

SHINE BMORE

12.15

ICe

NEW YORK STOCK EXCHANG

NYE

and have

Ice

Andreas Krause

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000		000	0000
Outline				

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Summary

Copyright 🔘 by Andreas Krause

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
●00	000	0000	000	0000

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Copyright 🔘 by Andreas Krause

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
○●○	000	0000	000	0000

Payment on default

- Credit default swaps make a payment to the buyer if the underlying entity defaults on its obligation
- The underlying entity can be companies or governments and the obligation is usually a bond they have issued
- The payment are determined as the losses arising from the default
- ▶ The loss is the amount that the entity does not pay to bondholders

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
00●	000	0000	000	0000
Credit default	rate spread			

- The buyer has to pay the seller of the credit default swap a premium, which is known as the spread
- ▶ The spread is paid in regular intervals until the default occurs
- ▶ The total amount the buyer pays will depend on the timing of the default

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	●00	0000	000	0000

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Summary

Copyright 🔘 by Andreas Krause

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	0●0	0000	000	0000

Hazard rate

- ► The probability of a company defaulting in a time interval is assumed to be linear in this time interval: Prob(default in $[t, t + \Delta t]) = h\Delta t$
- The probability of default is characterised by the hazard rate
- The hazard gives the probability of default in a single time period

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	00●		000	0000

Probability of not defaulting

- The probability of not defaulting is the complement of defaulting: Prob (no default in $[t, t + \Delta t]$) = $1 - h\Delta t$
- The time to maturity of the credit default swap is the limit of interest for defaults and we divide this into a number of time periods: $\tau = N\Delta t$
- Defaults are independent over time: Prob (no default until maturity) = $(1 - h\Delta t)^N$
- ▶ We now increase the number of time periods, $N \to \infty$, requiring that the length of a time period reduces, $\Delta t \to 0$
- \Rightarrow Prob (no default until maturity) = $e^{-h\tau}$

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000	●000	000	0000

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Copyright (C) by Andreas Krause

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000	○●○○	000	0000
Value of fee pay	yments			

- The spread is paid continuously until the maturity of the credit default swap, as long as the entity has not defaulted
- ▶ The spread payment needs to be discounted to its present value

$$V_{\text{Fee}} = \int_0^\tau s e^{-r(t-\tau)} e^{-h(t-\tau)} dt$$
$$= s \int_0^\tau e^{-(r+h)(t-\tau)} dt$$
$$= \frac{s}{r+h} \left(1 - e^{-(r+h)\tau} \right)$$

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000	00●0	000	0000

Contingent payment

- The seller pays the amount not recovered from the obligation of the entity, if the entity defaults
- The entity can default at a specific point of time, provided it has not defaulted before
- ▶ The payment is then discounted to its present value

►
$$V_{\text{Pay}} = (1 - R) \int_0^\tau e^{-r(t-\tau)} h e^{-h(t-\tau)} dt$$

= $(1 - R) h \int_0^\tau e^{-(r+h)(t-\tau)} dt$
= $(1 - R) h \frac{1 - e^{-(r+h)\tau}}{r+h}$
= $(1 - R) \frac{h}{s} V_{\text{Fee}}$

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000	○○○●	000	0000
The CDS spread				

- The credit default swap is priced fairly if the payments made by the buyer equal the payments they receive from the seller
- $\blacktriangleright \ V_{\mathsf{Fee}} = V_{\mathsf{Pay}}$
- $\Rightarrow s = (1 R) h$
- The spread reflects the probability of default, adjusted for any repayments the entity might make

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000		●00	0000

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Summary

Copyright (C) by Andreas Krause

The value of a risky zero bond

- A zero bond does not make coupon payments, but only repays its face value at maturity
- Its value is the present value of this future repayment
- If the entity does not default before maturity, it will make a full repayment
- ▶ If the entity does default before maturity, it will only make a partial repayment

►
$$B = (e^{-h\tau} + (1 - e^{-h\tau})R)e^{-r\tau}$$

= $e^{-(r+h)\tau}(1 - R) + e^{-r\tau}R$

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000		○○●	0000

CDS spreads as measuring bond risks

$$= e^{-(r+h)\tau} (1-R) + e^{-(r+h)\tau} e^{h\tau} R$$

$$\approx e^{-(r+h)\tau} (1-R) + e^{-(r+h)\tau} (1+h\tau) R$$

$$= e^{-(r+h)\tau} (1+hR\tau)$$

$$\approx e^{-(r+h)\tau} e^{hR\tau}$$

$$= e^{-(r+h(1-R))\tau}$$

$$= e^{-(r+s)\tau}$$

⇒ The discount for a risky bond is the risk-free rate adjusted by the spread
▶ The spread of credit default swaps represents the risk of the bond

Insuring default risk	Default rates	Valuing CDS	Risky bonds	Summary
000	000		000	●000

Default rates

Valuing credit default swaps

The relationship to discount rates for risky bonds

Copyright 🔘 by Andreas Krause

Fair credit default swap spreads

- Payments on credit default swaps can be determined by comparing the payments a buyer makes to the seller and payments received from the seller
- The spread reflects the default risk, adjusted for any partial repayment if the entity defaults
- The spread is independent of the time to maturity as regular payments are made until maturity or default
- The spread is not affected by the risk-free rate as spread payments are discounted as is the bond repayment

Relationship to bond pricing

- The spread of credit default swaps reflects the default risk of the bond of the entity
- The discount rate applied to risky bonds is adjusted by the CDS spread to capture the default risk
- As corporate bonds and non-investment grade government bonds are not very liquid, using this relationship for arbitrage to exploit mispricings is difficult

Picture credits

Control Controls Demi, CC BY-SA 4.0 https://creativecommons.org/licenses/by-aa/4.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/2/26/Gaming-Wall-Street.BTS.Prodigium-266.jpg Back: Michael Vadon, CC BY 2.0 (https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons, https://upload wikimedia.org/wikipedia/commons/9/97/Manhattan(NYC-New-York-City)Skyline(1176)153946).jpg

Andreas Krause Department of Economics University of Bath Claverton Down Bath BA2 7AY United Kingdom

E-mail: mnsak@bath.ac.uk