Andreas Krause

Chapter 11.2 Introduction of innovations

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

Outline

- Problem and model assumptions
- Controversial innovations
- Phasing of innovations
- Selling innovations
- Optimal strategy for small banks

Summary

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
•00		00000	0000	000	0000

Problem and model assumptions

Controversial innovations

Phasing of innovations

Selling innovations

Optimal strategy for small banks

Summary

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions Controversial innovations	Phasing	Sale	Small banks	Summary
	00000	0000	000	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 4 of 23

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
○●○		00000	0000	000	0000

Financial innovations can be copied by other investment banks

Copyright 🔘 2024 by Andreas Kraus

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

Financial innovations can be copied by other investment banks, but there might be a time delay

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- Regulators might intervene to prohibit an innovation

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- Regulators might intervene to prohibit an innovation
- Innovations might be split and introduced in phases

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
000		00000	0000	000	0000

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- Regulators might intervene to prohibit an innovation
- Innovations might be split and introduced in phases
- Investment banks are competing and clients might be switching to take advantage of innovations

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- Regulators might intervene to prohibit an innovation
- Innovations might be split and introduced in phases
- Investment banks are competing and clients might be switching to take advantage of innovations
- They might also sell innovations to other investment banks

- Financial innovations can be copied by other investment banks, but there might be a time delay
- Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- Regulators might intervene to prohibit an innovation
- Innovations might be split and introduced in phases
- Investment banks are competing and clients might be switching to take advantage of innovations
- They might also sell innovations to other investment banks

Problem and assumptionsControversial innovationsPhasingSaleSmall banksSumm00000000000000000000000000	roblem and assumptions ⊙●
--	------------------------------

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
○○●		00000	0000	000	0000

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
○○●		00000	0000	000	0000

- Value of an innovation to the client is V
- Delaying the adoption of the innovation costs the client C_D

- \blacktriangleright Value of an innovation to the client is V
- Delaying the adoption of the innovation costs the client C_D
- **•** Switching investment banks imposes costs of C_S on clients

- \blacktriangleright Value of an innovation to the client is V
- \blacktriangleright Delaying the adoption of the innovation costs the client C_D
- Switching investment banks imposes costs of C_S on clients
- An innovation is rendered worthless by regulators after one time period with probability p

- \blacktriangleright Value of an innovation to the client is V
- \blacktriangleright Delaying the adoption of the innovation costs the client C_D
- Switching investment banks imposes costs of C_S on clients
- \blacktriangleright An innovation is rendered worthless by regulators after one time period with probability p

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

Problem and model assumptions

Controversial innovations

- Phasing of innovations
- Selling innovations
- Optimal strategy for small banks

Summary

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

Equilibrium adoption

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium adopt	ion				

 \blacktriangleright The investment bank charges a price P for the innovation

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium adop	otion				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium ado	ption				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium adopt	ion				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free
- The benefits are only available if the regulator does not interfere

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium ado	ption				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free
- The benefits are only available if the regulator does not interfere, and the delay costs are incurred

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000
Equilibrium ado	otion				

- ▶ The investment bank charges a price *P* for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free
- The benefits are only available if the regulator does not interfere, and the delay costs are incurred
- Delayed adoption is only considered if it is profitable

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000
Equilibrium adopt	ion				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free
- The benefits are only available if the regulator does not interfere, and the delay costs are incurred
- Delayed adoption is only considered if it is profitable
- Equilibrium condition: $V P = \max\{(1 p) V C_D, 0\}$

Problem and assumptions	Controversial innovations	Phasing	Sale	Small banks	Summary
	○●○	00000	0000	000	0000
Equilibrium adopt	ion				

- \blacktriangleright The investment bank charges a price P for the innovation
- Adopting the innovation gives the client benefits V P
- If delaying the adoption, the innovation can be obtained for free
- The benefits are only available if the regulator does not interfere, and the delay costs are incurred
- Delayed adoption is only considered if it is profitable
- Equilibrium condition: $V P = \max\{(1 p) V C_D, 0\}$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

► This gives
$$P = \begin{cases} V & \text{if } C_D \ge (1-p)V\\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$$

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

► This gives
$$P = \begin{cases} V & \text{if } C_D \ge (1-p)V \\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$$

▶ The price increases in the likelihood the regulator intervenes

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

► This gives
$$P = \begin{cases} V & \text{if } C_D \ge (1-p) V \\ pV + C_D & \text{if } C_D < (1-p) V \end{cases}$$

The price increases in the likelihood the regulator intervenes

If costs to develop innovations are fixed, this is an incentive to develop controversial innovations

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

► This gives
$$P = \begin{cases} V & \text{if } C_D \ge (1-p) V \\ pV + C_D & \text{if } C_D < (1-p) V \end{cases}$$

▶ The price increases in the likelihood the regulator intervenes

If costs to develop innovations are fixed, this is an incentive to develop controversial innovations

Problem and assumptions	Controversial innovations	Phasing ●0000	Sale 0000	Small banks 000	Summary 0000

Problem and model assumptions

Controversial innovations

Phasing of innovations

Selling innovations

Optimal strategy for small banks

Summary

Copyright 🔘 2024 by Andreas Krause
Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000

Copyright 🕐 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 10 of 23

Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000

• Innovations can be split into T steps and $V = \sum_{t=1}^{T} V_t$

Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000
.					

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^{T} V_t$
- Delaying the adoption each step costs C_D

Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^{T} V_t$
- Delaying the adoption each step costs C_D
- \blacktriangleright T is such that $V = TC_D$

Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000
D					

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^{T} V_t$
- Delaying the adoption each step costs C_D
- $\blacktriangleright T \text{ is such that } V = TC_D$
- Waiting for the full innovation eliminates all benefits to clients

Problem and assumptions	Controversial innovations	Phasing 0●000	Sale 0000	Small banks 000	Summary 0000
N N N					

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^{T} V_t$
- Delaying the adoption each step costs C_D
- $\blacktriangleright T \text{ is such that } V = TC_D$
- Waiting for the full innovation eliminates all benefits to clients

Problem and assumptions Controversial innovations Phasing Sale Small banks Summ	blem and assumptions	ks Sur	Summary
000 0000 0000 000 000 000	O	00	0000

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 11 of 23

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

• Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- They can attract new clients from investment banks not innovating

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- ▶ We have *N* clients

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- We have N clients and a market share α_i

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- ▶ We have N clients and a market share a_i, and they can attract all remaining clients

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- ▶ We have N clients and a market share a_i, and they can attract all remaining clients
- Profits: $\Pi_B^{i,t} = \alpha_i N \min\{V_t, C_D\} + (1 \alpha_i) N \max\{\min\{V_t, C_D\} C_S, 0\}$

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- \blacktriangleright We have N clients and a market share $\alpha_i,$ and they can attract all remaining clients
- Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 \alpha_i) N \max \{\min \{V_t, C_D\} C_S, 0\}$
- Innovation steps are all of equal size in equilibrium

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- \blacktriangleright We have N clients and a market share $\alpha_i,$ and they can attract all remaining clients
- Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 \alpha_i) N \max \{\min \{V_t, C_D\} C_S, 0\}$
- lnnovation steps are all of equal size in equilibrium, hence $V_t = C_D$

Problem and assumptions	Controversial innovations	Phasing 00●00	Sale 0000	Small banks 000	Summary 0000

- Maximum price that can be charged for each innovation phase is min {V_t, C_D}, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- We have N clients and a market share \(\alpha_i\), and they can attract all remaining clients
- Profits: $\Pi_B^{i,t} = \alpha_i N \min\{V_t, C_D\} + (1 \alpha_i) N \max\{\min\{V_t, C_D\} C_S, 0\}$
- lunovation steps are all of equal size in equilibrium, hence $V_t = C_D$
- This gives $\Pi_B^{i,t} = \alpha_i N C_D + (1 \alpha_i) N \max \{C_D C_S, 0\}$

- Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} C_S, 0\}$
- \blacktriangleright We have N clients and a market share $\alpha_i,$ and they can attract all remaining clients
- Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 \alpha_i) N \max \{\min \{V_t, C_D\} C_S, 0\}$
- ▶ Innovation steps are all of equal size in equilibrium, hence $V_t = C_D$

• This gives
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$

Problem and assumptions	Controversial innovations	Phasing 000●0	Sale 0000	Small banks 000	Summary 0000

Total investment bank profits

Copyright 🕜 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 12 of 23

lf the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1-p until T steps are used

lf the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1-p until T steps are used

• Total profits:
$$\Pi_B^i = \sum_{t=0}^T (1-p)^t \Pi_B^{i,t}$$

► If the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1 - p until T steps are used

• Total profits:
$$\Pi_B^i = \sum_{t=0}^T (1-p)^t \Pi_B^{i,t}$$

▶ If selling the innovation in one step, they can gain the whole market if $V > C_D + C_S$

• If the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1-p until T steps are used

• Total profits:
$$\Pi_B^i = \sum_{t=0}^T (1-p)^t \Pi_B^{i,t}$$

- $\blacktriangleright\,$ If selling the innovation in one step, they can gain the whole market if $V>C_D+C_S$
- They charge C_D to prevent clients delaying adoption

• If the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1-p until T steps are used

• Total profits:
$$\Pi_B^i = \sum_{t=0}^T (1-p)^t \Pi_B^{i,t}$$

- \blacktriangleright If selling the innovation in one step, they can gain the whole market if $V>C_D+C_S$
- They charge C_D to prevent clients delaying adoption
- Investment bank profits: $\hat{\Pi}^i_B = NC_D$

• If the innovation is prohibited in each time period with probability p, the investment bank can continue to sell it with probability 1-p until T steps are used

• Total profits:
$$\Pi_B^i = \sum_{t=0}^T (1-p)^t \Pi_B^{i,t}$$

- \blacktriangleright If selling the innovation in one step, they can gain the whole market if $V>C_D+C_S$
- They charge C_D to prevent clients delaying adoption
- Investment bank profits: $\hat{\Pi}^i_B = NC_D$

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 13 of 23

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000
Choosing to intro	duce innovations	s phased			

• Investment banks phase innovations in if $\hat{\Pi}^i_B \leq \Pi^i_B$

Copyright 🕐 2024 by Andreas Kraus

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

► Investment banks phase innovations in if
$$\hat{\Pi}_B^i \leq \Pi_B^i$$

► This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

► Investment banks phase innovations in if
$$\hat{\Pi}_B^i \leq \Pi_B^i$$

► This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$

Small investment banks prefer to introduce innovations in one step

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

▶ Investment banks phase innovations in if $\hat{\Pi}^i_B \leq \Pi^i_B$

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations

Slide 13 of 23

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

- Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- Small investment banks attract the large remaining market

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

- Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- Small investment banks attract the large remaining market, even though they make little profits from the single step

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

- Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- Small investment banks attract the large remaining market, even though they make little profits from the single step
- Large investment banks do not gain that much market share

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

- Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- Small investment banks attract the large remaining market, even though they make little profits from the single step
- Large investment banks do not gain that much market share and prefer to make multiple profits from phasing in the innovation

Problem and assumptions	Controversial innovations	Phasing 0000●	Sale 0000	Small banks 000	Summary 0000

• This gives
$$\alpha_i \ge \alpha^* = \frac{pC_D - (1 - (1 - p)^T) \max\{C_D - C_S, 0\}}{(1 - (1 - p)^T) \min\{C_D, C_S\}} < 1.$$

- Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- Small investment banks attract the large remaining market, even though they make little profits from the single step
- Large investment banks do not gain that much market share and prefer to make multiple profits from phasing in the innovation
| Problem and assumptions | Controversial innovations | Phasing
00000 | Sale
●000 | Small banks
000 | Summary
0000 |
|-------------------------|---------------------------|------------------|--------------|--------------------|-----------------|
| | | | | | |

Problem and model assumptions

Controversial innovations

Phasing of innovations

Selling innovations

Optimal strategy for small banks

Summary

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 14 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000

Sale price

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing 00000	Sale o●oo	Small banks 000	Summary 0000
Sale price					

An investment can sell an innovation to another investment bank rather than introducing it itself

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer

Problem and assumptions	Controversial innovations	Phasing 00000	Sale ○●○○	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share α_j

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share α_j
- Maximum price for selling the innovation to clients is C_D

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share \(\alpha_j\)
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share \(\alpha_j\)
- Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- \blacktriangleright It can also not be over C_S

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share \(\alpha_j\)
- Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- \blacktriangleright It can also not be over C_S as otherwise they would be switching to the original innovator

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share α_j
- Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- \blacktriangleright It can also not be over C_S as otherwise they would be switching to the original innovator
- Price: $P = \alpha_j N \min \{C_D, C_S\}$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0●00	Small banks 000	Summary 0000
Sale price					

- An investment can sell an innovation to another investment bank rather than introducing it itself
- The most it can be sold for is the profit it gives the buyer, who has market share \(\alpha_j\)
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- \blacktriangleright It can also not be over C_S as otherwise they would be switching to the original innovator

• Price:
$$P = \alpha_j N \min \{C_D, C_S\}$$

	Problem and assumptions	Controversial innovations	Phasing 00000	Sale 00●0	Small banks 000	Summary 0000
--	-------------------------	---------------------------	------------------	--------------	--------------------	-----------------

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 00●0	Small banks 000	Summary 0000

► If $C_S > C_D$, no clients will switch, seller *i* obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation

Problem and assumptions	Controversial innovations	Phasing 00000	Sale ○○●○	Small banks 000	Summary 0000
High switching o	costs				

- ► If $C_S > C_D$, no clients will switch, seller *i* obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- If selling, they obtain $P = \alpha_j N C_D$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 00●0	Small banks 000	Summary 0000

- ► If $C_S > C_D$, no clients will switch, seller *i* obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- ▶ If selling, they obtain $P = \alpha_j NC_D$
- They sell to the largest bank with $\alpha_j > \alpha_i$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 00●0	Small banks 000	Summary 0000

- ▶ If $C_S > C_D$, no clients will switch, seller *i* obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- If selling, they obtain $P = \alpha_j N C_D$
- They sell to the largest bank with $\alpha_j > \alpha_i$
- Except for the largest bank making the innovation, the innovation will always be sold

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 00●0	Small banks 000	Summary 0000

- ► If $C_S > C_D$, no clients will switch, seller *i* obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- If selling, they obtain $P = \alpha_j N C_D$
- They sell to the largest bank with $\alpha_j > \alpha_i$
- Except for the largest bank making the innovation, the innovation will always be sold

	Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
--	-------------------------	---------------------------	------------------	--------------	--------------------	-----------------

Low switching costs

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 17 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale ○○○●	Small banks 000	Summary 0000
Low switching c	osts				

► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching	costs				

- ► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$
- If selling they obtain $P = \alpha_j NC_S$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching co	octe				

- ► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$
- If selling they obtain $P = \alpha_j NC_S$
- The investment bank sells the innovation is $P > \prod_{B}^{i,t}$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching cos	ts				

- ► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$
- If selling they obtain $P = \alpha_j N C_S$
- The investment bank sells the innovation is $P > \prod_{B}^{i,t}$
- This requires $\alpha_i \leq \alpha^{**} = 1 (1 \alpha_j) \frac{C_D}{C_S} < 1$

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching cos	ts				

- ▶ If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 \alpha_i) N \max \{C_D C_S, 0\}$
- If selling they obtain $P = \alpha_j N C_S$
- The investment bank sells the innovation is $P > \prod_{B}^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 (1 \alpha_j) \frac{C_D}{C_S} < 1$
- Small banks will prefer to sell the innovation

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching cos	ts				

► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$

• If selling they obtain
$$P = \alpha_j N C_S$$

- The investment bank sells the innovation is $P > \prod_{B}^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 (1 \alpha_j) \frac{C_D}{C_S} < 1$
- Small banks will prefer to sell the innovation
- The larger the buying investment bank, the larger the seller can be

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 000●	Small banks 000	Summary 0000
Low switching cos	ts				

► If $C_S \leq C_D$, then the revenue from not selling is $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$

• If selling they obtain
$$P = \alpha_j N C_S$$

- The investment bank sells the innovation is $P > \prod_{B}^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 (1 \alpha_j) \frac{C_D}{C_S} < 1$
- Small banks will prefer to sell the innovation
- The larger the buying investment bank, the larger the seller can be

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ●00	Summary 0000

- Problem and model assumptions
- Controversial innovations
- Phasing of innovations
- Selling innovations
- Optimal strategy for small banks

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions Controversial innovations Phasing Sale Small Banks Summi ococ 0000 000 000 000 000 000 0000 0000	Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000
---	-------------------------	---------------------------	------------------	--------------	--------------------	-----------------

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 19 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \ge \alpha^*$, innovations are phased in

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \ge \alpha^*$, innovations are phased in
- ▶ If $\alpha_i \leq \alpha^{**}$, innovations are sold

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \ge \alpha^*$, innovations are phased in
- If $\alpha_i \leq \alpha^{**}$, innovations are sold
- If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but sold

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \ge \alpha^*$, innovations are phased in
- If $\alpha_i \leq \alpha^{**}$, innovations are sold
- ▶ If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but sold, this requires $\alpha_j \geq \overline{\alpha} = \frac{p}{1-(1-p)^T}$ to be feasible

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○●○	Summary 0000

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \ge \alpha^*$, innovations are phased in
- If $\alpha_i \leq \alpha^{**}$, innovations are sold
- If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but sold, this requires $\alpha_j \geq \overline{\alpha} = \frac{p}{1-(1-p)^T}$ to be feasible

Problem and assumptions Controversial innovations Phasing Sale Small banks Summ 000 00000 0000 000€ 000€ 000€ 0000	oblem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 00●	Summary 0000
---	-----------------------	---------------------------	------------------	--------------	--------------------	-----------------

Sale and introduction strategy

Copyright 🕐 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 20 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○○●	Summary 0000

Sale and introduction strategy

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 20 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks ○○●	Summary 0000

Sale and introduction strategy

Copyright 🔘 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking
Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 00●	Summary 0000

Sale and introduction strategy

	$C_S >$	$> C_D$	$C_S \leq C_D$
	$\alpha_j \leq \overline{\alpha}$	$\alpha_j > \overline{\alpha}$	
$\alpha_i \le \alpha^*$	imme	diate intro	oduction
$\frac{\alpha^* < \alpha_i \le \alpha^{**}}{\alpha_i > \alpha^{**}}$	phased introduc	tion	

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 00●	Summary 0000

Sale and introduction strategy

	$C_S > \alpha_j \le \overline{\alpha}$	$C_D = C_D$ $\alpha_j > \overline{\alpha}$	$C_S \le C_D$
$\alpha_i \le \alpha^*$	imme	diate intro	oduction
$\alpha^* < \alpha_i \le \alpha^{**}$ $\alpha_i > \alpha^{**}$	phased introduc	tion	sale

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 00●	Summary 0000

Sale and introduction strategy

	$C_S > \alpha_j \le \overline{\alpha}$	$C_D = C_D$ $\alpha_j > \overline{\alpha}$	$C_S \le C_D$
$\alpha_i \le \alpha^*$	imme	diate intro	oduction
$\alpha^* < \alpha_i \le \alpha^{**}$ $\alpha_i > \alpha^{**}$	phased introduc	tion	sale

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary ●000

- Problem and model assumptions
- Controversial innovations
- Phasing of innovations
- Selling innovations
- Optimal strategy for small banks

Summary

Problem and assumptions Controversial innovations Phasing Sale Small banks Sum 000 000 000 000 000 000 000	Sale Small banks Summary
---	--------------------------

Copyright 🕐 2024 by Andreas Krause

Chapter 11.2: Introduction of innovations Theoretical Foundations of Investment Banking Slide 22 of 23

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0●00

Investment banks with small market share will always seek to introduce innovations immediately to gain market share

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0●00

- Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients

- Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it

- Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- Large investment banks will phase in innovations but not sell it

- Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- Large investment banks will phase in innovations but not sell it
- ► If switching costs for clients are low, phased introductions are not feasible

- Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- Large investment banks will phase in innovations but not sell it
- ▶ If switching costs for clients are low, phased introductions are not feasible

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 00●0

Copyright 🔘 2024 by Andreas Krause

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

Small investment banks are seen as offering significant innovations

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 0000

- Small investment banks are seen as offering significant innovations
- Larger investment banks are only making incremental improvements to existing processes and products

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 00●0

- Small investment banks are seen as offering significant innovations
- Larger investment banks are only making incremental improvements to existing processes and products
- Mid-sized investment banks are cooperating with larger competitors to spread an innovation

Problem and assumptions	Controversial innovations	Phasing 00000	Sale 0000	Small banks 000	Summary 00●0

- Small investment banks are seen as offering significant innovations
- Larger investment banks are only making incremental improvements to existing processes and products
- Mid-sized investment banks are cooperating with larger competitors to spread an innovation

This presentation is based on Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024 Copyright ⓒ 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 40 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf.drom.Greenwich.u/verside.2022.03-18.jpg Back: Seb Tyler, CC BY 3.0 https://creativecommons.org/licenses/by/3.0, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary.Wharf_Panorama_Night.jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk