

Chapter 11.2
Introduction of innovations

Outline

- Problem and model assumptions
- Controversial innovations
- Phasing of innovations
- Selling innovations
- Optimal strategy for small banks
- Summary

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Problem and assumptions
ooo

Controversial innovations
ooo

Phasing
ooooo

Sale
oooo

Small banks
ooo

Summary
oooo

Phased introduction and sale of innovations

Phased introduction and sale of innovations

- ▶ Financial innovations can be **copied** by other investment banks

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a **time delay**

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients **delaying adoption** might lose some benefits

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as **tax avoidance**

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or **circumventing regulations**

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- ▶ **Regulators** might intervene to prohibit an innovation

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- ▶ Regulators might intervene to prohibit an innovation
- ▶ Innovations might be split and introduced in **phases**

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- ▶ Regulators might intervene to prohibit an innovation
- ▶ Innovations might be split and introduced in phases
- ▶ Investment banks are competing and clients might be **switching** to take advantage of innovations

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- ▶ Regulators might intervene to prohibit an innovation
- ▶ Innovations might be split and introduced in phases
- ▶ Investment banks are competing and clients might be switching to take advantage of innovations
- ▶ They might also **sell** innovations to other investment banks

Phased introduction and sale of innovations

- ▶ Financial innovations can be copied by other investment banks, but there might be a time delay
- ▶ Clients delaying adoption might lose some benefits, such as tax avoidance or circumventing regulations
- ▶ Regulators might intervene to prohibit an innovation
- ▶ Innovations might be split and introduced in phases
- ▶ Investment banks are competing and clients might be switching to take advantage of innovations
- ▶ They might also sell innovations to other investment banks

Costs and benefits of innovations

Costs and benefits of innovations

- ▶ **Value** of an innovation to the client is V

Costs and benefits of innovations

- ▶ Value of an innovation to the client is V
- ▶ **Delaying** the adoption of the innovation costs the client C_D

Costs and benefits of innovations

- ▶ Value of an innovation to the client is V
- ▶ Delaying the adoption of the innovation costs the client C_D
- ▶ **Switching** investment banks imposes costs of C_S on clients

Costs and benefits of innovations

- ▶ Value of an innovation to the client is V
- ▶ Delaying the adoption of the innovation costs the client C_D
- ▶ Switching investment banks imposes costs of C_S on clients
- ▶ An innovation is rendered **worthless** by regulators after one time period with probability p

Costs and benefits of innovations

- ▶ Value of an innovation to the client is V
- ▶ Delaying the adoption of the innovation costs the client C_D
- ▶ Switching investment banks imposes costs of C_S on clients
- ▶ An innovation is rendered worthless by regulators after one time period with probability p

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Equilibrium adoption

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ Equilibrium condition: $V - P =$

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ If delaying the adoption, the innovation can be obtained for **free**

- ▶ Equilibrium condition: $V - P =$

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ If delaying the adoption, the innovation can be obtained for free
- ▶ The benefits are only available if the regulator does **not interfere**

- ▶ Equilibrium condition: $V - P = (1 - p)V$

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ If delaying the adoption, the innovation can be obtained for free
- ▶ The benefits are only available if the regulator does **not interfere**, and the **delay costs** are incurred

- ▶ Equilibrium condition: $V - P = (1 - p)V - C_D$

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ If delaying the adoption, the innovation can be obtained for free
- ▶ The benefits are only available if the regulator does **not interfere**, and the **delay costs** are incurred
- ▶ Delayed adoption is only considered if it is **profitable**
- ▶ Equilibrium condition: $V - P = \max \{ (1 - p) V - C_D, 0 \}$

Equilibrium adoption

- ▶ The investment bank charges a price P for the innovation
- ▶ Adopting the innovation gives the client benefits $V - P$
- ▶ If delaying the adoption, the innovation can be obtained for free
- ▶ The benefits are only available if the regulator does not interfere, and the delay costs are incurred
- ▶ Delayed adoption is only considered if it is profitable
- ▶ Equilibrium condition: $V - P = \max \{ (1 - p) V - C_D, 0 \}$

Equilibrium price

Equilibrium price

► This gives $P = \begin{cases} V & \text{if } C_D \geq (1-p)V \\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$

Equilibrium price

- ▶ This gives $P = \begin{cases} V & \text{if } C_D \geq (1-p)V \\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$
- ▶ The price increases in the likelihood the regulator **intervenes**

Equilibrium price

- ▶ This gives $P = \begin{cases} V & \text{if } C_D \geq (1-p)V \\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$
- ▶ The price increases in the likelihood the regulator intervenes
- ▶ If costs to develop innovations are fixed, this is an incentive to develop **controversial** innovations

Equilibrium price

- ▶ This gives $P = \begin{cases} V & \text{if } C_D \geq (1-p)V \\ pV + C_D & \text{if } C_D < (1-p)V \end{cases}$
- ▶ The price increases in the likelihood the regulator intervenes
- ▶ If costs to develop innovations are fixed, this is an incentive to develop controversial innovations

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Dividing innovations

Dividing innovations

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^T V_t$

Dividing innovations

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^T V_t$
- ▶ Delaying the adoption each step costs C_D

Dividing innovations

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^T V_t$
- ▶ Delaying the adoption each step costs C_D
- ▶ T is such that $V = TC_D$

Dividing innovations

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^T V_t$
- ▶ Delaying the adoption each step costs C_D
- ▶ T is such that $V = TC_D$
- ▶ Waiting for the full innovation **eliminates** all benefits to clients

Dividing innovations

- ▶ Innovations can be split into T steps and $V = \sum_{t=1}^T V_t$
- ▶ Delaying the adoption each step costs C_D
- ▶ T is such that $V = TC_D$
- ▶ Waiting for the full innovation eliminates all benefits to clients

Investment bank profits in each step

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$
- ▶ Profits: $\Pi_B^{i,t} = \min \{V_t, C_D\} +$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ Profits: $\Pi_B^{i,t} = \min \{V_t, C_D\} +$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract **new clients** from investment banks not innovating
- ▶ Profits: $\Pi_B^{i,t} = \min \{V_t, C_D\} +$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ Profits: $\Pi_B^{i,t} = \min \{V_t, C_D\} + \max \{\min \{V_t, C_D\} - C_S, 0\}$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients
- ▶ Profits: $\Pi_B^{i,t} = N \min \{V_t, C_D\} + N \max \{\min \{V_t, C_D\} - C_S, 0\}$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + N \max \{\min \{V_t, C_D\} - C_S, 0\}$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i , and they can attract **all remaining** clients
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 - \alpha_i) N \max \{\min \{V_t, C_D\} - C_S, 0\}$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i , and they can attract all remaining clients
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 - \alpha_i) N \max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ Innovation steps are all of **equal size** in equilibrium

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i , and they can attract all remaining clients
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 - \alpha_i) N \max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ Innovation steps are all of equal size in equilibrium, hence $V_t = C_D$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i , and they can attract all remaining clients
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 - \alpha_i) N \max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ Innovation steps are all of equal size in equilibrium, hence $V_t = C_D$
- ▶ This gives $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$

Investment bank profits in each step

- ▶ Maximum price that can be charged for each innovation phase is $\min \{V_t, C_D\}$, otherwise delaying is more beneficial
- ▶ They can attract new clients from investment banks not innovating by charging a lower price that is reduced by the switching costs: $\max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ We have N clients and a market share α_i , and they can attract all remaining clients
- ▶ Profits: $\Pi_B^{i,t} = \alpha_i N \min \{V_t, C_D\} + (1 - \alpha_i) N \max \{\min \{V_t, C_D\} - C_S, 0\}$
- ▶ Innovation steps are all of equal size in equilibrium, hence $V_t = C_D$
- ▶ This gives $\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$

Total investment bank profits

Total investment bank profits

- ▶ If the innovation is prohibited in each time period with probability p , the investment bank can **continue** to **sell** it with probability $1 - p$ until T steps are used
- ▶ Total profits: $\Pi_B^i = \sum_{t=0}^T (1 - p)^t \Pi_B^{i,t}$

Total investment bank profits

- ▶ If the innovation is prohibited in each time period with probability p , the investment bank can continue to sell it with probability $1 - p$ until T steps are used
- ▶ Total profits: $\Pi_B^i = \sum_{t=0}^T (1 - p)^t \Pi_B^{i,t}$
- ▶ If selling the innovation in **one step**, they can gain the whole market if $V > C_D + C_S$

Total investment bank profits

- ▶ If the innovation is prohibited in each time period with probability p , the investment bank can continue to sell it with probability $1 - p$ until T steps are used
- ▶ Total profits: $\Pi_B^i = \sum_{t=0}^T (1 - p)^t \Pi_B^{i,t}$
- ▶ If selling the innovation in one step, they can gain the whole market if $V > C_D + C_S$
- ▶ They charge C_D to **prevent** clients **delaying** adoption

Total investment bank profits

- ▶ If the innovation is prohibited in each time period with probability p , the investment bank can continue to sell it with probability $1 - p$ until T steps are used
- ▶ Total profits: $\Pi_B^i = \sum_{t=0}^T (1 - p)^t \Pi_B^{i,t}$
- ▶ If selling the innovation in one step, they can gain the whole market if $V > C_D + C_S$
- ▶ They charge C_D to prevent clients delaying adoption
- ▶ Investment bank profits: $\hat{\Pi}_B^i = NC_D$

Total investment bank profits

- ▶ If the innovation is prohibited in each time period with probability p , the investment bank can continue to sell it with probability $1 - p$ until T steps are used
- ▶ Total profits: $\Pi_B^i = \sum_{t=0}^T (1 - p)^t \Pi_B^{i,t}$
- ▶ If selling the innovation in one step, they can gain the whole market if $V > C_D + C_S$
- ▶ They charge C_D to prevent clients delaying adoption
- ▶ Investment bank profits: $\hat{\Pi}_B^i = NC_D$

Choosing to introduce innovations phased

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ **Small** investment banks prefer to introduce innovations in **one step**

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, **large** investment banks prefer to **phase in** innovations

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- ▶ **Small** investment banks attract the large **remaining market**

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- ▶ Small investment banks attract the large remaining market, even though they make little profits from the **single step**

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- ▶ Small investment banks attract the large remaining market, even though they make little profits from the single step
- ▶ **Large** investment banks **do not** gain that much market share

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- ▶ Small investment banks attract the large remaining market, even though they make little profits from the single step
- ▶ Large investment banks do not gain that much market share and prefer to make **multiple** profits from phasing in the innovation

Choosing to introduce innovations phased

- ▶ Investment banks phase innovations in if $\hat{\Pi}_B^i \leq \Pi_B^i$
- ▶ This gives $\alpha_i \geq \alpha^* = \frac{pC_D - (1-(1-p)^T) \max\{C_D - C_S, 0\}}{(1-(1-p)^T) \min\{C_D, C_S\}} < 1$.
- ▶ Small investment banks prefer to introduce innovations in one step, large investment banks prefer to phase in innovations
- ▶ Small investment banks attract the large remaining market, even though they make little profits from the single step
- ▶ Large investment banks do not gain that much market share and prefer to make multiple profits from phasing in the innovation

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Problem and assumptions
○○○

Controversial innovations
○○○

Phasing
○○○○○

Sale
○●○○

Small banks
○○○

Summary
○○○○

Sale price

Sale price

- ▶ An investment can **sell** an innovation to another investment bank rather than introducing it itself

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the **profit** it gives the buyer

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Price: $P = \alpha_j N$

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Maximum price for selling the innovation to clients is C_D
- ▶ Price: $P = \alpha_j N C_D$

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- ▶ Price: $P = \alpha_j N C_D$

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- ▶ It can also not be over C_S
- ▶ Price: $P = \alpha_j N \min \{C_D, C_S\}$

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- ▶ It can also not be over C_S as otherwise they would be switching to the original innovator
- ▶ Price: $P = \alpha_j N \min \{C_D, C_S\}$

Sale price

- ▶ An investment can sell an innovation to another investment bank rather than introducing it itself
- ▶ The most it can be sold for is the profit it gives the buyer, who has market share α_j
- ▶ Maximum price for selling the innovation to clients is C_D to avoid then delaying adoption
- ▶ It can also not be over C_S as otherwise they would be switching to the original innovator
- ▶ Price: $P = \alpha_j N \min \{C_D, C_S\}$

High switching costs

High switching costs

- ▶ If $C_S > C_D$, no clients will switch, seller i obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation

High switching costs

- ▶ If $C_S > C_D$, no clients will switch, seller i obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- ▶ If selling, they obtain $P = \alpha_j N C_D$

High switching costs

- ▶ If $C_S > C_D$, no clients will switch, seller i obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- ▶ If selling, they obtain $P = \alpha_j N C_D$
- ▶ They sell to the largest bank with $\alpha_j > \alpha_i$

High switching costs

- ▶ If $C_S > C_D$, no clients will switch, seller i obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- ▶ If selling, they obtain $P = \alpha_j N C_D$
- ▶ They sell to the largest bank with $\alpha_j > \alpha_i$
- ▶ Except for the largest bank making the innovation, the innovation will **always** be sold

High switching costs

- ▶ If $C_S > C_D$, no clients will switch, seller i obtains $\Pi_B^{i,t} = \alpha_i N C_D$ if retaining the innovation
- ▶ If selling, they obtain $P = \alpha_j N C_D$
- ▶ They sell to the largest bank with $\alpha_j > \alpha_i$
- ▶ Except for the largest bank making the innovation, the innovation will always be sold

Low switching costs

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$
- ▶ The investment bank sells the innovation is $P > \Pi_B^{i,t}$

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$
- ▶ The investment bank sells the innovation is $P > \Pi_B^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 - (1 - \alpha_j) \frac{C_D}{C_S} < 1$

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$
- ▶ The investment bank sells the innovation is $P > \Pi_B^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 - (1 - \alpha_j) \frac{C_D}{C_S} < 1$
- ▶ **Small banks** will prefer to **sell** the innovation

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$
- ▶ The investment bank sells the innovation if $P > \Pi_B^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 - (1 - \alpha_j) \frac{C_D}{C_S} < 1$
- ▶ Small banks will prefer to sell the innovation
- ▶ The **larger** the **buying** investment bank, the **larger** the **seller** can be

Low switching costs

- ▶ If $C_S \leq C_D$, then the revenue from not selling is
$$\Pi_B^{i,t} = \alpha_i N C_D + (1 - \alpha_i) N \max \{C_D - C_S, 0\}$$
- ▶ If selling they obtain $P = \alpha_j N C_S$
- ▶ The investment bank sells the innovation if $P > \Pi_B^{i,t}$
- ▶ This requires $\alpha_i \leq \alpha^{**} = 1 - (1 - \alpha_j) \frac{C_D}{C_S} < 1$
- ▶ Small banks will prefer to sell the innovation
- ▶ The larger the buying investment bank, the larger the seller can be

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Selling, phasing in, immediate release

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but **immediately introduced**

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \geq \alpha^*$, innovations are **phased in**

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \geq \alpha^*$, innovations are phased in
- ▶ If $\alpha_i \leq \alpha^{**}$, innovations are **sold**

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \geq \alpha^*$, innovations are phased in
- ▶ If $\alpha_i \leq \alpha^{**}$, innovations are sold
- ▶ If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but **sold**

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \geq \alpha^*$, innovations are phased in
- ▶ If $\alpha_i \leq \alpha^{**}$, innovations are sold
- ▶ If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but sold, this requires $\alpha_j \geq \bar{\alpha} = \frac{p}{1-(1-p)^T}$ to be feasible

Selling, phasing in, immediate release

- ▶ If $C_S \leq C_D$, then $\Pi_B^{i,t} = NC_D \geq \alpha_j NC_D$ and the innovation is not sold but immediately introduced
- ▶ If $\alpha_i \geq \alpha^*$, innovations are phased in
- ▶ If $\alpha_i \leq \alpha^{**}$, innovations are sold
- ▶ If $\alpha^* \leq \alpha^{**}$, innovations are not phased in, but sold, this requires $\alpha_j \geq \bar{\alpha} = \frac{p}{1-(1-p)^T}$ to be feasible

Problem and assumptions
○○○

Controversial innovations
○○○

Phasing
○○○○○

Sale
○○○○

Small banks
○○●

Summary
○○○○

Sale and introduction strategy

Sale and introduction strategy

Sale and introduction strategy

		$C_S > C_D$	$C_S \leq C_D$
		$\alpha_j \leq \bar{\alpha}$	$\alpha_j > \bar{\alpha}$
$\alpha_i \leq \alpha^*$	immediate introduction		
$\alpha^* < \alpha_i \leq \alpha^{**}$			
$\alpha_i > \alpha^{**}$			

Sale and introduction strategy

		$C_S > C_D$	$C_S \leq C_D$
		$\alpha_j \leq \bar{\alpha}$	$\alpha_j > \bar{\alpha}$
$\alpha_i \leq \alpha^*$	immediate introduction		
$\alpha^* < \alpha_i \leq \alpha^{**}$	phased introduction		
$\alpha_i > \alpha^{**}$			

Sale and introduction strategy

		$C_S > C_D$	$C_S \leq C_D$
		$\alpha_j \leq \bar{\alpha}$	$\alpha_j > \bar{\alpha}$
$\alpha_i \leq \alpha^*$	immediate introduction		
$\alpha^* < \alpha_i \leq \alpha^{**}$	phased introduction		sale
$\alpha_i > \alpha^{**}$			

Sale and introduction strategy

		$C_S > C_D$	$C_S \leq C_D$
		$\alpha_j \leq \bar{\alpha}$	$\alpha_j > \bar{\alpha}$
$\alpha_i \leq \alpha^*$	immediate introduction		
$\alpha^* < \alpha_i \leq \alpha^{**}$	phased introduction		sale
$\alpha_i > \alpha^{**}$			

■ Problem and model assumptions

■ Controversial innovations

■ Phasing of innovations

■ Selling innovations

■ Optimal strategy for small banks

■ Summary

Strategies for banks of different sizes

Strategies for banks of different sizes

- ▶ Investment banks with **small** market share will always seek to introduce innovations **immediately** to gain market share

Strategies for banks of different sizes

- ▶ Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- ▶ **Medium-sized** investment banks will either **phase in** any innovations to extract more surplus from their clients

Strategies for banks of different sizes

- ▶ Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- ▶ Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it

Strategies for banks of different sizes

- ▶ Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- ▶ Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- ▶ Large investment banks will **phase in** innovations but not sell it

Strategies for banks of different sizes

- ▶ Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- ▶ Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- ▶ Large investment banks will phase in innovations but not sell it
- ▶ If **switching costs** for clients are **low**, phased introductions are **not** feasible

Strategies for banks of different sizes

- ▶ Investment banks with small market share will always seek to introduce innovations immediately to gain market share
- ▶ Medium-sized investment banks will either phase in any innovations to extract more surplus from their clients, or if a sufficiently large investment bank buys their innovation, sell it
- ▶ Large investment banks will phase in innovations but not sell it
- ▶ If switching costs for clients are low, phased introductions are not feasible

Innovative investment banks

Innovative investment banks

- ▶ **Small** investment banks are seen as offering **significant** innovations

Innovative investment banks

- ▶ Small investment banks are seen as offering significant innovations
- ▶ **Larger** investment banks are only making **incremental** improvements to existing processes and products

Innovative investment banks

- ▶ Small investment banks are seen as offering significant innovations
- ▶ Larger investment banks are only making incremental improvements to existing processes and products
- ▶ **Mid-sized** investment banks are **cooperating** with larger competitors to spread an innovation

Innovative investment banks

- ▶ Small investment banks are seen as offering significant innovations
- ▶ Larger investment banks are only making incremental improvements to existing processes and products
- ▶ Mid-sized investment banks are cooperating with larger competitors to spread an innovation

This presentation is based on
Andreas Krause: Theoretical Foundations of Investment Banking, Springer Verlag 2024
Copyright © 2024 by Andreas Krause

Picture credits:

Cover: The wub, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_from_Greenwich_riverside.2022-03-18.jpg
Back: Seb Tyler, CC BY 3.0 <https://creativecommons.org/licenses/by/3.0/>, via Wikimedia Commons, https://commons.wikimedia.org/wiki/File:Canary_Wharf_Panorama_Night.jpg

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk