

Self-fulfilling currency crises

Outline

- The importance of expectations
- Flexible exchange rate
- Fixed exchange rate
- Optimal exchange rate regime
- Summary

■ The importance of expectations

- Flexible exchange rate
- Fixed exchange rate
- Optimal exchange rate regime
- Summary

Managing macroeconomic variables

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as **interest rates**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, **inflation**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or **economic performance**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the **exchange rate**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the exchange rate, hence policy makers can **indirectly** affect exchange rates

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the exchange rate, hence policy makers can indirectly affect exchange rates
- ▶ They could implement policies that keep the exchange rate **stable**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the exchange rate, hence policy makers can indirectly affect exchange rates
- ▶ They could implement policies that keep the exchange rate stable, or it **devalues** its currency

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the exchange rate, hence policy makers can indirectly affect exchange rates
- ▶ They could implement policies that keep the exchange rate stable, or it devalues its currency
- ▶ Abandoning a stable exchange rate can be an **optimal policy**

Managing macroeconomic variables

- ▶ Policy makers have the ability to directly or indirectly influence key macroeconomic variables, such as interest rates, inflation, or economic performance
- ▶ These macroeconomic variables will affect the exchange rate, hence policy makers can indirectly affect exchange rates
- ▶ They could implement policies that keep the exchange rate stable, or it devalues its currency
- ▶ Abandoning a stable exchange rate can be an optimal policy

Crashes without information

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a **sudden change**

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change **without** the change of economic fundamentals

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change without the change of economic fundamentals
- ▶ It is comparable to a **market crash**

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change without the change of economic fundamentals
- ▶ It is comparable to a market crash, but the causes of the currency crisis are that the economic fundamentals are **weak**

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change without the change of economic fundamentals
- ▶ It is comparable to a market crash, but the causes of the currency crisis are that the economic fundamentals are weak
- ▶ While a market crash is the result of a small amount **negative information** becoming public, a currency crisis does **not** need new information

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change without the change of economic fundamentals
- ▶ It is comparable to a market crash, but the causes of the currency crisis are that the economic fundamentals are weak
- ▶ While a market crash is the result of a small amount negative information becoming public, a currency crisis does not need new information
- ▶ **Expectations** about the future policy decisions and hence exchange rates are an important aspect in the emergence of currency crises

Crashes without information

- ▶ A currency crisis emerges if the exchange rate undergoes a sudden change without the change of economic fundamentals
- ▶ It is comparable to a market crash, but the causes of the currency crisis are that the economic fundamentals are weak
- ▶ While a market crash is the result of a small amount negative information becoming public, a currency crisis does not need new information
- ▶ Expectations about the future policy decisions and hence exchange rates are an important aspect in the emergence of currency crises

■ The importance of expectations

■ Flexible exchange rate

■ Fixed exchange rate

■ Optimal exchange rate regime

■ Summary

Minimizing costs from inflation and taxation

Minimizing costs from inflation and taxation

- ▶ People prefer low **inflation**
- ▶ $\Pi = \pi^2$

Minimizing costs from inflation and taxation

- ▶ People prefer low **inflation** and low **taxes**
- ▶ $\Pi = \pi^2 + T^2$

Minimizing costs from inflation and taxation

- ▶ People prefer low **inflation** and low **taxes**, which a policy maker should be minimizing
- ▶ $\Pi = \pi^2 + T^2$

Minimizing costs from inflation and taxation

- ▶ People prefer low **inflation** and low **taxes**, which a policy maker should be minimizing, giving **weights** to their relative importance
- ▶ $\Pi = \alpha\pi^2 + T^2$

Minimizing costs from inflation and taxation

- ▶ People prefer low **inflation** and low **taxes**, which a policy maker should be minimizing, giving **weights** to their relative importance
- ▶ **Fixed costs** from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$

Minimizing costs from inflation and taxation

- ▶ People prefer low inflation and low taxes, which a policy maker should be minimizing, giving weights to their relative importance
- ▶ Fixed costs from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$
- ▶ If a country has **debt**, its **interest** payments must be covered by **tax revenue**

- ▶ $rB = T$

Minimizing costs from inflation and taxation

- ▶ People prefer low inflation and low taxes, which a policy maker should be minimizing, giving weights to their relative importance
- ▶ Fixed costs from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$
- ▶ If a country has **debt**, its **interest** payments must be covered by **tax revenue**
- ▶ Expected inflation will be priced into the interest rate

- ▶ $rB = T$

Minimizing costs from inflation and taxation

- ▶ People prefer low inflation and low taxes, which a policy maker should be minimizing, giving weights to their relative importance
- ▶ Fixed costs from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$
- ▶ If a country has **debt**, its **interest** payments must be covered by **tax revenue**
- ▶ **Expected inflation** will be priced into the interest rate, but a higher **inflation** reduces the value of debt
- ▶ $rB = T + \theta(\pi - E[\pi])$

Minimizing costs from inflation and taxation

- ▶ People prefer low inflation and low taxes, which a policy maker should be minimizing, giving weights to their relative importance
- ▶ Fixed costs from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$
- ▶ If a country has **debt**, its **interest** payments must be covered by **tax revenue**
- ▶ **Expected inflation** will be priced into the interest rate, but a higher **inflation** reduces the value of debt and is an indirect tax that can be used to cover these payments
- ▶ $rB = T + \theta(\pi - E[\pi])$

Minimizing costs from inflation and taxation

- ▶ People prefer low inflation and low taxes, which a policy maker should be minimizing, giving weights to their relative importance
- ▶ Fixed costs from changing inflation rates are also incurred
- ▶ $\Pi = \alpha\pi^2 + T^2 + C$
- ▶ If a country has debt, its interest payments must be covered by tax revenue
- ▶ Expected inflation will be priced into the interest rate, but a higher inflation reduces the value of debt and is an indirect tax that can be used to cover these payments
- ▶ $rB = T + \theta(\pi - E[\pi])$

Optimal inflation and taxation

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda (rB - T - \theta (\pi - E[\pi]))$

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda(rB - T - \theta(\pi - \mathbb{E}[\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial\mathcal{L}}{\partial\pi} = \frac{\partial\mathcal{L}}{\partial T} = \frac{\partial\mathcal{L}}{\partial\lambda} = 0$

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda(rB - T - \theta(\pi - \mathbb{E}[\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial\mathcal{L}}{\partial\pi} = \frac{\partial\mathcal{L}}{\partial T} = \frac{\partial\mathcal{L}}{\partial\lambda} = 0$

⇒ $T = \frac{\alpha}{\theta}\pi$

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda(rB - T - \theta(\pi - \mathbb{E}[\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial\mathcal{L}}{\partial\pi} = \frac{\partial\mathcal{L}}{\partial T} = \frac{\partial\mathcal{L}}{\partial\lambda} = 0$
- ⇒ $T = \frac{\alpha}{\theta}\pi$
 $\pi = \frac{\theta}{\alpha+\theta^2}(rB + \theta\mathbb{E}[\pi])$

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda(rB - T - \theta(\pi - \mathbb{E}[\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial\mathcal{L}}{\partial\pi} = \frac{\partial\mathcal{L}}{\partial T} = \frac{\partial\mathcal{L}}{\partial\lambda} = 0$
- ⇒ $T = \frac{\alpha}{\theta}\pi$
 $\pi = \frac{\theta}{\alpha+\theta^2}(rB + \theta\mathbb{E}[\pi])$
- ⇒ $\Pi = \frac{\alpha}{\alpha+\theta^2}(rB + \theta\mathbb{E}[\pi])^2 + C$

Optimal inflation and taxation

- ▶ The objective function is $\mathcal{L} = \alpha\pi^2 + T^2 + C + \lambda(rB - T - \theta(\pi - \mathbb{E}[\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial\mathcal{L}}{\partial\pi} = \frac{\partial\mathcal{L}}{\partial T} = \frac{\partial\mathcal{L}}{\partial\lambda} = 0$
- ⇒ $T = \frac{\alpha}{\theta}\pi$
 $\pi = \frac{\theta}{\alpha+\theta^2}(rB + \theta\mathbb{E}[\pi])$
- ⇒ $\Pi = \frac{\alpha}{\alpha+\theta^2}(rB + \theta\mathbb{E}[\pi])^2 + C$

Inflation and exchange rate

Inflation and exchange rate

- ▶ Using **purchasing power parity**, a change in inflation is equivalent to a change in the exchange rate

Inflation and exchange rate

- ▶ Using purchasing power parity, a change in inflation is equivalent to a change in the exchange rate
- ⇒ Inflation can be interpreted as a **change in the exchange rate**

Inflation and exchange rate

- ▶ Using purchasing power parity, a change in inflation is equivalent to a change in the exchange rate
- ⇒ Inflation can be interpreted as a change in the exchange rate
- ▶ If there are benefits of a stable exchange rate, then the fixed costs are the costs of **abandoning the fixed exchange rate**

Inflation and exchange rate

- ▶ Using purchasing power parity, a change in inflation is equivalent to a change in the exchange rate
- ⇒ Inflation can be interpreted as a change in the exchange rate
- ▶ If there are benefits of a stable exchange rate, then the fixed costs are the costs of abandoning the fixed exchange rate
- ▶ $\Pi = \frac{\alpha}{\alpha+\theta^2} (rB + \theta E[\Delta e])^2 + C$

Inflation and exchange rate

- ▶ Using purchasing power parity, a change in inflation is equivalent to a change in the exchange rate
- ⇒ Inflation can be interpreted as a change in the exchange rate
- ▶ If there are benefits of a stable exchange rate, then the fixed costs are the costs of abandoning the fixed exchange rate
- ▶ $\Pi = \frac{\alpha}{\alpha+\theta^2} (rB + \theta E[\Delta e])^2 + C$

- The importance of expectations
- Flexible exchange rate
- Fixed exchange rate
- Optimal exchange rate regime
- Summary

Minimizing costs from taxation

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the **exchange rate fixed**

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence **inflation** identical to that of the foreign country

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$
- ▶ There are **no fixed costs** as the exchange rate is kept fixed

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$
- ▶ There are no fixed costs as the exchange rate is kept fixed
- ▶ $rB = T - \theta E[\pi]$

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$
- ▶ There are no fixed costs as the exchange rate is kept fixed
- ▶ $rB = T - \theta E[\pi]$
- ▶ The interest on debt needs to be paid **fully from taxation**, but **expectations** about inflation can still be formed

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$
- ▶ There are no fixed costs as the exchange rate is kept fixed
- ▶ $rB = T - \theta E[\pi]$
- ▶ The interest on debt needs to be paid fully from taxation, but **expectations** about inflation (**exchange rate changes**) can still be formed

Minimizing costs from taxation

- ▶ Suppose the policy seeks to keep the exchange rate fixed and hence inflation identical to that of the foreign country
- ▶ $\hat{\Pi} = T^2$
- ▶ There are no fixed costs as the exchange rate is kept fixed
- ▶ $rB = T - \theta E[\pi]$
- ▶ The interest on debt needs to be paid fully from taxation, but expectations about inflation (exchange rate changes) can still be formed

Optimal taxation

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial \mathcal{L}}{\partial T} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0$

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial \mathcal{L}}{\partial T} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0$

⇒ $T = rB + \theta \mathbb{E} [\pi]$

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial \mathcal{L}}{\partial T} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0$
- ⇒ $T = rB + \theta \mathbb{E} [\pi]$
- ⇒ $\hat{\Pi} = (rB + \theta \mathbb{E} [\pi])^2$

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial \mathcal{L}}{\partial T} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0$
- ⇒ $T = rB + \theta \mathbb{E} [\pi]$
- ⇒ $\hat{\Pi} = (rB + \theta \mathbb{E} [\pi])^2$
- ▶ With purchasing power parity this again becomes $\hat{\Pi} = (rB + \theta \mathbb{E} [\Delta e])^2$

Optimal taxation

- ▶ The objective function is $\mathcal{L} = T^2 + \lambda (rB - T + \theta (\mathbb{E} [\pi]))$
- ▶ Minimizing these costs requires $\frac{\partial \mathcal{L}}{\partial T} = \frac{\partial \mathcal{L}}{\partial \lambda} = 0$
- ⇒ $T = rB + \theta \mathbb{E} [\pi]$
- ⇒ $\hat{\Pi} = (rB + \theta \mathbb{E} [\pi])^2$
- ▶ With purchasing power parity this again becomes $\hat{\Pi} = (rB + \theta \mathbb{E} [\Delta e])^2$

- The importance of expectations
- Flexible exchange rate
- Fixed exchange rate
- Optimal exchange rate regime
- Summary

Abandoning the fixed exchange rate

Abandoning the fixed exchange rate

- ▶ Exchange rates are changed if the losses are of doing so are **smaller** than keeping them fixed

Abandoning the fixed exchange rate

- ▶ Exchange rates are changed if the losses are of doing so are smaller than keeping them fixed, $\Pi \leq \hat{\Pi}$

Abandoning the fixed exchange rate

- ▶ Exchange rates are changed if the losses are of doing so are smaller than keeping them fixed, $\Pi \leq \hat{\Pi}$

$$\Rightarrow rB + \theta\Delta e \geq \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$$

Abandoning the fixed exchange rate

- ▶ Exchange rates are changed if the losses are of doing so are smaller than keeping them fixed, $\Pi \leq \hat{\Pi}$
⇒ $rB + \theta\Delta e \geq \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ▶ If the **costs of debt service** is high, $rB \geq \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the fixed exchange is always abandoned

Abandoning the fixed exchange rate

- ▶ Exchange rates are changed if the losses are of doing so are smaller than keeping them fixed, $\Pi \leq \hat{\Pi}$
⇒ $rB + \theta\Delta e \geq \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ▶ If the costs of debt service is high, $rB \geq \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the fixed exchange is always abandoned

Retaining the fixed exchange rate

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha + \theta^2} (rB + \theta E[\Delta e])$

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$

⇒ $\Delta e = E[\Delta e] = \frac{\theta}{\alpha} rB > 0$

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$
- ⇒ $\Delta e = E[\Delta e] = \frac{\theta}{\alpha} rB > 0$
- ▶ The fixed exchange rate is retained if $rB + \theta \Delta e = \frac{\alpha+\theta^2}{\alpha} rB < \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$
- ⇒ $\Delta e = E[\Delta e] = \frac{\theta}{\alpha} rB > 0$
- ▶ The fixed exchange rate is retained if $rB + \theta \Delta e = \frac{\alpha+\theta^2}{\alpha} rB < \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ⇒ $rB < \frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$
- ⇒ $\Delta e = E[\Delta e] = \frac{\theta}{\alpha} rB > 0$
- ▶ The fixed exchange rate is retained if $rB + \theta \Delta e = \frac{\alpha+\theta^2}{\alpha} rB < \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ⇒ $rB < \frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ▶ If the **debt burden** is sufficiently **small**, the **fixed exchange rate** is retained

Retaining the fixed exchange rate

- ▶ The optimal depreciation (inflation) was $\Delta e = \frac{\theta}{\alpha+\theta^2} (rB + \theta E[\Delta e])$
- ▶ If expectations are rational, then $\Delta e = E[\Delta e]$
- ⇒ $\Delta e = E[\Delta e] = \frac{\theta}{\alpha} rB > 0$
- ▶ The fixed exchange rate is retained if $rB + \theta \Delta e = \frac{\alpha+\theta^2}{\alpha} rB < \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ⇒ $rB < \frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$
- ▶ If the debt burden is sufficiently small, the fixed exchange rate is retained

Self-fulfilling expectations

Self-fulfilling expectations

- ▶ For intermediate debt burdens, the optimal decision depends on the **expectations of the exchange rate change**

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is **expected to remain fixed**, $E [\Delta e] = 0$, the exchange rate **will remain fixed**

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is expected to remain fixed, $E [\Delta e] = 0$, the exchange rate will remain fixed
- ▶ If the exchange rate is **expected to change**, $E [\Delta e] = \frac{\theta}{\alpha}rB$, the exchange rate **will change**

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is expected to remain fixed, $E [\Delta e] = 0$, the exchange rate will remain fixed
- ▶ If the exchange rate is expected to change, $E [\Delta e] = \frac{\theta}{\alpha} rB$, the exchange rate will change
- ▶ A change in the exchange rate becomes **self-fulfilling**

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is expected to remain fixed, $E[\Delta e] = 0$, the exchange rate will remain fixed
- ▶ If the exchange rate is expected to change, $E[\Delta e] = \frac{\theta}{\alpha}rB$, the exchange rate will change
- ▶ A change in the exchange rate becomes self-fulfilling
- ▶ As $\Delta e = E[\Delta e] = \frac{\theta}{\alpha}rB > 0$, this will be a **depreciation** of the exchange rate

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is expected to remain fixed, $E[\Delta e] = 0$, the exchange rate will remain fixed
- ▶ If the exchange rate is expected to change, $E[\Delta e] = \frac{\theta}{\alpha}rB$, the exchange rate will change
- ▶ A change in the exchange rate becomes self-fulfilling
- ▶ As $\Delta e = E[\Delta e] = \frac{\theta}{\alpha}rB > 0$, this will be a depreciation of the exchange rate such that **inflation is induced** to reduce the real value of debt

Self-fulfilling expectations

- ▶ For intermediate debt burdens, $\frac{\alpha}{\alpha+\theta^2} \frac{\sqrt{(\alpha+\theta^2)C}}{\theta} \geq rB > \frac{\sqrt{(\alpha+\theta^2)C}}{\theta}$, the optimal decision depends on the expectations of the exchange rate change
- ▶ If the exchange rate is expected to remain fixed, $E[\Delta e] = 0$, the exchange rate will remain fixed
- ▶ If the exchange rate is expected to change, $E[\Delta e] = \frac{\theta}{\alpha}rB$, the exchange rate will change
- ▶ A change in the exchange rate becomes self-fulfilling
- ▶ As $\Delta e = E[\Delta e] = \frac{\theta}{\alpha}rB > 0$, this will be a depreciation of the exchange rate such that inflation is induced to reduce the real value of debt

- The importance of expectations
- Flexible exchange rate
- Fixed exchange rate
- Optimal exchange rate regime
- Summary

The importance of expectations
○○○

Flexible exchange rate
○○○○

Fixed exchange rate
○○○

Optimal exchange rate regime
○○○○

Summary
○●○○

Occurrence of currency crises

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a **currency crisis**

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a currency crisis
- ▶ A depreciation is inevitable if the **debt burden** of a country **is high** as the resulting inflation will reduce the debt burden

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a currency crisis
- ▶ A depreciation is inevitable if the debt burden of a country is high as the resulting inflation will reduce the debt burden
- ▶ A depreciation is **not rational** if the **debt burden** of a country is **low** as the costs of abandoning the fixed exchange rate does not outweigh the reduced debt burden from higher inflation

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a currency crisis
- ▶ A depreciation is inevitable if the debt burden of a country is high as the resulting inflation will reduce the debt burden
- ▶ A depreciation is not rational if the debt burden of a country is low as the costs of abandoning the fixed exchange rate does not outweigh the reduced debt burden from higher inflation
- ▶ With **intermediate debt burdens**, a currency crisis can become **self-fulfilling**

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a currency crisis
- ▶ A depreciation is inevitable if the debt burden of a country is high as the resulting inflation will reduce the debt burden
- ▶ A depreciation is not rational if the debt burden of a country is low as the costs of abandoning the fixed exchange rate does not outweigh the reduced debt burden from higher inflation
- ▶ With intermediate debt burdens, a currency crisis can become self-fulfilling, only if people **expect** a currency crisis will it occur

Occurrence of currency crises

- ▶ A sudden and discrete devaluation of a currency is commonly referred to as a currency crisis
- ▶ A depreciation is inevitable if the debt burden of a country is high as the resulting inflation will reduce the debt burden
- ▶ A depreciation is not rational if the debt burden of a country is low as the costs of abandoning the fixed exchange rate does not outweigh the reduced debt burden from higher inflation
- ▶ With intermediate debt burdens, a currency crisis can become self-fulfilling, only if people expect a currency crisis will it occur

Managing expectations

Managing expectations

- ▶ A currency crisis emerges if the current exchange rate regime is **expected to change**

Managing expectations

- ▶ A currency crisis emerges if the current exchange rate regime is expected to change
- ▶ If the current exchange rate regime is **not expected to change**, a currency crisis is avoided

Managing expectations

- ▶ A currency crisis emerges if the current exchange rate regime is expected to change
- ▶ If the current exchange rate regime is not expected to change, a currency crisis is avoided as long as it is **feasible** to maintain the status quo

Managing expectations

- ▶ A currency crisis emerges if the current exchange rate regime is expected to change
- ▶ If the current exchange rate regime is not expected to change, a currency crisis is avoided as long as it is feasible to maintain the status quo
- ▶ In such a situation **managing expectations** is of importance

Managing expectations

- ▶ A currency crisis emerges if the current exchange rate regime is expected to change
- ▶ If the current exchange rate regime is not expected to change, a currency crisis is avoided as long as it is feasible to maintain the status quo
- ▶ In such a situation managing expectations is of importance

Copyright © by Andreas Krause

Picture credits:

Cover: Tobias Deml, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0/>, via Wikimedia Commons, <https://upload.wikimedia.org/wikipedia/commons/2/26/Gaming-Wall-Street.BTS.Prodigium-266.jpg>

Back: Michael Vadon, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0/>, via Wikimedia Commons, [https://upload.wikimedia.org/wikipedia/commons/9/97/Manhattan\(NYC-New_York_City\)Skyline\(31769153946\).jpg](https://upload.wikimedia.org/wikipedia/commons/9/97/Manhattan(NYC-New_York_City)Skyline(31769153946).jpg)

Andreas Krause
Department of Economics
University of Bath
Claverton Down
Bath BA2 7AY
United Kingdom

E-mail: mnsak@bath.ac.uk