

Chapter 15.2

Remuneration of traders

Outline

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
○●○○

Independent traders
○○○

Fixed wages
○○○○○

Performance wages
○○○○

Optimal remuneration
○○○○

Summary
○○○○

Traders as employees

Traders as employees

- ▶ Investment banks' trading desks **employ** traders

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require **remuneration**

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed **or** uninformed

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will **not** be able to determine this when employing them

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their **performance**

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their performance rather than on fixed salaries

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their performance rather than on fixed salaries
- ▶ This is often seen as an **incentive** device to exert effort

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their performance rather than on fixed salaries
- ▶ This is often seen as an incentive device to exert effort, but also leads to **moral hazard** in risk-taking

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their performance rather than on fixed salaries
- ▶ This is often seen as an incentive device to exert effort, but also leads to moral hazard in risk-taking
- ▶ It might be the most **profitable** way of paying traders

Traders as employees

- ▶ Investment banks' trading desks employ traders, who require remuneration
- ▶ Traders can be informed or uninformed, the investment bank will not be able to determine this when employing them
- ▶ Investment banks commonly remunerate traders based on their performance rather than on fixed salaries
- ▶ This is often seen as an incentive device to exert effort, but also leads to moral hazard in risk-taking
- ▶ It might be the most profitable way of paying traders

Problem and assumptions
ooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Trader types

Trader types

- ▶ Traders are **informed** with probability γ

Trader types

- ▶ Traders are informed with probability γ
- ▶ Informed traders **know** the change in value of the security, ΔV

Trader types

- ▶ Traders are informed with probability γ
- ▶ Informed traders know the change in value of the security, ΔV , uninformed traders know its **expected value** $E[\Delta V] = 0$ and **variance** $Var[\Delta V] = \sigma_V^2$

Trader types

- ▶ Traders are informed with probability γ
- ▶ Informed traders know the change in value of the security, ΔV , uninformed traders know its expected value $E[\Delta V] = 0$ and variance $Var[\Delta V] = \sigma_V^2$
- ▶ Noise traders trade for **exogenous** reasons

Trader types

- ▶ Traders are informed with probability γ
- ▶ Informed traders know the change in value of the security, ΔV , uninformed traders know its expected value $E[\Delta V] = 0$ and variance $Var[\Delta V] = \sigma_V^2$
- ▶ Noise traders trade for exogenous reasons with **expected** trading demand $E[U] = 0$ and **variance** $Var[U] = \sigma_U^2$

Trader types

- ▶ Traders are informed with probability γ
- ▶ Informed traders know the change in value of the security, ΔV , uninformed traders know its expected value $E[\Delta V] = 0$ and variance $Var[\Delta V] = \sigma_V^2$
- ▶ Noise traders trade for exogenous reasons with expected trading demand $E[U] = 0$ and variance $Var[U] = \sigma_U^2$

Problem and assumptions
○○○●

Independent traders
○○○

Fixed wages
○○○○○

Performance wages
○○○○

Optimal remuneration
○○○○

Summary
○○○○

Price setting

Price setting

- ▶ The price is set such that it mirrors the **inference** of the change in the value, given the demand

Price setting

- ▶ The price is set such that it mirrors the inference of the change in the value, given the demand: $\Delta P = E [\Delta V | D]$

Price setting

- ▶ The price is set such that it mirrors the inference of the change in the value, given the demand: $\Delta P = E [\Delta V | D]$
- ▶ The relationship is assumed to be linear: $\Delta P = \lambda D$

Price setting

- ▶ The price is set such that it mirrors the inference of the change in the value, given the demand: $\Delta P = E [\Delta V | D]$
- ▶ The relationship is assumed to be linear: $\Delta P = \lambda D$
- ▶ This is a **regression** of the demand on the price change

Price setting

- ▶ The price is set such that it mirrors the inference of the change in the value, given the demand: $\Delta P = E[\Delta V|D]$
- ▶ The relationship is assumed to be linear: $\Delta P = \lambda D$
- ▶ This is a regression of the demand on the price change, the coefficient being
$$\lambda = \frac{\text{Cov}[\Delta V, D]}{\text{Var}[D]}$$

Price setting

- ▶ The price is set such that it mirrors the inference of the change in the value, given the demand: $\Delta P = E[\Delta V|D]$
- ▶ The relationship is assumed to be linear: $\Delta P = \lambda D$
- ▶ This is a regression of the demand on the price change, the coefficient being
$$\lambda = \frac{Cov[\Delta V, D]}{Var[D]}$$

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
oooo

Independent traders
○●○

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Trader profits

Trader profits

- ▶ A trader not employed by an investment bank can trade **independently**

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a **trading fee f**

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a trading fee f
- ▶ If the trader is uninformed he will **not trade**

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a trading fee f
- ▶ If the trader is uninformed he will not trade as he will **not** make a profit against informed traders, $Q_U = 0$

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a trading fee f
- ▶ If the trader is uninformed he will not trade as he will not make a profit against informed traders, $Q_U = 0$
- ▶ Total demand is then $D = Q_I + U$

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a trading fee f
- ▶ If the trader is uninformed he will not trade as he will not make a profit against informed traders, $Q_U = 0$
- ▶ Total demand is then $D = Q_I + U$
- ▶ Trading profits: $\Pi_T = E [(\Delta V - (1 + f) \Delta P) Q_I | \Delta V] = (\Delta V - (1 + f) \lambda Q_I) Q_I$

Trader profits

- ▶ A trader not employed by an investment bank can trade independently and faces a trading fee f
- ▶ If the trader is uninformed he will not trade as he will not make a profit against informed traders, $Q_U = 0$
- ▶ Total demand is then $D = Q_I + U$
- ▶ Trading profits: $\Pi_T = E [(\Delta V - (1 + f) \Delta P) Q_I | \Delta V] = (\Delta V - (1 + f) \lambda Q_I) Q_I$

Problem and assumptions
oooo

Independent traders
oo●

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Optimal demand

Optimal demand

- ▶ Traders will maximize their profits with first order condition $\frac{\partial \Pi_I}{\partial Q_I} = 0$

Optimal demand

- ▶ Traders will maximize their profits with first order condition $\frac{\partial \Pi_I}{\partial Q_I} = 0$
- ▶ Optimal demand: $Q_I = \frac{\Delta V}{2(1+f)\lambda}$

Optimal demand

- ▶ Traders will maximize their profits with first order condition $\frac{\partial \Pi_I}{\partial Q_I} = 0$
- ▶ Optimal demand: $Q_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Profits: $E [\Pi_T] = \frac{\sigma_V^2}{4(1+f)\lambda}$

Optimal demand

- ▶ Traders will maximize their profits with first order condition $\frac{\partial \Pi_I}{\partial Q_I} = 0$
- ▶ Optimal demand: $Q_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Profits: $E [\Pi_T] = \frac{\sigma_V^2}{4(1+f)\lambda}$

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
o●oooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Demand for employed traders

Demand for employed traders

- ▶ Investment banks will pay enough to induce **informed** traders to join them:
 $w = E [\Pi_T]$

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E [\Pi_T]$
- ▶ Uninformed traders can**not** be identified

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E [\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and **will trade** as to not be detected

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E [\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will **assume** the change in security value to be $\Delta \hat{V}$

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E[\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will assume the change in security value to be $\hat{\Delta V}$
- ▶ Traders at the investment bank do **not** face trading costs

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E[\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will assume the change in security value to be \hat{V}
- ▶ Traders at the investment bank do not face trading costs, thus $f = 0$

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E[\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will assume the change in security value to be $\hat{\Delta V}$
- ▶ Traders at the investment bank do not face trading costs, thus $f = 0$
- ▶ For informed traders: $Q_I = \frac{\Delta V}{2\lambda}$

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E[\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will assume the change in security value to be \hat{V}
- ▶ Traders at the investment bank do not face trading costs, thus $f = 0$
- ▶ For informed traders: $Q_I = \frac{\Delta V}{2\lambda}$
- ▶ For uninformed traders: $Q_U = \frac{\Delta \hat{V}}{2\lambda}$

Demand for employed traders

- ▶ Investment banks will pay enough to induce informed traders to join them:
 $w = E[\Pi_T]$
- ▶ Uninformed traders cannot be identified, hence will also be hired and will trade as to not be detected
- ▶ They will assume the change in security value to be \hat{V}
- ▶ Traders at the investment bank do not face trading costs, thus $f = 0$
- ▶ For informed traders: $Q_I = \frac{\Delta V}{2\lambda}$
- ▶ For uninformed traders: $Q_U = \frac{\Delta \hat{V}}{2\lambda}$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oo•ooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Total demand

Total demand

- ▶ If an informed trader is **not employed**, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$

Total demand

- ▶ If an informed trader is not employed, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Trading demand arises if the **informed trader** is **employed**

- ▶ $D = \gamma Q_I$

Total demand

- ▶ If an informed trader is not employed, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Trading demand arises if the **informed trader** is **employed**, or the **uninformed trader** is **employed**
- ▶ $D = \gamma Q_I + (1 - \gamma) (Q_U$

Total demand

- ▶ If an informed trader is not employed, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Trading demand arises if the **informed trader** is **employed**, or the **uninformed trader** is **employed**, with the informed trader acting **independently**
- ▶ $D = \gamma Q_I + (1 - \gamma) (Q_U + \hat{Q}_I)$

Total demand

- ▶ If an informed trader is not employed, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Trading demand arises if the **informed trader** is **employed**, or the **uninformed trader** is **employed**, with the informed trader acting **independently**, plus **noise traders**
- ▶ $D = \gamma Q_I + (1 - \gamma) (Q_U + \hat{Q}_I) + U$

Total demand

- ▶ If an informed trader is not employed, he will demand $\hat{Q}_I = \frac{\Delta V}{2(1+f)\lambda}$
- ▶ Trading demand arises if the informed trader is employed, or the uninformed trader is employed, with the informed trader acting independently, plus noise traders
- ▶
$$D = \gamma Q_I + (1 - \gamma) \left(Q_U + \hat{Q}_I \right) + U$$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooo•oo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Equilibrium pricing

Equilibrium pricing

- Uniformed traders **cannot** infer security values

Equilibrium pricing

- Uniformed traders cannot infer security values: $Cov [\Delta V, \Delta \hat{V}] = 0$ and $Var [\Delta V] = Var [\Delta \hat{V}]$

Equilibrium pricing

- ▶ Uniformed traders cannot infer security values: $Cov [\Delta V, \Delta \hat{V}] = 0$ and $Var [\Delta V] = Var [\Delta \hat{V}]$
- ▶ They will trade **randomly** giving the impression having received $\Delta \hat{V}$

Equilibrium pricing

- ▶ Uniformed traders cannot infer security values: $Cov [\Delta V, \Delta \hat{V}] = 0$ and $Var [\Delta V] = Var [\Delta \hat{V}]$
- ▶ They will trade randomly giving the impression having received $\Delta \hat{V}$
- ▶ This gives $Cov [\Delta V, D] = \frac{\sigma_V^2 (1+\gamma f)}{2(1+f)\lambda}$ and $Var [D] = \frac{\sigma_V^2 (1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \frac{(1-\gamma)^2}{4\lambda^2} + \sigma_U^2$

Equilibrium pricing

- ▶ Uniformed traders cannot infer security values: $Cov [\Delta V, \Delta \hat{V}] = 0$ and $Var [\Delta V] = Var [\Delta \hat{V}]$
- ▶ They will trade randomly giving the impression having received $\Delta \hat{V}$
- ▶ This gives $Cov [\Delta V, D] = \frac{\sigma_V^2 (1+\gamma f)}{2(1+f)\lambda}$ and $Var [D] = \frac{\sigma_V^2 (1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \frac{(1-\gamma)^2}{4\lambda^2} + \sigma_U^2$
- ▶ Solving for $\lambda = \frac{1}{2} \frac{\sigma_V}{\sigma_U} \sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f} \right)^2 - (1-\gamma)^2}$

Equilibrium pricing

- ▶ Uniformed traders cannot infer security values: $Cov [\Delta V, \Delta \hat{V}] = 0$ and $Var [\Delta V] = Var [\Delta \hat{V}]$
- ▶ They will trade randomly giving the impression having received $\Delta \hat{V}$
- ▶ This gives $Cov [\Delta V, D] = \frac{\sigma_V^2 (1+\gamma f)}{2(1+f)\lambda}$ and $Var [D] = \frac{\sigma_V^2 (1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \frac{(1-\gamma)^2}{4\lambda^2} + \sigma_U^2$
- ▶ Solving for $\lambda = \frac{1}{2} \frac{\sigma_V}{\sigma_U} \sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f} \right)^2 - (1-\gamma)^2}$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooo●○

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Investment bank profits

Investment bank profits

- ▶ Trading profits are from the profits of informed traders
- ▶ $\Pi = \gamma E [(\Delta V - \Delta P) Q_I | \Delta V]$

Investment bank profits

- ▶ Trading profits are from the profits of **informed traders** and losses of **uniformed traders**
- ▶ $\Pi = \gamma E [(\Delta V - \Delta P) Q_I | \Delta V] + (1 - \gamma) E [(\Delta V - \Delta P) Q_U]$

Investment bank profits

- ▶ Trading profits are from the profits of informed traders and losses of uniformed traders
- ▶ $\Pi = \gamma E [(\Delta V - \Delta P) Q_I | \Delta V] + (1 - \gamma) E [(\Delta V - \Delta P) Q_U]$
- ▶ Profits: $\Pi_B = E [\Pi] - w$

Investment bank profits

- ▶ Trading profits are from the profits of informed traders and losses of uniformed traders
- ▶ $\Pi = \gamma E [(\Delta V - \Delta P) Q_I | \Delta V] + (1 - \gamma) E [(\Delta V - \Delta P) Q_U]$
- ▶ Profits: $\Pi_B = E [\Pi] - w = \left(\gamma - \frac{1}{2} \frac{2+f}{1+f} \right) \frac{\sigma_U \sigma_V}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f} \right)^2 - (1-\gamma)^2}}$

Investment bank profits

- ▶ Trading profits are from the profits of informed traders and losses of uniformed traders
- ▶ $\Pi = \gamma E [(\Delta V - \Delta P) Q_I | \Delta V] + (1 - \gamma) E [(\Delta V - \Delta P) Q_U]$
- ▶ Profits: $\Pi_B = E [\Pi] - w = \left(\gamma - \frac{1}{2} \frac{2+f}{1+f} \right) \frac{\sigma_U \sigma_V}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f} \right)^2 - (1-\gamma)^2}}$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oooo

Operating a trading desk

Operating a trading desk

- ▶ Investment banks will only operate a trading desk if $\Pi_B \geq 0$

Operating a trading desk

- ▶ Investment banks will only operate a trading desk if $\Pi_B \geq 0$
- ▶ This requires $\gamma \geq \frac{1}{2} \frac{2+f}{1+f}$

Operating a trading desk

- ▶ Investment banks will only operate a trading desk if $\Pi_B \geq 0$
- ▶ This requires $\gamma \geq \frac{1}{2} \frac{2+f}{1+f}$
- ▶ We need **sufficient informed** traders that trade profitably to ensure the losses made by uninformed traders are covered

Operating a trading desk

- ▶ Investment banks will only operate a trading desk if $\Pi_B \geq 0$
- ▶ This requires $\gamma \geq \frac{1}{2} \frac{2+f}{1+f}$
- ▶ We need sufficient informed traders that trade profitably to ensure the losses made by uninformed traders are covered
- ▶ For reasonably low trading costs f , this threshold is **very high**

Operating a trading desk

- ▶ Investment banks will only operate a trading desk if $\Pi_B \geq 0$
- ▶ This requires $\gamma \geq \frac{1}{2} \frac{2+f}{1+f}$
- ▶ We need sufficient informed traders that trade profitably to ensure the losses made by uninformed traders are covered
- ▶ For reasonably low trading costs f , this threshold is very high

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
o●oo

Optimal remuneration
oooo

Summary
oooo

Total demand

Total demand

- ▶ Investment banks will only pay traders according to the **profits** they make

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to **join** the investment bank

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to join the investment bank
- ▶ Uniformed traders will not trade as they make **losses**

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to join the investment bank
- ▶ Uniformed traders will not trade as they make losses
- ▶ Total demand is from the **informed traders** employed by the investment bank

- ▶ $D = \gamma Q_I$

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to join the investment bank
- ▶ Uniformed traders will not trade as they make losses
- ▶ Total demand is from the **informed traders employed** by the investment bank, **informed traders not employed**
- ▶ $D = \gamma Q_I + (1 - \gamma) \hat{Q}_I$

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to join the investment bank
- ▶ Uniformed traders will not trade as they make losses
- ▶ Total demand is from the **informed traders employed** by the investment bank, **informed traders not employed**, and **noise traders**
- ▶ $D = \gamma Q_I + (1 - \gamma) \hat{Q}_I + U$

Total demand

- ▶ Investment banks will only pay traders according to the profits they make
- ▶ Informed traders will receive a schedule that induces them to join the investment bank
- ▶ Uniformed traders will not trade as they make losses
- ▶ Total demand is from the informed traders employed by the investment bank, informed traders not employed, and noise traders
- ▶ $D = \gamma Q_I + (1 - \gamma) \hat{Q}_I + U$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
ooo•o

Optimal remuneration
oooo

Summary
oooo

Trading profits

Trading profits

- We get $Cov [\Delta V, D] = \sigma_V^2 \frac{1+\gamma f}{2(1+f)\lambda}$ and $Var [D] = \sigma_V^2 \frac{(1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \sigma_U^2$

Trading profits

- We get $Cov [\Delta V, D] = \sigma_V^2 \frac{1+\gamma f}{2(1+f)\lambda}$ and $Var [D] = \sigma_V^2 \frac{(1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \sigma_U^2$
- Solving for $\lambda = \frac{1}{2} \frac{\sigma_V}{\sigma_U} \frac{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}}{1+f}$

Trading profits

- We get $Cov [\Delta V, D] = \sigma_V^2 \frac{1+\gamma f}{2(1+f)\lambda}$ and $Var [D] = \sigma_V^2 \frac{(1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \sigma_U^2$
- Solving for $\lambda = \frac{1}{2} \frac{\sigma_V}{\sigma_U} \frac{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}}{1+f}$
- Trading profits are from the informed traders employed: $\Pi = \gamma (\Delta V - \Delta P) Q_I$

Trading profits

- ▶ We get $Cov [\Delta V, D] = \sigma_V^2 \frac{1+\gamma f}{2(1+f)\lambda}$ and $Var [D] = \sigma_V^2 \frac{(1+\gamma f)^2}{4(1+f)^2 \lambda^2} + \sigma_U^2$
- ▶ Solving for $\lambda = \frac{1}{2} \frac{\sigma_V}{\sigma_U} \frac{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}}{1+f}$
- ▶ Trading profits are from the informed traders employed: $\Pi = \gamma (\Delta V - \Delta P) Q_I$

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
ooo●

Optimal remuneration
oooo

Summary
oooo

Investment bank profits

Investment bank profits

- ▶ Performance needs to be **evaluated**

Investment bank profits

- ▶ Performance needs to be evaluated, this **costs** investment banks C

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain **trading profits**
- ▶ Profits: $\hat{\Pi}_B = E[\Pi]$

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain **trading profits**, pay the **wages** to **informed traders** only
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w$

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain **trading profits**, pay the **wages** to **informed traders** only, and face costs of **evaluating trader performance**
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w - C$

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain trading profits, pay the wages to informed traders only, and face costs of evaluating trader performance
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w - C$
- ▶ Investment banks will only operate a trading desk if $\hat{\Pi}_B \geq 0$

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain trading profits, pay the wages to informed traders only, and face costs of evaluating trader performance
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w - C$
- ▶ Investment banks will only operate a trading desk if $\hat{\Pi}_B \geq 0$
- ▶ This requires $\sigma_U \sigma_V \geq \frac{2C}{\gamma f} \sqrt{(1 + \gamma f)(2(1 + f) - (1 + \gamma f))}$

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain trading profits, pay the wages to informed traders only, and face costs of evaluating trader performance
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w - C$
- ▶ Investment banks will only operate a trading desk if $\hat{\Pi}_B \geq 0$
- ▶ This requires $\sigma_U \sigma_V \geq \frac{2C}{\gamma f} \sqrt{(1 + \gamma f)(2(1 + f) - (1 + \gamma f))}$
- ▶ Only if the **uncertainty is large** enough can informed traders generate enough profits to cover the costs of monitoring

Investment bank profits

- ▶ Performance needs to be evaluated, this costs investment banks C
- ▶ Investment banks obtain trading profits, pay the wages to informed traders only, and face costs of evaluating trader performance
- ▶ Profits: $\hat{\Pi}_B = E[\Pi] - \gamma w - C$
- ▶ Investment banks will only operate a trading desk if $\hat{\Pi}_B \geq 0$
- ▶ This requires $\sigma_U \sigma_V \geq \frac{2C}{\gamma f} \sqrt{(1 + \gamma f)(2(1 + f) - (1 + \gamma f))}$
- ▶ Only if the uncertainty is large enough can informed traders generate enough profits to cover the costs of monitoring

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oo•oo

Summary
oooo

Performance and fixed wages

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide **how** to pay traders

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$
- ▶ If many informed traders are present, the costs of fixed wages are low

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as **few uninformed** traders are rewarded

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as few uninformed traders are rewarded, making fixed wages **more attractive**

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as few uninformed traders are rewarded, making fixed wages more attractive
- ▶ If the **uncertainty** is high, uninformed traders will make **more losses**

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as few uninformed traders are rewarded, making fixed wages more attractive
- ▶ If the uncertainty is high, uninformed traders will make more losses, making the performance wage **more attractive**

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as few uninformed traders are rewarded, making fixed wages more attractive
- ▶ If the uncertainty is high, uninformed traders will make more losses, making the performance wage more attractive as then they do not trade and incur **no losses**

Performance and fixed wages

- ▶ If a trading desk is operated, the bank needs to decide how to pay traders
- ▶ They will prefer paying a performance wage if $\hat{\Pi}_B \geq \Pi_B$
- ▶ This gives $\sigma_U \sigma_V \geq \frac{C}{\frac{\gamma f}{2} \frac{1}{\sqrt{(1+\gamma f)(2(1+f)-(1+\gamma f))}} - \frac{\gamma - \frac{1}{2} \frac{2+f}{1+f}}{\sqrt{2 \frac{1+\gamma f}{1+f} - \left(\frac{1+\gamma f}{1+f}\right)^2 - (1-\gamma)^2}}$
- ▶ If many informed traders are present, the costs of fixed wages are low as few uninformed traders are rewarded, making fixed wages more attractive
- ▶ If the uncertainty is high, uninformed traders will make more losses, making the performance wage more attractive as then they do not trade and incur no losses

Problem and assumptions
○○○○

Independent traders
○○○

Fixed wages
○○○○○

Performance wages
○○○○

Optimal remuneration
○○●○

Summary
○○○○

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Equilibrium remuneration contracts for traders

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
ooo●

Summary
oooo

Impact of informed traders and uncertainty

Impact of informed traders and uncertainty

- ▶ For few informed traders, the **losses** from employing **uninformed** traders are too high to allow a fixed wage

Impact of informed traders and uncertainty

- ▶ For few informed traders, the losses from employing uninformed traders are too high to allow a fixed wage
- ▶ For few informed traders, the **profits** from employing **informed** traders are too low to cover monitoring costs in performance wages

Impact of informed traders and uncertainty

- ▶ For few informed traders, the losses from employing uninformed traders are too high to allow a fixed wage
- ▶ For few informed traders, the profits from employing informed traders are too low to cover monitoring costs in performance wages
- ▶ For low uncertainty, the **profits** made by **informed** traders are too low to cover the evaluation costs in performance wages

Impact of informed traders and uncertainty

- ▶ For few informed traders, the losses from employing uninformed traders are too high to allow a fixed wage
- ▶ For few informed traders, the profits from employing informed traders are too low to cover monitoring costs in performance wages
- ▶ For low uncertainty, the profits made by informed traders are too low to cover the evaluation costs in performance wages
- ▶ For many informed traders, the costs of **paying uninformed** traders is low compared to **monitoring costs**, making fixed wages more profitable

Impact of informed traders and uncertainty

- ▶ For few informed traders, the losses from employing uninformed traders are too high to allow a fixed wage
- ▶ For few informed traders, the profits from employing informed traders are too low to cover monitoring costs in performance wages
- ▶ For low uncertainty, the profits made by informed traders are too low to cover the evaluation costs in performance wages
- ▶ For many informed traders, the costs of paying uninformed traders is low compared to monitoring costs, making fixed wages more profitable

■ Problem and model assumptions

■ Independent traders

■ Fixed wages

■ Performance wages

■ Optimal trader remuneration

■ Summary

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
oo•oo

Dominance of remuneration forms

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is **sufficient uncertainty** in the market and they can employ **enough informed traders**

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is sufficient uncertainty in the market and they can employ enough informed traders
- ▶ Markets with lower uncertainty and easily identified informed traders will see **fixed wages** being paid

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is sufficient uncertainty in the market and they can employ enough informed traders
- ▶ Markets with lower uncertainty and easily identified informed traders will see fixed wages being paid, but the threshold is **very high**

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is sufficient uncertainty in the market and they can employ enough informed traders
- ▶ Markets with lower uncertainty and easily identified informed traders will see fixed wages being paid, but the threshold is very high
- ▶ Highly volatile markets with fewer informed traders will see **performance wages** dominate

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is sufficient uncertainty in the market and they can employ enough informed traders
- ▶ Markets with lower uncertainty and easily identified informed traders will see fixed wages being paid, but the threshold is very high
- ▶ Highly volatile markets with fewer informed traders will see performance wages dominate
- ▶ We will mainly observe **performance wages** or no trading desk

Dominance of remuneration forms

- ▶ Investment banks will operate trading desks only if there is sufficient uncertainty in the market and they can employ enough informed traders
- ▶ Markets with lower uncertainty and easily identified informed traders will see fixed wages being paid, but the threshold is very high
- ▶ Highly volatile markets with fewer informed traders will see performance wages dominate
- ▶ We will mainly observe performance wages or no trading desk

Problem and assumptions
oooo

Independent traders
ooo

Fixed wages
oooooo

Performance wages
oooo

Optimal remuneration
oooo

Summary
ooo•o

Markets with trading desks

Markets with trading desks

- ▶ Trading in well-understood securities will be **less attractive** to investment banks

Markets with trading desks

- ▶ Trading in well-understood securities will be less attractive to investment banks
- ▶ If traders can be identified as understanding a market sufficiently well, they will be paid **performance wages**

Markets with trading desks

- ▶ Trading in well-understood securities will be less attractive to investment banks
- ▶ If traders can be identified as understanding a market sufficiently well, they will be paid performance wages
- ▶ This should be reflected in the importance of **bonus payments** in the total remuneration of traders

Markets with trading desks

- ▶ Trading in well-understood securities will be less attractive to investment banks
- ▶ If traders can be identified as understanding a market sufficiently well, they will be paid performance wages
- ▶ This should be reflected in the importance of bonus payments in the total remuneration of traders

This presentation is based on
Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024
Copyright © 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_from_Greenwich_riverside.2022-03-18.jpg
Back: Seb Tyler, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_Panorama_Night.jpg

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk