment banks will charge a price for this information and obtain this revenue in addition to the utility from investment

•
$$\hat{U}_B = (1+r) W_0 + (\mu - r) V + P - \frac{1}{2} z \sigma_R^2 V^2$$

- Investment into the risky asset might change if selling information
- \blacktriangleright The investment bank will refrain from selling information it does not hold if $\hat{U}_B \leq U_B^*$

• This solves for
$$P \leq P^* = \frac{(\mu - r)^2}{2z\sigma_R^2} - (\mu - r)V + \frac{1}{2}z\sigma_R^2V^2$$

- Investment banks can claim they have received a signal, even if this is not true
- Investment banks will charge a price for this information and obtain this revenue in addition to the utility from investment

•
$$\hat{U}_B = (1+r) W_0 + (\mu - r) V + P - \frac{1}{2} z \sigma_R^2 V^2$$

- Investment into the risky asset might change if selling information
- \blacktriangleright The investment bank will refrain from selling information it does not hold if $\hat{U}_B \leq U_B^*$

► This solves for
$$P \le P^* = \frac{(\mu - r)^2}{2z\sigma_R^2} - (\mu - r)V + \frac{1}{2}z\sigma_R^2V^2$$

Uninformed banks
000000

Informed bank

Selling news for long positions (V > 0)

Copyright 🔘 2024 by Andreas Krause

The risk aversion of investment banks is unknown, so the constraint on P must hold for all values

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2 \sigma_P^2} + \frac{1}{2} \sigma_R^2 V^2 = 0$

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- ► The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2\sigma_T^2} + \frac{1}{2}\sigma_R^2 V^2 = 0$

• Giving
$$z^2 = \frac{(\mu - r)^2}{\sigma_R^4 V^2}$$

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- ▶ The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2\sigma_T^2} + \frac{1}{2}\sigma_R^2 V^2 = 0$

• Giving
$$z^2 = \frac{(\mu - r)^2}{\sigma_R^4 V^2}$$

• Assume that $\mu > r$, then if V > 0, we have $z = \frac{\mu - r}{\sigma_{P}^{2}V}$

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- ► The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2\sigma_T^2} + \frac{1}{2}\sigma_R^2 V^2 = 0$

• Giving
$$z^2 = \frac{(\mu - r)^2}{\sigma_R^4 V^2}$$

- Assume that $\mu > r$, then if V > 0, we have $z = \frac{\mu r}{\sigma_{\nu}^2 V}$
- From this we get $P^* = 0$

Slide 10 of 23

Selling news for long positions (V > 0)

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- ► The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2\sigma_T^2} + \frac{1}{2}\sigma_R^2 V^2 = 0$

• Giving
$$z^2 = \frac{(\mu - r)^2}{\sigma_R^4 V^2}$$

- ► Assume that $\mu > r$, then if V > 0, we have $z = \frac{\mu r}{\sigma_P^2 V}$
- From this we get $P^* = 0$
- If V > 0 the investment bank would always sell information it does not have

Selling news for long positions (V > 0)

- The risk aversion of investment banks is unknown, so the constraint on P must hold for all values
- ► The smallest possible price P is given from $\frac{\partial P^*}{\partial z} = -\frac{(\mu r)^2}{2z^2\sigma_T^2} + \frac{1}{2}\sigma_R^2 V^2 = 0$

• Giving
$$z^2 = \frac{(\mu - r)^2}{\sigma_R^4 V^2}$$

► Assume that $\mu > r$, then if V > 0, we have $z = \frac{\mu - r}{\sigma_B^2 V}$

- From this we get $P^* = 0$
- \blacktriangleright If V > 0 the investment bank would always sell information it does not have

Uninformed banks

Informed ban

Selling news for short positions (V < 0)

Copyright (C) 2024 by Andreas Krause

Problem and assumptions	Uninformed banks 0000●0	Informed banks 0000	Purchase of information	Summary 0000		
Selling news for short positions ($V < 0$)						

▶ If
$$V < 0$$
, then $z = -\frac{\mu - r}{\sigma_B^2 V}$

Copyright 🕐 2024 by Andreas Kraus

Problem and assumptions	Uninformed banks 0000●0	Informed banks 0000	Purchase of information	Summary 0000
Selling news for	short positions ((V < 0)		

• If
$$V < 0$$
, then $z = -\frac{\mu - r}{\sigma_R^2 V}$ and $P^* = -2(\mu - r)V > 0$

Copyright 🔘 2024 by Andreas Kraus

Slide 11 of 23

▶ If V < 0, then $z = -\frac{\mu - r}{\sigma_R^2 V}$ and $P^* = -2(\mu - r) V > 0$ and the investment bank would want to sell the information if the price is high enough

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r) V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r) V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*
- Inserting this into the expected utility \hat{U}_B

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r) V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*
- ▶ Inserting this into the expected utility \hat{U}_B and maximizing this expression using $\frac{\partial \hat{U}_B}{\partial V} = 0$, we get

Slide 11 of 23

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r) V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*
- ▶ Inserting this into the expected utility \hat{U}_B and maximizing this expression using $\frac{\partial \hat{U}_B}{\partial V} = 0$, we get

 $\blacktriangleright \hat{V}^* = -\frac{\mu - r}{z\sigma_R^2}$

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r) V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*
- Inserting this into the expected utility \hat{U}_B and maximizing this expression using $\frac{\partial \hat{U}_B}{\partial V} = 0$, we get

$$\blacktriangleright \hat{V}^* = -\frac{\mu - r}{z\sigma_B^2}$$

• This then gives $P^* = 2 \frac{(\mu - r)^2}{z \sigma_P^2}$

- ▶ If V < 0, then $z = -\frac{\mu r}{\sigma_R^2 V}$ and $P^* = -2(\mu r)V > 0$ and the investment bank would want to sell the information if the price is high enough
- As banks seek to maximize their utility they will sell information at the highest price P*
- Inserting this into the expected utility \hat{U}_B and maximizing this expression using $\frac{\partial \hat{U}_B}{\partial V} = 0$, we get

$$\blacktriangleright \hat{V}^* = -\frac{\mu - r}{z\sigma_R^2}$$

• This then gives
$$P^* = 2 rac{(\mu - r)^2}{z \sigma_B^2}$$

	Problem and assumptions	Uninformed banks 00000●	Informed banks 0000	Purchase of information	Summary 0000
--	-------------------------	----------------------------	------------------------	-------------------------	-----------------

Copyright (C) 2024 by Andreas Krause

Problem and assumptions	Uninformed banks 00000●	Informed banks 0000	Purchase of information	Summary 0000

• If V > 0 for an uninformed investment bank, information should not be sold as it can be from informed or uninformed investment banks

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- If V > 0 for an uninformed investment bank, information should not be sold as it can be from informed or uninformed investment banks
- If V < 0 for an uninformed investment bank, information may be sold if the price is below P* as in this case it is from the informed investment bank

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- If V > 0 for an uninformed investment bank, information should not be sold as it can be from informed or uninformed investment banks
- ► If V < 0 for an uninformed investment bank, information may be sold if the price is below P* as in this case it is from the informed investment bank

Problem and assumptions	Uninformed banks 000000	Informed banks ●000	Purchase of information	Summary 0000

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Copyright 🔘 2024 by Andreas Krause

	Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000
--	-------------------------	----------------------------	------------------------	-------------------------	-----------------

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

▶ If investment banks are informed, they observe their signal

Copyright 🕜 2024 by Andreas Kraus

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

If investment banks are informed, they observe their signal
 Then E [R] = s

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

- ▶ If investment banks are informed, they observe their signal
- Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

- If investment banks are informed, they observe their signal
- ▶ Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$
- This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

- If investment banks are informed, they observe their signal
- Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$
- This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$ and $Var[W_1|s] = \sigma_{\varepsilon}^2 V^2$

Problem and assumptions	Uninformed banks 000000	Informed banks ○●○○	Purchase of information	Summary 0000

- If investment banks are informed, they observe their signal
- ▶ Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$
- ► This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$ and $Var[W_1|s] = \sigma_{\varepsilon}^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V} = (s-r) z\sigma_{\varepsilon}^2 V = 0$

Slide 14 of 23

- If investment banks are informed, they observe their signal
- ▶ Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$
- ► This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$ and $Var[W_1|s] = \sigma_{\varepsilon}^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(s-r)-z\sigma_{\varepsilon}^2 V=0$

• Solving for
$$V^{**} = \frac{s-r}{z\sigma_e^2}$$

Optimal investment without selling information

- If investment banks are informed, they observe their signal
- ▶ Then E[R] = s and $Var[R] = \sigma_{\varepsilon}^2$
- ► This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$ and $Var[W_1|s] = \sigma_{\varepsilon}^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(s-r)-z\sigma_{\varepsilon}^2V=0$
- ► Solving for $V^{**} = \frac{s-r}{z\sigma_{\epsilon}^2}$
- Expected utility is then $U_B^{**} = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_{\epsilon}^2}$

Optimal investment without selling information

If investment banks are informed, they observe their signal

▶ Then
$$E[R] = s$$
 and $Var[R] = \sigma_{\varepsilon}^2$

- ► This gives $E[W_1|s] = (1+r)W_0 + (s-r)V$ and $Var[W_1|s] = \sigma_{\varepsilon}^2 V^2$
- Maximizing expected utility for the optimal investment V we get $\frac{\partial U_B}{\partial V}=(s-r)-z\sigma_{\varepsilon}^2V=0$

• Solving for
$$V^{**} = \frac{s-r}{z\sigma_{\varepsilon}^2}$$

• Expected utility is then
$$U_B^{**} = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_s^2}$$

Problem and assumptions	Uninformed banks 000000	Informed banks ○○●○	Purchase of information	Summary 0000

Selling information

Problem and assumptions	Uninformed banks 000000	Informed banks ○○●○	Purchase of information	Summary 0000
Selling informatio	'n			

Utility when selling information is enhanced by the price obtained

Problem and assumptions	Uninformed banks 000000	Informed banks ○○●○	Purchase of information	Summary 0000
Selling informati	on			

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*

Problem and assumptions	Uninformed banks 000000	Informed banks ○○●○	Purchase of information	Summary 0000
Selling informatio	n			

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*
- Informed investment banks would always sell their information

Problem and assumptions	Uninformed banks 000000	Informed banks ○○●○	Purchase of information	Summary 0000
Selling informatio	n			

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*
- Informed investment banks would always sell their information
- To distinguish themselves from uninformed investment banks, they would sell only if $V^{**} < 0$

Problem and assumptions	Uninformed banks 000000	Informed banks 00●0	Purchase of information	Summary 0000
Selling information				

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*
- Informed investment banks would always sell their information
- \blacktriangleright To distinguish themselves from uninformed investment banks, they would sell only if $V^{**} < 0$
- This implies s < r

Problem and assumptions	Uninformed banks 000000	Informed banks 00●0	Purchase of information	Summary 0000
Selling information				

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*
- Informed investment banks would always sell their information
- \blacktriangleright To distinguish themselves from uninformed investment banks, they would sell only if $V^{**} < 0$
- This implies s < r
- Information can only be sold if it is sufficiently negative

Problem and assumptions	Uninformed banks 000000	Informed banks 00●0	Purchase of information	Summary 0000
Selling information				

- Utility when selling information is enhanced by the price obtained
- The price does not depend on the investment V, this includes the maximum price P*
- Informed investment banks would always sell their information
- \blacktriangleright To distinguish themselves from uninformed investment banks, they would sell only if $V^{**} < 0$
- This implies s < r
- Information can only be sold if it is sufficiently negative

Problem and assumptions Uninformed banks Informed banks Purchase of information Summa 0000 0000 0000 0000		Uninformed banks 000000	Informed banks	Purchase of information	Summary 0000
---	--	----------------------------	----------------	-------------------------	-----------------

Positive information makes a long position optimal for informed and uninformed banks

Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well

- Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well
- Negative information makes a short position optimal for informed and a long position for uninformed banks

- Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well
- Negative information makes a short position optimal for informed and a long position for uninformed banks, this means they can be easily distinguished

- Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well
- Negative information makes a short position optimal for informed and a long position for uninformed banks, this means they can be easily distinguished
- Adjustment of security holding for the uninformed investment bank is too large to sell negative information they do not hold

- Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well
- Negative information makes a short position optimal for informed and a long position for uninformed banks, this means they can be easily distinguished
- Adjustment of security holding for the uninformed investment bank is too large to sell negative information they do not hold
- Purchasers use the investment position of the investment bank as a guide to identify informed and uninformed investment banks

- Positive information makes a long position optimal for informed and uninformed banks, this means they cannot be distinguished well
- Negative information makes a short position optimal for informed and a long position for uninformed banks, this means they can be easily distinguished
- Adjustment of security holding for the uninformed investment bank is too large to sell negative information they do not hold
- Purchasers use the investment position of the investment bank as a guide to identify informed and uninformed investment banks

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information 000 	Summary 0000

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
Investor decisions				

Uninformed investors are similar to uninformed banks

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
Investor decisions				

- Uninformed investors are similar to uninformed banks
- Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_P^2}$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Uninformed investors are similar to uninformed banks
- Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_D^2}$
- Informed investors are similar to informed banks

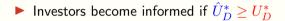
Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Uninformed investors are similar to uninformed banks
- Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_D^2}$
- Informed investors are similar to informed banks
- Their expected utility is given by $\hat{U}_D^* = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_z^2}$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- Uninformed investors are similar to uninformed banks
- ► Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_R^2}$
- Informed investors are similar to informed banks
- ► Their expected utility is given by $\hat{U}_D^* = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_z^2} \frac{P^*}{N}$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	○●○○	0000


- Uninformed investors are similar to uninformed banks
- ► Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_R^2}$
- Informed investors are similar to informed banks
- ▶ Their expected utility is given by $\hat{U}_D^* = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_z^2} \frac{P^*}{N}$
- We assume that the costs of information P^* is shared among N investors

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	○●○○	0000

- Uninformed investors are similar to uninformed banks
- Their expected utility is given by $U_D^* = (1+r) W_0 + \frac{(\mu-r)^2}{2z\sigma_R^2}$
- Informed investors are similar to informed banks
- ▶ Their expected utility is given by $\hat{U}_D^* = (1+r) W_0 + \frac{(s-r)^2}{2z\sigma_z^2} \frac{P^*}{N}$
- We assume that the costs of information P^* is shared among N investors

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000
Becoming inform	ned			

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	○○●○	0000

- ▶ Investors become informed if $\hat{U}_D^* \ge U_D^*$
- This becomes $(s-r)^2 \ge \frac{\sigma_{\varepsilon}^2}{\sigma_R^2} \left((\mu-r)^2 + \frac{2z\sigma_R^2 P^*}{N} \right)$

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- ▶ Investors become informed if $\hat{U}_D^* \ge U_D^*$
- This becomes $(s-r)^2 \ge \frac{\sigma_{\varepsilon}^2}{\sigma_R^2} \left((\mu r)^2 + \frac{2z\sigma_R^2 P^*}{N} \right)$
- We need s < r to have information being offered, this means

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0000

- ▶ Investors become informed if $\hat{U}_D^* \ge U_D^*$
- This becomes $(s-r)^2 \ge \frac{\sigma_{\varepsilon}^2}{\sigma_R^2} \left((\mu-r)^2 + \frac{2z\sigma_R^2 P^*}{N} \right)$
- We need s < r to have information being offered, this means

$$\blacktriangleright s \le r - \frac{\sigma_{\varepsilon}}{\sigma_R} \sqrt{(\mu - r)^2 + \frac{2z\sigma_R^2 P^*}{N}} < r$$

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	00●0	0000

▶ Investors become informed if $\hat{U}_D^* \ge U_D^*$

• This becomes
$$(s-r)^2 \ge \frac{\sigma_{\varepsilon}^2}{\sigma_R^2} \left((\mu-r)^2 + \frac{2z\sigma_R^2 P^*}{N} \right)$$

• We need s < r to have information being offered, this means

$$> s \le r - \frac{\sigma_{\varepsilon}}{\sigma_R} \sqrt{(\mu - r)^2 + \frac{2z\sigma_R^2 P^*}{N}} < r$$

Information is only bought if it is sufficiently negative

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	00●0	0000

▶ Investors become informed if $\hat{U}_D^* \ge U_D^*$

• This becomes
$$(s-r)^2 \ge \frac{\sigma_{\varepsilon}^2}{\sigma_R^2} \left((\mu-r)^2 + \frac{2z\sigma_R^2 P^*}{N} \right)$$

• We need s < r to have information being offered, this means

$$> s \le r - \frac{\sigma_{\varepsilon}}{\sigma_R} \sqrt{(\mu - r)^2 + \frac{2z\sigma_R^2 P^*}{N}} < r$$

Information is only bought if it is sufficiently negative

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	000●	0000

Information content needed

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	000●	0000

Information content needed

► The maximum price possible is *P*^{*} to prevent uninformed investment banks selling information

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	000●	0000

- The maximum price possible is P* to prevent uninformed investment banks selling information
- ▶ The lower the price the less negative the signal needs to be to be profitable

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	000●	0000

- The maximum price possible is P* to prevent uninformed investment banks selling information
- > The lower the price the less negative the signal needs to be to be profitable
- Even at P = 0 the information needs to be sufficiently negative

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	000●	0000

- The maximum price possible is P* to prevent uninformed investment banks selling information
- > The lower the price the less negative the signal needs to be to be profitable
- Even at P = 0 the information needs to be sufficiently negative
- The information needs to deviate from their current knowledge sufficiently to justify the costs

Problem and assumptions	Uninformed banks	Informed banks	Purchase of information	Summary
	000000	0000	○○○●	0000

- The maximum price possible is P* to prevent uninformed investment banks selling information
- ▶ The lower the price the less negative the signal needs to be to be profitable
- Even at P = 0 the information needs to be sufficiently negative
- The information needs to deviate from their current knowledge sufficiently to justify the costs

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary ●000

Problem and model assumptions

Uninformed investment banks

Informed investment banks

Purchase of information

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary ○●○○

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 0●00

Copyright 🔘 2024 by Andreas Kraus

Only negative information can be sold, as positive information can be copied by uninformed investment banks

- Only negative information can be sold, as positive information can be copied by uninformed investment banks
- To verify the existence of information, purchasers can observe the investments of investment banks

- Only negative information can be sold, as positive information can be copied by uninformed investment banks
- To verify the existence of information, purchasers can observe the investments of investment banks
- Selling negative information without having it, requires a too large adjustment of the investments, given the price they are charging

- Only negative information can be sold, as positive information can be copied by uninformed investment banks
- To verify the existence of information, purchasers can observe the investments of investment banks
- Selling negative information without having it, requires a too large adjustment of the investments, given the price they are charging
- To justify the price of information, it needs to be sufficiently negative to be of value to investors

- Only negative information can be sold, as positive information can be copied by uninformed investment banks
- To verify the existence of information, purchasers can observe the investments of investment banks
- Selling negative information without having it, requires a too large adjustment of the investments, given the price they are charging
- To justify the price of information, it needs to be sufficiently negative to be of value to investors

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 00●0

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary ○○●○
Market implication	ons			

Negative information is valuable as it will be based on actual information

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary 00●0

- ▶ Negative information is valuable as it will be based on actual information
- Positive information can be from informed or uninformed investment banks and much less valuable

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary ○○●○

- Negative information is valuable as it will be based on actual information
- Positive information can be from informed or uninformed investment banks and much less valuable
- Investors should react stronger to negative information than positive information

Problem and assumptions	Uninformed banks 000000	Informed banks 0000	Purchase of information	Summary ○○●○

- Negative information is valuable as it will be based on actual information
- Positive information can be from informed or uninformed investment banks and much less valuable
- Investors should react stronger to negative information than positive information

This presentation is based on Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024 Copyright ⓒ 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 40 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf.drom.Greenwich.u/verside.2022.03-18.jpg Back: Seb Tyler, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf_Panorama_Night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk