Andreas Krause

Chapter 15.1 Investment in expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0000
Outline				

- Problem and model assumptions
 - Buyer setting low price
- Buyer setting high price
- Optimal expertise

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Low price	High price	Optimal expertise	Summary
●00	000	000	0000	0000

Problem and model assumptions

Buyer setting low price

Buyer setting high price

Optimal expertise

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 3 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○●○	000	000	0000	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 4 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○●○	000	000	0000	0000
Trading expertise				

In order to make profits from trading, investment banks need to invest into the expertise of their traders

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○●○	000	000	0000	0000
<u> </u>				

- In order to make profits from trading, investment banks need to invest into the expertise of their traders
- ▶ Trading profits of one investment bank are the losses of another investment bank

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○●○	000	000		0000

- In order to make profits from trading, investment banks need to invest into the expertise of their traders
- ▶ Trading profits of one investment bank are the losses of another investment bank
- Investment banks are competing for profits through expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○●○	000	000	0000	0000

- In order to make profits from trading, investment banks need to invest into the expertise of their traders
- > Trading profits of one investment bank are the losses of another investment bank
- Investment banks are competing for profits through expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
00●	000	000	0000	0000

Signals for traders

Copyright 🕐 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 5 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○○●	000	000	0000	0000
Signals for traders				

 \blacktriangleright Benefits of trading ΔV can be positive if diversification and hedging are considered

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0000
Signals for traders				

Benefits of trading \Delta V can be positive if diversification and hedging are considered, in addition of trading profits

Slide 5 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0000
Signals for traders				

- Benefits of trading ΔV can be positive if diversification and hedging are considered, in addition of trading profits
- Value of the security is V_H with probability π

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary 0000
Signals for traders				

- Benefits of trading ΔV can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○○●	000	000	0000	0000
Signals for traders				

- Benefits of trading ΔV can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise
- ► Traders receive a signal s that is accurate with $Prob(V_H|H) = Prob(V_L|L) = \rho_i \ge \pi$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○○●	000	000	0000	0000
Signals for traders				

- Benefits of trading ΔV can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise
- ► Traders receive a signal s that is accurate with $Prob(V_H|H) = Prob(V_L|L) = \rho_i \ge \pi$

• Expertise is
$$e_i = \rho_i - \pi$$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
○○●	000		0000	0000
Signals for traders				

- Benefits of trading \Delta V can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise
- ► Traders receive a signal s that is accurate with $Prob(V_H|H) = Prob(V_L|L) = \rho_i \ge \pi$
- Expertise is $e_i = \rho_i \pi$ and costs C_i to obtain

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0000
Signals for traders				

- Benefits of trading \Delta V can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise
- ► Traders receive a signal s that is accurate with $Prob(V_H|H) = Prob(V_L|L) = \rho_i \ge \pi$
- Expertise is $e_i = \rho_i \pi$ and costs C_i to obtain
- Expertise is only available to sellers

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0000
Signals for traders				

- Benefits of trading \Delta V can be positive if diversification and hedging are considered, in addition of trading profits
- ▶ Value of the security is V_H with probability π , or V_L otherwise
- ► Traders receive a signal s that is accurate with $Prob(V_H|H) = Prob(V_L|L) = \rho_i \ge \pi$
- Expertise is $e_i = \rho_i \pi$ and costs C_i to obtain
- Expertise is only available to sellers

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	●00	000	0000	0000

Problem and model assumptions

Buyer setting low price

Buyer setting high price

Optimal expertise

Summary

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	0●0	000	0000	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 7 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○●○	000	0000	0000

Assume a buyer *i* is only willing to pay $P^* = E[V|L]$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○●○	000	0000	0000

Assume a buyer i is only willing to pay $P^* = E[V|L]$ and has no expertise itself

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○●○	000	0000	0000
Trades occurring				

- Assume a buyer i is only willing to pay $P^* = E[V|L]$ and has no expertise itself
- \blacktriangleright A transaction only occurs if the seller j obtains a low signal

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○●○	000	0000	0000

- Assume a buyer i is only willing to pay $P^* = E[V|L]$ and has no expertise itself
- \blacktriangleright A transaction only occurs if the seller j obtains a low signal
- ► This happens if the value is high, but the signal is wrong or the value low and the signal correct: $\pi (1 \rho_j) + (1 \pi) \rho_j$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○●○	000	0000	0000

- Assume a buyer i is only willing to pay $P^* = E[V|L]$ and has no expertise itself
- \blacktriangleright A transaction only occurs if the seller j obtains a low signal
- ► This happens if the value is high, but the signal is wrong or the value low and the signal correct: $\pi (1 \rho_j) + (1 \pi) \rho_j$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	00●	000	0000	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 8 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○○●	000	0000	0000
Buyer profits				

Trading profits are the value of the security and the trading benefits

Problem and assumptions	Low price ○○●	High price 000	Optimal expertise	Summary 0000
Buyer profits				

Trading profits are the value of the security and the trading benefits, less the price paid

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○○●	000	0000	0000
Buyer profits				

Trading profits are the value of the security and the trading benefits, less the price paid, if the trade happens

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○○●	000	0000	0000

- Trading profits are the value of the security and the trading benefits, less the price paid, if the trade happens
- $\Pi_B^i = (\pi (1 \rho_j) (1 \pi) \rho_j) (E[V|L] + \Delta V P^*)$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	○○●	000	0000	0000

- Trading profits are the value of the security and the trading benefits, less the price paid, if the trade happens
- $\Pi_B^i = (\pi (1 \rho_j) (1 \pi) \rho_j) (E[V|L] + \Delta V P^*)$
- Value of the security is low as this is the signal of the informed seller

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○○●	000	0000	0000

- Trading profits are the value of the security and the trading benefits, less the price paid, if the trade happens
- $\Pi_B^i = (\pi (1 \rho_j) (1 \pi) \rho_j) (E[V|L] + \Delta V P^*)$
- Value of the security is low as this is the signal of the informed seller, else no trade would happen at this price

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	○○●	000	0000	0000

- Trading profits are the value of the security and the trading benefits, less the price paid, if the trade happens
- $\Pi_B^i = (\pi (1 \rho_j) (1 \pi) \rho_j) (E[V|L] + \Delta V P^*)$
- Value of the security is low as this is the signal of the informed seller, else no trade would happen at this price

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	●00	0000	0000

Problem and model assumptions

Buyer setting low price

Buyer setting high price

Optimal expertise

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 10 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000
Buver profits				

▶ If the buyer is willing to pay $P^{**} = E[V|H]$, trade will always happen

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000
Buver profits				

Problem and assump		Low price 000	High price ○●○	Optimal expertise 0000	Summary 0000
5	с.,				

- ▶ If the buyer is willing to pay $P^{**} = E[V|H]$, trade will always happen as the value of the seller is never above this amount
- ► $P^{**} = Prob(V_H|H)V_H + (1 Prob(V_H|H))V_L = \rho_j V_H + (1 \rho_j)V_L$

Buyer profits

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000
Buyer profits				

►
$$P^{**} = Prob(V_H|H)V_H + (1 - Prob(V_H|H))V_L = \rho_j V_H + (1 - \rho_j)V_L$$

Trade does not indicate the value of the security

Slide 10 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000
Buyer profits				

►
$$P^{**} = Prob(V_H|H)V_H + (1 - Prob(V_H|H))V_L = \rho_j V_H + (1 - \rho_j)V_L$$

Trade does not indicate the value of the security as it happens regardless of the signal the seller obtains

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○●○	0000	0000
Buyer profits				

►
$$P^{**} = Prob(V_H|H)V_H + (1 - Prob(V_H|H))V_L = \rho_j V_H + (1 - \rho_j)V_L$$

► Trade does not indicate the value of the security as it happens regardless of the signal the seller obtains, which is then $E[V] = \pi V_H + (1 - \pi) V_L$

Problem and assumptions	Low price 000	High price ○●○	Optimal expertise	Summary 0000

►
$$P^{**} = Prob(V_H|H)V_H + (1 - Prob(V_H|H))V_L = \rho_j V_H + (1 - \rho_j)V_L$$

- ► Trade does not indicate the value of the security as it happens regardless of the signal the seller obtains, which is then $E[V] = \pi V_H + (1 \pi) V_L$
- ► Trader profits: $\hat{\Pi}_B^i = E[V] + \Delta V P^{**} = \Delta V (V_H V_L) e_j$

Buyer profits

Problem and assumptions	Low price 000	High price ○●○	Optimal expertise	Summary 0000

►
$$P^{**} = Prob(V_H|H)V_H + (1 - Prob(V_H|H))V_L = \rho_j V_H + (1 - \rho_j)V_L$$

- ► Trade does not indicate the value of the security as it happens regardless of the signal the seller obtains, which is then $E[V] = \pi V_H + (1 \pi) V_L$
- ► Trader profits: $\hat{\Pi}_B^i = E[V] + \Delta V P^{**} = \Delta V (V_H V_L) e_j$

Buyer profits

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○○●	0000	0000

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○○●	0000	0000
Maximum signal pr	ecision			

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	○○●	0000	0000

▶ Buyers offer the high price if $\hat{\Pi}^i_B > \Pi^i_B$

Signal precision must not be too high: $\rho_j \leq \rho^* = \frac{\pi + (1-\pi) \frac{\Delta V}{V_H - V_L}}{1 + (1-2\pi) \frac{\Delta V}{V_H - V_L}}$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	○○●	0000	0000

• Buyers offer the high price if $\hat{\Pi}_B^i > \Pi_B^i$

- Signal precision must not be too high: $\rho_j \leq \rho^* = \frac{\pi + (1-\pi) \frac{\Delta V}{V_H V_L}}{1 + (1-2\pi) \frac{\Delta V}{V_H V_L}}$
- Low signal precision is required as else adverse selection costs are too high for the buyer to offer the high price

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	○○●	0000	0000

• Buyers offer the high price if $\hat{\Pi}_B^i > \Pi_B^i$

- Signal precision must not be too high: $\rho_j \leq \rho^* = \frac{\pi + (1-\pi) \frac{\Delta V}{V_H V_L}}{1 + (1-2\pi) \frac{\Delta V}{V_H V_L}}$
- Low signal precision is required as else adverse selection costs are too high for the buyer to offer the high price

Problem and assumptions	Low price 000	High price	Optimal expertise ●000	Summary 0000

Problem and model assumptions

Buyer setting low price

Buyer setting high price

Optimal expertise

Summary

Copyright 🔘 2024 by Andreas Kraus

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○●○○	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 13 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○●○○	0000
Seller profits				

• Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0●00	0000
Seller profits				

- Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$
- This implies for seller profits of $\hat{\Pi}_{S}^{j} = (V_{H} V_{L}) e_{j}$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○●○○	0000
Seller profits				

- Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$
- This implies for seller profits of $\hat{\Pi}_{S}^{j} = (V_{H} V_{L}) e_{j}$
- Being buyer and seller is equally likely

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○●○○	0000

- Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$
- This implies for seller profits of $\hat{\Pi}_{S}^{j} = (V_{H} V_{L}) e_{j}$
- Being buyer and seller is equally likely
- $\blacktriangleright \hat{\Pi}^{i} = \frac{1}{2}\hat{\Pi}^{i}_{B} + \frac{1}{2}\hat{\Pi}^{i}_{S} C_{i}$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○●○○	0000
- ··· ···				

- Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$
- This implies for seller profits of $\hat{\Pi}_{S}^{j} = (V_{H} V_{L}) e_{j}$
- Being buyer and seller is equally likely
- $\blacktriangleright \hat{\Pi}^{i} = \frac{1}{2}\hat{\Pi}^{i}_{B} + \frac{1}{2}\hat{\Pi}^{i}_{S} \frac{C_{i}}{C_{i}}$
- ▶ We take into account the costs of expertise

Problem and assumptions	Low price	High price 000	Optimal expertise 0●00	Summary 0000

- Total trading benefits of buyers and sellers are $\hat{\Pi}_{S}^{j} + \Pi_{B}^{i} = \Delta V$
- This implies for seller profits of $\hat{\Pi}_{S}^{j} = (V_{H} V_{L}) e_{j}$
- Being buyer and seller is equally likely
- $\hat{\Pi}^{i} = \frac{1}{2}\hat{\Pi}^{i}_{B} + \frac{1}{2}\hat{\Pi}^{i}_{S} C_{i}$
- ▶ We take into account the costs of expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	00●0	0000

Copyright (C) 2024 by Andreas Kraus

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	○○●○	0000

• First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000		0000

- First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$
- This gives $\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H V_L \right) > 0$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000		0000

• First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

• This gives
$$\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H - V_L \right) > 0$$

• Maximum expertise is such that $\rho_j \leq \rho^*$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000		000	00●0	0000

First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

• This gives
$$\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H - V_L \right) > 0$$

- Maximum expertise is such that $\rho_j \leq \rho^*$
- ▶ If costs are identical, then expertise is identical

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	00●0	0000

First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

• This gives
$$\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H - V_L \right) > 0$$

• Maximum expertise is such that $\rho_j \leq \rho^*$

▶ If costs are identical, then expertise is identical, $e_i = e_j$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	00●0	0000

• First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

• This gives
$$\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H - V_L \right) > 0$$

- Maximum expertise is such that $\rho_j \leq \rho^*$
- ▶ If costs are identical, then expertise is identical, $e_i = e_j$
- Trader profits: $\hat{\Pi}^i = \frac{1}{2}\Delta V C_i$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000		000	00●0	0000

• First order condition for optima expertise is $\frac{\partial \hat{\Pi}^i}{\partial e_i} = 0$

• This gives
$$\frac{\partial C_i}{\partial e_i} = \frac{1}{2} \left(V_H - V_L \right) > 0$$

- Maximum expertise is such that $\rho_j \leq \rho^*$
- ▶ If costs are identical, then expertise is identical, $e_i = e_j$

• Trader profits:
$$\hat{\Pi}^i = \frac{1}{2}\Delta V - C_i$$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	000●	0000

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	000●	0000

• If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	000●	0000

▶ If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$ ▶ Then $\hat{\Pi}^i = \frac{1}{2}\Delta V$

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	000●	0000

- ▶ If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$
- Then $\hat{\Pi}^i = \frac{1}{2}\Delta V$
- Not investing into expertise is more profitable

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	000●	0000

- ▶ If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$
- ▶ Then $\hat{\Pi}^i = \frac{1}{2}\Delta V$
- Not investing into expertise is more profitable
- If a trader does not invest into expertise, it is profitable for the other trader to do so

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	000●	0000

- ▶ If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$
- ▶ Then $\hat{\Pi}^i = \frac{1}{2}\Delta V$
- Not investing into expertise is more profitable
- If a trader does not invest into expertise, it is profitable for the other trader to do so
- This leads to an arms race in the level of expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	000●	0000

- ▶ If traders have no expertise, $e_i = e_j = 0$ and $C_i = 0$
- ▶ Then $\hat{\Pi}^i = \frac{1}{2}\Delta V$
- Not investing into expertise is more profitable
- If a trader does not invest into expertise, it is profitable for the other trader to do so
- This leads to an arms race in the level of expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	•000

Problem and model assumptions

Buyer setting low price

Buyer setting high price

Optimal expertise

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions Low price High price Optimal expertise	Summary 0●00
--	-----------------

Copyright 🕜 2024 by Andreas Krause

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	0●00

With trading a (mostly) zero sum game, traders seek to extract profits from other traders

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	○●○○

- With trading a (mostly) zero sum game, traders seek to extract profits from other traders
- ▶ To extract more profits, they invest into expertise

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	○●○○

- With trading a (mostly) zero sum game, traders seek to extract profits from other traders
- To extract more profits, they invest into expertise, but as everyone does, no benefits are gained

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary ○●○○

- With trading a (mostly) zero sum game, traders seek to extract profits from other traders
- To extract more profits, they invest into expertise, but as everyone does, no benefits are gained
- Investing less into expertise would be preferred by all traders

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary ○●○○

- With trading a (mostly) zero sum game, traders seek to extract profits from other traders
- To extract more profits, they invest into expertise, but as everyone does, no benefits are gained
- Investing less into expertise would be preferred by all traders

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	00●0

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary 0000

Traders are over-qualified

Copyright 🕐 2024 by Andreas Kraus

Chapter 15.1: Investment in expertise Theoretical Foundations of Investment Banking Slide 18 of 18

Problem and assumptions	Low price	High price	Optimal expertise	Summary
000	000	000	0000	0000

- Traders are over-qualified
- ▶ The investment bank directs too much resources towards them

Problem and assumptions	Low price	High price	Optimal expertise	Summary
	000	000	0000	00●0

- Traders are over-qualified
- The investment bank directs too much resources towards them
- ► This is individually rational

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary 00●0

- Traders are over-qualified
- The investment bank directs too much resources towards them
- ▶ This is individually rational, but socially suboptimal

Problem and assumptions	Low price 000	High price 000	Optimal expertise	Summary 00●0

- Traders are over-qualified
- The investment bank directs too much resources towards them
- ▶ This is individually rational, but socially suboptimal

This presentation is based on Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024 Copyright ⓒ 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 40 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf.drom.Greenwich.u/verside.2022.03-18.jpg Back: Seb Tyler, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf_Panorama_Night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk