

Chapter 16.1
Optimal remuneration

Outline

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

■ Problem and model assumptions

- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

Bankers and traders

Bankers and traders

- ▶ **Bankers** assess securities and loans and monitor them

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby **adding value** to the through increased value

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being **repaid**

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ **Traders** assess the value of the securities and loans provided by other banks

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from **trading these**

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from trading these
- ▶ **Remuneration** of bankers and traders should be based on the value they add to the bank employing them

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from trading these
- ▶ Remuneration of bankers and traders should be based on the value they add to the bank employing them
- ▶ Bankers **add** social value

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from trading these
- ▶ Remuneration of bankers and traders should be based on the value they add to the bank employing them
- ▶ Bankers add social value, while traders do not add social value, they only **re-distribute value**

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from trading these
- ▶ Remuneration of bankers and traders should be based on the value they add to the bank employing them
- ▶ Bankers add social value, while traders do not add social value, they only re-distribute value
- ▶ How is **remuneration** determined for these two types of employees?

Bankers and traders

- ▶ Bankers assess securities and loans and monitor them, thereby adding value to the through increased value or higher likelihood of being repaid
- ▶ Traders assess the value of the securities and loans provided by other banks with an aim to benefit from trading these
- ▶ Remuneration of bankers and traders should be based on the value they add to the bank employing them
- ▶ Bankers add social value, while traders do not add social value, they only re-distribute value
- ▶ How is remuneration determined for these two types of employees?

Loan repayments

Loan repayments

- ▶ Banks have given a **loan** L with interest r_L

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is **repaid** is either π_H^i or $\pi_L^i = \delta\pi_H^i$

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is repaid is either π_H^i or $\pi_L^i = \delta\pi_H^i$
- ▶ State H occurs with probability p

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is repaid is either π_H^i or $\pi_L^i = \delta\pi_H^i$
- ▶ State H occurs with probability p , but this probability for an individual loan is **not known** to other banks, only the bank originating the loan

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is repaid is either π_H^i or $\pi_L^i = \delta\pi_H^i$
- ▶ State H occurs with probability p , but this probability for an individual loan is not known to other banks, only the bank originating the loan
- ▶ The other banks receive a **signal** about the state

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is repaid is either π_H^i or $\pi_L^i = \delta\pi_H^i$
- ▶ State H occurs with probability p , but this probability for an individual loan is not known to other banks, only the bank originating the loan
- ▶ The other banks receive a signal about the state and this is correct with probability ρ_i

Loan repayments

- ▶ Banks have given a loan L with interest r_L
- ▶ Probability that the loan is repaid is either π_H^i or $\pi_L^i = \delta\pi_H^i$
- ▶ State H occurs with probability p , but this probability for an individual loan is not known to other banks, only the bank originating the loan
- ▶ The other banks receive a signal about the state and this is correct with probability ρ_i

- Problem and model assumptions
- **Loan values**
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

Loans with low and high signals

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of **another** bank is repaid

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i [\pi_s^j]$

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i \left[\pi_s^j \right]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i \left[\pi_s^j \right]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶ $P_L^{ij} = \rho_i E_i \left[\pi_L^j \right] (1 + r_L) L + (1 - \rho_i) E_i \left[\pi_H^j \right] (1 + r_L) L$
- ▶ The signal L can be **correct**

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i [\pi_s^j]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶ $P_L^{ij} = \rho_i E_i [\pi_L^j] (1 + r_L) L + (1 - \rho_i) E_i [\pi_H^j] (1 + r_L) L$
- ▶ The signal L can be **correct** or **incorrect**

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i \left[\pi_s^j \right]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶ $P_L^{ij} = \rho_i E_i \left[\pi_L^j \right] (1 + r_L) L + (1 - \rho_i) E_i \left[\pi_H^j \right] (1 + r_L) L$
- ▶ The signal L can be **correct** or **incorrect**, and gives the inference of the **high** or **low** probability of default

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i \left[\pi_s^j \right]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶
$$P_L^{ij} = \rho_i E_i \left[\pi_L^j \right] (1 + r_L) L + (1 - \rho_i) E_i \left[\pi_H^j \right] (1 + r_L) L$$
- ▶ The signal L can be correct or incorrect, and gives the inference of the high or low probability of default
- ▶ For the **high signal** we get similarly

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i [\pi_s^j]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶ $P_L^{ij} = \rho_i E_i [\pi_L^j] (1 + r_L) L + (1 - \rho_i) E_i [\pi_H^j] (1 + r_L) L$
- ▶ The signal L can be **correct** or **incorrect**, and gives the inference of the **high** or **low** probability of default
- ▶ For the high signal we get similarly
- ▶ $P_H^{ij} = \rho_i E_i [\pi_H^j] (1 + r_L) L + (1 - \rho_i) E_i [\pi_L^j] (1 + r_L) L$

Loans with low and high signals

- ▶ A bank does not know the probability with which the loans of another bank is repaid, but from expectations $E_i [\pi_s^j]$
- ▶ Bank i will assess a loan given by bank j if given a signal L as
- ▶
$$P_L^{ij} = \rho_i E_i [\pi_L^j] (1 + r_L) L + (1 - \rho_i) E_i [\pi_H^j] (1 + r_L) L$$
- ▶ The signal L can be correct or incorrect, and gives the inference of the high or low probability of default
- ▶ For the high signal we get similarly
- ▶
$$P_H^{ij} = \rho_i E_i [\pi_H^j] (1 + r_L) L + (1 - \rho_i) E_i [\pi_L^j] (1 + r_L) L$$

Seller accepting low offers

Seller accepting low offers

- If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan **will be** purchased

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan will be purchased, if the bank wants to sell at P_H^{ij} , then the buyer needs to have the **high signal**

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan will be purchased, if the bank wants to sell at P_H^{ij} , then the buyer needs to have the **high signal**
- ▶ We need $P_L^{ij} > pP_H^{ij}$ for the seller to accept the low offer

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan will be purchased, if the bank wants to sell at P_H^{ij} , then the buyer needs to have the high signal
- ▶ We need $P_L^{ij} > pP_H^{ij}$ for the seller to accept the low offer
- ▶ This gives $\rho_i \leq \frac{1-p\delta}{(1-\delta)(1-p)}$

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan will be purchased, if the bank wants to sell at P_H^{ij} , then the buyer needs to have the high signal
- ▶ We need $P_L^{ij} > pP_H^{ij}$ for the seller to accept the low offer
- ▶ This gives $\rho_i \leq \frac{1-p\delta}{(1-\delta)(1-p)}$
- ▶ **Adverse selection** must not be too high for the seller willing to accept low offers

Seller accepting low offers

- ▶ If $\rho_i > \frac{1}{2}$, then $P_L^{ij} < P_H^{ij}$
- ▶ A bank can always offer to sell at P_L^{ij} and the loan will be purchased, if the bank wants to sell at P_H^{ij} , then the buyer needs to have the high signal
- ▶ We need $P_L^{ij} > pP_H^{ij}$ for the seller to accept the low offer
- ▶ This gives $\rho_i \leq \frac{1-p\delta}{(1-\delta)(1-p)}$
- ▶ Adverse selection must not be too high for the seller willing to accept low offers

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

Liquidity shock

Liquidity shock

- ▶ A bank faces a **liquidity shortage** with probability λ and has to sell loans

Liquidity shock

- ▶ A bank faces a liquidity shortage with probability λ and has to sell loans
- ▶ A bank not facing a liquidity shortage has **excess liquidity** and would buy these loans

Liquidity shock

- ▶ A bank faces a liquidity shortage with probability λ and has to sell loans
- ▶ A bank not facing a liquidity shortage has excess liquidity and would buy these loans
- ▶ Banks employ **bankers**, who can affect the probability of loans being repaid, π_j^i

Liquidity shock

- ▶ A bank faces a liquidity shortage with probability λ and has to sell loans
- ▶ A bank not facing a liquidity shortage has excess liquidity and would buy these loans
- ▶ Banks employ bankers, who can affect the probability of loans being repaid, π_j^i
- ▶ Banks employ **traders**, who obtain signals with precision ρ_i

Liquidity shock

- ▶ A bank faces a liquidity shortage with probability λ and has to sell loans
- ▶ A bank not facing a liquidity shortage has excess liquidity and would buy these loans
- ▶ Banks employ bankers, who can affect the probability of loans being repaid, π_j^i
- ▶ Banks employ traders, who obtain signals with precision ρ_i

Bank profits

Bank profits

- ▶ Banks facing a **liquidity shortage**, sell the loan for what **the other bank** thinks it is worth, P_L^{ji}
- ▶ $\Pi_B^i = \lambda P_L^{ji}$

Bank profits

- ▶ Banks facing a liquidity shortage, sell the loan for what the other bank thinks it is worth, P_L^{ji}
- ▶ Banks not facing a liquidity shortage, retain their loan

$$\Pi_B^i = \lambda P_L^{ji} + (1 - \lambda) \left(p \pi_H^i (1 + r_L) L + (1 - p) \pi_L^i (1 + r_L) L \right)$$

Bank profits

- ▶ Banks facing a liquidity shortage, sell the loan for what the other bank thinks it is worth, P_L^{ji}
- ▶ Banks not facing a liquidity shortage, retain their loan
- ▶ and **purchase at a price P_L^{ij} the loan of the other bank**
- ▶
$$\begin{aligned} \Pi_B^i = & \lambda P_L^{ji} + (1 - \lambda) \left(p \pi_H^i (1 + r_L) L + (1 - p) \pi_L^i (1 + r_L) L \right. \\ & \left. + \left(p E_i \left[\pi_H^j \right] (1 + r_L) L + (1 - p) E_i \left[\pi_L^j \right] (1 + r_L) L - P_L^{ij} \right) \right) \end{aligned}$$

Bank profits

- ▶ Banks facing a liquidity shortage, sell the loan for what the other bank thinks it is worth, P_L^{ji}
- ▶ Banks not facing a liquidity shortage, retain their loan
- ▶ and purchase at a price P_L^{ij} the loan of the other bank
- ▶ They pay **depositors** and their **bankers** and **traders**
- ▶
$$\begin{aligned} \Pi_B^i = & \lambda P_L^{ji} + (1 - \lambda) \left(p \pi_H^i (1 + r_L) L + (1 - p) \pi_L^i (1 + r_L) L \right. \\ & + \left. \left(p E_i \left[\pi_H^j \right] (1 + r_L) L + (1 - p) E_i \left[\pi_L^j \right] (1 + r_L) L - P_L^{ij} \right) \right) \\ & - (1 + r_D) D - w_T N_T^i - w_B N_B^i \end{aligned}$$

Bank profits

- ▶ Banks facing a liquidity shortage, sell the loan for what the other bank thinks it is worth, P_L^{ji}
- ▶ Banks not facing a liquidity shortage, retain their loan
- ▶ and purchase at a price P_L^{ij} the loan of the other bank
- ▶ They pay depositors and their bankers and traders
- ▶
$$\begin{aligned} \Pi_B^i = & \lambda P_L^{ji} + (1 - \lambda) \left(p \pi_H^i (1 + r_L) L + (1 - p) \pi_L^i (1 + r_L) L \right. \\ & + \left. \left(p E_i \left[\pi_H^j \right] (1 + r_L) L + (1 - p) E_i \left[\pi_L^j \right] (1 + r_L) L - P_L^{ij} \right) \right) \\ & - (1 + r_D) D - w_T N_T^i - w_B N_B^i \end{aligned}$$

Price of the loan the other bank pays

Price of the loan the other bank pays

- ▶ The price paid will be determined by the **inference** the bank has on the quality of the signal by the other bank

Price of the loan the other bank pays

- ▶ The price paid will be determined by the **inference** the bank has on the quality of the signal by the other bank
- ▶ $P_L^{ji} = E_i [\rho_j] \pi_L^i (1 + r_L) L + (1 - E_i [\rho_j]) \pi_H^i (1 + r_L) L$

Price of the loan the other bank pays

- ▶ The price paid will be determined by the inference the bank has on the quality of the signal by the other bank
- ▶ $P_L^{ji} = E_i [\rho_j] \pi_L^i (1 + r_L) L + (1 - E_i [\rho_j]) \pi_H^i (1 + r_L) L$
- ▶ Probability of loans being repaid and the quality of the signal are **not given**

Price of the loan the other bank pays

- ▶ The price paid will be determined by the inference the bank has on the quality of the signal by the other bank
- ▶ $P_L^{ji} = E_i [\rho_j] \pi_L^i (1 + r_L) L + (1 - E_i [\rho_j]) \pi_H^i (1 + r_L) L$
- ▶ Probability of loans being repaid and the quality of the signal are not given but banks will **optimize** them

Price of the loan the other bank pays

- ▶ The price paid will be determined by the inference the bank has on the quality of the signal by the other bank
- ▶ $P_L^{ji} = E_i [\rho_j] \pi_L^i (1 + r_L) L + (1 - E_i [\rho_j]) \pi_H^i (1 + r_L) L$
- ▶ Probability of loans being repaid and the quality of the signal are not given but banks will optimize them

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

Hiring more bankers and traders

Hiring more bankers and traders

- ▶ Hiring more bankers increases the likelihood of loans being repaid: $\frac{\partial \pi_s^i}{\partial N_B^i} > 0$

Hiring more bankers and traders

- ▶ Hiring more bankers increases the likelihood of loans being repaid: $\frac{\partial \pi_s^i}{\partial N_B^i} > 0$
- ▶ Hiring more traders increases the precision of the signal: $\frac{\partial \rho_i}{\partial N_T^i} > 0$

Hiring more bankers and traders

- ▶ Hiring more bankers increases the likelihood of loans being repaid: $\frac{\partial \pi_s^i}{\partial N_B^i} > 0$
- ▶ Hiring more traders increases the precision of the signal: $\frac{\partial \rho_i}{\partial N_T^i} > 0$
- ▶ The **total number** of bankers and traders is limited to N_k each

Hiring more bankers and traders

- ▶ Hiring more bankers increases the likelihood of loans being repaid: $\frac{\partial \pi_s^i}{\partial N_B^i} > 0$
- ▶ Hiring more traders increases the precision of the signal: $\frac{\partial \rho_i}{\partial N_T^i} > 0$
- ▶ The total number of bankers and traders is limited to N_k each
- ▶ If a bank hires N_k^i bankers or traders, the remaining banks share $N_k^j = \frac{N_k - N_k^i}{N-1}$

Hiring more bankers and traders

- ▶ Hiring more bankers increases the likelihood of loans being repaid: $\frac{\partial \pi_s^i}{\partial N_B^i} > 0$
- ▶ Hiring more traders increases the precision of the signal: $\frac{\partial \rho_i}{\partial N_T^i} > 0$
- ▶ The total number of bankers and traders is limited to N_k each
- ▶ If a bank hires N_k^i bankers or traders, the remaining banks share $N_k^j = \frac{N_k - N_k^i}{N-1}$

Influence of bankers and traders

Influence of bankers and traders

- ▶ Influence of bankers on loan repayments of other banks:

$$\frac{\partial \pi_H^j}{\partial N_B^i} = \frac{\partial \pi_H^j}{\partial N_B^j} \frac{\partial N_B^j}{\partial N_B^i} = -\frac{1}{N-1} \frac{\partial \pi_H^j}{\partial N_B^j} < 0$$

Influence of bankers and traders

- ▶ Influence of bankers on loan repayments of other banks:

$$\frac{\partial \pi_H^j}{\partial N_B^i} = \frac{\partial \pi_H^j}{\partial N_B^j} \frac{\partial N_B^j}{\partial N_B^i} = -\frac{1}{N-1} \frac{\partial \pi_H^j}{\partial N_B^j} < 0$$

- ▶ Influence of traders on signal precision of other banks:

$$\frac{\partial \rho_j}{\partial N_T^i} = \frac{\partial \rho_j}{\partial N_T^j} \frac{\partial N_T^j}{\partial N_T^i} = -\frac{1}{N-1} \frac{\partial \rho_j}{\partial N_T^j} < 0$$

Influence of bankers and traders

- ▶ Influence of bankers on loan repayments of other banks:

$$\frac{\partial \pi_H^j}{\partial N_B^i} = \frac{\partial \pi_H^j}{\partial N_B^j} \frac{\partial N_B^j}{\partial N_B^i} = -\frac{1}{N-1} \frac{\partial \pi_H^j}{\partial N_B^j} < 0$$

- ▶ Influence of traders on signal precision of other banks:

$$\frac{\partial \rho_j}{\partial N_T^i} = \frac{\partial \rho_j}{\partial N_T^j} \frac{\partial N_T^j}{\partial N_T^i} = -\frac{1}{N-1} \frac{\partial \rho_j}{\partial N_T^j} < 0$$

- ▶ As the number of bankers and traders is limited, hiring more will **reduce** the number available to other banks

Influence of bankers and traders

- ▶ Influence of bankers on loan repayments of other banks:

$$\frac{\partial \pi_H^j}{\partial N_B^i} = \frac{\partial \pi_H^j}{\partial N_B^j} \frac{\partial N_B^j}{\partial N_B^i} = -\frac{1}{N-1} \frac{\partial \pi_H^j}{\partial N_B^j} < 0$$

- ▶ Influence of traders on signal precision of other banks:

$$\frac{\partial \rho_j}{\partial N_T^i} = \frac{\partial \rho_j}{\partial N_T^j} \frac{\partial N_T^j}{\partial N_T^i} = -\frac{1}{N-1} \frac{\partial \rho_j}{\partial N_T^j} < 0$$

- ▶ As the number of bankers and traders is limited, hiring more will reduce the number available to other banks and thus **reduce** their probability of loan repayment or signal precision

Influence of bankers and traders

- ▶ Influence of bankers on loan repayments of other banks:

$$\frac{\partial \pi_H^j}{\partial N_B^i} = \frac{\partial \pi_H^j}{\partial N_B^j} \frac{\partial N_B^j}{\partial N_B^i} = -\frac{1}{N-1} \frac{\partial \pi_H^j}{\partial N_B^j} < 0$$

- ▶ Influence of traders on signal precision of other banks:

$$\frac{\partial \rho_j}{\partial N_T^i} = \frac{\partial \rho_j}{\partial N_T^j} \frac{\partial N_T^j}{\partial N_T^i} = -\frac{1}{N-1} \frac{\partial \rho_j}{\partial N_T^j} < 0$$

- ▶ As the number of bankers and traders is limited, hiring more will reduce the number available to other banks and thus reduce their probability of loan repayment or signal precision

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- **Efficient wages**
- Competitive effects
- Summary

Number of bankers and traders

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike, hence banks will infer that they behave like them:

$$E_i \left[\pi_H^j \right] = \pi_H^i$$

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike, hence banks will infer that they behave like them:
 $E_i \left[\pi_H^j \right] = \pi_H^i$ and $E_i [\rho_j] = \rho_i$

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike, hence banks will infer that they behave like them:
 $E_i \left[\pi_H^j \right] = \pi_H^i$ and $E_i \left[\rho_j \right] = \rho_i$
- ▶ Traders: $w_T^* = (1 - \lambda) (1 - \delta) \pi_H^i (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike, hence banks will infer that they behave like them:
 $E_i \left[\pi_H^j \right] = \pi_H^i$ and $E_i \left[\rho_j \right] = \rho_i$
- ▶ Traders: $w_T^* = (1 - \lambda) (1 - \delta) \pi_H^i (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$
- ▶ Bankers: $w_B^* = (V + (1 - \delta) \lambda (1 - \rho_i - p) (1 + r_L) L) \frac{\partial \pi_H^i}{\partial N_B^i}$

Number of bankers and traders

- ▶ Ignoring the effect hiring a banker has on the ability of other banks, the optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ All banks are alike, hence banks will infer that they behave like them:
 $E_i \left[\pi_H^j \right] = \pi_H^i$ and $E_i \left[\rho_j \right] = \rho_i$
- ▶ Traders: $w_T^* = (1 - \lambda) (1 - \delta) \pi_H^i (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$
- ▶ Bankers: $w_B^* = (V + (1 - \delta) \lambda (1 - \rho_i - p) (1 + r_L) L) \frac{\partial \pi_H^i}{\partial N_B^i}$

Equilibrium wages

Equilibrium wages

- ▶ A **Pareto optimal** allocation of resources within banks requires that the **marginal products** of bankers and traders are identical

Equilibrium wages

- ▶ A Pareto optimal allocation of resources within banks requires that the marginal products of bankers and traders are identical
- ▶ The **marginal product** of a banker or trader is its **wage**

Equilibrium wages

- ▶ A Pareto optimal allocation of resources within banks requires that the marginal products of bankers and traders are identical
- ▶ The marginal product of a banker or trader is its wage
- ▶ This implies that $w_T^* = w_B^* = w^*$

Equilibrium wages

- ▶ A Pareto optimal allocation of resources within banks requires that the marginal products of bankers and traders are identical
- ▶ The marginal product of a banker or trader is its wage
- ▶ This implies that $w_T^* = w_B^* = w^*$
- ▶ The wages are adjusted by hiring the requisite number of bankers and traders to adjust $\frac{\partial \rho_i}{\partial N_T^i}$ and $\frac{\partial \pi_H^i}{\partial N_B^i}$ accordingly

Equilibrium wages

- ▶ A Pareto optimal allocation of resources within banks requires that the marginal products of bankers and traders are identical
- ▶ The marginal product of a banker or trader is its wage
- ▶ This implies that $w_T^* = w_B^* = w^*$
- ▶ The wages are adjusted by hiring the requisite number of bankers and traders to adjust $\frac{\partial \rho_i}{\partial N_T^i}$ and $\frac{\partial \pi_H^i}{\partial N_B^i}$ accordingly

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- Summary

Optimal wages with impact on other banks

Optimal wages with impact on other banks

- ▶ The bank will now take into account the effect its hiring of a banker or trader has on the ability of the **other** bank to do likewise

Optimal wages with impact on other banks

- ▶ The bank will now take into account the effect its hiring of a banker or trader has on the ability of the other bank to do likewise
- ▶ The optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$

Optimal wages with impact on other banks

- ▶ The bank will now take into account the effect its hiring of a banker or trader has on the ability of the other bank to do likewise
- ▶ The optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ Traders: $w_T^{**} = (1 - \delta) \left((1 - \lambda) + \frac{\lambda}{N-1} \right) (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$

Optimal wages with impact on other banks

- ▶ The bank will now take into account the effect its hiring of a banker or trader has on the ability of the other bank to do likewise
- ▶ The optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ Traders: $w_T^{**} = (1 - \delta) \left((1 - \lambda) + \frac{\lambda}{N-1} \right) (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$
- ▶ Bankers: $w_B^{**} = \frac{\partial \pi_H^i}{\partial N_B^i} \left(V + \left(\lambda + \frac{1-\lambda}{N-1} \right) (1 - \delta) (1 - \rho_i - p) (1 + r_L) L \right)$

Optimal wages with impact on other banks

- ▶ The bank will now take into account the effect its hiring of a banker or trader has on the ability of the other bank to do likewise
- ▶ The optimal number of bankers and traders to hire is given from $\frac{\partial \Pi_B^i}{\partial N_T^i} = \frac{\partial \Pi_B^i}{\partial N_B^i} = 0$
- ▶ Traders: $w_T^{**} = (1 - \delta) \left((1 - \lambda) + \frac{\lambda}{N-1} \right) (1 + r_L) L \frac{\partial \rho_i}{\partial N_T^i}$
- ▶ Bankers: $w_B^{**} = \frac{\partial \pi_H^i}{\partial N_B^i} \left(V + \left(\lambda + \frac{1-\lambda}{N-1} \right) (1 - \delta) (1 - \rho_i - p) (1 + r_L) L \right)$

Traders are paid more than bankers

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid **more** than bankers

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid more than bankers
- ▶ Traders are paid **more** than their marginal product

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid more than bankers
- ▶ Traders are paid more than their marginal product, they are **overpaid**

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid more than bankers
- ▶ Traders are paid more than their marginal product, they are overpaid
- ▶ Bankers are paid **less** than their marginal product

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid more than bankers
- ▶ Traders are paid more than their marginal product, they are overpaid
- ▶ Bankers are paid less than their marginal product, they are **underpaid**

Traders are paid more than bankers

- ▶ Comparing with the efficient wage, we get $w_T^{**} > w^* > w_B^{**}$
- ▶ Traders are paid more than bankers
- ▶ Traders are paid more than their marginal product, they are overpaid
- ▶ Bankers are paid less than their marginal product, they are underpaid

Overpaid traders

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank **buys**

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank buys
- ▶ Hiring traders contributes also to the bank achieving a **higher sales price** for their loans

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank buys
- ▶ Hiring traders contributes also to the bank achieving a higher sales price for their loans
- ⇒ Denying other banks a trader, **reduces** the precision of their signal

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank buys
- ▶ Hiring traders contributes also to the bank achieving a higher sales price for their loans
- ⇒ Denying other banks a trader, reduces the precision of their signal
- ⇒ As $\frac{\partial P_L^{ij}}{\partial \rho_i} < 0$, the sale price of the loan **increases**

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank buys
- ▶ Hiring traders contributes also to the bank achieving a higher sales price for their loans
- ⇒ Denying other banks a trader, reduces the precision of their signal
- ⇒ As $\frac{\partial P_L^{ij}}{\partial \rho_i} < 0$, the sale price of the loan increases
- ▶ Traders indirectly **contribute more** than their marginal product from signal precision to the profits of the bank

Overpaid traders

- ▶ Traders contribute to bank profits by evaluating loans the bank buys
- ▶ Hiring traders contributes also to the bank achieving a higher sales price for their loans
- ⇒ Denying other banks a trader, reduces the precision of their signal
- ⇒ As $\frac{\partial P_L^{ij}}{\partial \rho_i} < 0$, the sale price of the loan increases
- ▶ Traders indirectly contribute more than their marginal product from signal precision to the profits of the bank

Underpaid bankers

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through **higher probabilities of repayment**

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through higher probabilities of repayment
- ▶ This also increases the value of the loan to any **purchaser** as loans are sold at a discount

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through higher probabilities of repayment
- ▶ This also increases the value of the loan to any purchaser as loans are sold at a discount, increasing the **loss** to the selling bank

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through higher probabilities of repayment
- ▶ This also increases the value of the loan to any purchaser as loans are sold at a discount, increasing the loss to the selling bank
- ▶ This causes an **externality**

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through higher probabilities of repayment
- ▶ This also increases the value of the loan to any purchaser as loans are sold at a discount, increasing the loss to the selling bank
- ▶ This causes an externality and the banker **contributes less** than its marginal product from increasing the probability of repayment

Underpaid bankers

- ▶ Bankers increase the value of the loan the bank holds through higher probabilities of repayment
- ▶ This also increases the value of the loan to any purchaser as loans are sold at a discount, increasing the loss to the selling bank
- ▶ This causes an externality and the banker contributes less than its marginal product from increasing the probability of repayment

- Problem and model assumptions
- Loan values
- Bank profits
- The effect of bankers and traders
- Efficient wages
- Competitive effects
- **Summary**

Private benefits

Private benefits

- ▶ Traders create profits by buying loans at a **higher discount**

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and **preventing** other banks to purchasing loans at a high discount

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in **two ways**

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration **high**

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration high
- ▶ Bankers create value to the bank by **reducing the default rate** of loans

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration high
- ▶ Bankers create value to the bank by reducing the default rate of loans, this also benefits the **purchaser** of a loan as it will be paid at a higher discount

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration high
- ▶ Bankers create value to the bank by reducing the default rate of loans, this also benefits the purchaser of a loan as it will be paid at a higher discount
- ▶ They create an **externality** that reduces bank profits

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration high
- ▶ Bankers create value to the bank by reducing the default rate of loans, this also benefits the purchaser of a loan as it will be paid at a higher discount
- ▶ They create an externality that reduces bank profits, making their remuneration **low**

Private benefits

- ▶ Traders create profits by buying loans at a higher discount and preventing other banks to purchasing loans at a high discount
- ▶ They benefit banks in two ways, making their remuneration high
- ▶ Bankers create value to the bank by reducing the default rate of loans, this also benefits the purchaser of a loan as it will be paid at a higher discount
- ▶ They create an externality that reduces bank profits, making their remuneration low

Social benefits

Social benefits

- ▶ Bankers produce **social value** by reducing defaults

Social benefits

- ▶ Bankers produce social value by reducing defaults
- ▶ Traders produce **no social surplus** as they only redistribute value between banks

Social benefits

- ▶ Bankers produce social value by reducing defaults
- ▶ Traders produce no social surplus as they only redistribute value between banks
- ▶ The activity increasing welfare is paid **less** than the activity adding no welfare

Social benefits

- ▶ Bankers produce social value by reducing defaults
- ▶ Traders produce no social surplus as they only redistribute value between banks
- ▶ The activity increasing welfare is paid less than the activity adding no welfare
- ▶ It is **privately rational** to reward traders more highly

Social benefits

- ▶ Bankers produce social value by reducing defaults
- ▶ Traders produce no social surplus as they only redistribute value between banks
- ▶ The activity increasing welfare is paid less than the activity adding no welfare
- ▶ It is privately rational to reward traders more highly

This presentation is based on
Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024
Copyright © 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_from_Greenwich_riverside.2022-03-18.jpg
Back: Seb Tyler, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_Panorama_Night.jpg

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk