

Chapter 12
Asset management

Outline

- Problem and model assumptions
- Clients investing directly
- Delegated investment
- Clients with equal information
- Summary

■ Problem and model assumptions

- Clients investing directly
- Delegated investment
- Clients with equal information
- Summary

Problem and assumptions
oo•oo

Direct investment
ooo

Delegated investment
oooo

Clients with equal information
ooo

Summary
oooo

Delegated portfolio management

Delegated portfolio management

- ▶ Investment banks also **manage** funds on behalf of clients

Delegated portfolio management

- ▶ Investment banks also manage funds on behalf of clients
- ▶ They do not only give **advice** on investments

Delegated portfolio management

- ▶ Investment banks also manage funds on behalf of clients
- ▶ They do not only give advice on investments, but instead make **investment decisions** themselves

Delegated portfolio management

- ▶ Investment banks also manage funds on behalf of clients
- ▶ They do not only give advice on investments, but instead make investment decisions themselves
- ▶ Clients **delegate** the decision-making to the investment bank

Delegated portfolio management

- ▶ Investment banks also manage funds on behalf of clients
- ▶ They do not only give advice on investments, but instead make investment decisions themselves
- ▶ Clients delegate the decision-making to the investment bank
- ▶ The reason for delegation is the **superior information** and skills investment banks have

Delegated portfolio management

- ▶ Investment banks also manage funds on behalf of clients
- ▶ They do not only give advice on investments, but instead make investment decisions themselves
- ▶ Clients delegate the decision-making to the investment bank
- ▶ The reason for delegation is the superior information and skills investment banks have

Problem and assumptions
ooo

Direct investment
ooo

Delegated investment
oooo

Clients with equal information
ooo

Summary
oooo

Value of asset management

Value of asset management

- ▶ Asset management provides a **stable** source of income to investment banks

Value of asset management

- ▶ Asset management provides a stable source of income to investment banks
- ▶ Can be used to maintain **personal contacts** to key decision-makers in companies

Value of asset management

- ▶ Asset management provides a stable source of income to investment banks
- ▶ Can be used to maintain personal contacts to key decision-makers in companies
- ▶ The market is fiercely **competitive** with private banks and investment consultancies seeking access to the same investors

Value of asset management

- ▶ Asset management provides a stable source of income to investment banks
- ▶ Can be used to maintain personal contacts to key decision-makers in companies
- ▶ The market is fiercely competitive with private banks and investment consultancies seeking access to the same investors

Problem and assumptions
○○○●

Direct investment
○○○

Delegated investment
○○○○

Clients with equal information
○○○

Summary
○○○○

Investment banking fees

Investment banking fees

- ▶ Investment banks are rewarded by a **management fee** f_0 on the **wealth invested**
- ▶ Fee income: $F = f_0 W_0$

Investment banking fees

- ▶ Investment banks are rewarded by a **management fee** f_0 on the **wealth invested**
- ▶ They also charge a **performance fee** f_1 on the **profits above a benchmark return r**

- ▶ Fee income: $F = f_0 W_0 + f_1 (R - r) W_0$

Investment banking fees

- ▶ Investment banks are rewarded by a **management fee** f_0 on the **wealth invested**
- ▶ They also charge a **performance fee** f_1 on the **profits above a benchmark return** r
- ▶ They invest a fraction ω in a risky asset
- ▶ Fee income: $F = f_0 W_0 + f_1 \omega (R - r) W_0$

Investment banking fees

- ▶ Investment banks are rewarded by a **management fee** f_0 on the **wealth invested**
- ▶ They also charge a **performance fee** f_1 on the **profits above a benchmark return** r
- ▶ They invest a fraction ω in a risky asset and the remainder in an asset yielding the benchmark return
- ▶ Fee income: $F = f_0 W_0 + f_1 \omega (R - r) W_0$

Investment banking fees

- ▶ Investment banks are rewarded by a management fee f_0 on the wealth invested
- ▶ They also charge a performance fee f_1 on the profits above a benchmark return r
- ▶ They invest a fraction ω in a risky asset and the remainder in an asset yielding the benchmark return
- ▶ Fee income: $F = f_0 W_0 + f_1 \omega (R - r) W_0$

■ Problem and model assumptions

■ Clients investing directly

■ Delegated investment

■ Clients with equal information

■ Summary

Problem and assumptions
oooo

Direct investment
oo

Delegated investment
oooo

Clients with equal information
ooo

Summary
oooo

Investment returns and risks

Investment returns and risks

- ▶ The information clients have, suggests the **expected return** of the risky asset is μ_C

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its **variance** σ_C^2

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its variance σ_C^2
- ▶ After investing, the wealth will be the **return on the amount invested in the benchmark asset**
- ▶ $W_1 = (1 - \omega) (1 + r) W_0$

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its variance σ_C^2
- ▶ After investing, the wealth will be the **return on the amount invested in the benchmark asset** and the **return on the risky asset**
- ▶ $W_1 = (1 - \omega) (1 + r) W_0 + \omega (1 + R) W_0$

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its variance σ_C^2
- ▶ After investing, the wealth will be the return on the amount invested in the benchmark asset and the return on the risky asset
- ▶ $W_1 = (1 - \omega) (1 + r) W_0 + \omega (1 + R) W_0$
- ▶ Expected value: $E[W_1] = (1 + r) W_0 + \omega (\mu_C - r) W_0$

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its variance σ_C^2
- ▶ After investing, the wealth will be the return on the amount invested in the benchmark asset and the return on the risky asset
- ▶ $W_1 = (1 - \omega) (1 + r) W_0 + \omega (1 + R) W_0$
- ▶ Expected value: $E [W_1] = (1 + r) W_0 + \omega (\mu_C - r) W_0$
- ▶ Variance: $Var [W_1] = \omega^2 \sigma_C^2 W_0^2$

Investment returns and risks

- ▶ The information clients have, suggests the expected return of the risky asset is μ_C and its variance σ_C^2
- ▶ After investing, the wealth will be the return on the amount invested in the benchmark asset and the return on the risky asset
- ▶ $W_1 = (1 - \omega) (1 + r) W_0 + \omega (1 + R) W_0$
- ▶ Expected value: $E [W_1] = (1 + r) W_0 + \omega (\mu_C - r) W_0$
- ▶ Variance: $Var [W_1] = \omega^2 \sigma_C^2 W_0^2$

Optimal portfolio

Optimal portfolio

- ▶ Clients maximize expected utility $U_C = E [W_1] - \frac{1}{2}zVar [W_1]$

Optimal portfolio

- ▶ Clients maximize expected utility $U_C = E [W_1] - \frac{1}{2}zVar [W_1]$ and the first order condition $\frac{\partial U_C}{\partial \omega} = 0$ gives

Optimal portfolio

- ▶ Clients maximize expected utility $U_C = E [W_1] - \frac{1}{2}zVar [W_1]$ and the first order condition $\frac{\partial U_C}{\partial \omega} = 0$ gives
- ▶ $\omega^* = \frac{\mu_C - r}{z\sigma_C^2 W_0}$

Optimal portfolio

- ▶ Clients maximize expected utility $U_C = E [W_1] - \frac{1}{2}zVar [W_1]$ and the first order condition $\frac{\partial U_C}{\partial \omega} = 0$ gives
- ▶ $\omega^* = \frac{\mu_C - r}{z\sigma_C^2 W_0}$
- ▶ Utility is then $U_C = (1 + r) W_0 + \frac{(\mu_C - r)^2}{2z\sigma_C^2}$

Optimal portfolio

- ▶ Clients maximize expected utility $U_C = E [W_1] - \frac{1}{2}zVar [W_1]$ and the first order condition $\frac{\partial U_C}{\partial \omega} = 0$ gives
- ▶ $\omega^* = \frac{\mu_C - r}{z\sigma_C^2 W_0}$
- ▶ Utility is then $U_C = (1 + r) W_0 + \frac{(\mu_C - r)^2}{2z\sigma_C^2}$

■ Problem and model assumptions

■ Clients investing directly

■ Delegated investment

■ Clients with equal information

■ Summary

Problem and assumptions
oooo

Direct investment
ooo

Delegated investment
o•oo

Clients with equal information
ooo

Summary
oooo

Maximizing fee income

Maximizing fee income

- ▶ Investment banks have **different** information

Maximizing fee income

- ▶ Investment banks have different information and assess the asset as having expected return μ_B and variance $\sigma_B < \sigma_C$

Maximizing fee income

- ▶ Investment banks have different information and assess the asset as having expected return μ_B and variance $\sigma_B < \sigma_C$
- ▶ Investment banks maximize **fee income**

Maximizing fee income

- ▶ Investment banks have different information and assess the asset as having expected return μ_B and variance $\sigma_B < \sigma_C$
- ▶ Investment banks maximize fee income
- ▶ Expected fees: $E[F] = f_0 W_0 + f_1 \omega (\mu_B - r) W_0$

Maximizing fee income

- ▶ Investment banks have different information and assess the asset as having expected return μ_B and variance $\sigma_B < \sigma_C$
- ▶ Investment banks maximize fee income
- ▶ Expected fees: $E[F] = f_0 W_0 + f_1 \omega (\mu_B - r) W_0$
- ▶ Variance: $Var[F] = f_1^2 \omega^2 \sigma_B^2 W_0^2$

Maximizing fee income

- ▶ Investment banks have different information and assess the asset as having expected return μ_B and variance $\sigma_B < \sigma_C$
- ▶ Investment banks maximize fee income
- ▶ Expected fees: $E [F] = f_0 W_0 + f_1 \omega (\mu_B - r) W_0$
- ▶ Variance: $Var [F] = f_1^2 \omega^2 \sigma_B^2 W_0^2$

Problem and assumptions
oooo

Direct investment
ooo

Delegated investment
ooo○

Clients with equal information
ooo

Summary
oooo

Optimal delegated portfolio

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$
- ▶ Investment bank utility: $U_B = f_0 W_0 + \frac{(\mu_B - r)^2}{2z\sigma_B^2}$

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$
- ▶ Investment bank utility: $U_B = f_0 W_0 + \frac{(\mu_B - r)^2}{2z\sigma_B^2}$
- ▶ Perfect competition sets management fee such that $U_B = 0$

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$
- ▶ Investment bank utility: $U_B = f_0 W_0 + \frac{(\mu_B - r)^2}{2z\sigma_B^2}$
- ▶ Perfect competition sets management fee such that $U_B = 0$, hence
$$f_0 = -\frac{(\mu_B - r)^2}{2z\sigma_B^2 W_0} < 0$$

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$
- ▶ Investment bank utility: $U_B = f_0 W_0 + \frac{(\mu_B - r)^2}{2z\sigma_B^2}$
- ▶ Perfect competition sets management fee such that $U_B = 0$, hence $f_0 = -\frac{(\mu_B - r)^2}{2z\sigma_B^2 W_0} < 0$
- ▶ Investment banks charge a **negative management fee**

Optimal delegated portfolio

- ▶ Investment banks maximize expected utility $U_B = E[F] - \frac{1}{2}zVar[F]$ and the first order condition $\frac{\partial U_B}{\partial \omega} = 0$ gives
- ▶ $\omega^{**} = \frac{\mu_B - r}{zf_1\sigma_B^2 W_0}$
- ▶ Investment bank utility: $U_B = f_0 W_0 + \frac{(\mu_B - r)^2}{2z\sigma_B^2}$
- ▶ Perfect competition sets management fee such that $U_B = 0$, hence $f_0 = -\frac{(\mu_B - r)^2}{2z\sigma_B^2 W_0} < 0$
- ▶ Investment banks charge a negative management fee

Problem and assumptions
oooo

Direct investment
ooo

Delegated investment
ooo●

Clients with equal information
ooo

Summary
oooo

Optimal performance fee

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$
- ▶ Client utility: $\hat{U}_C = (1 + r) W_0 + 2 \frac{(\mu_B - r)^2}{2z\sigma_B^2} - \frac{(\mu_B - r)^2}{2z\sigma_B^2} \left(\frac{1-2f_1}{f_1} \right)^2$

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$
- ▶ Client utility: $\hat{U}_C = (1 + r) W_0 + 2 \frac{(\mu_B - r)^2}{2z\sigma_B^2} - \frac{(\mu_B - r)^2}{2z\sigma_B^2} \left(\frac{1-2f_1}{f_1} \right)^2$
- ▶ Investment banks **extract all surplus** from clients

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$
- ▶ Client utility: $\hat{U}_C = (1 + r) W_0 + 2 \frac{(\mu_B - r)^2}{2z\sigma_B^2} - \frac{(\mu_B - r)^2}{2z\sigma_B^2} \left(\frac{1-2f_1}{f_1} \right)^2$
- ▶ Investment banks extract all surplus from clients and set the performance fee such that $\hat{U}_C = U_C$

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$
- ▶ Client utility: $\hat{U}_C = (1 + r) W_0 + 2 \frac{(\mu_B - r)^2}{2z\sigma_B^2} - \frac{(\mu_B - r)^2}{2z\sigma_B^2} \left(\frac{1-2f_1}{f_1} \right)^2$
- ▶ Investment banks extract all surplus from clients and set the performance fee such that $\hat{U}_C = U_C$
- ▶ $f_1 = \frac{1}{2 + \sqrt{2 - \frac{\sigma_B^2}{\sigma_C^2} \left(\frac{\mu_C - r}{\mu_B - r} \right)^2}} < \frac{1}{2}$

Optimal performance fee

- ▶ Client wealth: $W_1 = (1 + r) W_0 + \omega^{**} (R - r) W_0 - F$
- ▶ Client utility: $\hat{U}_C = (1 + r) W_0 + 2 \frac{(\mu_B - r)^2}{2z\sigma_B^2} - \frac{(\mu_B - r)^2}{2z\sigma_B^2} \left(\frac{1-2f_1}{f_1} \right)^2$
- ▶ Investment banks extract all surplus from clients and set the performance fee such that $\hat{U}_C = U_C$
- ▶ $f_1 = \frac{1}{2 + \sqrt{2 - \frac{\sigma_B^2}{\sigma_C^2} \left(\frac{\mu_C - r}{\mu_B - r} \right)^2}} < \frac{1}{2}$

- Problem and model assumptions
- Clients investing directly
- Delegated investment
- Clients with equal information
- Summary

Problem and assumptions
oooo

Direct investment
ooo

Delegated investment
oooo

Clients with equal information
oo•o

Summary
oooo

Optimal portfolio

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$, clients and investment banks have the **same** information

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$, clients and investment banks have the same information
- ▶ Client utility:

$$\hat{U}_C = (1 + r - f_0) W_0 + (1 - f_1) \omega (\mu_B - r) W_0 - \frac{1}{2} (1 - f_1)^2 \omega^2 \sigma_B^2 W_0^2$$

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$, clients and investment banks have the same information

- ▶ Client utility:

$$\hat{U}_C = (1 + r - f_0) W_0 + (1 - f_1) \omega (\mu_B - r) W_0 - \frac{1}{2} (1 - f_1)^2 \omega^2 \sigma_B^2 W_0^2$$

- ▶ First order condition for the optimal portfolio is then $\frac{\partial \hat{U}_C}{\partial \omega} = 0$

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$, clients and investment banks have the same information

- ▶ Client utility:

$$\hat{U}_C = (1 + r - f_0) W_0 + (1 - f_1) \omega (\mu_B - r) W_0 - \frac{1}{2} (1 - f_1)^2 \omega^2 \sigma_B^2 W_0^2$$

- ▶ First order condition for the optimal portfolio is then $\frac{\partial \hat{U}_C}{\partial \omega} = 0$

$$\omega^{***} = \frac{\mu_B - r}{z(1-f_1)\sigma_B^2 W_0}$$

Optimal portfolio

- ▶ To compare the optimal portfolios, assume that $\mu_B = \mu_C$ and $\sigma_B^2 = \sigma_C^2$, clients and investment banks have the same information
- ▶ Client utility:

$$\hat{U}_C = (1 + r - f_0) W_0 + (1 - f_1) \omega (\mu_B - r) W_0 - \frac{1}{2} (1 - f_1)^2 \omega^2 \sigma_B^2 W_0^2$$

- ▶ First order condition for the optimal portfolio is then $\frac{\partial \hat{U}_C}{\partial \omega} = 0$

$$\omega^{***} = \frac{\mu_B - r}{z(1-f_1)\sigma_B^2 W_0}$$

Problem and assumptions
oooo

Direct investment
ooo

Delegated investment
oooo

Clients with equal information
ooo●

Summary
oooo

Excess risks taken

Excess risks taken

- As $f_1 = \frac{1}{3}$, we have $\omega^{**} = 2\omega^{***}$

Excess risks taken

- ▶ As $f_1 = \frac{1}{3}$, we have $\omega^{**} = 2\omega^{***}$
- ▶ Investment banks invest a **too high** fraction into the risky asset

Excess risks taken

- ▶ As $f_1 = \frac{1}{3}$, we have $\omega^{**} = 2\omega^{***}$
- ▶ Investment banks invest a too high fraction into the risky asset
- ▶ The reliance on the **performance fee** drives this result

Excess risks taken

- ▶ As $f_1 = \frac{1}{3}$, we have $\omega^{**} = 2\omega^{***}$
- ▶ Investment banks invest a too high fraction into the risky asset
- ▶ The reliance on the performance fee drives this result
- ▶ As only the fee is exposed to risk, not their investment, investment banks seek **higher risks**

Excess risks taken

- ▶ As $f_1 = \frac{1}{3}$, we have $\omega^{**} = 2\omega^{***}$
- ▶ Investment banks invest a too high fraction into the risky asset
- ▶ The reliance on the performance fee drives this result
- ▶ As only the fee is exposed to risk, not their investment, investment banks seek higher risks

- Problem and model assumptions
- Clients investing directly
- Delegated investment
- Clients with equal information
- Summary

Distorted asset allocation

Distorted asset allocation

- ▶ Investment decisions being delegated to investment banks lead to **more risky** portfolios than is optimal

Distorted asset allocation

- ▶ Investment decisions being delegated to investment banks lead to more risky portfolios than is optimal
- ▶ This may seem even more risky to clients if they assess the risk based on their own information

Distorted asset allocation

- ▶ Investment decisions being delegated to investment banks lead to more risky portfolios than is optimal
- ▶ This may seem even more risky to clients if they assess the risk based on their own information
- ▶ The informational advantage of investment banks may, however, **increase** the utility of clients

Distorted asset allocation

- ▶ Investment decisions being delegated to investment banks lead to more risky portfolios than is optimal
- ▶ This may seem even more risky to clients if they assess the risk based on their own information
- ▶ The informational advantage of investment banks may, however, increase the utility of clients, despite the **distorted allocation** into risky assets

Distorted asset allocation

- ▶ Investment decisions being delegated to investment banks lead to more risky portfolios than is optimal
- ▶ This may seem even more risky to clients if they assess the risk based on their own information
- ▶ The informational advantage of investment banks may, however, increase the utility of clients, despite the distorted allocation into risky assets

Consequences of biased asset allocation

Consequences of biased asset allocation

- ▶ Larger exposure of clients to more risky assets makes the portfolio performance **more sensitive** to the assessment of the investment bank

Consequences of biased asset allocation

- ▶ Larger exposure of clients to more risky assets makes the portfolio performance more sensitive to the assessment of the investment bank
- ▶ This makes the **skills** of the investment bank more apparent

Consequences of biased asset allocation

- ▶ Larger exposure of clients to more risky assets makes the portfolio performance more sensitive to the assessment of the investment bank
- ▶ This makes the skills of the investment bank more apparent
- ▶ Investment banks have to **invest more** into these skills to remain competitive

Consequences of biased asset allocation

- ▶ Larger exposure of clients to more risky assets makes the portfolio performance more sensitive to the assessment of the investment bank
- ▶ This makes the skills of the investment bank more apparent
- ▶ Investment banks have to invest more into these skills to remain competitive

This presentation is based on
Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024
Copyright © 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_from_Greenwich_riverside.2022-03-18.jpg
Back: Seb Tyler, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_Panorama_Night.jpg

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk